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Abstract. In this minireview, recent progress in our understanding of
the basic physical principles of microswimmers which perform a mo-
tion characterized by chirality is summarized. We discuss both the
chiral motion of a single circle swimmer and the occurrence of bacterial
turbulence where swirls of different chirality are formed spontaneously
in an interacting ensemble of linear microswimmers. Some recent high-
lights in this context as obtained by theory, simulation and experiment
are summarized and briefly discussed.

1 Introduction

The notion of chirality goes back to Lord Kelvin [1] who introduced it for the shape of
bodies. Chirality of motion implies that handedness of the trajectories becomes impor-
tant: for example, in two dimensions, clockwise motion is different from anticlockwise
motion. This minireview briefly summarizes and reviews two aspects of chiral mo-
tion of microswimmers. Microswimmers are self-propelled objects that move at low
Reynolds number in an embedding fluid. The swim mechanism of single swimmers
and the collective behaviour of many swimmers which are governed by hydrodynamic
and steric interactions are a hot research topic of the last years. As for recent re-
views, we refer to [2–5]. Even a single self-propelled particle constitutes a system
out of equilibrium such that new theoretical concepts as well as precise experimental
measurements are needed to unravel the dynamical behaviour of swimmers. In prin-
cipal there are two different types of swimmers: first of all, biology provides many
examples for swimmers in the micro-domain like flagellated bacteria. Second, there
artificial modelswimmers, mainly colloidal Janus particles, which can be exposed to
fuel sources and self-propagate as well.
Microswimmers can possess a chiral shape (according to Lord Kelvin’s notion).

At low Reynolds numbers, this typically leads to a hydrodynamic coupling between
translation and rotation motion [6–8]. This implies that a translated particle will
simultaneously rotate which in most cases results in a helical trajectory [9–12] in three
and a circular trajectory in two dimensions [13]. Therefore chirality or handedness in
the particle shape will typically generate chirality in the motion.
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In this minireview, we shall discuss the dynamics of a chiral swimmer moving
along circles. One important additional feature at the micron scale is the stochastic
Brownian motion which smears out, on average, the directionality of the motion.
We shall discuss the Brownian circle swimmer in detail and briefly mention some
of its variants in various environments. Then we turn to chirality emerging as a
collective effect as a new turbulent swirling state in dense self-propelled rod systems
and bacterial suspensions. We intend to focus on the essential physics and describe
recent developments and applications.
This minireview is organized as follows: In Sect. 2, we discuss a single circle swim-

mer while Sect. 3 is devoted to active or bacterial turbulence. We finish with some
conclusions and an outlook in Sect. 4.

2 Chirality in circle swimming

2.1 Active Brownian motion with chirality (circle swimming)

Swimming along a straight line (corresponding to linearly directed Brownian motion)
is the exception rather than the rule. Ideal straight swimming only occurs if the left-
right symmetry relative to the internal propulsion direction is not broken. A linear
trajectory is getting unstable with respect to small deviations from this symmetry
exhibiting a chirality. In two spatial dimensions, this will result in circle-swimming,
in three dimensions, correspondingly, there is swimming along a helical path (“helical
swimming”). Clearly one can assign a chirality (or helicity) to the path, the sign of
which determines whether the motion is clockwise or anti-clockwise.
The occurence of spiral-like swimming motions of microorganisms was pointed

out more than a century ago by Jennings [14] and since then was found in many
different situations, in particular close to a substrate where certain bacteria [15–20]
and spermatozoa [21–23] swim in circles. Likewise helical motion was observed for
different bacteria and sperm cells [12,14,24–31]. Examples for non-living but active
particles moving in circles are spherical camphors at an air–water interface [32] and
chiral colloidal swimmers on a substrate [33,34]. The latter have provided excellent
model systems to test the basic assumptions of chiral active Brownian motion. Finally,
trajectories of deformable active particles [35] and even of completely blinded and ear-
plugged pedestrians [36,37] can possess significant circular characteristics.
The origin of chiral motion can be manifold. The most obvious is an anisotropy in

