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ABSTRACT
Active particles that are self-propelled by converting energy into mechanical motion represent an expanding research realm in physics and
chemistry. For micrometer-sized particles moving in a liquid (“microswimmers”), most of the basic features have been described by using the
model of overdamped active Brownian motion. However, for macroscopic particles or microparticles moving in a gas, inertial effects become
relevant such that the dynamics is underdamped. Therefore, recently, active particles with inertia have been described by extending the active
Brownian motion model to active Langevin dynamics that include inertia. In this perspective article, recent developments of active particles
with inertia (“microflyers,” “hoppers,” or “runners”) are summarized both for single particle properties and for collective effects of many
particles. These include inertial delay effects between particle velocity and self-propulsion direction, tuning of the long-time self-diffusion
by the moment of inertia, effects of fictitious forces in noninertial frames, and the influence of inertia on motility-induced phase separation.
Possible future developments and perspectives are also proposed and discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134455., s

I. INTRODUCTION

The dynamics of self-propelled particles that are perpetually
moving by converting energy (“fuel”) into mechanical motion rep-
resent a nonequilibrium phenomenon. Research in the last decades
was not only driven by the broad range of applications (such
as precision surgery, drug delivery, and cargo transport on the
micrometer-scale) but also from a more fundamental level in terms
of identifying basic relevant models to describe the particle trajec-
tories under nonequilibrium conditions. One of the first standard
models in this respect is the Vicsek model of flocking proposed in
1995 by Vicsek and co-workers,1 which is by now a cornerstone in
describing collective active matter systems. With the upsurge of syn-
thetic colloidal Janus-like particles that create their own gradient
in which they are moving, artificial microswimmers were consid-
ered as model systems for active matter. These micrometer-sized
particles typically self-propel in a liquid at a very low Reynolds
number. Therefore, the dynamics of these colloidal particles in a

solvent is overdamped, and one of the most popular descriptions
is obtained by active Brownian motion2–4 combining solvent kicks
described as Gaussian white noise and overdamped motion together
with an effective self-propulsion force representing the particle self-
propulsion. The active Brownian particle model has been tested
against experimental data of self-propelled colloids2,5,6 and has been
used also to describe and predict collective phenomena for colloids
and bacteria.7

More recently, there have been developments to consider larger
self-propelled particles or motion in low-density environment (gas
instead of liquid). Then, the motion is no longer at a low Reynolds
number. Instead, inertial effects are getting relevant in the dynamics
and need to be included in the modeling. These inertia-dominated
particles are “microflyers” or “hoppers,” “runners” rather than
“microswimmers,” since their dynamics is underdamped and corre-
sponds to flying rather than swimming. Still the motion is affected by
fluctuating random kicks of the surrounding medium. Correspond-
ingly, one can coin their dynamics as active Langevin motion rather
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than active Brownian motion. However, it is remarked here that
sometimes in the literature,8,9 the term “active Brownian motion” is
used in a more general sense including also underdamped Langevin
equations of motion.

Examples are mesoscopic dust particles in plasmas (so-called
“complex plasma”).10 Pairs of such dust particles can be brought
into a joint self-propulsion11 by nonreciprocal interactions induced
by ionic wake charges.12 These motions are only virtually damped.
Another important realization is constituted by granulars made self-
propelling on a vibrating plate13–22 or equipped with an internal
vibration motor23 where it has been shown that the active Langevin
model indeed describes their dynamics well.24–26 Further examples
for self-propelled particles with inertia range from minirobots27,28

and macroscopic swimmers (see Ref. 29 for a recent review) to bee-
tles flying30 or swimming31 at water interfaces and whirling fruits
self-propelling in air.32

In this perspective article, we first briefly review basic features
and predictions of active Brownian motion discussing both swim-
mers moving on average on a straight line (“linear” or equivalently
“achiral,” “left-right symmetric” swimmers) and particles swimming
on a circle (“circle” or “chiral” swimmers). Both single particle
properties and collective effects such as motility-induced phase sep-
aration (MIPS) are briefly discussed. We then extend the model
toward active Langevin motion including inertia and summarize
recent developments. We show that some of the basic properties
of active Brownian motion are qualitatively changed due to iner-
tia. In particular, we discuss inertial delay effects between particle
velocity and self-propulsion direction, the tuning of the long-time
self-diffusion by the moment of inertia, effect of fictitious forces in
noninertial frames, and the influence of inertia on motility-induced
phase separation (MIPS). MIPS is strongly influenced and sup-
pressed by inertia and if there are two coexisting phases of high and
low particle density, these coexisting phases possess different kinetic
temperatures.

This paper is organized as follows: In Sec. II, we first reca-
pitulate the basic features of active Brownian motion both for
linear swimmers and for circle swimmers. Then, in Sec. III,
we propose and discuss the model of active Langevin motion.
Section IV summarizes the behavior of translational and orienta-
tional autocorrelation functions. In Sec. V, experimental realizations
of active Langevin motion are described and possible perspectives
of future research are discussed in Sec. VI. Finally, we conclude in
Sec. VII.

II. ACTIVE BROWNIAN MOTION FOR SELF-PROPELLED
COLLOIDAL PARTICLES (“MICROSWIMMERS”)

Let us first recapitulate the basic features for overdamped active
Brownian motion. In the xy-plane, a single particle trajectory at time
t is described by the particle center r⃗(t) = (x(t), y(t)) and particle
orientation n̂(t) = (cosϕ(t), sinϕ(t)), where ϕ(t) is the angle of the
particle orientation with the x-axis. We now distinguish between lin-
ear swimmers and circle swimmers, which experience a systematic
torque.

