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Abstract – The question of how “smart” active agents, like insects, microorganisms, or future
colloidal robots need to steer to optimally reach or discover a target, such as an odor source, food,
or a cancer cell in a complex environment has recently attracted great interest. Here, we provide
an overview of recent developments, regarding such optimal navigation problems, from the micro-
to the macroscale, and give a perspective by discussing some of the challenges which are ahead
of us. Besides exemplifying an elementary approach to optimal navigation problems, the article
focuses on works utilizing machine learning-based methods. Such learning-based approaches can
uncover highly efficient navigation strategies even for problems that involve, e.g., chaotic, high-
dimensional, or unknown environments and are hardly solvable based on conventional analytical
or simulation methods.

open  access focus  article Copyright c© 2023 The author(s)

Published by the EPLA under the terms of the Creative Commons Attribution 4.0 International License
(CC BY). Further distribution of this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

Introduction. – Before the start of an airplane, the
conductor often runs a software to plan a path to a target
destination. This path aims to represent the best possi-
ble compromise between traveling time, fuel consumption,
and safety aspects for given environmental conditions,
such as the current wind and temperature pattern, as well
as airspace occupancy. Similar optimal navigation prob-
lems where an active (self-propelled) agent, which can
control its direction of motion, or its speed, in a com-
plex environment also occur for robots and autonomously
driving cars. These agents are commonly equipped with
cameras, processing units and actuators [1–3], allowing
them to locally perceive their environment and to use it
to achieve a goal such as completing a race track as fast as
possible or to efficiently collect waste. Here, the cameras
typically create images of the environment, that are fed
into the processing unit, which then translates the received
information into a desired action (motion command) and
sends it to an actuator, which initiates the motion. In the
animal kingdom, the ability to develop efficient navigation

(a)Contribution to the Focus Issue Statistical Physics of Self-

Propelled Colloids edited by Hartmut Löwen, Sabine Klapp and
Holger Stark.
(b)E-mail: benno.liebchen@pkm.tu-darmstadt.de (corresponding

author)

strategies can assist the survival of species. To reach their
breeding grounds, some turtles, for example, have to find
an efficient path through the ocean over hundreds of kilo-
meters [4,5]. Similarly, insects need strategies to find odor
sources by navigating through complex molecular patterns
that can even be chaotic due to turbulent air streams [6–9].

Smart microswimmers. Besides macroscale agents,
even microorganisms can perceive information from their
environment and use it for navigation. For example, the
ability of sperm cells to sense gradients in the concen-
tration of those chemicals which are emitted by the egg
cell [10,11] is crucial for the survival of many species. Sim-
ilarly, bacteria possess a remarkable spectrum of biochem-
ical sensors which allow them, e.g., to measure gradients
in oxygen, nutrient, or autoinducer concentration [12–14]
and to use them for navigation.
Besides biological microswimmers, since almost two

decades [15] also synthetic microswimmers have become
available, and are currently studied together in the re-
search field of active matter [16–35]. Synthetic microswim-
mers can be steered by external fields [36–53] (or even with
feedback control systems [54–56]) and can react to their
environment through various forms of taxis [57,58], which
may be used in the future to help them navigate through
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Fig. 1: Classification of optimal navigation problems for ac-
tive particles. Examples: Optimal point-to-point navigation in
(a) deterministic and (b) fluctuating environments, (c) target
search and capture in predator-prey systems, (d) odor search
in turbulent streams, optimal collection and localization in (e)
known, and (f) unknown setup.

our blood vessels to detect and perhaps repair mutated
cells [59,60], transport drugs to cancer cells [61–63] or per-
form microsurgery [64].
While optimal navigation problems at the macroscale

have been studied for decades [65,66], based on methods
such as optimal control theory and dynamic program-
ming [67–70], and more recently reinforcement learn-
ing [71,72], at the microscale corresponding explorations
have started only recently. Here, the smallness of the par-
ticles leads to various new challenges: i) Microswimmers
are subject to significant fluctuations due to Brownian mo-
tion (or errors and delays in the steering protocol), hence
they cannot accurately predict the outcome of their navi-
gational maneuvers. ii) Microswimmers interact hydrody-
namically with walls, obstacles, and other microswimmers,
which can qualitatively change the required navigation
strategy to reach a target fastest [73]. iii) The displace-
ment rate of microswimmers due to their environment can
exceed their self-propulsion speed (typically ∼ μm/s) by
orders of magnitude, e.g., in the blood vessels which is
opposite, e.g., to airplanes in the wind. iv) For many
prospective applications, microswimmers will face un-
known environments with only local information about
their surroundings available and will require transferable
navigation strategies (fig. 1).