the particle shape which leads to a translation-rotation coupling in the hydrodynamic
sense [6]. But also an anisotropy in the propulsion mechanism itself generates chiral
motion. An example where both mechanisms are simultaneously at work is presented
in Fig. 1. Here trajectories of two L-shape swimmers with different chiralities are
shown. A cluster of linear swimmers which sticks together by direct forces [38] or by
hydrodynamics or just by the activity itself [39] will in general lead to a situation
where the total torque acting on the cluster center is not vanishing [40]. This leads
to circling clusters. Finally the particle rotation can be induced by external fields, a
standard example is a magnetic field perpendicular to the plane of motion which will
exert a torque on the particles [41,42].
The equations of motion for chiral swimming can easily be understood in two

spatial dimensions. Consider a polar particle as described by a center-of-mass coor-
dinate r and a unit orientation vector û which has a relative orientation with respect
to the x-axis as given by the angle φ such that û = (cosφ, sinφ), see Fig. 2 for a
schematic illustration. We consider overdamped Brownian motion for both transla-
tional and orientational degrees of freedom and introduce a systematic drift in the
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Fig. 1. Trajectories of an (a) L+ and (b) L− swimmer driven by self-diffusiophoresis. (Red)
bullets and (blue) square symbols correspond to initial particle positions and those after 1
min each, respectively. The insets show microscope images of two different swimmers with
the Au coating (not visible in the bright-field image) indicated by an arrow. From Ref. [33].

Fig. 2. Sketch of the orientation û and position r of an active rod.

orientation as mediated by a constant torqueM in the direction perpendicular to the
plane of motion. The equations of motion therefore are

ṙ = β
↔
D (F û−∇V (r, φ) + f) (1)

φ̇ = βDr (M − ∂φV (r, φ) + τ) . (2)

Here, V (r, φ) is an external one-body potential that can be set to zero, f and τ
are Gaussian distributed random numbers characterizing the Brownian noise for the
translation and rotation. While their first moment is vanishing, their second moment
is related to an (effective) system temperature T (with β = 1/kBT ).

Finally F is an effective self-propulsion force directed along the particle orientation
which is proportional to the swimming speed. The term βDr is an inverse rotational
friction coefficient such thatDr is the rotational diffusion coefficient. The translational
diffusion tensor is given by

↔
D = D‖û⊗ û+D⊥

(↔
I − û⊗ û

)
(3)

with two translational diffusion constants perpendicular and parallel to the
orientation.
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Fig. 3. Trajectory of a circle swimmer and direction of the self-propulsion force F û and
torque M .

Fig. 4. Typical Brownian dynamics simulation results for the trajectory of a circle swimmer.
The different snapshots are for three different noise strengths.

Let us discuss the solution of these equations in the bulk when V (r, φ) is vanishing.
In the noise free case (f = 0 and τ = 0) the deterministic solution of the equations of
motion (1) and (2) are closed circles, see Fig. 3. The circle radius is given by

R0 =
D‖F
DrM

(4)

and the spinning frequency ω is

ω = βDrM. (5)

For finite noise, there are three regimes: for very short times the motion is diffusive,
then there is a crossover towards a (albeit curved) ballistic regime and then for very
long times there is again diffusion. Examples for circle-swimming particle trajectories
are presented in Fig. 4 at three different strengths of noise. The first two noise-average
moments of the circle swimmer can be computed analytically [43] generalizing the
seminal result of Howse et al for linear swimmers [44]. One obtains

r− r(0) =λ [Drû⊥0 − e−Drt
(
Dr ¯̂u+ ω¯̂u

⊥)] (6)

(r− r(0))2 =2λ2
{
ω2 −D2r +Dr

(
D2r + ω

2
)
t

+ e−Drt
[(
D2r − ω2

)
cos (ωt)− 2Drω sin (ωt)

