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Chapter 1

Modelling chemotaxis of microswimmers: from individual

to collective behavior

B. Liebchen and H. Löwen

Institut für Theoretische Physik II: Weiche Materie
Heinrich-Heine-Universität Düsseldorf

Universitätsstr. 1

D - 40225 Düsseldorf

We discuss recent progress in the theoretical description of chemotaxis
by coupling the diffusion equation of a chemical species to equations de-
scribing the motion of sensing microorganisms. In particular, we discuss
models for autochemotaxis of a single microorganism which senses its
own secretion leading to phenomena such as self-localization and self-
avoidance. For two heterogeneous particles, chemotactic coupling can
lead to predator-prey behavior including chase and escape phenomena,
and to the formation of active molecules, where motility spontaneously
emerges when the particles approach each other. We close this review
with some remarks on the collective behavior of many particles where
chemotactic coupling induces patterns involving clusters, spirals or trav-
eling waves.

1. Introduction

Chemotaxis plays a crucial role in the life of many microorganisms. It allows

them to navigate towards food sources and away from toxins, but is also

used for signaling underlying self-organization in multicellular communities.

Here, microorganisms sense the concentration of a chemical and adjust their

motion to the chemical gradient:1–3 if the corresponding chemical signal is

externally imposed and, say, a food source, microorganisms will try to move

up the gradient towards the food source (“chemoattraction”, or “positive

chemotaxis”). In the opposite case of a toxin, microorganisms migrate

down the gradient (“chemorepulsion”, or “negative chemotaxis”).4

Many microorganisms can produce the chemicals to which they respond

themselves and use chemotaxis for signaling. Here, chemotactic behaviour
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strongly couples to chemical kinetics, which is the main topic of the present

book.

In this book-chapter we review recent progress in the theoretical de-

scription of chemotaxis beyond present textbook knowledge. Modelling of

chemotaxis concerns the coupling between the dynamics of the chemical, as

described by the diffusion equation together with appropriate source and

sink terms, and the motion of microorganisms. Therefore we discuss the ba-

sic equations for the chemical diffusion and the motion of bacteria (or other

microorganisms) which is coupled to the chemical field. We then proceed

step-by-step from few to many bacteria, where the chemotactic response of

a bacterium to chemicals produced by another one lead to chemical inter-

actions, or signaling, among microorganisms.

The simplest case of a single bacterium (or ”particle”) which senses its

own secretion is discussed first. This case, also called autochemotaxis, is

both of biological relevance and of fundamental importance as it may lead

to effects such as self-localization. This in turn leads to dynamical scaling

laws for the mean-square-displacement of the particle which are different

from ordinary diffusion and are therefore of general interest.5 We then pro-

ceed to a two particle predator and prey system governed by chemotactic

sensing and finally discuss the general case of many (more than two) par-

ticles which probably plays a key role for dynamical cluster formation and

other patterns. Since chemotaxis allows microorganisms to navigate, and

also allows to steer synthetic microswimmers, it is linked to the the rapidly

expanding research field of active particles, as for recent reviews see.6–9

2. Basics: diffusion of chemicals in different spatial dimen-

sions and chemotactic coupling

2.1. Diffusing chemicals around static (non-moving) point

sources

To set a theoretical framework for chemotaxis we first explore the kinetics

of the chemical that constitutes the chemotactic signal. We start with the

diffusion equation for a chemical concentration field c(~r, t) in solution with

a point source emitting the chemical with a rate λe(t), which may generally

depend on time, at fixed position ~r0:

∂c(~r, t)

∂t
= Dc∆c(~r, t)− µc(~r, t) + λe(t)δ(~r − ~r0) (1)
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Here, Dc is the diffusion coefficient of the chemical in solution. The chem-

ical may also evaporate (or disappear) with a rate µ, e.g. due to another

chemical reaction. In the following, we focus on constant emission rates.

