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H. Löwen

Institut für Theoretische Physik II: Weiche Materie

Heinrich-Heine Universität Düsseldorf

Contents

1 Abstract 2

2 Introduction 2

3 Chirality in circle swimming 2
3.1 Active Brownian motion with chirality (circle swimming) . . . . . . . . . . . . 2
3.2 Circle swimmers in gravity . . . . . . . . . . . . . . . . . . . . . . . . .. . . 6

4 Bacterial turbulence 6
4.1 The bulk state of active turbulence . . . . . . . . . . . . . . . . . .. . . . . . 6
4.2 What can we do with bacterial turbulence? . . . . . . . . . . . . .. . . . . . . 9

5 Conclusions 10

Lecture Notes of the Summer School “Microswimmers – From Single Particle Motion to Collective Behaviour”,

organised by the DFG Priority Programme SPP 1726 (Forschungszentrum Jülich, 2015). All rights reserved.
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1 Abstract

In these notes, we summarize recent progress in our understanding of the basic physical prin-
ciples of microswimmers which perform a motion characterized by chirality. We discuss both
the chiral motion of single circle swimmer and the occurrence of bacterial turbulence where
swirls of different chirality are formed spontaneously in an ensemble of linear microswimmers.
Some recent highlights in this context as obtained by theory, simulation and experiment are
summarized and briefly discussed.

2 Introduction

This article briefly summarizes and reviews two aspects of chiral motion of microswimmers,
namely the chiral motion of single circle swimmers and the occurrence of a new turbulent
swirling state in self-propelled rod systems and dense bacterial suspensions. We intend to focus
on the essential physics and do not give a comprehensive review. Rather we describe recent
developments and try to explain them in a brief and concise way.

3 Chirality in circle swimming

3.1 Active Brownian motion with chirality (circle swimming)

Swimming along a straight line (corresponding to linearly directed Brownian motion) is the
exception rather than the rule. Ideal straight swimming only occurs if the left-right symmetry
relative to the internal propulsion direction is not broken. A linear trajectory is getting unsta-
ble with respect to small deviations from this symmetry exhibiting a chirality. In two spatial
dimensions, this will result in circle-swimming, in three dimensions, correspondingly, there is
swimming along a helical path (”helical swimming”). Clearly one can assign a chirality (or
helicity) to the path, the sign of which determines whether the motion is clockwise or anti-
clockwise.
The occurence of spiral-like swimming motions of microorganisms was pointed out more than
a century ago by Jennings [1] and since then was found in many different situations, in partic-
ular close to a substrate where certain bacteria [2–7] and spermatozoa [8–10] swim in circles.
Likewise helical motion was observed for different bacteria and sperm cells [1, 11–18]. Exam-
ples for non-living but active particles moving in circles are spherical camphors at an air–water
interface [19] and chiral colloidal swimmers on a substrate[20]. The latter have provided ex-
cellent model systems to test the basic assumptions of chiral active Brownian motion. Finally,
trajectories of deformable active particles [21] and even of completely blinded and ear-plugged
pedestrians [22] can possess significant circular characteristics.
The origin of chiral motion can be manifold. The most obviousis an anisotropy in the particle
shape which leads to a translation-rotation coupling in thehydrodynamic sense [23]. But also
an anisotropy in the propulsion mechanism itself leads to chiral motion. An example where
both mechanisms are simultaneously is presented in figure 1 where trajectories of twoL-shape
swimmers with different chiralities are shown. A cluster oflinear swimmers which sticks to-
gether by direct forces [24] or hydrodynamics or just by the activity itself [25] will in general
lead to a situation where the total torque acting on the cluster center is not vanishing [26]. This
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Fig. 1: Trajectories of an (a)L+ and (b)L− swimmer driven by self-diffusiophoresis, (Red)
bullets and (blue) square symbols correspond to initial particle positions and those after 1 min
each, respectively. The insets show microscope images of two different swimmers with the Au
coating (not visible in the bright-field image) indicated byan arrow. From Ref. [20].