] }
+ 2
(
D‖ +D⊥

)
t (7)

where the overbar denotes a noise-average, λ is defined as

λ = βD‖F/
(
D2r + ω

2
)

(8)
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û(0) = (cosφ0, sinφ0) is the initial orientation and r(0) the initial position. Moreover

û⊥0 = (− sinφ0, cosφ0) (9)

û =
(
cos φ̄, sin φ̄

)
(10)

û⊥ =
(− sin φ̄, cos φ̄) (11)

where φ is the noise average over the angles given by

φ̄ = φ0 + ωt . (12)

For a linear swimmer, the first moment simplifies to

r(t) = r(0) + û(0)
v0
Dr
(1− exp(−Drt)) (13)

where v0 = βD‖F is the self-propulsion speed. So for given initial position and orien-
tation it is a piece of a straight line directed along the initial orientation. Interestingly
the swimmer on average does not proceed to infinity but only recovers a characteristic
persistence length which is given by �p = v0/Dr.
Discussing the first moment (6) for chiral swimmers is more complicated. The

mean trajectory is now generalized to a spira mirabilis or a logarithmic spiral.
This logarithmic spiral was first introduced by Descartes and then studied by
Jacob Bernoulli. By eliminating the time t, one obtains the following representation
for the trajectory in polar coordinates

r(φ) ∝ exp(−Dr(φ− φ0)/ω) (14)

where ω is the characteristic circling frequency. Recent experiments on chiral colloidal
microswimmers have confirmed this prediction [33] as documented in Fig. 5. Moreover,
a general and elegant matrix technique was proposed to solve the stochastic equations
of motion efficiently [45].
Finally, in three dimensions, the noise-averaged trajectory is a concho-spiral [46]

which is the appropriate generalization of the logarithmic spiral.

2.2 Circle swimmers in gravity

The motion of circle swimmer in an external gravitational field has been studied
by experiments and theory by using L-shaped artificial swimmers on a tilted two-
dimensional substrate. Interestingly a situation of negative gravitaxis was found where
the chiral self-propelled particles swim against gravity [47]. The physical origin is a
balance of torques which arise from the self-propulsion and from gravity. The resulting
motion is linear. This mechanism does only occur for chiral anisotropic particles and
is different from bottom-heaviness [48] which is another reason for negative gravitaxis.

2.3 Circle swimmers in other environments

Circle swimmers were considered and studied in various external fields (for linear
swimmers in external fields see [49]). In linear channels, the compensation of the
inner torque with a torque exerted externally by the wall can lead to a stable sliding
mode of circle swimmers along the channel wall [43,50]. For more aspects of swimmers
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Fig. 5. Noise-averaged trajectory of a Brownian circle swimmer for a prescribed position
and orientation at t = 0. The dashed curve is the experimental one obtained for a chiral
L-shaped colloidal model swimmer. The solid curve shows the theoretical prediction of the
spira mirabilis with the starting point indicated by a red bullet. Inset: close-up of the framed
area in the plot. As a characteristic feature of the logarithmic spiral, the ratio di+1/di of
the distances di between adjacent turns of the mean swimming path are constant. From
Ref. [33].

near walls see [51]. Moreover circle swimmers in sinoidal walls [52], in periodic external
potentials [53] and in asymmetrically patterned arrays [54] have been addressed in
order to steer and optimize their directed motion. A trap device was proposed to
catch swimmers with a certain chirality while releasing swimmers with an opposite
chirality [55] such that it acts as a sorting device [56]. A similar separation was found
in mixtures of circle swimmers with different chiralities in periodically structured walls
[57]. Finally a circle swimmer with periodic time-dependent self-propulsion leads to
self-similar first moments [58] generalizing the spira mirabilis result which occurs at
constant propulsion.