The diffusion equation (1) can be considered in d = 1, 2, 3 spatial dimen-

sions which d = 1 corresponding to an effective slab and d = 2 to an effective

cylindrical geometry. Accordingly ∆ denotes the Laplacian operator in d

spatial dimensions. For an instantaneous onset of chemical emission at

t = 0, i.e. λe(t) = λeΘ(t), where Θ(t) denotes the unit step function and

µ = 0, the solution of Eqn. (1) is given in d dimensions by10

c(~r, t) = λe

∫ t

0

dt′
1

(4πDc|t− t′|)
d
2

exp

(
− (~r − ~r0)2

4Dc|t− t′|

)
(2)

By substituting t′ → s := (~r − ~r0)2/(4Dc|t − t′|), this expression can be

also written in terms of the upper incomplete Gamma function Γ(a, b) =
∞∫
b

e−xxa−1dx

c(~r, t) =
λ|~r − ~r0|2−d

4πd/2Dc
Γ

(
d

2
− 2,

(~r − ~r0)2

4Dct

)
(3)

Expression (2) can be generalized, for µ 6= 0 to

c(~r, t) = λe

∫ t

0

dt′
1

(4πDc|t− t′|)
d
2

exp

(
− (~r − ~r0)2

4Dc|t− t′|
− µ|t− t′|

)
(4)

In many cases, the dynamics of the chemical is fast compared to all other

relevant timescales in a given system (e.g. the response time of a microor-

ganism). In these cases, we are mainly interested in the chemical steady

state profile, corresponding to ċ = 0 in Eq. (1). This steady state problem

is formally equivalent to screened electrostatics, or in other words, to linear

Debye-Hückel theory of screening11 with an inverse screening length κ now

given by

κ =
√
µ/Dc (5)

while without evaporation (µ = 0) we have an analogy to the Poisson equa-

tion of ordinary (unscreened) electrostatics. Therefore, in various spatial

dimensions d the solutions, for a localized initial state, are as follows:
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(i) In d = 1, there is an ”exponential orbital” around the secreting source

fixed at the origin of the coordinate system such that for a spatial

coordinate x the concentration field is for µ > 0

c(x) =
λe√
4Dcµ

exp(−κ|x|) (6)

For µ = 0, the steady state solution becomes unphysical; in that

case, the time-dependent solution does not converge to a steady

state but increases forever.

(ii) For d = 2, there is a ”Macdonald orbital”

c(r) =
λe
Dc

K0(κr) (7)

with r denoting the radial distance in two dimensions from the

source. Here K0(x) is a Macdonald function (or modified Bessel

function) (see e.g. Eqn (39) in12). Like in d = 1, for µ = 0 the

chemical density does not converge and the steady state solution

becomes unphysical.

(iii) Finally, for d = 3, there is a radial-symmetric Debye-Hückel (or

Yukawa) orbital around the point source

c(r) =
λe

4πDcr
exp(−κr) (8)

which reduces for µ = 0 to the classical Coulomb solution

c(r) =
λe

4πDcr
(9)

again with r denoting the radial distance from the point source.

2.2. Moving point sources

When the point source is moving with a constant velocity ~v, the general

diffusion equation for constant emission rate is



February 5, 2019 3:18 ws-rv9x6 Book Title
Liebchen˙Loewen˙04˙02˙2019 page 5

Modelling chemotaxis of microswimmers: from individual to collective behavior 5

∂c(~r, t)

∂t
= Dc∆c(~r, t)− µc(~r, t) + λeδ(~r − ~r0 − ~vt) (10)

By a Galilean transformation from the laboratory frame into the moving

particle frame this equation can be transformed such that it reads under

steady state conditions as follows

−Dc∆c(~r) + (~v · ~∇)c(~r) + µc(~r) = λeδ(~r) (11)

Solutions of Eq. (11) go beyond textbook knowledge and have not been

discussed yet in this context. In general, the Green’s function associated

with Eq. (11) can be expressed as a Fourier integral as

c(~r) =
λ

(2π)d

∫ ∞
−∞

ddk
e−i

~k·~r

Dc
~k2 + i~v · ~k + µ

(12)