leads to circling clusters. Finally the particle rotation can be induced by external fields, a stan-
dard example is a magnetic field perpendicular to the plane ofmotion which will exert a torque
on the particles [27].
The equations of motion for chiral swimming can easily be understood in two spatial dimen-
sions. Consider a polar particles as described by a center-of-mass coordinate~r and a unit orien-
tation vector̂u which has a relative orientation with respect to thex-axis as given by the angleφ
such that̂u = (cosφ, sinφ), see figure 1 for a schematic illustration. We consider overdamped
Brownian motion for both translational and orientational degrees of freedom and introduce a
systematic drift in the orientation as mediated by a constant torqueM in the direction perpen-
dicular to the plane of motion. The equations of motion therefore are

~̇r = β
↔

D
(

F û− ~∇V (~r, φ) + ~f
)

(1)

φ̇ = βDr (M − ∂φV (~r, φ) + τ) (2)

Here,V (~r, φ) is an external one-body potential that can be set to zero,~f andτ are Gaussian
distributed random numbers characterizing the Brownian noise for the translation and rotation.
Their first moment is vanishing and the second moment is related to an (effective) system tem-
peratureT (with β = 1/kBT ).
Finally F is an effective self-propulsion force directed along the particle orientation which is
proportional to the swimming speed. The termβDr is an inverse rotational friction coefficient,
orDr is a rotational diffusion coefficient while the translational diffusion tensor is given by

↔

D = D‖û⊗ û+D⊥

(

↔

I − û⊗ û
)

(3)

with two translational diffusion constants perpendicularand parallel to the orientation.
Let us discuss the solution of these equations in the bulk whenV (~r, φ) is vanishing. In the noise
free case (~f = 0 andτ = 0) the deterministic solution of the equations of motion (1) and (2)
are closed circles, see figure 3. The circle radius is given by

R0 =
D‖F

DrM
(4)

and the spinning frequencyω is
ω = βDrM (5)
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Fig. 2: Sketch of the orientation̂u and po-
sition~r of an active rod.

Fig. 3: Trajectory of a circle swimmer and
direction of the self-propulsion forceF û
and torqueM .

Fig. 4: Typical Brownian dynamics simulation results for the trajectory of a circle swimmer.
The different snapshots are for three different noise strengths.

For finite noise, there are three regimes: for very short times the motion is diffusive, then
there is a crossover towards a (albeit curved) ballistic regime and then for very long times
there is again diffusion. Examples for circle-swimming particle trajectories are presented in
figure 4 at three different strengths of noise. The first two noise-average moments of the circle
swimmer can be computed analytically [28] generalizing theseminal result of Howse et al for
linear swimmers [29] as a generalization for active Brownian linear swimming where now the
orientational degrees of freedom experience a systematic drift which can be described by an
effective torque. One obtains

~r − ~r(0) =λ
[

Drû
⊥
0 − e−Drt

(

Dr
¯̂u+ ω ¯̂u⊥

)]

(6)

(~r − ~r(0))2 =2λ2

{

ω2 −D2

r +Dr

(

D2

r + ω2
)

t

+ e−Drt
[(

D2

r − ω2
)

cos (ωt)− 2Drω sin (ωt)
]

}

+ 2
(

D‖ +D⊥

)

t (7)

where the overbar denotes a noise-average,λ is defined as

λ = βD‖F/
(

D2

r + ω2
)

(8)
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û(0) = (cos φ0, sinφ0) is the initial orientation and~r(0) the initial position. Moreover

û⊥
0 = (− sinφ0, cosφ0) (9)

û =
(

cos φ̄, sin φ̄
)

(10)

û⊥ =
(

− sin φ̄, cos φ̄
)

(11)

whereφ is the noise average over the angles given by

φ̄ = φ0 + ωt . (12)