3 Bacterial turbulence

3.1 The bulk state of active turbulence

Particle-resolved simulations of active rods have given valuable hints for bacterial tur-
bulence, for more aspects of active rods see [59]. Based on a self-propelled rod model
of linear swimmers, the emerging bulk state diagram was explored by Wensink and
coworkers [60,61] as a function of two parameters, namely the area fraction φ and the
aspect ratio of the rods. The temperature was set to zero and the strength of the self-
propelling force relative to the repulsive interaction was kept fixed. The simulations
were performed in two spatial dimensions. In the two-dimensional parameter space,
a rich state diagram was found which is shown in Fig. 6.
For small densities, obviously a dilute phase is found which lacks any significant

swarming. For higher densities and large aspect ratios, a swarming state occurs where
large clusters are formed by aligning interactions and self-propulsion. This swarming
state shows the characteristics of large density fluctuations and is therefore different
to mobility-induced phase separation [62,63]. For small aspect ratios, on the other
hand, there is a jammed state at high densities. Exactly at aspect ratio of 1 (spherical
particles) an active crystal is formed [64,65]. For both high density and high aspect
ratio, a lane phase occurs as in driven passive systems [66,67]. Interesting and novel
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Fig. 6. Schematic non-equilibrium phase diagram of the 2D self-propelled rod model at
variable aspect ratio a and effective density φ. The area relevant to self-motile bacteria
is highlighted in red. A number of distinctly different dynamical states are discernible as
indicated by the coarse-grained maps of the velocity field v(r, t) (upper panels) at time t
and the corresponding scalar vorticity field ω̃(r, t) = [∇× v(r, t)] · êz expressed in units of
τ−10 . Here, τ0 = λf0/F is a characteristic time scale composed of the self-propelling force F ,
the Stokes friction coefficient f0 of a single bead and the steric interaction range λ. From
Ref. [61].

behaviour is visible for intermediate parameters: there is a bionematic and a “turbu-
lent” state. The former state is mainly characterized by nematic ordering while the
latter possesses a significant degree of swirling. Though a bit arbitrary, the distinction
between bionematic and turbulent state can be done via the behaviour of the equal-
time autocorrelation function of the coarse-grained velocity field v(r, t) as a function
of distance r: If it crosses zero at a certain distance r = R this marks the radius R of
a typical swirl and the state is called “turbulent” if it does not cross zero, it is called
“bionematic”. Such a velocity correlation function is shown in Fig. 8.
The turbulent state occurs at aspect ratios which are typical for real bacteria

such as E. coli or bacillus subtilis. Indeed experiments on strongly confined bacteria
have confirmed the occurence of a turbulent state. The enstrophy Ω of a coarse-
grained velocity field of the swimmers is another more sensible order parameter for
the “turbulent” state. It is defined as

Ω =
1

2
〈|ω̃(r, t)|2〉 (15)

with ω(r, t) = [∇× v(r, t)] · êz and the tilde means a spatial average. In the turbulent
state, the averaged chirality is zero. Still there is a significant local chirality as revealed
by the strong peaks in the vorticity of the coarse-grained velocity field, see Fig. 6. A
significant degree of swirling is visible there. There is also a characteristic extension of
the swirls which is about 30 larger than the size of the self-propelled rods. Moreover
in Fig. 7 experimental data for bacillus subtilis suspensions in the turbulent state and
results from an extension of the Toner-Tu model of active nematics which includes
a gradient expansion and is performed in the incompressible limit are shown. More
details about the theory can be found in Refs. [60,68]. An alternate approach to active
turbulence has recently been established using a mean-field theory of active nematics
for an incompressible flow [69]. Finally, active turbulence was also found in models
which enforce alignment at small particle separation and anti-alignment for larger
distances [70]. Then the crossover distance sets the swirl size.
It is important to note that in many occasions the term turbulence is reserved

