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1 Abstract

In these notes, we summarize recent progress in our undédnsgpof the basic physical prin-
ciples of microswimmers which perform a motion characeiby chirality. We discuss both
the chiral motion of single circle swimmer and the occureen€ bacterial turbulence where
swirls of different chirality are formed spontaneously mensemble of linear microswimmers.
Some recent highlights in this context as obtained by thesimgulation and experiment are
summarized and briefly discussed.

2 Introduction

This article briefly summarizes and reviews two aspects ohtimotion of microswimmers,
namely the chiral motion of single circle swimmers and theuoence of a new turbulent
swirling state in self-propelled rod systems and denseebatsuspensions. We intend to focus
on the essential physics and do not give a comprehensiveweWRather we describe recent
developments and try to explain them in a brief and concise wa

3 Chirality in circle swimming

3.1 Active Brownian motion with chirality (circle swimming)

Swimming along a straight line (corresponding to linearisected Brownian motion) is the
exception rather than the rule. Ideal straight swimming adcurs if the left-right symmetry
relative to the internal propulsion direction is not brokeéxlinear trajectory is getting unsta-
ble with respect to small deviations from this symmetry bxing a chirality. In two spatial
dimensions, this will result in circle-swimming, in thregrgbnsions, correspondingly, there is
swimming along a helical path ("helical swimming”). Cleane can assign a chirality (or
helicity) to the path, the sign of which determines whethmr motion is clockwise or anti-
clockwise.

The occurence of spiral-like swimming motions of microgngas was pointed out more than
a century ago by Jennings [1] and since then was found in miffieyesht situations, in partic-
ular close to a substrate where certain bacteria [2—7] aadvsiozoa [8—10] swim in circles.
Likewise helical motion was observed for different bactend sperm cells [1,11-18]. Exam-
ples for non-living but active particles moving in circlag apherical camphors at an air—water
interface [19] and chiral colloidal swimmers on a substfa§. The latter have provided ex-
cellent model systems to test the basic assumptions ofl @uti@e Brownian motion. Finally,
trajectories of deformable active particles [21] and eviecompletely blinded and ear-plugged
pedestrians [22] can possess significant circular charsiits.

The origin of chiral motion can be manifold. The most obvigian anisotropy in the particle
shape which leads to a translation-rotation coupling inlydrodynamic sense [23]. But also
an anisotropy in the propulsion mechanism itself leads tatimotion. An example where
both mechanisms are simultaneously is presented in figuieetentrajectories of twa-shape
swimmers with different chiralities are shown. A clusterdiobar swimmers which sticks to-
gether by direct forces [24] or hydrodynamics or just by thevay itself [25] will in general
lead to a situation where the total torque acting on the etustnter is not vanishing [26]. This



Chirality in the motion of microswimmers D3.3

10t ( (b)
0 __
_ Som L+ _ S5um  L-
E° £ 10
> >
10 20 X
Au coahng Au coating
-20 . . . . .
20 -10 O 10 -40 -30 -20 -10 O
X [um] X [um]

Fig. 1. Trajectories of an (a)L*™ and (b) L~ swimmer driven by self-diffusiophoresis, (Red)
bullets and (blue) square symbols correspond to initialtjgée positions and those after 1 min
each, respectively. The insets show microscope imagedfifigrent swimmers with the Au
coating (not visible in the bright-field image) indicatedday arrow. From Ref. [20].

leads to circling clusters. Finally the particle rotatiande induced by external fields, a stan-
dard example is a magnetic field perpendicular to the plameodion which will exert a torque
on the particles [27].

The equations of motion for chiral swimming can easily bearstbod in two spatial dimen-
sions. Consider a polar particles as described by a cefiteass coordinat& and a unit orien-
tation vectorz which has a relative orientation with respect to thaxis as given by the angite
such thati = (cos ¢, sin ¢), see figure 1 for a schematic illustration. We consider cuenkd
Brownian motion for both translational and orientationagtees of freedom and introduce a
systematic drift in the orientation as mediated by a congtague M/ in the direction perpen-
dicular to the plane of motion. The equations of motion tfereeare

7= BD (Fu YV (7, ¢) + f) )
¢ = BD, (M — 0,V (F,¢) + 7) (2)

Here, V (7, ¢) is an external one-body potential that can be set to ;élandr are Gaussian
distributed random numbers characterizing the Browniasenfor the translation and rotation.
Their first moment is vanishing and the second moment ise@lit an (effective) system tem-
peraturel” (with 8 = 1/kgT).