Optimal point-to-point navigation. – Ernst Zer-
melo asked in 1931 how a ship needs to steer in a nonuni-
form wind field to reach its target fastest [74]. Zermelo’s
problem has later become relevant to a variety of topics
ranging from active particles, to fish-like underwater vehi-
cles [75] and unmanned balloon navigation in the strato-
sphere [76]. More generally, in this section, we ask how a

self-propelled agent, which is subject to constraints has to
steer to optimally (e.g., fastest, cheapest, or safest) reach
a target in an environment comprising complex (e.g., tur-
bulent) flow and force fields, motility fields (as relevant
for light-powered microswimmers in nonuniform intensity
fields), viscosity fields (such as in the case of visco-
taxis [77]) and complex obstacle landscapes. The optimal
path (trajectory) and the corresponding navigation strat-
egy of a self-propelled agent can be determined, e.g., based
on Pontryagin’s principle (for deterministic problems) or
Hamilton-Jacobi-Bellman equations (also for stochastic
problems) [69,78], geometric approaches [79–81], modern
optimization algorithms [82], but also based on (deep) re-
inforcement learning methods [83–85], which are particu-
larly useful if the environment is not known (or partially
known) or for high-dimensional and chaotic environments,
where exact solutions are difficult to obtain (figs. 2 and 3).

Elementary calculation of exact optimal trajectories.
Consider an overdamped dry active particle (no hydro-
dynamic interactions) in a time-independent and two-
dimensional complex environment. The equation of
motion for the particle position �r(t) = (x(t), y(t)) can be
compactly written as [86]

�̇r (t) = v0(�r)n̂(t) + �f(�r) +
√
2D�η(t). (1)

Here �f(�r) represents a general force, flow, and viscosity
field and D, �η represent the translational diffusion coeffi-
cient and Gaussian white noise of zero mean and unit vari-
ance. Let us first focus on the idealized situation where
the agent can freely and instantaneously control its self-
propulsion direction n̂(t) = (cosψ(t), sinψ(t)) but not its
speed v0(�r), which may depend on space [53,87]. The goal
is to find, for a given starting and end point, the con-
necting path �r(t) (equivalently the steering angle ψ(t)),
allowing the active particle to reach the target fastest. To
solve this problem for vanishing noise (D = 0), we now
write the traveling time as a functional of the path y(x)
and of y′(x) = dy(x)/dx as

T [y(x), y′(x), x] =

T
∫

0

dt =

∫ xB

xA

dx

|ẋ(y(x), y′(x), x)| (2)

and minimize it by solving the Euler-Lagrange equa-
tion d

dx
∂L
∂y′

− ∂L
∂y

= 0 (boundary value problem) for

L (y(x), y′(x), x) = 1
|ẋ(y(x),y′(x),x)| , where ẋ denotes the

velocity in the x-direction. Using (1), one obtains the La-
grange function [86]

L(x, y(x), y′(x))=

(

1+y′2
)

∣

∣

∣

∣

fx+y′fy±
√

v20 (1+y′2)−(fy−y′fx)
2

∣

∣

∣

∣

,

(3)

where �f = (fx, fy) and v0 may depend on x, y.
Active particles and ray-optics: The Euler-Lagrange

equation, together with eq. (3) can be readily solved for
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Fig. 2: Optimal active particle navigation. (a) Trajectories (red and cyan) of active particles in the presence of Brownian noise.
The particles steer such that they try to follow the optimal (green curve) and the shortest path (blue line) of the underlying
determinstic problem in Taylor-Green flow (arrows and background color) [80]. (b) Snapshot of a learned trajectory (blue curve)
and corresponding policy map (arrows) in presence of virtual obstacles (red cells) in experiments with feedback-controlled colloids
moving toward a goal (green cell) [91]. (c) Trajectories of an active particle obtained by Q-learning for point-to-point navigation
in a Mexican hat potential (background color) after 2000 (yellow), 3000 (green) and 5000 (blue) training episodes in comparison
with the exact optimal trajectory (red) [92]. (d) Time evolution of the total reward (blue curve) and exemplaric trajectories
(inset) for active particles in turbulent flows [93]. See references for more details.

constant �f and constant v0, yielding y′(x) = const, show-
ing that the shortest path is the fastest in any constant
field. That is, the active particle steers such that it ex-
actly compensates for the drift due to the environment. In
piecewise constant environments, the optimal trajectory is
also piecewise constant, yielding Snell’s law for active par-
ticles which involves a generalized refractive index that can
also be negative as for light in meta-materials [88,89]. (See
also [90].) Other exact solutions for the Euler-Lagrange
equation can be obtained by exploiting conservation laws
(symmetries) showing that the shortest path is typically
not the fastest in complex environments. In rotating flow
fields, active particles sometimes even have to initially
swim away from the target to reach it fastest. Note that
optimizing other quantities, such as the dissipated power
along the path, leads to a different Lagrange function and
hence in general also to a different navigation strategy [86].

