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We review recent experimental, numerical, and analytical results on active suspensions of self-propelled colloi-
dal beadsmoving in (quasi-)two dimensions. Active colloids formpart of the larger theme of activematter, which
is noted for the emergence of collective dynamic phenomena away from thermal equilibrium. Both in experi-
ments and computer simulations, a separation into dense aggregates, i.e., clusters, and a dilute gas phase has
been reported even when attractive interactions and an alignment mechanism are absent. Here, we describe
three experimental setups, discuss the different propelling mechanisms, and summarize the evidence for
phase separation. We then compare experimental observations with numerical studies based on a minimal
model of colloidal swimmers. Finally, we review amean-field approach derived from first principles, which pro-
vides a theoretical framework for the density instability causing the phase separation in active colloids.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the past decade, active systems have gained enormous interest in
the field of soft matter physics from both the experimental and the
theoretical side, see Refs. [1–4] for recent general reviews. Motivated
through not only macroscopic biological systems like flock of birds [5]
and school of fish [6], but also microscopic systems like bacterial colo-
nies [7,8], theoretical models of self-propelled particles have been de-
veloped that demonstrate the emergence of collective phenomena
from simple idealized interactions [9,10]. Theoretical descriptions
have mainly focused on hydrodynamic approaches describing the
coarse-grained dynamics on large scales [11]. Coefficients are either
treated as free parameters or are derived, e.g., from the microscopic
modeling of collisions [12–14]. In these models, the crucial interaction
mechanism responsible for collective behavior such as laning,
swarming, andeven active turbulence [15–17] is the alignment of veloc-
ities, or orientations. These interactionsmight be cognitive as in the case
of birds, or physical due to, e.g., volume exclusion of granular rods [18]
and disks [19].

More recently, experimental setups of artificial colloidal “swimmers”
have been realized, the propulsion properties of which can be tuned. Di-
rected phoretic motion of these colloidal particles is the hydrodynamic
consequence of maintaining a local gradient of a molecular solvent, e.g.
due to chemical reactions on the different surface areas of a particle in a
hydrogen peroxide mixture [20–22], or the local demixing of a water–
lutidine mixture at one side of the particle [23]. Moderately dense active
suspensions of such artificial swimmers can be realized and studied [24,
lké).
25], for a summary of the experiments see Fig. 1. Arguably themost inter-
esting feature is that a clustering of particles is observed. These clusters
are very dynamic, and particles join and leave as shown in Fig. 1(b).
While the cluster size in these experiments seems to reach saturation,
in another experiment [26] using the reversible demixing of a binary
solvent evidence for phase separation into compact large clusters and a
dilute gas phase of free swimmers has been presented.

Such a phase separation has also been observed in computer simula-
tions of a minimal model [26–33]. In this model, disks are propelled
with constant velocity along their orientations, which undergo free ro-
tational diffusion. Moreover, disks interact via a purely repulsive pair
potential. The existence of a collective phase transition is somewhat sur-
prising given that this model lacks both attractions – leading to phase
separation in passive suspensions – and an alignment mechanism.
Still, the persistence of the directedmotion in combinationwith volume
exclusion forces leads to a self-trapping phenomenon, where particles
get temporally “stuck” and block each other, which has also been
shown for lattice models before [34,35]. Tailleur and Cates have
shown theoretically for amodel of run-and-tumble bacteria that indeed
a locally reduced mobility is sufficient to give rise to a separation into
dense slow regions, where directed motion is blocked, and a dilute gas
of fast particles [36–38].