Finally F' is an effective self-propulsion force directed along theipke orientation which is
proportional to the swimming speed. The tefi, is an inverse rotational friction coefficient,
or D, is a rotational diffusion coefficient while the translatbnliffusion tensor is given by
D=pjiwi+D, (1-iwi) @3)
with two translational diffusion constants perpendic@ad parallel to the orientation.

Let us discuss the solution of these equations in the bullkowhe, ¢) is vanishing. In the noise
free casef = 0 and7T = 0) the deterministic solution of the equations of motion (tjl §2)
are closed circles, see figure 3. The circle radius is given by

Dy F

Ry = ——
7 DM

(4)

and the spinning frequencyis
w = 5DTM (5)
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Fig. 4: Typical Brownian dynamics simulation results for the tg@y of a circle swimmer.
The different snapshots are for three different noise giifes

For finite noise, there are three regimes: for very short gimiie motion is diffusive, then

there is a crossover towards a (albeit curved) ballistiermegand then for very long times

there is again diffusion. Examples for circle-swimmingtde trajectories are presented in
figure 4 at three different strengths of noise. The first twis@&@verage moments of the circle
swimmer can be computed analytically [28] generalizinggbminal result of Howse et al for
linear swimmers [29] as a generalization for active Browrlinear swimming where now the

orientational degrees of freedom experience a systemationdhich can be described by an
effective torque. One obtains

7 —7(0) =X [D, g — e P (Dt + wit) ] (6)
(7= (0 =22*{u” = D} + D, (D} + )
+ e P [(D? — w?) cos (wt) — 2D,wsin (wt)] } +2(Dy+D)t  (7)
where the overbar denotes a noise-averagedefined as

A= 5DHF/ (D% + w2) (8)
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4(0) = (cos ¢y, sin ¢y) is the initial orientation and(0) the initial position. Moreover

iy = (—sin ¢, cos o) 9)
@ = (cos ¢, sing) (10)
ut = (— sin ¢, cos gz;) 11D
where¢ is the noise average over the angles given by
¢ = o+ wt. (12)

For a linear swimmer the first moment simplifies to

(7)) = 7(0) + (0) ;- (1 = exp(~Dy) (13)
whereuy is the self-propulsion speed. So for given initial positeord orientation it is a piece
of a straight line directed along the initial orientatiomtdrestingly the swimmer on average
does not proceed to infinity but only recovers a charactefp&rsistence length which is given
by gp = UQ/DT.

Discussing the first moment (6) for chiral swimmers is mommpbcated. The mean trajectory
is now generalized to gpira mirabilisor a logarithmic spiral. By eliminating the timeone
obtains in polar coordinates the following representatworihe trajectory in coordinates:

r(¢) o< exp(—=Dy (¢ — do)/w) (14)

wheret(0) = (cos ¢y, sin ¢g) andw is the characteristic circling frequency. Recent expenitse
on chiral colloidal microswimmers have confirmed this petidn [20] as documented in Figure
5.
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Fig. 5: Noise-averaged trajectory of a Brownian circle swimmerdgrescribed position and

orientation att = 0. The dashed curve is the experimental one obtained for alchi#shaped

colloidal model swimmer. The solid curve shows the themabgirediction of the spira mirabilis

with the starting point indicated by a red bullet. Inset: #sup of the framed area in the plot.

As a characteristic feature of the logarithmic spiral, ttaio d, ., /d; of the distances; between
adjacent turns of the mean swimming path are constant. Frem[RO].

Finally, in three dimensions, the noise-averaged trajgd®a concho-spiral [30] which is a
generalization of the logarithmic spiral.
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3.2 Circleswimmersin gravity

The motion of circle swimmer in an external gravitationaldi@as been studied by experi-
ments and theory by using L-shaped articial swimmers orntedtiwo-dimensional substrate.
Interesting a situation of negative gravitaxis was foun@setthe chiral self-propelled particles
swims against gravity [31]. The physical origin is a balan€¢orques which arise from the

self-propulsion and from gravity. The resulting motionirgelar. This mechanism does only oc-
cur for chiral anisotropic particles and is different frowtiom-heaviness [32] which is another
reason for negative gravitaxis.

4 Bacterial turbulence

4.1 Thebulk state of activeturbulence

Based on a self-propelled rod model of linear swimmers, therging state diagram was ex-
plored by Wensink and coworkers [33, 34] as a function of t@oameters, namely the area
fraction ¢ and the aspect ratio of the rods. The temperature was setdamd the strength
of the self-propelling force relative to the repulsive natetion was kept fixed. The simulations
were performed in two spatial dimensions. In the two-dinn@me parameter space, a rich state
diagram was found which is shown in figure 6.
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Fig. 6: Schematic non-equilibrium phase diagram of the 2D SPR maidehriable aspect
ratio a and effective density. The area relevant to self-motile bacteria is highlightaded.
A number of distinctly different dynamical states are disii®@e as indicated by the coarse-
grained maps of the velocity fieldr, ¢) (upper panels) at timeand the corresponding scalar
vorticity fieldo (7, t) = [V x V(7,t)] - &. expressed in units of '. From Ref. [34].