Hydrodynamic interactions. Instead of dry active par-
ticles, ref. [73] considers microswimmers which hydrody-
namically interact with walls and obstacles. One key
result was to show that the optimal navigation strategy
which microswimmers require can qualitatively differ from
the one which leads to optimal trajectories for a dry active
particle or a macroscopic vehicle in the same environment
(fig. 3(a)).

Reinforcement learning. In very complex environ-
ments (e.g., chaotic or unknown cases), optimal naviga-
tion problems can typically not be solved exactly, but
methods based on reinforcement learning [83] can still be
applied. Some works have used tabular Q-learning, for ef-
ficient real-time control of self-thermophoretic active par-
ticles (fig. 2(b)) [91], or for learning to navigate optimally
inside an environment hosting a Mexican hat potential
without brim (fig. 2(c)) [92]. Other recent works have
used actor-critic methods [93] and also deep reinforcement
learning [94,95] to study optimal navigation within in-
creasingly complex environments. In ref. [95] in particular
a deep reinforcement learning-based method has been de-
veloped to determine asymptotically optimal trajectories.

Fig. 3: (a) Hydrodynamics can qualitatively change the navi-
gation strategy that an active particle needs to follow to reach
a target fastest: Optimal trajectory of a dry active particle
(blue) and of source dipole microswimmers with source dipole
strength σ = −15 (green) and σ = 7.5 (red) which interact
hydrodynamically with obstacles (grey disks) [73]. (b)–(e) Ex-
act optimal trajectories for active particles (dashed lines) be-
tween a given starting and end point (red dots) in a linear force
field (b) and in horizontal pipe flow (c) [86] in comparison to
machine-learned trajectories (yellow lines) [95]. Background
colors show the learned policy map, i.e., the preferred dis-
cretized steering “direction” ψ (ψ ∈ {0, . . . , 59} ∼= [0, 2π). (d),
(e): lines show learned trajectories in Gaussian random poten-
tials (background colors) [95]. See references for more details.

Here, the key challenge was to develop an approach that is
capable of finding the global optimum rather than some lo-
cally optimal path. The key “trick” to meet this challenge
was to use a policy gradient-based method that “under-
stands” and directly focuses on optimizing the expected
total reward (as opposed to the off-policy methods such
as Q-learning). To benchmark this method, results were
compared to exactly known optimal trajectories (fig. 3).
Reference [96] treats the microswimmer navigation

problem as a Markov decision problem and minimizes a
cost function to solve mazes, assuming global knowledge
of the environment (see also [97] for maze solving with
droplets). Very recently, swarms of intelligent colloidal mi-
crorobots were also trained for capturing Brownian cargo
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particles within mazes [98]. Apart from maze solving,
recently, a series of studies [98–100] have explored mi-
croswimmer navigation also in an unknown environment
containing obstacles that are locally explored by the mi-
croswimmer, using (deep) reinforcement learning. It was
found that smart colloids receiving local sensory input
were able to navigate around obstacles to reach a target
using deep reinforcement learning [99] and to accomplish
complex navigation and localization tasks under time con-
straints [100].
As opposed to unknown environments, for the problem

of optimal navigation in chaotic (turbulent) environments,
one can in principle use optimal control theory (Pontrya-
gin’s principle) to determine the exact optimal trajectory.
However, this problem is numerically not easily solvable
with shooting methods since, in chaotic environments, a
tiny variation of the initial condition commonly results in
a completely different endpoint, and a systematic varia-
tion of the initial conditions is not useful and one needs
to work with an extended target domain. This difficulty
in evaluating the equation representing the exact optimal
solution makes the usage of reinforcement learning partic-
ularly valuable and accordingly, ref. [93] has recently used
an actor-critic–based reinforcement learning approach for
Zermelo’s problem in turbulent flow fields (fig. 2(d)).
Reference [94] in turn has explored the effects of ac-