for fluid motion at high Reynolds number complementary to the present situation
which happens at low Reynolds number. However, the Greek work “τυρβη” from
which the word turbulence roots means perturbation or swirling in a quite general
sense. Therefore the term “turbulence” can be used in a more general way. In order
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Fig. 7. Experimental snapshot (A) of a highly concentrated, homogeneous quasi-2D bacte-
rial suspension. Flow streamlines v(t, r) and vorticity fields ω(t, r) in the turbulent regime,
as obtained from (B) quasi-2D bacteria experiments, (C) simulations of the deterministic
self-propelled rod model (a = 5; φ = 0.84), and (D) continuum theory. The range of the
simulation data in D was adapted to the experimental field of view (217μm × 217μm) by
matching the typical vortex size (Scale bars, 50μm). From Ref. [60].

to avoid confusion, the term “active turbulence” [71] or “bacterial turbulence” [68]
has been introduced which delineates the effect considered here from high-Reynolds
number turbulence. Another term which has been used is “mesoscale turbulence” [60]
which stresses the fact that there is a maximal swirl size which is also different to
traditional turbulence where swirls occur on all scales.
Finally the scaling of the energy spectrum has been explored as well. An interesting

question is whether the traditional Kolmogorow-Kraichnan scaling of high-Reynolds-
number turbulence is valid. This would be a power-law decay in the inertial regime
where the energy spectrum

E(k) ∼ k
∫
dr exp[ik · r]〈v(t, 0) · v(t, r)〉t (16)

scales with the wave number k as k−5/3. In fact this exponent is not found in bacterial
turbulence (see Fig. 8) where rather an exponent −8/3 shows up in the limited scaling
window. Therefore bacterial turbulence is qualitatively different from ordinary turbu-
lence at high Reynolds numbers. It is still unclear since the scaling regime is limited
by the typical inverse swirl size whether the found exponent is universal or whether it
is nonuniversal or just a crossover. More evidence for a true scaling has been obtained
in the opposite limit of small wave numbers k. Here recent studies [72] have found
that there is another scaling limit characterized by a nonuniversal exponent which
can be in general different to the one occuring in the Kolmogorov-Kraichnan scaling.
This nicely demonstrates that bacterial turbulence is a complex phenomenon which
lacks universal scaling.
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Fig. 8. Equal-time velocity correlation functions (VCFs), normalized to unity at R = �,
and flow spectra for the two-dimensional self-propelled-rod model, B. subtilis experiments,
and 2D continuum theory. (A) The minima of the VCFs reflect the characteristic vortex size
Rv. Data points present averages over all directions and time steps to maximize sample size.
(B) For bulk turbulence (red squares) the 3D spectrum is plotted (k� = 2π/�), the other
curves show 2D spectra. Spectra for the 2D continuum theory and quasi-2D experimental
data are in good agreement; those of the 2D SPR model and the 3D bacterial data show
similar asymptotic scaling but exhibit an intermediate plateau region (spectra multiplied by
constants for better visibility and comparison). From Ref. [60].

3.2 What can we do with bacterial turbulence?

After we have clarified the occurence of bacterial turbulence in the bulk (in two spatial
dimensions), we now turn to the effect of boundaries of bacterial turbulence. The
understanding of this leads to important applications such as the motion of passive
objects in a turbulent bath. An important feature found in Ref. [73] is that a hard
boundary just suppresses the occurence of swirls. This leads directly to a depletion
of swirls in a cuspy environment which has important consequences.

a) Single carrier
A standard example of a nontrivial nonlinear geometry is a wedge-like carrier (a
V-shaped passive particle). Let us assume that the size of the carrier is compa-
rable to the typical swirl size R. Then there is an important difference between
the inside and the outside region of the carrier as far as the occurence of swirls is
concerned which is illustrated in Fig. 9.
The outside does not put any constraint for a full swirl while the inside when

narrow enough excludes full swirls. Hence we expect a depletion of swirls inside
close to the cusp which results in an area shielded from swirks. This is in fact
confirmed by computer simulation of the self-propelled rod model. The swirl de-
pletion induces a translational motion of the carrier along its cusp. At the inner
wedge cusp, rods are accumulating which are pushing the carrier. As these are
shielded from swirls, they provide an efficient and powerful driving source of the
carrier such that the bacterial-induced velocity of the carrier is optimized in the
turbulent bulk phase of the rods.