Evaluating this integral in one spatial dimension (d = 1) yields a solu-

tion consisting of two exponentials with different decay lengths in the front

and in the rear of the moving source:

c(x) =
λe√
4Dcµ

{
e−χ+|x| for x ≥ 0

e−χ−|x| for x < 0
(13)

with χ± =

√
µ

Dc
+

v2

4D2
c

± v

2Dc
(14)

This solution is plotted in (1). Clearly, increasing the speed of the

source enhances the front-rear asymmetry while at v = 0 we recover the so-

lution (6) of a static point source. Increasing the evaporation rate basically

decreases the range of the chemical concentration around the source.

For the corresponding solution in two dimensions, we find:

c(~r) =
λe
Dc

K0(κ̃r) exp

(
−~v · ~r

2Dc

)
; with κ̃ =

√
µ

Dc
+

~v2

4D2
c

(15)

and in three dimensions:

c(~r) =
λe

4πDcr
exp

(
−κ̃r − ~v · ~r

2Dc

)
(16)
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Fig. 1. Reduced concentration field c(x)/c0 as a function of reduced distance x/a to
the moving source. This is the steady state solution for the one-dimensional diffusion

equation of a point source moving with a velocity v with constant emission rate λe for

various relative speeds (a) and relative evaporation rates (b). All length and time scales
are given in terms of a =

√
Dc/λe and τ0 = 1/λe, and c0 = 1/(2a

√
µτ0). The parameters

are: (a) vτ0/a = 0.1, 1.0, 10 at µτ0 = 1 and (b) µτ0 = 0.1, 1.0, 10 at vτ0/a = 1.

For µ = 0, in a coordinate system whose x-axis points along ~v, the three

dimensional solution reduces to

c(~r) =
λe

4πDcr
exp

[
−|~v|(x+ |~r|)

2Dc

]
(17)

Remarkably in the rear of the moving source (x < 0 at y = z = 0 such that

x+ r = 0) the chemical concentration decays algebraically as 1/|x| while in

all other directions it decays with a Yukawa-behavior as exp (−vx/Dc)/x,

i.e. algebraically for r �
√
Dc/µ and exponentially at longer distances.

This asymmetry indicates the significance of the source trail and a memory

effect about the past of the secreting particle.

2.3. Chemotactic coupling and secreting particle dynamics

For chemotaxis in its simplest form, the particle directs its motion according

to the gradient of the chemical field. We describe this coupling to the

chemical concentration as an effective force

~F = α∇c(~r, t) (18)

acting on the particle. Here positive α values represent “positive” chemo-

taxis or “chemoattraction”whereas negative α values represent “negative”

chemotaxis or “chemorepulsion”. The linear coupling to the gradient is the

simplest possible form, but other couplings like logarithmic ones are also
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conceivable and probably relevant for microbiological systems13 where

~F = α~∇ ln c(~r, t) = α
~∇c(~r, t)
c(~r, t)

(19)

A more complicated coupling involves a concentration dependent prefactor

α as proposed in Ref.14 We will basically use and discuss formula (18) in

the sequel.

The effective chemotactic force typically acts on a completely over-

damped particle with position ~rp(t), leading to the following equation of

motion:

γ
d

dt
~rp(t) = α∇c(~rp(t), t) (20)

Here, γ is the Stokes drag coefficient. If necessary, additional noise terms

can be added to Eq. (20) in order to model the stochastic collisions of the

particle with the solvent molecules. Here we neglect any hydrodynamic

flow effects stemming from a finite radius of the point source are neglected.

Their inclusion would require a more sophisticated analysis.