Instead of giving a general overview, in this article we focus on re-
cent experimental and theoretical progress on the phase behavior of
self-propelled colloidal particles in two dimensions without an align-
ment mechanism. First, we review results from three groundbreaking
experimental setups that have realized (quasi-)two-dimensional
systems of spherical swimmers with a controllable propelling speed v0
of the order μm/s, where the correlation between the particle orienta-
tions, i.e., the direction of propulsion, appears to be negligible, see
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Fig. 1. Suspensions of catalytic Janus particles close to a surface: (a) Snapshots of platinum coated gold particleswithout (left) andwith “fuel” (right) in the experiments of Theurkauff et al.
[24]. Particles have sunk to the bottomof a tilted cell,where they accumulate at the bottom. In the active suspension (right), a smeared interface between a dense phase at the bottomand a
dilute gas phase at the top is observed. (b) Cluster formation in thedilute phase in the experiment of Theurkauff et al. Colors indicatemembership of a cluster at t=0anddemonstrate how
clusters evolve. (c) The platinumacts as a catalyst for the decomposition of hydrogen peroxide. The actual swimmingmechanism is still somewhat debated, see text. (d) Formation of large
clusters, “living crystals”, in a related experiment performed by Palacci et al. [25] using colloidal particles with an embedded hematite cube. The catalytic activity of the hematite is con-
trolled externally through light.
Figure adapted from Refs. [24,25].
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SupplementaryMaterial of Ref. [26]. Aminimalmodel is then described,
which nevertheless captures the relevant ingredients of the experi-
ments. We discuss numerical results based on this model and compare
them to experimental results. We briefly discuss the influence of hydro-
dynamic interactions aswell as freezing of active systems at high densi-
ties. Finally, we introduce a mean-field approach leading to evolution
equations for the density and the orientational field of an active suspen-
sion [30]. The crucial role in this theory is played by a single parameter,
the force imbalance due to an anisotropic pair distribution. We then
conclude and outline possible directions for further research in this rap-
idly evolving field.
2. Experimental evidence

2.1. Clustering of catalytic swimmers

For colloidal particles to “swim” autonomously, at least the following
two conditions need to be met: (i) besides the colloidal solute and the
solvent, there is a molecular solute and (ii) the distribution of this mo-
lecular solute is kept asymmetric.1 Two practical schemes have been re-
alized for the study of (moderately) dense active suspensions: the
decomposition of water peroxide [41] and the reversible, spinodal
demixing of a binary water–lutidine solvent [42].

While aggregation of catalytic swimmers has been observed before
[21], clusters of active colloids have been characterized the first time
in experiments performed by Theurkauff et al. [24]. They prepared the
so-called Janus particles consisting of two surfaces with different phys-
ical properties. In this particular experiment they used spherical gold
1 Thermophoresis could in principle also work [39,40], but the required high illumina-
tion powers induce optical forces, which, in the context considered here, are less desirable.
particles with one hemisphere coated with platinum. Immersing these
particles in a solvent containing hydrogen peroxide H2O2, the particles
are propelled along their symmetry axis. The propulsion is realized
due to the different chemical properties of platinum and gold, leading
to different rates of H2O2 consumption, see Fig. 1(c). The mechanism
that is actually responsible for the propulsion (diffusiophoresis, electro-
phoresis, or a combination of both) is still somewhat debated, see Ref.
[43] for a more detailed account for polystyrene-Pt swimmers. At suffi-
cient low concentrations of hydrogen peroxide, the propelling speed is
proportional to the H2O2 concentration. Of course, at some point, the
swimming velocity saturates due to the finite number of active sites
on the particle surface [44]. The swimming motion of a single particle,
as measured by the mean-squared displacement, fits excellently with
the prediction of a simple theoretical model [22,45,46], which is
discussed in Section 3.1. The experiment can even be performed at
high densities since particles do self-propel at H2O2 concentration
below 0.1 %, which, in addition, prevents the creation of unfavorable
O2 bubbles.

In order to realize different density regimes, Theurkauff et al. have
confined particles in a slightly tilted cell, which creates a reduced grav-
ity field. The resulting sedimentation profile is more stretched com-
pared to the equilibrium case, giving the possibility to study the
system at different densities corresponding to different heights in one
single sample, see Fig. 1(a). At low to intermediate densities, the sus-
pension shows the formation of several clusters, cf. Fig. 1(b). Once clus-
ters are formed, particles do not stay in their initial cluster but are
continuously exchanged between clusters, see Fig. 1(b). For a better un-
derstanding of this cluster phase, the structure factor has been mea-
sured, which shows that clusters are highly ordered with pronounced
peaks at values of thewave vector k corresponding to the hexagonal lat-
tice. Simultaneously, an apparently diverging behavior for k → 0 is ob-
served, which has been the first experimental indication of density
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fluctuations at large length scales for self-propelled beads. This observa-
tion is typical for systems exhibitingfinite cluster phases, which can also
be seen for passive colloids with attractive interactions [47].