For a linear swimmer the first moment simplifies to

〈~r(t)〉 = ~r(0) + û(0)
v0

Dr
(1− exp(−Drt)) (13)

wherev0 is the self-propulsion speed. So for given initial positionand orientation it is a piece
of a straight line directed along the initial orientation. Interestingly the swimmer on average
does not proceed to infinity but only recovers a characteristic persistence length which is given
by ℓp = v0/Dr.
Discussing the first moment (6) for chiral swimmers is more complicated. The mean trajectory
is now generalized to aspira mirabilisor a logarithmic spiral. By eliminating the timet one
obtains in polar coordinates the following representationfor the trajectory in coordinates:

r(φ) ∝ exp(−Dr(φ− φ0)/ω) (14)

whereû(0) = (cosφ0, sinφ0) andω is the characteristic circling frequency. Recent experiments
on chiral colloidal microswimmers have confirmed this prediction [20] as documented in Figure
5.
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Fig. 5: Noise-averaged trajectory of a Brownian circle swimmer fora prescribed position and
orientation att = 0. The dashed curve is the experimental one obtained for a chiral L-shaped
colloidal model swimmer. The solid curve shows the theoretical prediction of the spira mirabilis
with the starting point indicated by a red bullet. Inset: close-up of the framed area in the plot.
As a characteristic feature of the logarithmic spiral, the ratiodi+1/di of the distancesdi between
adjacent turns of the mean swimming path are constant. From Ref. [20].

Finally, in three dimensions, the noise-averaged trajectory is a concho-spiral [30] which is a
generalization of the logarithmic spiral.
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3.2 Circle swimmers in gravity

The motion of circle swimmer in an external gravitational field has been studied by experi-
ments and theory by using L-shaped articial swimmers on a tilted two-dimensional substrate.
Interesting a situation of negative gravitaxis was found where the chiral self-propelled particles
swims against gravity [31]. The physical origin is a balanceof torques which arise from the
self-propulsion and from gravity. The resulting motion is linear. This mechanism does only oc-
cur for chiral anisotropic particles and is different from bottom-heaviness [32] which is another
reason for negative gravitaxis.

4 Bacterial turbulence

4.1 The bulk state of active turbulence

Based on a self-propelled rod model of linear swimmers, the emerging state diagram was ex-
plored by Wensink and coworkers [33, 34] as a function of two parameters, namely the area
fractionφ and the aspect ratio of the rods. The temperature was set to zero and the strength
of the self-propelling force relative to the repulsive interaction was kept fixed. The simulations
were performed in two spatial dimensions. In the two-dimensional parameter space, a rich state
diagram was found which is shown in figure 6.

Fig. 6: Schematic non-equilibrium phase diagram of the 2D SPR modelat variable aspect
ratio a and effective densityφ. The area relevant to self-motile bacteria is highlighted in red.
A number of distinctly different dynamical states are discernible as indicated by the coarse-
grained maps of the velocity field~v(~r, t) (upper panels) at timet and the corresponding scalar
vorticity fieldω̃(~r, t) = [∇×~v(~r, t)] · êz expressed in units ofτ−1

0 . From Ref. [34].

For small densities, obviously a dilute phase is found whichlacks any significant swarming. For
higher densities and large aspect ratios, a swarming state occurs where large clusters are formed
by aligning interactions and self-propulsion. This swarming state shows the characteristics of
large density fluctuations. For small aspect ratios, on the other hand, there is a jammed state
at high densities. Exactly at aspect ratio of 1 (spherical particles) an active crystal is formed
[35, 36]. For both high density and high aspect ratio, a lane phase occurs as in driven passive
systems [37, 38]. Interesting and novel behaviour is visible for intermediate parameters, there
is a bionematic and a ”turbulent” state. The former state is mainly characterized by nematic
ordering while the latter possesses a significant degree of swirling. Though a bit arbitrary, the
distinction between bionematic and turbulent state can be done via the behaviour of the equal-
time autocorrelation function of the coarse-grained velocity field~v(~r, t) as a function of distance
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r: If it crosses zero at a certain distancer = R this marks the radiusR of a typical swirl and
the state is called ”turbulent” if it does not cross zero, it is called ”bionematic”. Such a velocity
correlation function is shown in figure 7.