A. Linear swimmers
For a linear swimmer, the basic overdamped equations of

motion read as

γ˙⃗r(t) = γv0n̂(t) + f⃗ (t), (1)

γRϕ̇(t) = g(t). (2)

These equations couple translational and rotational motion and rep-
resent a force and torque balance. In detail, γ denotes a transla-
tional friction coefficient, v0 is the imposed self-propulsion speed
of the active particle, and γR is a rotational friction coefficient. The
components of f⃗ (t) and g(t) are Gaussian random numbers with
zero mean and variances representing white noise from the sur-

rounding, i.e., f⃗ (t) = 0, fi(t)fj(t′) = 2kBTγδijδ(t − t′), g(t) = 0,
g(t)g(t′) = 2kBTRγRδ(t − t′), where the overbar means a noise
average. Here, kBT denotes an effective thermal energy quantify-
ing the translational noise strength. Likewise, kBTR characterizes the
orientational noise strength. We can thereby define a translational
diffusion constant

Dt = kBT/γ (3)
and a rotational diffusion constant

Dr = kBTR/γR. (4)

In many applications, the temperatures are set to be equal, i.e.,
T ≡ TR; in others, the translational noise is neglected with respect
to the rotational noise such that T = 0 and TR > 0. In the noise-free
case T = TR = 0, the self-propelled motion is linear along the parti-
cle orientation, i.e., the self-propelled particle is a linear (or achiral)
swimmer. Its propulsion speed is the imposed v0. As a remark, the
orientational dynamics (2) can equivalently be written as

γR ˙̂n(t) = g⃗(t) × n̂(t), (5)

where we extended all vectors to three dimensions such that
n̂ = (nx, ny, 0) and g⃗(t) = (0, 0, g(t)).

Let us first discuss the number of independent parameters
inherent to the equations of motion (1) and (2). By choosing suitable
units for length and time such as the persistence length

ℓp = v0/Dr (6)

and the persistence time

τp = 1/Dr , (7)

scaling of the equations results in

d⃗̃r
dt̃
= ˆ̃n(t) +

¿
Á
ÁÀ

2Dtτp

ℓ2
p

⃗̃f (t̃), (8)

dϕ̃
dt̃
=
√

2g̃(t̃) (9)

with the dimensionless time t̃ = t/τp and the scaled dimensionless
functions ⃗̃r(t̃) = r⃗(t)/ℓp, ϕ̃(t̃) = ϕ(t), ˆ̃n = (cos ϕ̃, sin ϕ̃) and Gaus-

sian white noises ⃗̃f (t̃), g̃(t̃) of unit variance. Hence, there is only
one remaining independent parameter, which can be chosen to be a
dimensionless translational diffusivity
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D̃ = Dt/(ℓ
2
p/τp) =

kBT
γv2

0τp
. (10)

The number D̃ measures the strength of the bare translational dif-
fusion characterized by the short-time diffusion constant Dt relative
to the diffusion generated by the persistent random walk, ℓ2

p/τp. For
D̃ ≪ 1, pure translational diffusion can be neglected. In fact, for
D̃ = 0 (or equivalently T = 0), the model set by Eqs. (1) and (2)
is a completely parameter-free persistent random walk solely char-
acterized by the persistence length and persistence time, which is
indeed frequently assumed in studies on active Brownian motion.
Conversely, in the much less considered case D̃ ≫ 1, activity is
dominated by translational diffusion.

We now address the noise-averaged displacement as a function
of time t for a prescribed initial orientation n̂(0) at time t = 0. It is
given by2,4,33

r⃗(t) − r⃗(0) =
v0

Dr
(1 − e−Dr t

)n̂(0) = ℓp(1 − e−t/τp)n̂(0). (11)

This represents a linear segment oriented along n̂(0) whose total
length for t →∞ is the persistence length ℓp. The intuitive interpre-
tation of Eq. (11) is that due to the coupling between translational
and rotational motion, the trajectories show a persistence; it is a per-
sistent random walk rather than a standard random walk. The par-
ticle remembers where it came from since it is self-propelled along
its orientation and the orientation diffuses with Dr . It is the orienta-
tional fluctuations that are governing the persistence, not the transla-
tional fluctuations. The motion is, therefore, a “random drive” rather
than a “random walk”: A blind driver steers a car with fluctuations
in the steering wheel orientation, and this is what makes the motion
persistent.

Next, we can calculate the mean-square displacement (MSD),
which is analytically given by2,4

(r⃗(t) − r⃗(0))2 = 2ℓ2
p(

t
τp
− 1 + exp (−

t
τp
)) + 4Dtt. (12)

Of course, the MSD does not depend on the initial orientation n̂(0)
due to rotational symmetry. Expanding Eq. (12) for small, interme-
diate, and long times, we obtain a diffusive short-time limit for the
MSD as 4Dtt for t/τp ≪ D̃. For D̃ ≪ 1, the initial diffusive regime
is then followed by a ballistic regime at intermediate times set by
D̃ ≪ t/τp ≪ 1, where the MSD scales as (v0t)2. For long times,
t/τp ≫ 1, the MSD is again diffusive as 4DLt but with a larger
long-time diffusion coefficient given by

DL = lim
t→∞

1
4t
(⃗r(t) − r⃗(0)

2
= Dt + v2

0τp/2 =
ℓ2

p

τp
(D̃ +

1
2
). (13)

Remarkably, for strong self-propulsion, D̃ ≪ 1, DL is much larger
than Dt such that DL = ℓ

2
p/τp is consistent with the persistent random

walk picture.
It is important to note that in the overdamped Brow-

nian model, the velocities ˙⃗r(t) are not real observables as
they fluctuate without any bounds due to the noise terms in
Eq. (1). Instead, one can define an averaged or drift velocity by
v⃗d(t) = limΔt→0 (r⃗(t + Δt) − r⃗(t))/Δt, which is given by
v⃗d(t) = v0n̂(t), i.e., the systematic part of the particle drift velocity

is the self-propulsion velocity. However, still one can define a veloc-
ity autocorrelation function Z(t) as a second time-derivative of the
mean-square displacement,34,35