3. Autochemotaxis for a single particle

If a single particle emits a chemical to which it responds itself, we call

this “autochemotaxis”. Here, Tsori and de Gennes15 have coupled the

chemical diffusion equation to an equation of motion for a particle. For

the chemoattractant case at vanishing evaporation rate µ = 0, they have

found ”self-trapping” of the particle in a spatial dimension d = 1, 2 but

not for d = 3. This implies that a particle traps itself if moves towards

the chemical which it has secreted in the past. The concept of “perfect”

self-trapping was subsequently questioned by Grima16,17 in a model with

a positive evaporation rate µ > 0. Here it turned out that self-trapping is

a transient phenomenon at µ > 0 and crosses over to normal diffusion at

very long times even for d = 1, 2. For sufficiently strong negative chemo-

taxis, Grima found long-time diffusive or ballistic motion depending on the

secretion rate λe. This result which was obtained for any dimensionality

d suggests that a particle might self-propel if it avoids the region where it

has been in the past, and in some sense constitutes a link between repulsive

autochemotaxis and the rapidly growing research field of active particle or

microswimmers.7,9,18 (Note however, that while self-propulsion due to au-

tochemorepulsion might apply to particles on a surface, for microorganisms
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in bulk, which oblige momentum conservation, self-propulsion based on au-

tochemorepulsion is conceptually not immediate and would probably need

to involve some combination of parity-symmetry breaking and phoresis.)

Now we shall mainly review subsequent studies which include Brownian

noise due to solvent molecules acting on the self-driven particles. Noise

statistics is a relevant part of the actual trajectories of self-propelled par-

ticles8 both for microorganisms and synthetic microswimmers.19–21 It is

expected that noise will destroy the perfect localization for positive au-

tochemotaxis as well as the ballistic long-time motion for negative au-

tochemotaxis. Indeed this was confirmed by numerical work and theoretical

analysis in a subsequent paper of Sengupta et al22 which we shall discuss

in the following in more detail.

The governing equations of the Brownian noise model introduced by

Sengupta et al22 describe a coupling between the diffusion equation of the

chemical concentration field c(~r, t) and the trajectory of the secreting par-

ticle ~rp(t). At vanishing evaporation rate µ, the chemical is emitted with a

constant rate λe and is diffusing in d spatial dimensions according to

∂c(~r, t)

∂t
= Dc∇2c(~r, t) + λeδ(~r − ~rp(t)) (21)

The equation of motion for the emitting particle is given by

γ~̇rp(t) = ~F (~rp, t) + ~η(t) (22)

Here, ~η(t) is an effective Gaussian white noise which zero mean and

variance

〈ηi(t)ηj(t′)〉 = 2γβ−1δij(t− t′) (23)

with i and j denoting the Cartesian spatial components and β an effective

inverse thermal energy. In Ref.,22 the chemotactic force ~F (~rp, t) depends on

the history of the particle trajectory ~rp(t) apart from a delay (or memory)

time t0 which takes into account that a finite time is needed for sensing the

chemical. Integrating or superimposing over the Green’s function of chem-

ical diffusion, Eq.(2), the chemotactic force ~F (~rp, t), Eq. (18), is modelled

as
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Fig. 2. (a) Snapshot of the instantaneous density profile c(x, y) of the chemorepellent

released by the microorganism moving in two dimensions, obtained from simulation, at

time instant t = 10.0 (in units of λ−1
e ). (b) The entire trajectory, shown as the red

(thick) curve, of the microorganism. The current position of the microorganism ~rp is

indicated by the blue (black) dot in both the figures, and the direction of motion is

indicated by arrows along the trajectory. The corresponding coupling strength being
|λ| = 10000. The parameters are D ≡ 1/βγ = 0.1`2o/τ0, Dc/D = 100, t0 = 0.001τ0 with

length, time and energy scales of `0 =
√√

DcD/λe, τ0 = 1/λe, 1/β. Figure from Ref.22

~F (~r, t) = −2αλe

∫ t−t0

0

dt′
(~r − ~rp(t′))
4Dc|t− t′|

exp
[
−(~r−~rp(t′))2
(4Dc|t−t′|)

]
(4πDc|t− t′|)d/2

(24)

For d = 2, a typical particle trajectory in the chemorepellent case and

the associated chemical density field are shown in Figure 2. Clearly the
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particle avoids its own trail where it had been in the past giving rise to a

persistent random walk along the arrow shown in 2.