Fig. 7: Experimental snapshot (A) of a highly concentrated, homogeneous quasi-2D bacterial
suspension. Flow streamlinesv(t, ~r) and vorticity fieldsω(t, ~r) in the turbulent regime, as
obtained from (B) quasi-2D bacteria experiments, (C) simulations of the deterministic SPR
model (a = 5; φ = 0.84), and (D) continuum theory. The range of the simulation datain D was
adapted to the experimental field of view (217µm× 217µm) by matching the typical vortex size
(Scale bars, 50µm). From Ref. [33].

The turbulent state occurs at aspect ratios which are typical for real bacteria such as E. coli
or bacillus subtilis. Indeed experiments on strongly confined bacteria have confirmed the oc-
curence of a turbulent state. The enstrophyΩ of a coarse-grained velocity field of the swimmers
is another more sensible order parameter for the ”turbulent” state. It is defined as

Ω =
1

2
〈|ω̃(~r, t)|2〉 (15)

with ω(~r, t) = [∇×~v(~r, t)] · êz and the tilde means a spatial average. In the turbulent state,
the averaged chirality is zero. Still there is a significant local chirality as revealed by the strong
peaks in the vorticity of the coarse-grained velocity field,see figure 6. A significant degree of
swirling is visible there. There is also a characteristic extension of the swirls which is about
30 larger than the size of the self-propelled rods. Moreoverin figure 7 experimental data for
bacillus subtilis suspensions in the turbulent state and results from an extension of the Toner-Tu
model of active nematics which includes a gradient expansion are shown. More details about
the theory can be found in Refs. [33,39].
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Fig. 8: Equal-time velocity correlation functions (VCFs), normalized to unity atR = ℓ, and
flow spectra for the two-dimensional self-propelled-rod model, B. subtilis experiments, and 2D
continuum theory. (A) The minima of the VCFs reflect the characteristic vortex sizeRv. Data
points present averages over all directions and time steps to maximize sample size. (B) For
bulk turbulence (red squares) the 3D spectrum is plotted (kℓ = 2π/ℓ), the other curves show
2D spectra. Spectra for the 2D continuum theory and quasi-2Dexperimental data are in good
agreement; those of the 2D SPR model and the 3D bacterial datashow similar asymptotic
scaling but exhibit an intermediate plateau region (spectra multiplied by constants for better
visibility and comparison). From Ref. [33].

It is important to note that in many occasions the term turbulence is reserved for fluid motion at
high Reynolds number complementary to the present situation which happens at low Reynolds
number. However, the Greek work ”τυρβη” from which the word turbulence roots means
perturbation or swirling in a quite general sense. Therefore the term ”turbulence” can be used in
a more general way. In order to avoid confusion, the term ”active turbulence” [40] or ”bacterial
turbulence” [39] has been introduced which delineates the effect considered here from high-
Reynolds number turbulence. Another term which has been used is ”mesoscale turbulence” [33]
which stresses the fact that there is a maximal swirl size which is also different to traditional
turbulence where swirls occur on all scales.
Finally the scaling of the energy spectrum has been exploredas well. An interesting question is
whether the traditional Kolmogorow-Kraichnan scaling of high-Reynolds-number turbulence is
valid. This would be a power-law decay in the inertial regimewhere the energy spectrum

E(k) ∼ k

∫

d~r exp[i~k · ~r]〈~v(t, 0) · ~v(t, ~r)〉t (16)

scales with the wave numberk ask−5/3. In fact this exponent is not found in bacterial turbulence
(see figure 8) where rather an exponent−8/3 shows up in the limited scaling window. Therefore
bacterial turbulence is qualitatively different from ordinary turbulence at high Reynolds num-
bers. It is still unclear since the scaling regime is limitedby the typical inverse swirl size whether
the found exponent is universal or whether it is nonuniversal or just a crossover. More evidence
for a true scaling has been obtained in the opposite limit of small wave numbersk. Here re-
cent studies [41] have found that there is another scaling limit characterized by a nonuniversal
exponent which can be in general different to the one occuring in the Kolmogorov-Kraichnan
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scaling. This nicely demonstrates that bacterial turbulence is a complex phenomenon which
lacks universal scaling.