Z(t) =
d2

dt2 (r⃗(t) − r⃗(0))2. (14)

In the case of active Brownian motion, Eq. (12) yields that the
velocity autocorrelation function is a single exponential

Z(t) = v2
0 exp(−

t
τp
), (15)

decaying with the persistence time τp. This result also implies that
the mean squared velocity is the self-propulsion speed as given by
the short-time limit Z(0) = v2

0 .
Remarkably, the orientational correlation function C(t) is also

a single exponential

C(t) = n̂(t) ⋅ n̂(0) = exp(−
t
τp
), (16)

decaying with the same persistence time τp, i.e., it is proportional to
Z(t). This documents that we have standard Brownian orientational
diffusion in two dimensions.36

Moreover, one finds for the dynamical correlation function
between particle orientation and the drift velocity,

c(t′, t) ∶= lim
Δt→0

n̂(t′) ⋅ (r⃗(t + Δt) − r⃗(t))/Δt

= v0 exp(−
1
τp
∣t − t′∣)

(17)

and, finally, a delay function that measures how the dynamical
changes of orientation and velocities are correlated can be defined
via

d(t) = c(t, 0) − c(0, t) ≡ 0. (18)

The delay function trivially vanishes here by symmetry, but this will
not hold for inertia as discussed later.

Experimental data for the noise averages obtained for dilute
self-propelled colloidal Janus particles could indeed be described
with these predictions33,37 establishing that active Brownian motion
is the basic model for active colloidal particles.

B. Circle swimmers
In practice, microswimmers are not perfectly rotationally sym-

metric around their swimming axis. An asymmetry leads to a sys-
tematic circular or chiral motion. In two spatial dimensions, this has
been described by including an effective torque M in the equations
of motion38 as

γ˙⃗r(t) = γv0n̂(t) + f⃗ (t), (19)

γRϕ̇(t) =M + g(t). (20)

Now, the noise-free trajectories are circles with a spinning frequency

ωs =
M
γR

(21)
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and a spinning radius

Rs =
v0γR

M
. (22)

The sign of the torque M determines whether the circling motion
is clockwise or anticlockwise. Compared to Eqs. (1) and (2), there
is an additional independent system parameter, which can be cho-
sen as an additional reduced time scale related to the spinning
frequency

ωsτp =
M
γR

τp. (23)

Again, the mean displacement can be calculated analytically
and turns out to be a logarithmic spiral (“spira mirabilis”) given by38

r⃗(t) − r⃗(0) =
ℓp

1 + (ωsτp)2 [n̂(0) + ωsτpû(0)

− e−t/τp( ¯̂n(t) + ωsτpû(t))] (24)

with
¯̂n(t) = (cos (ωst + ϕ(0)), sin (ωst + ϕ(0))) and
û(t) = (− sin (ωst + ϕ(0)), cos (ωst + ϕ(0))).

Likewise, the MSD for circle swimmers is obtained as38

(r⃗(t) − r⃗(0))2 =
2ℓ2

p

(1 + (ωsτp)2)2 [(ωsτp)
2
− 1 + (1 + (ωsτp)

2
)

t
τp

+ e−t/τp[(1 − (ωsτp)
2
) cos(ωst) − 2ωsτp sin(ωst)]]

+ 4Dtt, (25)

which is diffusive for both short times and long times with the short-
time diffusion coefficient Dt and the long-time diffusion coefficient

DL = Dt +
v2

0τp

2
1

1 + (ωsτp)2 , (26)

which implies that circular spinning will reduce the long-time diffu-
sion coefficient relative to Eq. (13).

From Eq. (14), the velocity autocorrelation function can be
calculated as

Z(t) = v2
0 cos(ωst) exp(−

t
τp
). (27)

It is not a single exponential but contains a further time scale 1/ωs
reflecting the systematic spinning of the particle orientation.

Finally, the orientational correlation function is

C(t) = n̂(t) ⋅ n̂(0) = cos(ωst) exp(−
t
τp
). (28)

It is proportional to Z(t) and contains the further time scale 1/ωs of
particle circling as well.

For anisotropic colloidal self-propelled Janus particles, the
active Brownian model was tested in detail in experiments. In partic-
ular, the spira mirabilis for the mean displacement was confirmed.5

Finally, we note that the active Brownian motion model of
a single particle can be generalized to the presence of external
potentials (such as confinement or gravity) and external flow fields
(such as linear shear flow) for a review of the different situations
considered (see Ref. 7).

C. Collective effects of active Brownian particles: MIPS
Active Brownian particles exhibit a wealth of fascinating collec-

tive effects including flocking,1 vortices,39 network formation,40 syn-
chronization,41 clustering,7,42 crystallization,43–46 and turbulence.47

Here, we focus more on one important effect that is purely induced
by activity and is called motility-induced phase separation (MIPS).
It was seen in computer simulations of active Brownian particles
without aligning interactions48,49 and confirmed in experiments on
artificial colloidal Janus-particles.49,50