b) Two carriers
When an active bath is exposed to two carriers fixed in their relative orientation,
swirl depletion again plays the key role in driving their joint motion. There is a
depletion attraction between neighbouring rods driving them together and ulti-
mately leading to stacking of the carriers. This is demonstrated in Fig. 10.
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Fig. 9. Normalized local magnitude of vorticity obtained from simulations (left column)
and experiment (top right). Bottom right: Illustration of swirl shielding in the carrier cusp.
Bacteria in the shielded area (light colored) are indicated by arrows and the unshielded area
is marked by dark color. The typical swirl radius R for different bacteria concentrations is
obtained as the first minimum of the equal-time spatial velocity autocorrelation function.
From Ref. [73].

Fig. 10. Illustration of the attraction of wedge-like carriers in a turbulent bacterial bath.
The two wedges approach each other as a function of time. From Ref. [74].

Of course, many carriers are expected to pile up in long stacks similar to the
behaviour of colloidal bowls [75].

c) Other effects
The occurence of bacterial turbulence was explored in the presence of many pas-
sive particles which were strongly interacting thus forming a stable network with
a tunable spacing. Experiments and computer simulations [76,77] have shown
that turbulence is suppressed if the characteristic spacing between the passive
particles becomes comparable to the swirl size. This demonstrates that bacterial
turbulence can be tailored at wish by using passive particles as obstacles and gives
a first insight about bacterial turbulence in heterogeneous media (such as porous
materials).
For mobile and weakly interacting passive particles, on the other hand, one

can expect on the grounds of swirl depletion that a phase separation between the
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passive particles occurs as induced by turbulence. However, the precise conditions
for phase separation still need to be elaborated.
Recently bacterial turbulence was used in a complicated array system with

some fascinating analogy to a binary Ising spin system [78]. Therefore turbulence
might be possibly used for encoding information.

4 Conclusions and outlook

We have considered recent aspects of chiral circling motion of microswimmers. First
we studied active Brownian motion of a single circle swimmer. In this case the circular
motion is induced by an intrinsic left-right asymmetry of the swimmer. Then we have
considered the collective motion of linear swimmers where large swirls are emerging
due to excluded volume interactions and self-propulsion.
While single circle swimmers are well understood by now there is a number of

future problems which will be explored soon in this rapidly developing field. We are
just at the beginning to understand the collective behaviour of many circle swimmers
[79,80] which may form vortex pairs. Moreover the universality or non-universality of
bacterial turbulence needs to be explored more extending recent ideas [72]. It would
be interesting to confirm a turbulent state also in suspensions of rod-like artificial
microswimmers and to construct a microscopic theory for this new class of turbulence.
Finally microswimmer motion can occur also on a nonplanar manifold [81]. It would
be interesting to check the occurence of turbulence on a sphere of finite radius where
the swirl size competes with the sphere diameter.
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5. C. Bechinger, R. di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, accepted in Rev.
Mod. Phys. (2016) [arXiv:1602.00081]

6. D.J. Kraft, R. Wittkowski, B. ten Hagen, K.V. Edmond, D.J. Pine, H. Löwen, Phys.
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10. B.M. Friedrich, F. Jülicher, Phys. Rev. Lett. 103, 068102 (2009)
11. S. Namdeo, S.N. Khaderi, P.R. Onck, Proc. R. Soc. A 470, 20130547 (2014)
12. T.-W. Su, I. Choi, J. Feng, K. Huang, E. McLeod, A. Ozcan, Scientific Reports 3, 1664
(2013)
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