Results for the ”exact” numerical solution of these governing equations

are presented in Figure 3 for the chemoattractive case. There is long-time

diffusive behaviour with a long-time diffusion coefficient Dl but for stronger

couplings α, an intermediate transient time region shows up where the par-

ticle is quasi-localized. This localization is most pronounced in low spatial

dimensions d. The long-time self-diffusion coefficient Dl drops strongly

with the coupling α for any d (see Figure 3(d)) and scales with 1/α2 in

agreement with scaling arguments proposed in Ref.22

Fig. 3. Mean-square displacement 〈[~rb(t)− ~rb(0)]2〉 of the microorganism as a function
of time t with chemoattractant in (a) d = 1 with α = 20, 500, 5000; (b) d = 2 with

α = 1000, 10000, 40000; (c) d = 3 with α = 1000, 1000, 40000. The nonchemotactic

diffusion reference lines are also indicated as 2Dt, 4Dt, and 6Dt correspondingly for
d = 1, 2, 3. Reference lines (thick dotted) are used to indicate the long-time diffusive

behavior ( t) wherever possible. The relative long-time diffusivity Dl/D is shown as a
function of α in (d) for d = 1, 2, 3. The reference line (thick dotted) shows a power-law
scaling behavior 1/α2 (see text). The parameters are as in 2, D = 1/βγ is the short-time

particle diffusivity and the coupling parameter α is measured in terms of `d0/β. Figure

from Ref.22
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Figure 4 shows the chemorepulsive case. Here, we again have a tran-

sient ballistic regime is transient which is most pronounced in low spatial

dimensions. A simple theory put forward in Ref.22 describes the strong

increase of the long-time particle diffusivity with the coupling strength |λ|.

Fig. 4. Mean-square displacement 〈[~rb(t)− ~rb(0)]2〉 of the microorganism as a function

of time t with chemorepellent in (a) d = 1 with α = −100,−300,−50000; (b) d =

2 with α = −1000,−40000,−100000; (c) d = 3 with α = −1000,−40000,−100000.
The nonchemotactic diffusion reference lines are also indicated as 2Dt, 4Dt, and 6Dt

correspondingly for d = 1, 2, 3. Reference lines (thick dotted) indicating the ballistic

( t2) and the long-time diffusive ( t) dynamics is shown as guide to the eye. The
relative long-time diffusivity Dl/D is shown as a function of |α| in (d) for d = 2, 3. The

points represent the actual data obtained from simulations, the lines correspond to a

semiquantitative theory (see text). The parameters are as in Figure 2, D = 1/βγ is
the short-time particle diffusivity and the coupling parameter α is measured in terms of

`d0/β. Figure from Ref.22

At this stage we mention that is is now possible to create synthetic par-

ticles which react in principle such that they avoid their own secretion trail.

One important example discussed recently is an oil droplet in an aqueous

surfactant solution which “remembers” the surfactant concentration which

constitutes its self-propagation.23 Another idea is to dynamically control
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the motion of colloidal particles by optical fields which are dynamically

adapted (programmed) such that the colloids avoid positions where they

have been at earlier times; this leads to self-propulsion.24 A third real-

ization in the macroscopic world are robots which can be programmed at

wish.25 Moreover there are further but related theoretical models for par-

ticles avoiding their own past trails26,27 or involve memory effects leading

to similar phenomena.28,29

4. Chemotactic predator-prey dynamics

Next we shall explore two particles which are sensing each other via chemo-

taxis mimicking signaling among microorganisms. One particle (”preda-

tor”) is attracted by the chemical secreted by the second particle and the

latter (”prey”) is repelled by the chemical secreted by the first one. Here

we follow the model of Ref.10 Now we have two chemicals characterized

by concentration fields ci(~r, t) (i = 1, 2) and two trajectories ~ri(t). In the

absence of chemical evaporation (µ = 0), the concentration fields read

ci(~r, t) = λi

∫ t

0

dt′
1

(4πDci|t− t′|)
d
2

exp

(
− [~r − ~ri(t

′)]2

4Dci|t− t′|

)
(25)

which is the solution of the chemical diffusion equation for given trajectories

~ri(t) with Dci denoting the diffusion coefficient of the two chemicals and λi
being the production rate of chemical species i. The equations of motion

determining the predator trajectory reads:

γ1 ~̇r1 = +α1∇c2(~r1, t) + ~η1(t) (26)

and the equation of motion for the prey is

γ2 ~̇r2 = −α2∇c1(~r2, t) + ~η2(t) (27)

where γ1,2 are friction coefficients and α1,2 are chemotactic coupling coef-

ficients.

As in Eq. (22) we generally allow for Gaussian white noise, represented

by ~η1,2(t).

It is important to remark here that the chemically mediated interac-

tion between the predator and the prey is nonreciprocal, i.e. the force

exerted by the predator acting on the prey is unequal to the force act-

ing on the predator due to the prey particle. This violation of Newton’s
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third law stems from the non-equilibrium conditions and applies to the ef-

fective interaction among predator and prey; the microscopic interactions

among all solvent molecules, and the predator and the prey particle are

of course reciprocal so that momentum conservation applies and any net

motion of the predator-prey-pair (in bulk) will be generally balanced by a

counter-propagating flow of solvent (and or chemicals). Such nonreciprocal

interactions are frequently encountered in situations away from equilibrium,

e.g. in dusty plasmas.30

A typical snapshot in the noise-free case is shown in Figure 5 which high-

lights the two concentration fields and the predator (left particle) following

the prey (right particle).

Fig. 5. (Left) A predator (red dot on left) chases a prey (red not visible dot on right),

while the latter tries to escape through chemotactic gradient sensing of the diffusing
chemicals. The arrows indicate their respective direction of motion in the absence of

fluctuations. The contours around each microbe represent the equiconcentration lines of

the secreted chemicals in a two-dimensional projected plane in this case, indicating the
asymmetry of the distribution. The color code used here for the spatial distribution of

the secreted chemorepellant (c1) and the chemoattractant (c2), as they mingle in space,

is shown in the right panel. Figure from Ref.10

As a result of the analysis performed in Ref.,10 there are basically two

dimensionless parameters which govern the escape and chase scenario, still

in the case of vanishing noise. The first parameter is the reduced length

scale ∆∗ depending on r12 which is the steady-state distance between the

particles; the second parameter is a sensibility ratio δ; see10 for details. The

state diagram is shown in Figure 6 in the parameter plane, spanned by ∆∗

and δ, and shows regions of escape and capture. For δ > 1 there is always

trapping, independent of the initial conditions. For δ < 1 it depends on the

initial particle separation r∗0 (see Figure 6b) which effective ∆∗ is realized.
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On the separation line there is steady state motion with a constant particle

separation, i.e. both particles move with the same speed. This line can be

calculated analytically and is given by

δ(∆∗) = (1 + ∆∗−1) exp (−∆∗−1) (28)

Fig. 6. (a) Dynamical phase diagram of the chemotactic predator-prey system, con-
structed in the ∆∗ − δ parameter space, showing the trapped (shaded) and escaped

phases. The phase boundary (thick solid line) is obtained analytically and matches the

simulation data (boxes). The horizontal thin dotted line (δ = 1) represents the upper
bound for the trapped-to-escaped dynamical phase transition (see text). (b) The de-

pendence of the catching range (∆∗) on the initial separation (r∗0), as obtained from

simulations. Figure from Ref.10

The particular form of the diffusing chemical field in the absence of

evaporation, Eq. (17), allows the prediction of two scaling laws. The first

one applies to escape situations and shows that the distance x between the

two particles increases subdiffusively with time t as t1/3, while the second

one applies to trapping situations and predicts that the distance between

predator and prey decreases as (ttrap − t)1/3 with a finite trapping time

ttrap where x = 0.