The basic idea behind MIPS is as follows: Consider a system
of active Brownian particles at a finite concentration where the par-
ticles are interacting by purely repulsive nonaligning interactions.
Suppose two particles meet in a perfect central collision as sketched
in Fig. 1(a). Due to the opposed self-propulsion, they will not bounce
back but stay close to each other. This is in stark contrast to equilib-
rium where repulsive force will separate the particle pair immedi-
ately. The particles can only get split by fluctuations; in fact, rota-
tional diffusion will turn the orientations away such that they can
pass along each other. This process will happen on a time scale of
τp = 1/Dr . If other particles will approach the particle pair within
this time, the pair will be surrounded by more particles, a cluster
is formed, and it will get increasingly difficult to release the parti-
cles from the cluster. The cluster is thus growing and ideally there
is complete phase separation into a dense region inside the cluster
and a dilute (depleted) region outside. Clearly, the travel time from
a neighboring particle to the initial pair is governed by the particle
motility v0; hence, the particle phase separation is purely induced by
motility and is, therefore, called motility-induced phase separation

FIG. 1. Sketch of a central elastic collision of two Janus particles with opposing
self-propulsion velocities (red arrow). (a) Active Brownian dynamics: the particles
will stay almost touching for a typical time of 1/Dr . (b) Active Langevin dynam-
ics: microflyers will bounce back such that they will not exhibit their terminal
self-propulsion speed v0. Initial positions are shown in light colors. The particle
trajectories are rendered in green.
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(MIPS). Conversely, in equilibrium (i.e., without motility at v0 = 0),
purely repulsive interactions will never lead to liquid-gas phase sepa-
ration. Based on this intuitive picture, MIPS needs a finite activity to
happen and is also favored by higher particle densities since the par-
ticles are closer anyway. Both trends are confirmed in simulations
(see, e.g., Refs. 51–54) and in a thermodynamic theory (see, e.g.,
Ref. 55–57). In a parameter space spanned by the particle den-
sity and the self-propulsion velocity v0, there is either a one-phase
or a two-phase region. This is by now well-explored by simula-
tion, theory, and experiment, and there are several reviews on this
topic.7,42,58–61

More recently, MIPS has also been seen for circle swimmers62,63

(see also Refs. 64 and 65). As found in Ref. 62, an increasing torque
acting on circle swimmers hinders MIPS as particles are rotat-
ing away from the aggregated clusters. Moreover, more compli-
cated aligning interactions were considered and MIPS was found
as well.66–68 This shows that the occurrence of MIPS itself is a very
robust and general effect. Moreover, the growth exponent of the
cluster size as a function of time has been simulated69 and studied
by theory.70 At the late stage, for long times, a universal power law
with a universal growth exponent of 1/3 was found similar to the
traditional Cahn-Hilliard theory.

III. ACTIVE LANGEVIN MOTION FOR SELF-PROPELLED
PARTICLES WITH INERTIA (“MICROFLYERS”)
A. Single particles

We now generalize the equations of active Brownian to that of
active Langevin motion including inertia both for the translational
and the rotational part (see, e.g., Refs. 23, 26, and 71–80) as

m¨⃗r(t) + γ˙⃗r(t) = γv0n̂(t) + f⃗ (t),

Jϕ̈(t) + γRϕ̇(t) =M + g(t).
(29)

Here, m is the particle mass and J the moment of inertia. For M = 0,
we recover active Langevin motion for linear microflyers, and for
M ≠ 0, these are circle flyers. Now, the particle velocity and the
orientation are not necessarily collinear.

On top of the parameters characterizing a Brownian circle
swimmer discussed in Sec. II B, there are now two more system
parameters. These can be best put in terms of two additional relax-
ation time scales due to the finite moment of inertia and mass. The
orientational relaxation time upon which an angular velocity relaxes
due to the finite moment of inertia is given by

τr = J/γR. (30)

In case the orientational relaxation is fast, τr → 0, one may consider
the limit of vanishing moment of inertia, J = 0, which was assumed
in several recent studies.72–74,77 Conversely, the case J ≠ 0, but m = 0
has also been considered in the literature.81 Correspondingly, there
is also a second time, the translational relaxation time,

τ = m/γ, (31)

upon which the translational velocities relax due to the finite
mass m.

With suitable basic length and time scales of the persistence
random walk, ℓp and τp, we can state the four independent system
parameters of Eq. (29) as three basic dimensionless delay numbers
D0 = τr/τp, D1 = ωsτr , and D2 = τr/τ plus the dimensionless trans-
lational diffusivity D̃ defined in Eq. (10), which contributes a time
scale from the translational Brownian motion.

Some analytical solutions of the active Langevin motion model
are given in Ref. 26, which we briefly review here. For more ana-
lytical results, see Ref. 82. Four different regimes can be identi-
fied where the MSD exhibits different power laws: ballistic for very
short times, then diffusive due to solvent noise, then ballistic again
due to self-propulsion, and then diffusive again for very long times
due to randomizing particle orientation. The long-time translational
self-diffusion coefficient DL can be calculated as

DL = Dt +
v2

0τp

2
G(D0,D1). (32)

This equation has a similar structure than the result for over-
damped dynamics [see Eq. (26)], as it is a superposition of the
translational diffusion and an active term proportional to v2

0τp. The
corresponding dimensionless correction is given by

G(D0,D1) = D0eD0 Re[D−(D0−iD1)

0 γ(D0 − iD1,D0)], (33)

where Re denotes the real part and γ(y, z) is the lower incom-
plete gamma function. Interestingly, the dimensionless correction
(33) does not depend on the translational relaxation time τ, but it
depends explicitly on the rotational relaxation time τr (via D0). This
is in contrast to equilibrium (v0 = 0) where DL depends neither on
τ nor on τr . In fact, the dependence of long-time diffusion on the
moment of inertia J is pretty strong, and it increases with J doc-
umenting the additional persistence with larger J. For small J, one
obtains

DL = Dt +
v2

0

2Dr
+

v2
0

2γR
J + O(J2

), (34)

while for large J, the asymptotics is governed by

DL = Dt + v2
0

√
π

8DrγR

√
J + O(

√
J−1). (35)

As an application, animals can hardly change mass, but they
can change their moment of inertia during motion. So increasing J
may provide a strategy to sample space more quickly.