4.2 What can we do with bacterial turbulence?

After we have clarified the occurence of bacterial turbulence in the bulk (in two spatial dimen-
sions), we now turn to the effect of boundaries of bacterial turbulence. The understanding of
this leads to important applications such as the motion of passive objects in a turbulent bath. An
important feature found in Ref. [42] is that a hard boundary just suppresses the occurence of
swirls. This leads directly to a depletion of swirls in a cuspy environment which has important
consequences.

a) Single carrier

A standard example of a nontrivial nonlinear geometry is a wegde-like carrier (a V-shaped
passive particle). Let us assume that the size of the carrieris comparable to the typical swirl
sizeR. Then there is an important difference between the inside and the outside region of
the carrier as far as the occurence of swirls is concerned which is illustrated in figure 9.

Fig. 9: Normalized local magnitude of vorticity obtained from simulations (left column) and
experiment (top right). Bottom right: Illustration of swirl shielding in the carrier cusp. Bacteria
in the shielded area (light colored) are indicated by arrowsand the unshielded area is marked
by dark color. The typical swirl radius R for different bacteria concentrations is obtained as the
first minimum of the equal-time spatial velocity autocorrelation function. From Ref. [42].

The outside does not put any constraint for a full swirl whilethe inside when narrow enough
excludes full swirls. Hence we expect a depletion of swirls inside close to the cusp which
results in an area shielded from swirks. This is in fact confirmed by computer simulation
of the self-propelled rod model. The swirl depletion induces a translational motion of the
carrier along its cusp. At the inner wedge cusp, rods are accumulating which are pushing
the carrier. As these are shielded from swirls, they providean efficient and powerful driving
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source of the carrier such that the bacterial-induced velocity of the carrier is optimized in the
turbulent bulk phase of the rods.

b) Two carriers

When an active bath is exposed to two carriers fixed in their relative orientation, swirl de-
pletion again plays the key role in driving their joint motion. There is a depletion attraction
between neighbouring rods driving them together and ultimately leading to stacking of the
carriers. This is demonstrated in figure 10.

Fig. 10: Illustration of the attraction of wedge-like carriers in a turbulent bacterial bath. The
two wedges approach each other as a function of time. From Ref. [43]

Of course, many carriers are expected to pile up in long stacks similar to the behaviour of
colloidal bowls [44].

c) Other effects

The occurence of bacterial turbulence was explored in the presence of many passive particles
which were strongly interacting thus forming a stable network which a tunable spacing.
Experiments and computer simulations [45, 46] have shown that turbulence is suppressed
if the characteristic spacing between the passive particles becomes comparable to the swirl
size. This demonstrates that bacterial turbulence can be tailored at wish by using passive
particles as obstacles and gives a first insight about bacterial turbulence in heterogeneous
media (such as porous materials).

For mobile and weakly interacting passive particles, on theother hand, one can expect on
the grounds of swirl depletion that a phase separation between the passive particles occurs
as induced by turbulence. However, this expectation still needs to be verified.

5 Conclusions

We have considered recent aspects of chiral circling motionof microswimmers. First we studied
active Brownian motion of a single circle swimmer. In this case the circular motion is induced
by an intrinsic left-right asymmetry of the swimmer. Then wehave considered the collective
motion of linear swimmers where large swirls are emerging due to excluded volume interactions
and self-propulsion. There will be number of future problems which will be explored soon in
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this rapidly developing field. We are just at the beginning tounderstand the collective behaviour
of many circle swimmers [47] which may form vortex pairs. Moreover the universality of
bacterial turbulence needs to be explored more. It would be interesting to confirm a turbulent
state also in suspensions of rod-like artificial microswimmers.
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