counting for environmental cues (such as vorticity, flow
velocity, etc.) within the input features of a deep
reinforcement learning method and the resulting strategies
for a point-to-point navigation task within a turbulent
flow. Reference [101] in turn used an adversarial rein-
forcement learning method to train microswimmers for
time-efficient point-to-point navigation within statistically
homogeneous and isotropic turbulent fluid flows which
were able to outperform the naive strategy of always mov-
ing in the direction of the target.
While the swimming direction of synthetic microswim-

mers can be typically controlled with external fields [33],
many biological microswimmers autonomously change
their swimming direction through suitable shape deforma-
tions. In line with that, several recent works have used re-
inforcement learning to explore the swimming mechanism
of deformable agents [102–105]. Related works have used
learning approaches to understand how a swimmer needs
to deform to swim as fast as possible [106], to follow a pre-
determined path [107], to exhibit chemotaxis [108] or to
achieve optimal point-to-point navigation [109–111]. For
example, ref. [110] considers three-link models of (bionic)
fish which receive only their orientation and distance to a
(moving) target as input data. They learn generic strate-
gies which are then explored in situations that the swim-
mer has not encountered throughout training.
In another line of work, smart active particles have been

trained to exploit underlying turbulent flows to escape
local fluid traps [112], reach target regions with high-
vorticity [113], or navigate towards the highest altitude
achievable [114]. Very recently, smart microswimmers

equipped with tabular Q-learning were also able to demon-
strate efficient navigation strategies (while only having
access to local information) within environments hosting
various motility fields [115].

Searching and capturing targets. – Another class
of optimal navigation problems concerns the quest of how
an active agent has to move to efficiently find a target
with an unknown location (dynamics). Here one can dis-
tinguish i) problems where the agent does not receive any
information from the target, to which we, therefore, re-
fer as “silent” targets, ii) problems where the target does
emit certain information, e.g., in the form of odors which
is spread by diffusion or advection (fig. 1(d)), and iii)
problems where the agent is aware of the current loca-
tion of the target (can “see” the prey) but not of its
dynamic (fig. 1(c)). Other interesting examples occur if
the predator has only access to indirect or partial infor-
mation about the prey (type ii)), as relevant, e.g., for
sharks and rays sensing their victims via the created flow
fields through lateral line sensors [116,117], and for chemo-
tactic bacterial predators [118]. Note that the special
case of iii) where the target does not move corresponds
to point-to-point navigation as discussed in the previous
section.

i) Finding “silent” targets: Problems of class i) have
been studied very recently based on the development of
an algorithm generalizing transition path sampling to ac-
tive Brownian particle dynamics searching for a target in
a complex environment [119,120]. For self-propelled par-
ticles in search of a target located at the center of a circu-
lar confining domain, controlled adjustment of parameters
such as the self-propulsion velocity and the characteristic
rotation time was demonstrated to improve the search ef-
ficiency [121]. Later on, ref. [122] also studied the role
of environmental characteristics (such as spatial hetero-
geneity) on the target search dynamics and capabilities of
self-propelled particles.

ii) Finding sources: Target search problems have been
studied intensively for macroscopic animals searching for
odor sources in complex flow fields [123–127]. Such flow
fields do not only allow for pheromone communication
among animals but they also efficiently distribute odors
over much longer distances than enhanced molecular dif-
fusion would [127]. However, they also make it difficult to
predict the location of the source based on the informa-
tion which an agent receives from its immediate vicinity.
A popular strategy for searching with sparse information
is infotaxis [128], which has been intensively studied in the
context of odor search problems for insects. This strategy
aims at locally maximizing the information gain; i.e., in-
fotactic agents essentially move up the (local) information
gain gradient, similarly to chemotactic bacteria moving
up the concentration gradient. Infotaxis has been recently
tested against methods from value iteration (for partially
observable Markov decision problems [129]) [9,130] to re-
inforcement learning [131,132].

17001-p4



Optimal active particle navigation

iii) Catching targets moving in an unknown way:
Predator-prey problems for active Brownian particles have
recently been studied using Q-learning [133,134]. Ref-
erence [135] in turn explored the outcome strategies of
training adversarial reinforcement learning agents in mi-
croswimmer pursuit and evasion tasks. Here, throughout
the training, the predator and the prey devised policies
to exploit hydrodynamic interactions to out-compete each
other with complex sequences of moves and countermoves.
Very recently also a deep policy gradient-based method
has been demonstrated to be able to qualitatively repro-
duce the optimal predatory path in chasing a finite size
prey at low Reynolds number [136].
Soaring: Another related class of problems, where the

target is not necessarily localized and which has been ex-
plored with reinforcement learning methods, concerns the
soaring of birds, unmanned air vehicles, or (other) gliders,
i.e., the question of how these agents have to navigate
to find and navigate thermals within a complex land-
scape [137,138]. Interestingly, it is still unknown how birds
achieve this [138].