As a final remark, there are also other predator-prey models which

model the predator and prey dynamics either on a lattice31 or with more

complex models designed for real bacteria.32 A marvellous realization of a

synthetic predator-prey system employs a pair of an ion-exchange resin and

a passive charged colloidal particle which moves autonomously as a ”modu-

lar swimmer”;33 another interesting realization of a predator-prey-like pair

is based on two different particles, which are actuated as a pair.34
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5. Collective behavior of few and many active particles

Tsori and de Gennes15 have pointed out the analogy between chemoattrac-

tive matter and gravity in three spatial dimensions. In fact, the chemotactic

coupling (18) together with the Coulomb orbitals (9) and the linearity of

the diffusion equations implies that a one-component system is identical to

gravitating particles. The dynamics will lead to clustering and finally to a

collapse (”black hole”). Hence one can study aspects of the dynamics of a

black hole collapse scaled down in a Petri dish, see e.g. Ref.35 for a similar

idea.

Binary mixtures of particles with chemotactic coupling coefficients of

opposite sign lead to a similar physical behavior as oppositely electrically

charged mixtures. These systems form interesting cluster structures and

lead to effectively non-reciprocal forces, i.e. they break Newton’s third law

actio=reactio. These nonreciprocal forces can lead to self-propulsion and

self-rotation36 which only emerges if different colloids closely approach each

other and form ”active molecules” appearing in a broad variety of shapes as

movers, rotators and circle swimmers.34,37,38 The simplest example of such

an active molecule is a moving dimer similar to the predator-prey system

discussed in the previous chapter. A direct experimental confirmation of

active molecules consisting of two species was found in Ref.39 where two

different types of ion exchange resins provide the active constituents.

The full many-body behavior of a binary mixture interacting with

chemotactic-based nonreciprocal interactions was studied in Refs.,40 how-

ever in the different context of complex plasmas. In Ref.,36 the connection

to chemotaxis was worked out explicitly. One example for the collective

behaviour in a binary system of chemotactically coupled species is shown

in Figure 7 at vanishing noise. On the x-axis a relative wake charge is

plotted which corresponds to the non-reciprocity governed by the asymme-

try in the sensing mechanisms of the two particles. The y-axis shows the

two-dimensional particle density. There is a rich steady state diagram with

four different dynamical states involving inactive (i.e. non-moving) states

and active ones. The latter are either swarms or orientationally disordered

active fluids.
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Fig. 7. State diagram in the zero-temperature limit, plotted in the plane of a reduced

number density ρ and relative wake charge q̃ . Color coding depicts results obtained

from the stability analysis, symbols show numerical results. Inactive systems (+) can be
either stacked hexagonal solid (green background) or interdigitated hexagonal solid (blue

background). For active fluid regimes (◦, red background), the average particle velocities

are indicated by a gray scale. Diamonds (�) are used instead of circles if active doublets
emerge whose decay time τD exceeds a threshold of 103τ . The states are illustrated by

typical snapshots. Figure from Ref.40

A further interesting setup of particles interacting via chemotaxis is pro-

vided by autophoretic Janus colloids. These particles catalyze a chemical

reaction on part of their surface only resulting in a chemical gradient across

their own surface. This self-produced gradient sets them into motion via

diffusiophoresis or a similar mechanism. Remarkably, a Janus colloid does

not only respond to self-produced gradients, but also to gradients produced

by other Janus colloids, essentially by chemotaxis (or taxis with respect

to another phoretic field). Thus, phoretic Janus colloids interact “chemi-

cally” and provide a synthetic analogon to microbiological signaling.14,41,42

These chemical interactions play a crucial role for the collective behaviour
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of large suspensions of Janus colloids43 and can generate patterns including