Further studies at intermediate densities for packing fractions ϕ =
0.03 − 0.5 in a nontilted cell show a linear correlation between mean
cluster size and the average velocity of the particles. This is corroborated
by a theoretical description based on the chemotactic Keller–Segel
model [48]. The use of this model is justified through the fact that
each particle creates a monopole field of H2O2 or O2 around itself,
which acts as chemoattractant for nearby particles. One of the solutions
of the model includes a collapse of the structure into dilute and dense
regions [49]. Although the model does not provide a description for
the kinetics of the clusters, the threshold for this collapse, i.e., the
number of particles in a dense region, is shown to be proportional to
the particle velocity in agreement with the mean cluster size in the
experiments.

In the second experiment, Palacci et al. [25] have performed experi-
ments on catalytic colloidal swimmers, in which the propulsion can be
controlled by light. The particles consist of an antiferromagnetic hema-
tite cube enclosed by a polymer sphere in such a way that a part of the
hematite cube is exposed to the solvent. When particles are again im-
mersed in a solvent mixture containing H2O2 the system is in thermal
equilibrium in the case of bright-field illumination. As soon as the sus-
pension is illuminated by the blue-violet light (430 to 490 nm), particles
can be described as two-dimensional swimmers. The mechanism be-
hind the propulsion is that the blue-violet light triggers the chemical de-
composition of hydrogen peroxide at the exposed part of the hematite
cube. In addition the hematite cube instantly points towards the cell
walls and propels the particles to the system boundaries. The colloids
then surf on the induced osmotic flow and their motion is captured by
the model of self-propelled Brownian particles in two dimensions,
which will be introduced in Section 3.1. The experiment shows the for-
mation of a few big crystalline clusters just like the interchange of par-
ticles between different clusters, see Fig. 1(d).

Furthermore, Palacci et al. show that the system exhibits a transition
regarding the number fluctuationsΔN∝Nα, where the exponent chang-
es from its equilibrium value α=1/2 to giant number fluctuationswith
exponent α ≈ 0.9 at ϕ ≈ 0.07. Note that these giant number fluctua-
tions are nothing specific for active systems, since α = 1 is expected
for any phase separating system. One central result of this experiment
a c
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Fig. 2. Carbon-coated colloidal self-propelled particles in a locally demixing water–lutidine
mixture: (a) Cluster formation at low densities (ϕ ≃ 0.1). (b) Resolved particle orientations
and observation of particle interchange. If the particle rotational diffusion is fast enough, it
escapes an initial cluster before other particles join the cluster. The snapshots show one
such event, where a particle (arrow) leaves the cluster and is replaced by another particle.
(c) Evidence for phase separation at higher densities.
Figure adapted from Ref. [26].
is the reversibility of the cluster phase. Once clusters are formed and
the illumination is turned off subsequently, one observes that all clus-
ters dissolve, which shows the absence of equilibrium attractions that
are sufficiently strong to induce accumulation of particles. However,
the authors report a strong phoretic attractive force when particles are
active. This is demonstrated by analyzing the radial velocity vr between
particle pairs showing the relation vr ∼ r−2 which is characteristic for
phoretic attraction. In order to show that the activity and not the
phoretic attraction is responsible for the clustering, one can apply an ex-
ternal magnetic field, causing all particles to propel themselves in the
direction of the magnetic field. It is shown that such a directed non-
diffusive propulsion is not sufficient tomaintain a given cluster, because
particles drift apart due to diffusion, i.e., phoretic attraction is not strong
enough. As soon as the magnetic field is turned off and illumination is
turned on again, the cluster reforms. This demonstrates experimentally
that clustering of self-propelled beads is caused by a self-trapping
mechanism that essentially depends on the combination of both self-
propulsion and rotational noise.
2.2. Phase separation