Collection problems. – How does a prospective mi-
croswimmer have to move to efficiently collect targets that
are distributed in an unknown way, such as toxins or mi-
croplastics? This problem, which is closely related to the
area sweeping tasks in robotics [139–141], has not yet been
studied much in the active matter literature (fig. 1).
Existing works largely focus on stochastic search strate-

gies. Several influential works have reported observations
of such strategies in the forms of Levy walks (step size
randomly drawn from a fat-tailed distribution) in the for-
aging of albatrosses [142], marine predators [143], bumble
bees and T cells [144]. Reference [145] explores using Levy
walking active particles to collect (nonregenerative) sparse
targets. While in homogeneous environments a certain
combination of diffusive and ballistic motions is believed
to be optimal, this work finds that as the environment
gets increasingly complex due to the presence of barriers,
strategies that are more diffusive tend to lead to better
target collection rates. Similarly, run-and-tumble walkers
searching for a single target have been studied in ref. [146].

Open questions, challenges and perspectives. –

How good are machine-learned results? When learning
the result of a navigation problem (or of another complex
control problem), it often remains unclear how close the
resulting trajectory or navigation strategy is to the real
optimum. Of course, convergence of the reward does not
guarantee optimality: The reward can converge to an ar-
bitrary local optimum [83] and even if it converges to the
global optimum it is often unclear if this optimum is rep-
resentative for the (asymptotic) physical optimum, or just
optimal within the given reward definition, discretization,
hyperparameter choice, and the chosen learning algorithm.
Accordingly, one major open challenge is to develop rein-
forcement learning approaches that can reproduce exact
results and which can be used to go beyond those in [95].

Fluctuations. While we expect that fluctuations can
qualitatively change (fig. 1(b)) the required navigation
strategy to optimally reach a target (fig. 2(a)) [79], as, e.g.,
in the cliff walking problem [147], they have little effect
on the required navigation strategies in other problems.
Accordingly, it would be important to systematically un-
derstand and formulate criteria for when fluctuations lead
to strong quantitative or even qualitative changes in the
required navigation strategy. As for the development of
reinforcement learning algorithms, fluctuations lead to en-
vironments that are only partially observable, hence mak-
ing the outcome of decisions (actions) made by the agents
not accurately predictable. In certain problems, this un-
predictability can challenge the robustness of training,
which highlights the need for novel methods based on
deep reinforcement learning (such as trust region meth-
ods [148,149]) which are capable of maintaining robust
learning in volatile setups.

Transferability and unknown environments. While
microorganisms require strategies to navigate and find
food in environments that they have never encountered be-
fore and which may change over time in an unpredictable
way, many navigation problems for active particles so far
hinge on a fixed (or deterministic dynamic) environment.
An early work that addresses optimal navigation of “col-
loidal robots” in unknown environments based on deep re-
inforcement learning is [99]. Developing powerful methods
to allow determining transferable navigation strategies in
the future will likely require methods from model-based
reinforcement learning [150,151] and more importantly
world models [152] where the agents strive to learn a model
(representation) of the environment (which here can even
be translated to learning the physics of the setup) and
use this representation of the environment for planning its
future actions.

Recent developments in machine learning. We are cur-
rently witnessing a rapid advancement in the development
of new reinforcement learning methods. Accordingly, it is
not surprising that some of the most powerful methods
have not yet been applied to active matter and related
optimal navigation problems. A very promising line of
study that has been recently applied to famous games such
as Chess, Go, and Shogi is the introduction of reinforce-
ment learning algorithms with integrated planning such as
the AlphaGo and AlphaZero [153–155]. We believe, given
the robustness of their planning phase (thanks to a built-
in Monte Carlo tree search of possible future outcomes),
these methods can be very useful in tasks requiring high
degrees of accuracy and confidence in the optimality of the
learned strategies.

Cross-interactions and communication rules. Re-
cently, several works have focused on motile agents
learning collective behaviors [156] such as flocking from
simple low-level principles and incentive designs with
reinforcement learning techniques [157,158]. A related line
of study concerns the application of multi-agent reinforce-
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ment learning [159] to microswimmer problems. One can
imagine complex tasks such as localizing cancer cells or
collecting microplastics while having low environmental
awareness (fig. 1(f)), which would require multiple smart
microswimmers to cooperate and share their gathered
knowledge of the host environment to guarantee success.

Data availability statement : No new data were created
or analysed in this study.
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