For small densities, obviously a dilute phase is found whacks any significant swarming. For
higher densities and large aspect ratios, a swarming statewhere large clusters are formed
by aligning interactions and self-propulsion. This swargnstate shows the characteristics of
large density fluctuations. For small aspect ratios, on therchand, there is a jammed state
at high densities. Exactly at aspect ratio of 1 (sphericdigas) an active crystal is formed
[35, 36]. For both high density and high aspect ratio, a lamesp occurs as in driven passive
systems [37, 38]. Interesting and novel behaviour is wsibl intermediate parameters, there
is a bionematic and a "turbulent” state. The former state anfg characterized by nematic
ordering while the latter possesses a significant degrewidirgy. Though a bit arbitrary, the
distinction between bionematic and turbulent state candoe dia the behaviour of the equal-
time autocorrelation function of the coarse-grained vigydield V(7 t) as a function of distance
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r: If it crosses zero at a certain distance- R this marks the radiu® of a typical swirl and
the state is called "turbulent” if it does not cross zeros italled "bionematic”. Such a velocity
correlation function is shown in figure 7.

(]m\)/m' sdew Ayoroa

Fig. 7: Experimental snapshot (A) of a highly concentrated, homeges quasi-2D bacterial
suspension. Flow streamlinest, ") and vorticity fieldsw(t,7) in the turbulent regime, as
obtained from (B) quasi-2D bacteria experiments, (C) satiahs of the deterministic SPR
model ¢ = 5; ¢ = 0.84), and (D) continuum theory. The range of the simulation data was
adapted to the experimental field of viest {um x 217um) by matching the typical vortex size
(Scale bars, 5Qqum). From Ref. [33].

The turbulent state occurs at aspect ratios which are tyfocaeal bacteria such as E. coli
or bacillus subtilis. Indeed experiments on strongly cadibacteria have confirmed the oc-
curence of a turbulent state. The enstrophyf a coarse-grained velocity field of the swimmers
is another more sensible order parameter for the "turbutgate. It is defined as

0= GEOP) (15)

with w(7,t) = [V x V(7,t)] - & and the tilde means a spatial average. In the turbulent, state
the averaged chirality is zero. Still there is a significaatll chirality as revealed by the strong
peaks in the vorticity of the coarse-grained velocity fiaee figure 6. A significant degree of
swirling is visible there. There is also a characteristiteagion of the swirls which is about
30 larger than the size of the self-propelled rods. Moreavdigure 7 experimental data for
bacillus subtilis suspensions in the turbulent state asalt®from an extension of the Toner-Tu
model of active nematics which includes a gradient expanaie shown. More details about
the theory can be found in Refs. [33,39].
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Fig. 8: Equal-time velocity correlation functions (VCFs), normzel to unity atk = /¢, and
flow spectra for the two-dimensional self-propelled-roddelpB. subtilis experiments, and 2D
continuum theory. (A) The minima of the VCFs reflect the dttaréstic vortex sizeék,. Data
points present averages over all directions and time stepmaximize sample size. (B) For
bulk turbulence (red squares) the 3D spectrum is plotied< 27 /¢), the other curves show
2D spectra. Spectra for the 2D continuum theory and quasegperimental data are in good
agreement; those of the 2D SPR model and the 3D bacterial stad&v similar asymptotic
scaling but exhibit an intermediate plateau region (spectrultiplied by constants for better
visibility and comparison). From Ref. [33].

It is important to note that in many occasions the term tweboé is reserved for fluid motion at
high Reynolds number complementary to the present situatioch happens at low Reynolds
number. However, the Greek workdpSn” from which the word turbulence roots means
perturbation or swirling in a quite general sense. Theeefioe term "turbulence” can be used in
a more general way. In order to avoid confusion, the termvadtrbulence” [40] or bacterial
turbulence” [39] has been introduced which delineates the effect awrsid here from high-
Reynolds number turbulence. Another term which has beahis$mesoscale turbulence” [33]
which stresses the fact that there is a maximal swirl sizelvig also different to traditional
turbulence where swirls occur on all scales.