clusters,41–45 traveling waves43 and continuously moving patterns42 and in

case of chiral active particles also spiral patterns and phase separation with

traveling waves emerging within the dense phase.46

6. Conclusions

In conclusion, we have discussed models for chemotactic behavior of mi-

croorganisms and synthetic particles in a diffusing chemical concentration

field focusing on three different scenarios: i) autochemotaxis of a single

particles, ii) predator-prey models arising from chemotactic coupling to two

different chemicals secreted by the predator and the prey, iii) clusters and

collective behavior of many particles coupled via their chemotactic response

to chemical fields produced by other particles. Here, attractive autochemo-

taxis may lead to self-localization while repulsive autochemotaxis leads to

trajectories avoiding their own past. We have also discussed that a moving

chemotactic source leads to a front-rear asymmetry in the chemical field

resulting in marked scaling laws for predator-prey systems. Finally, chemo-

taxis in multi-species systems provides an avenue towards a new world of

active molecules where we have just started to tap the full potential of the

novel cluster formation processes. Collective behavior includes a swarming

of chemotactically coupled particles at finite concentrations.

We close with an outlook to future problems. First, at high chemi-

cal concentration or strongly coupled chemical fields, the simple diffusion

equation picture will break down, calling for new models. This is in par-

ticular important for multivalent microions at high concentrations. Recent

developments have considered these effects of strong coupling in using non-

linear diffusion equations. These equations can be based on the dynamical

version of classical density functional theory, so-called dynamical density

functional theory (DDFT).47–50 In this framework, the equations of motion

of a chemical around a point source are given by

∂c(~r, t)

∂t
= D~∇c(~r, t)~∇δF [c(~r, t)]

δc(~r, t)
− µc(~r, t) + λeδ(~r) (29)

where F [n([~r] is the equilibrium free energy density density func-

tional.51–53 For a noninteracting system (ideal gas), the functional is known

explicitly and in this limit the traditional diffusion equation (1) is recov-

ered. Nontrivial particle correlations as arising from interactions among

the chemical species are contained in the functional in the general case and
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make the diffusion equation nonlinear. In certain cases, linearization is

possible and corresponding analytical solutions for the Green’s function of

diffusing interacting particles can indeed be found within DDFT.54

A second important generalization concern time-dependent secreting

rates as embodied in a non-constant function λe(t) such as e.g. an emission

rate that is periodic in time. This situation has recently been considered54

and leads to propagating density waves of the chemical around the emitting

source. Again, in some special cases, the Green’s function can be found

analytically within DDFT.54

Third, in terms of predator-prey models, the situation of a single preda-

tor and a single prey can be generalized towards a herd of prey and to a

group of chasers. This has been discussed in the literature within different

models, see e.g.55–58 but needs to be extended within the chemotactic con-

text. Efficient chase and escape strategies59 may depend on the details of

predator/prey perception.

Fourth, most of our consideration were done in the bulk. Confinement

near system walls and crowding situations will change both the diffusion

of the chemical as well as the chemotactic dynamics. Similarly, chemotaxis

in complex environments, such as traveling waves may lead to interesting

transport effects.60 We are just at the beginning of a systematic under-

standing of chemotaxis in complex environment.

Finally we have considered the evaporation of different chemicals by

a constant rate in our modelling. If two different chemicals which e.g.

govern a predator-prey system or the formation of the active molecule,

react between themselves this would constitute a more complicated and

highly interesting problem with new scenarios induced by coupling nonlin-

ear reaction-diffusion equations to the chemical kinetics and the particle

motions.
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propelled particle, J. Phys. Condens. Matter. 23, 194119 (2011).

20. X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, and
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50. H. Löwen. Dynamical density functional theory for Brownian dynamics of
colloidal particles. In ed. J. Wu, Variational Methods in Molecular Modeling,
chapter 9, p. 255. Springer (2017).

51. R. Evans, The nature of the liquid-vapour interface and other topics in the
statistical mechanics of non-uniform, classical fluids, Adv. Phys. 28, 143
(1979).

52. Y. Singh, Density-functional theory of freezing and properties of the ordered
phase, Phys. Rep. 207, 351 (1991).

53. H. Löwen, Melting, freezing and colloidal suspensions, Phys. Rep. 237, 249
(1994).
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