Moreover, the zero-time velocity correlation, i.e., the mean
kinetic energy, can be calculated as

Z(0) = 2Dt/τ + F(D0,D1,D2)v
2
0 (36)

with the dimensionless function

F(D0,D1,D2) = D2eD0 Re[D−(D0−iD1+D2)

0 γ(D0 − iD1 + D2,D0)].

(37)
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The first term in (36) is the equilibrium solution for a passive particle
(v0 = 0) and the second arises from the active motion. Similar to (27),
the latter is proportional to v2

0 , i.e., the kinetic energy injected by the
propulsion.

Remarkably, the orientational correlation function C(t)
= n̂(t) ⋅ n̂(0) is a double exponential81

C(t) = cos (ωst) exp (−Dr(t − τr(1 − e−t/τr))), (38)

emphasizing again the important role of rotational inertial relax-
ation since the time scale τr enters here explicitly.

Finally, we consider the delay function d(t) (18) that mea-
sures how the dynamical changes of orientation and velocities are
correlated. One finds

d(t) = c(t, 0) − c(0, t) = ˙⃗r(t) ⋅ n̂(0) − ˙⃗r(0) ⋅ n̂(t)

= v0D2eD0D(D2−D0)

0 e−t/τRe[DiD1
0 (D

−2D2
0 γ(D0 − iD1 + D2,D0)

− e2t/τD−2D2
0 γ(D0 − iD1 + D2,D0e−t/τr)

− γ(D0 − iD1 −D2,D0e−t/τr) + γ(D0 − iD1 −D2,D0))].

(39)

By definition, this function is zero for t = 0. For linear microfly-
ers, it is then strictly positive, exhibiting a maximum after a typical
characteristic delay time. This shows that on average, first the parti-
cle orientation will change and then the particle velocity will follow
on the scale of this “velocity-orientation delay time.” Expression
(39) implies that the velocity-orientation decay time depends in a
complicated way on τr , τ, 1/ωs, and τp.

We close this section with two remarks: First, for J = 0, there
is an equivalence to overdamped particle motion in a harmonic
potential as can easily be seen by replacing the role of velocities
and positions in the equations of motion. This mapping has led to
some other exact results for the dynamics obtained by Malakar and
co-workers.83

Second, in addition to the mean-square displacements, higher-
order moments such as the non-Gaussian parameter, the moment-
generating function, or the full probability density provide more
general spatiotemporal information about the dynamical behavior
of active agents. Using various methods, these quantities have been
addressed for the active-Brownian particle model4,6,37,84 and for the
Brownian circle swimmer85 but not yet for active Langevin particles.
As documented in Refs. 26 and 82, such a calculation is, in principle,
possible but tedious.

Third, there are more complicated models to describe an addi-
tional alignment between particle orientation and velocity, which is
ignored in Eq. (29). An extra term involves an additional torque such
that the orientational dynamics in Eq. (29) can be written for J = 0
as

γR ˙̂n(t) = ζ(n̂(t) × ˙⃗r(t)) × n̂(t) + (M⃗ + g⃗(t)) × n̂(t), (40)

where ζ is a coupling coefficient. (40) seems to be a more realistic
description of granular hoppers14,23,86 but lacks an analytical solu-
tion. It has been applied to describe inertial active particles in a
harmonic external potential recently.23

B. Self-propulsion of microflyers in noninertial frames
The equations of motion [Eq. (29)] can be generalized to non-

inertial frames to describe self-propulsion on rotating disks or on
oscillating plates, for example, as has been discussed recently.87 The
new phenomenon for active Langevin motion in this setup is that
additional fictitious forces have to be added to the equations of
motion if the equations are expressed in the noninertial frame. We
briefly illustrate this for a planar rotating disk and for an oscillating
plate.

1. Rotating disk
On a planar disk rotating around the z-axis with a constant

angular velocity ω, the equations of motion for a particle self-
propelling on the xy-plane read in the laboratory frame as

m¨⃗r(t) + γ(˙⃗r(t) − ω⃗ × r⃗(t)) = γv0n̂(t) + f⃗ (t),

Jϕ̈(t) + γR(ϕ̇(t) − ω) =M + g(t).
(41)

The ingredient here is that friction is proportional to the rel-
ative velocity and the relative angular velocity in the rotating non-
inertial frame. If expressed as equations of motion in the rotating
frame, the friction term is getting easier but additional centrifugal
and Coriolis forces need to be included.

In the noise-free case, the solution can be found analytically and
is given by a superposition of three terms: two logarithmic spirals
that spiral inwards and outwards with different rates and a constant
rotation around the rotation origin with radius

b =
γv0

√
m2(ω + ωs)4 + γ2ω2

s
. (42)

The special circular solution can be understood as arising from a
balance of the centrifugal force, the self-propulsion force, and the
friction force in the rotating frame. However, it is unstable with
respect to the out-spiraling part, which stems from the action of
the centrifugal force. The actual trajectories look pretty complex in
the laboratory frame. An example is shown in Fig. 2. For an over-
damped system, these fictitious forces do not exist and a particle
does not suffer from the centrifugal expulsion from the rotation
center.