Finally the scaling of the energy spectrum has been expesedll. An interesting question is
whether the traditional Kolmogorow-Kraichnan scaling @fttReynolds-number turbulence is
valid. This would be a power-law decay in the inertial regivieere the energy spectrum

E(k) ~ k / dF explik - 7 (V(t,0) - V(t, 7)) (16)

scales with the wave numbkask—°/3. In fact this exponent is not found in bacterial turbulence
(see figure 8) where rather an exponef} 3 shows up in the limited scaling window. Therefore
bacterial turbulence is qualitatively different from awdry turbulence at high Reynolds num-
bers. Itis still unclear since the scaling regime is limibgdhe typical inverse swirl size whether
the found exponent is universal or whether it is nonuniMenspist a crossover. More evidence
for a true scaling has been obtained in the opposite liminodlswave numberg. Here re-
cent studies [41] have found that there is another scaling éharacterized by a nonuniversal
exponent which can be in general different to the one ocgurirthe Kolmogorov-Kraichnan
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scaling. This nicely demonstrates that bacterial turtegeis a complex phenomenon which
lacks universal scaling.

4.2 What can wedo with bacterial turbulence?

After we have clarified the occurence of bacterial turbuéeincthe bulk (in two spatial dimen-
sions), we now turn to the effect of boundaries of bactetiddilence. The understanding of
this leads to important applications such as the motion s$ipa objects in a turbulent bath. An
important feature found in Ref. [42] is that a hard boundaist suppresses the occurence of
swirls. This leads directly to a depletion of swirls in a cpgmvironment which has important

consequences.

a) Single carrier

A standard example of a nontrivial nonlinear geometry is gadeelike carrier (a V-shaped
passive particle). Let us assume that the size of the casrommparable to the typical swirl
size R. Then there is an important difference between the insidetlae outside region of
the carrier as far as the occurence of swirls is concernedhwiiillustrated in figure 9.

swirl depletion

experiment

simulation

unshielded
aren

0 0.5 1

enstrophy

Fig. 9: Normalized local magnitude of vorticity obtained from slations (left column) and
experiment (top right). Bottom right: Illustration of swehielding in the carrier cusp. Bacteria
in the shielded area (light colored) are indicated by arroavel the unshielded area is marked
by dark color. The typical swirl radius R for different baggeconcentrations is obtained as the
first minimum of the equal-time spatial velocity autocaateln function. From Ref. [42].

The outside does not put any constraint for a full swirl whiile inside when narrow enough
excludes full swirls. Hence we expect a depletion of swinkside close to the cusp which
results in an area shielded from swirks. This is in fact camdid by computer simulation
of the self-propelled rod model. The swirl depletion indsieetranslational motion of the
carrier along its cusp. At the inner wedge cusp, rods aremagfating which are pushing
the carrier. As these are shielded from swirls, they prowefficient and powerful driving
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source of the carrier such that the bacterial-induced tglo€the carrier is optimized in the
turbulent bulk phase of the rods.

b) Two carriers

When an active bath is exposed to two carriers fixed in théative orientation, swirl de-

pletion again plays the key role in driving their joint matioThere is a depletion attraction
between neighbouring rods driving them together and utefgdeading to stacking of the
carriers. This is demonstrated in figure 10.

ST EY R TR

."l". o

Fig. 10: lllustration of the attraction of wedge-like carriers in arbulent bacterial bath. The
two wedges approach each other as a function of time. From[&Rf

Of course, many carriers are expected to pile up in long stakilar to the behaviour of
colloidal bowls [44].

c) Other effects

The occurence of bacterial turbulence was explored in thggmce of many passive particles
which were strongly interacting thus forming a stable nekwehich a tunable spacing.
Experiments and computer simulations [45, 46] have showhttirbulence is suppressed
if the characteristic spacing between the passive pastldeomes comparable to the swirl
size. This demonstrates that bacterial turbulence caniloeeich at wish by using passive
particles as obstacles and gives a first insight about balktarbulence in heterogeneous
media (such as porous materials).

For mobile and weakly interacting passive particles, onatter hand, one can expect on
the grounds of swirl depletion that a phase separation legtiee passive particles occurs
as induced by turbulence. However, this expectation st#ids to be verified.

5 Conclusions

We have considered recent aspects of chiral circling matiomcroswimmers. First we studied
active Brownian motion of a single circle swimmer. In thisedhe circular motion is induced
by an intrinsic left-right asymmetry of the swimmer. Then ke considered the collective
motion of linear swimmers where large swirls are emergirgtdiexcluded volume interactions
and self-propulsion. There will be number of future probsamwhich will be explored soon in
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this rapidly developing field. We are just at the beginningnderstand the collective behaviour
of many circle swimmers [47] which may form vortex pairs. Mover the universality of
bacterial turbulence needs to be explored more. It woulthtezasting to confirm a turbulent
state also in suspensions of rod-like artificial microswiensn
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