FIG. 2. Typical trajectories from the analytical solution of the noise-free equation
(41) in the laboratory frame. The unstable rotation with radius b is indicated as a
black circle. The trajectory approaches a logarithmic spiral. The length unit is v0/ω,
and the parameters are as follows: γ/mω = 2.5. (a) ωs/ω = 1 and (b) ωs/ω = 4.
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2. Oscillating plate
We now consider active Langevin motion on a two-

dimensional oscillating plate. The oscillating plate constitutes a
linearly accelerated frame of reference as described with a time
dependent distance vector

R⃗0(t) = Dp cos(ωpt)e⃗x (43)

between the origins of the inertial laboratory frame and the noniner-
tial frame. Here, Dp is an oscillation amplitude, ωp is the oscillation
frequency of the plate, and the oscillation is taken along the x-axis
without loss of generality. The equations of motion in the laboratory
frame are

m¨⃗r(t) + γ(˙⃗r(t) − ˙⃗R0(t)) = γv0n̂(t) + f⃗ (t), (44)

γRϕ̇(t) =M + g(t), (45)

and the solution in the noise-free case can be obtained analytically as
a superposition of harmonic terms with frequencies ωp and M/γR in
the x-direction. One term is exponentially damped with rate γ/m,
and another is persistent and undamped. The effect of noise, the
noise-averaged trajectory, and the MSD can be calculated analyti-
cally following the analysis proposed in Ref. 87. For large ωp (i.e.,
ωp ≫ M/γR), there is an enormous amplification of the oscillation
amplitude due to the fictitious inertial force.

C. Collective effects: MIPS
Since motility-induced phase separation (MIPS) is, in general,

a pretty robust effect, it is expected to occur also for inertial active
particles, provided that the inertial effects are not too large. In fact,
recent studies88,89 have explored the active Langevin model in this
regard and found that inertia as modeled by the many-body gener-
alization of Eq. (29) is unfavorable for MIPS. An example is shown
in Fig. 3 where the phase separation separatrix is shown for fixed
density in the parameter space spanned by the self-propulsion veloc-
ity v0 and the particle mass m. In this case, the moment of inertia
J and the external torque M were both set to zero and T = TR.
In fact, beyond a critical mass, there is no phase separation at all.
Generally speaking, this has to do with the additional fluctuations,
which occur in the active system introduced by inertia. If we take

FIG. 4. Scheme of the phase-separated state associated with a hot-cold coexis-
tence in underdamped active particles. Particles self-propel with the colored cap
ahead (brown; greenish for the tagged particle). Active particles move with v0 in
the gas phase but can be an order of magnitude slower in the dense phase due
to multiple collisions. Reproduced with permission from Mandal et al., Phys. Rev.
Lett. 123, 228001 (2019). Copyright 2019 American Physical Society.

the intuitive picture for MIPS in underdamped systems described
in Sec. II C, it is now getting different: with inertia, a centrally col-
liding particle pair will bounce back rather than staying static and
Brownian as it does in the overdamped case [see Fig. 1(b)]. This will
destroy the nucleus for subsequent particle aggregation more than it
does in the overdamped case, and therefore, MIPS is unfavored by
inertia. Moreover, there is a re-entrant one-phase region if the activ-
ity (or self-propulsion) is increased, which is strongly amplified by
inertia.

However, when MIPS occurs for inertial active particles, there
is a novel effect that does not occur for overdamped systems: the two
coexisting phases exhibit a different kinetic temperature.89,90 Here,
temperature is defined via the mean kinetic energy of the particles.
Figure 4 shows the underlying principle. In contrast to granulars
where a similar effect has been found,91 particle collisions are elastic
here, but the self-propulsion makes a collision between two parti-
cles like two bouncing balls hitting each other [see Fig. 1(b)]. Thus,
particles will never possess a velocity along their orientation when
there are many subsequent interparticle collisions. Therefore, the
dense region is “cool” (in terms of kinetic temperature), while in the
dilute region, particles will accelerate until they have almost reached
their terminal velocity v0. Hence, the dilute region is “hot.” The

FIG. 3. Nonequilibrium phase diagram at an area fraction of φ = 0.5 in the plane spanned by the particle mass and the self-propulsion speed (arbitrary units) (c). Panels (a),
(b), (d), and (e) represent simulation snapshots in slab geometry at state points indicated in the phase diagram. Colors represent kinetic energies of individual particles in units
of kBT. A hot-cold coexistence is visible in panel (e). Dashed lines in (c) show scaling predictions for the phase boundary between the homogeneous and phase-separated
state. Reproduced with permission from Mandal et al., Phys. Rev. Lett. 123, 228001 (2019). Copyright 2019 American Physical Society.
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temperature difference between the dilute and dense regions can
be huge up to a factor of 100. Note that there is no flux of heat
at the fluid-fluid interface, but a stable thermal gradient will be
self-sustained there.

Finally, the growth of particle clusters during the phase sepa-
ration process has been explored by computer simulation.89 These
calculations reveal that the cluster growth exponent is significantly
lower than the universal value of 1/3 found in the overdamped
case,69,70 proving that inertia can qualitatively change the physics of
the collective phenomena.

In summary, in the active Langevin model, there are three
basic effects, which are caused by inertia as far as motility-induced
phase separation is concerned: the phase separation is shifted toward
higher Peclet numbers and is finally destroyed completely as the par-
ticle mass is increased. Second, the kinetic temperature is different in
the two coexisting phases in stark contrast to equilibrium thermo-
dynamics where phase coexistence implies equality of temperatures.
Third, the cluster growth exponent is smaller than the universal
value 1/3 valid for overdamped systems.

As an outlook, for chiral active Langevin particles, once they
exhibit MIPS, one will expect that there are four different temper-
atures in the two coexisting states (as opposed to a single one in
equilibrium coexistence): two different rotational and two different
translational ones.

IV. SUMMARY OF TRANSLATIONAL
AND ORIENTATIONAL DYNAMICAL
AUTOCORRELATION FUNCTIONS

In Table I, we summarize the different cases discussed so far
in terms of the translational and orientational dynamical autocor-
relation functions Z(t) and C(t). We distinguish between a simple
single exponential decay with one decay time and more compli-
cated behavior such as an oscillatory decay (valid for circle swim-
mers) or double exponentials (valid for microflyers with M = 0 and
J > 0). The passive cases are listed as references, too. For passive

Langevin dynamics,

m¨⃗r(t) + γ˙⃗r(t) = f⃗ (t) (46)

with f⃗ (t) denoting Gaussian white noise, the velocity autocorrela-
tion function Z(t) decays as a simple exponential with a decay time
m/γ, and the orientational dynamics is decoupled from this equa-
tion. For J = 0 and M = 0, the orientational correlation is single
exponential, but not for J > 0 where it is a double exponential or
for M > 0 where it is oscillatory.

For many particles with nonaligning interactions (at vanish-
ing external torque, M = 0), the orientational correlation func-
tion is still a single exponential, but the translational correla-
tion function is highly nontrivial (even for passive particles34),
while for aligning interactions, the orientational dynamics is also
complicated.36

V. EXPERIMENTAL REALIZATION
A. General

Inertial effects are getting relevant, in particular, for two differ-
ent situations: (i) for macroscopic self-propelled particles and (ii) for
mesoscopic particles on the colloidal scale moving in a medium of
low viscosity (such as a gas).

Regarding the first situation, one of the best realization of our
model equations (29) for active Langevin dynamics can be found for
active granulars.13–22 Typically, these are hoppers with a broken fore-
aft symmetry, e.g., by tilted legs. In order to achieve self-propulsion,
these macroscopic bodies are either placed on a vibrating table or
equipped with an internal vibration motor (“hexbugs”).23 It has
been shown that the dynamics of these hoppers are well described
by active Brownian motion with inertia.24–26 Since they are macro-
scopic, inertia is relevant. The fluctuations can be fitted to Brownian
forces, and imperfections in the particle symmetry will make them
circling (M ≠ 0). Therefore, they are ideal realizations of our model
equations (29), but there is a caveat for certain granulars insofar

TABLE I. Summary of the behavior of translational and orientational correlation functions Z(t) and C(t) for different situations of single and many passive and active particles. The
relevant associated time scales are also included. In particular, a simple single exponential decay is indicated. All four different combinations do occur, and the models belonging
to the corresponding classes are listed. The notation . . . means that there are more time scales arising from the interparticle interaction.

Translational velocity correlation Z(t) Orientational correlation C(t)

Single More Single MoreSingle particle exponential complicated Time scales exponential complicated Time scales

Passive Brownian motion No correlation . . . X τp
Active Brownian motion X τp X τp
Brownian circle swimmer X τp, 1/ωs X τp, 1/ωs
Passive Langevin (J = M = 0) X τ X τp
Passive Langevin (J > 0 or M > 0) X τ X τp, τr or 1/ωs
Active Langevin (M = J = 0) X τ, τp X τp
Active Langevin (J ≠ 0) X τ, τp, 1/ωs, τr X τp, 1/ωs, τr

Many interacting particles
Nonaligning (M = 0) X . . . X τp
Aligning interaction X . . . X . . .
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FIG. 5. 3D printed particles, setup, and trajectories. (a) Generic particle. (b) Carrier particle with an additional outer mass. (c) Tug particle with an additional central mass.
(d) Ring particle without a central core. (e) Illustration of the mechanism with a generic particle on a vibrating plate. (f) Three exemplary trajectories with increasing average
particle velocities. Particle images mark the starting point of each trajectory. The trajectory color indicates the magnitude of the velocity. Reproduced with permission from
Scholz et al., Nat. Commun. 9, 5156 (2018). Copyright 2018 Author(s), licensed under a Creative Commons Attribution 4.0 License.

as the additional aligning torque described in Eq. (40) needs to be
included. Moreover, there is no major difficulty in placing granu-
lars on a turntable or on an oscillating plate so that effects arising
from a noninertial frame are directly accessible. There is a plethora
of other examples of macroscopic self-propelling objects, which are
dominated by inertia. These include minirobots,27,28 flying whirling
fruits,26 and walking droplets92,93 as well as cars, boats, airplanes,
swimming and flying animals,32 and moving pedestrians, bicyclists,
and vehicles.94–97

Regarding the second situation, dust particles in plasmas
(“complex plasmas”) can be made active.98 They exhibit under-
damped dynamics due to the presence of the neutral gas10 and are,
therefore, highly inertial. Another example in nature is fairyflies that
belong to the smallest flying insects on our globe and have a size of
several hundreds of micrometers.

B. Vibrated granulars in particular
As already mentioned, a direct realization of active Langevin

motion is obtained for vibrated granulars. Interestingly, particles can
be prepared with different mass and different moments of inertia

(see Ref. 26), which we describe now in more detail. Exposed to a
vibrating plate, they perform self-propulsion in two dimensions (see
Fig. 5 for the experimental realization and typical particle trajecto-
ries). The actual particle velocity along the trajectories is not con-
stant but fluctuates and the mean-square displacements and orien-
tational correlations are in good agreement with the active Langevin
model when some parameters are fitted to the experiments. In par-
ticular, the velocity distribution function has a peak around the
self-propulsion velocity.

Interestingly, experimental data for the inertial delay as embod-
ied in the delay correlation function d(t) [see Eq. (18)] are both in
qualitative and quantitative agreement with the theoretical result.
An example is shown in Fig. 6. Indeed, the theoretical prediction
is confirmed by the experimental data averaged over the noise. This
demonstrates that first the direction of self-propulsion is changed
and the velocity follows. As this delay effect is missing in the over-
damped case, it must be caused completely by inertia. It is exactly
this inertial delay effect that is used by oversteering racing cars to get
around corners. We finally remark that, as compared to hexbugs, no
self-aligning forces23 need to be incorporated to get a reasonable fit
of the data.

FIG. 6. Delay functions d(t) for the (a) generic, (b) carrier, (c) tug, and (d) ring particle. The dark blue solid curve shows experimental data, the magenta dashed and light
blue dotted curves plot theoretical results, with a different way of fitting. Experimental uncertainties are expressed as the standard deviation in light or dark blue regions.
Reproduced with permission from Scholz et al., Nat. Commun. 9, 5156 (2018). Copyright 2018 Author(s), licensed under a Creative Commons Attribution 4.0 License.
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VI. PERSPECTIVES
In the flourishing field of active matter, most of the investiga-

tions used simple overdamped dynamics such as active Brownian
motion to model microswimmers and mesoscale self-propelled col-
loids. If it comes to more macroscopic active particles (granulars,
hoppers, runners, or minirobots) or to motion in a gas (“microfly-
ers”), inertial effects become relevant. Therefore, it is expected that
future research will include more and more aspects of inertia also on
a more fundamental level. In this article, we have mainly touched the
basic model description of inertial active matter and their realization
in granulate experiments.

Future activities and promising perspectives are expected along
the following directions:

First, granulate particles will play a leading role as paradig-
matic realizations for active matter models. Since they are macro-
scopic, the particles can more easily be manipulated and tailored.
The particle shape can be easily changed by macroscopic 3D-
printing and different particle interactions can be established. In
detail:

(i) The whole field of charged active matter that unifies strongly
coupled unscreened Coulomb systems99 and active matter
can be realized by charging granulars, by triboelectric effects,
and by preparing macroscopic charged particles.100 This is
possibly a better controlled charged system than that of
charged active dusty plasmas, which require nonequilibrium
ionic fluxes.

(ii) Dipolar active particles with permanent magnetic dipole
moments are not easy to synthesize on the colloidal
level101–104 but can directly be realized by equipping granular
hoppers with little permanent magnets.

(iii) We are just beginning to study active polymers as col-
loidal chains. While there is an increasing number of sim-
ulation and theoretical studies (see Ref. 105 for a recent
review), experimental studies with active polymers and col-
loidal chains in an active bath are sparse.106 The effect of
inertial dynamics on active polymers needs to be understood
better, and future experiments and simulations are expected
in this direction.

(iv) It would be highly interesting to study active surfactants to
couple the field of surfactants with active matter. Chain-
like vibrated granulars with a head and tail part composed
of rotators with a different rotation sense15,107 can be pre-
pared and brought into motion to explore the dynamics at a
surfactant interface.

(v) Studying granulars on a vibrating structured substrate will
induce anisotropic active motion, which has not yet been
studied by theory either.

(vi) Time-dependent propulsion strengths when the propul-
sion velocity depends explicitly on time can be realized by
granulars, for example, by modulating the shaking ampli-
tude on demand. For overdamped systems, some analyti-
cal results were obtained for time-dependent propulsions,108

but inertia is expected to induce new lag-effects in the
dynamics.82

Second, the motion of inertial active particles will be explored
in various confining geometries (harmonic trap and confining walls).

It has already been shown that in a simple harmonic confinement,
there are novel dynamical effects.23 This will be even more complex
for more complicated confinements.

Third, collective effects of active Langevin dynamics need to
be explored more. For instance, the impact of a nonvanishing
moment of inertia and an external torque on MIPS should be
studied. Moreover, the role of aligning interactions needs to be
understood better for inertial systems.66,109,110 Next, crystallization
in active systems should be studied where inertia provides a latent
heat upon crystallization (for a first study, see Ref. 111). In gen-
eral, concerning collective effects, we do not only need bench-
marking experiments but also fundamental theory including the
Langevin dynamics. First attempts in terms of theory have been
done by generalizing the swim pressure to the inertial case73

and to consider inertial terms in hydrodynamic approaches76,112

but certainly microscopic approaches such as mode-coupling the-
ory113,114 and dynamical density functional theory115 also need to
be extended to include inertia (see Ref. 116 for a recent approach).
Next, active particles with inertia may provide little heat engines
with a better efficiency than their overdamped counterparts as
energy is not damped away by the dynamics. We are just at
the beginning to understand the principles of entropy produc-
tion (see, e.g., Refs. 117–119) and heat conversion120–122 in these
systems.

Finally, inertia introduces some kind of memory to the parti-
cle dynamics, both for translational and orientational motion, on
the time scale of the inertial relaxation times τ and τr . This is the
prime reason for delay effects relative to overdamped active Brow-
nian particles. There is a need to classify memory effects, in gen-
eral, and to study whether or not the behavior is similar to that in
other systems governed by memory.123,124 One other example where
memory effects are crucial is an active particle in a viscoelastic (non-
Newtonian) fluid such as a polymer solution125 or a nematic liq-
uid crystal126,127 where a notable increase in the rotational diffusion
coefficient has been found.128 Another example is a sensorial delay
in the perception of artificial minirobot systems,27,28,129 which was
shown to have a significant effect on the clustering and swarming
properties.

VII. CONCLUSIONS
In conclusion, we have upgraded the standard model of active

Brownian motion by including inertia in both translational and ori-
entational motion leading to the basic model of active Langevin
motion. We discussed single particle properties by the orientational
and translational correlation functions presenting some analytical
results for this model. When comparing the model to experiments
on vibrated granulars, good agreement was found. We summa-
rized some effects induced by inertia including an inertial delay
between self-propulsion direction and particle velocity, the tuning
of the long-time self-diffusion by the moment of inertia, the effect
of fictitious forces in noninertial frames, and the influence of iner-
tia on motility-induced phase separation. Since inertial effects will
necessarily become relevant for length scales between macroscopic
and mesoscopic both for artificial self-propelled objects and for liv-
ing creatures, a booming future of inertial active systems is lying
ahead.
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