Buttinoni et al. have used a different experimental setup of colloidal
self-propelled Janus particles that are, however, not driven by chemical
reactions [23,42,26]. The spherical particles are prepared from silica
beads, where one hemisphere is coated with carbon. Here, particles are
confined between two glass slides in a quasi-two-dimensional geometry
and are suspended in a water-2,6-lutidine mixture, which at room tem-
perature is just below the critical temperature ~33 °C.When the suspen-
sion is illuminated by a widened laser beam (532 nm), the carbon
absorbs the light and the solvent is locally heated above the critical
point. Consequently, the solvent demixes locally at the carbon side of
the particles. The particles behave as Brownian self-propelled particles
in two dimensions with a propelling speed that is proportional to the
light intensity [23,42]. The propulsion mechanism is diffusiophoresis
[42]. Carbon has been employed as a light-absorbing material since its
Hamaker constant is substantially lower compared to gold (or any
other metal). Attractive forces in the passive suspension are thus almost
negligible as demonstrated by the measured pair distribution function
[26]. Another advantage of this setup compared to catalytic colloidal
swimmers is that for the considered light intensities phoretic attraction
can also be neglected. While it has been shown that, in principle, there
exists a phoretic attraction between particles for sufficient high light in-
tensities, active suspensions have been studied at intensities far below
this threshold. This has been tested by measuring the pair distribution
function for spherical passive particles in the vicinity of a Janus particle
stuck to the glass slide both in and out of equilibrium, whereby no qual-
itative deviations have been observed.

Again, the experiment of Buttinoni et al. shows the formationof clus-
ters as soon as the particles are activated (see Fig. 2). At low densities, a
linear relation betweenmean cluster size and particle speed v0 is found
similar to the other two experiments in Refs. [24,25]. The clustering
mechanism can be described as the competition between two time
scales, which has also been done in Refs. [29,50] in terms of a kinetic
model. The physical picture is that of colliding particles, which block
each other (“self-trapped”) due to the persistence of their motion,
where orientations decorrelate on time scales ∼1/Dr with rotational dif-
fusion coefficientDr. If this rotational diffusion is slow enough compared
to themean free time, other particlesmay join the cluster before the ini-
tial particles are able to escape the “seed”, cf. Fig. 2(b). After sufficient
time, a dynamic steady state should be reached, where on average just
as many particles escape the cluster as new particles join the cluster.
Clusters are indeed very dynamic objects, where particles are
interchanged continuously, see Fig. 2. Moreover, it has been possible
to resolve particle orientations so that the self-trapping mechanism
could be confirmed qualitatively, cf. Fig. 2(b). When illumination
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is turned off, clusters dissolve until the system reaches thermal
equilibrium.

At higher densities, the experiment of Buttinoni et al. shows a gas
phasewith a fewbig and slowlymoving clusters, see Fig. 2(c). Following
the passive scenario of phase separation, one might expect the final
state to contain one single large cluster. However, larger clusters move
very slowly so that the actual merging of all clusters is not observed
within the experimental time window. For example, clusters in the
experiment are not perfectly two dimensional objects (they might
“buckle” out-of-plane) and approaching the cell walls they slow
down. Nevertheless, while monitoring a region consisting N particles,
all particles in clusters larger than N/10 have been added up and the
fraction of total particles in a cluster is identified as the order parameter
P. Bymeasuring this order parameter for different propelling speeds and
densities, one observes a continuous increase, which is moreover sup-
ported by Brownian dynamic simulations as discussed in the next sec-
tion. The transition occurs at lower densities than predicted by the
simulations of perfectly hard disks. Still, the critical swimming speeds
obtained from experiments and simulations at intermediate packing
fraction ϕ = 0.36 coincide quite well.

Although each experiment shows an individual method to prepare
self-propelled particles, we observe dynamical clustering to be quite ge-
neric. To gain further insight into the phase behavior, we seek assistance
from analytical and numerical work as detailed in the next section.

3. Model and numerical results

3.1. Model

In order to analytically and numerically study suspensions of self-
propelled colloidal particles, one needs a suitable minimal model for
the experiments discussed in the previous section that is both simple
and tractable, but contains the relevant physics. Assuming that the dy-
namics is overdamped as appropriate for solvated colloidal particles at
low Reynolds numbers, the Langevin equation is applicable, i.e.,

ṙi ¼ −μ0∇U þ v0ei þ ξi: ð1Þ

The mobility of a free particle is denoted by μ0. The noise term ξi
models the thermal motion and has zero mean and variance

bξi tð ÞξTj t0
� �

N ¼ 2D0μ
−2
0 δijδ t−t0

� �
; ð2Þ

with D0 = kBTμ0 denoting the bare diffusion coefficient and kBT the
thermal energy. Particles are restricted to two dimensions and inter-
act via a pair potential u(r), where the total energy is given by U =
∑i b ju(|ri − rj|). Each particle has an orientation ei = (cos φi, sin
φi), along which the particle is propelled with a constant speed v0.
Of course, the model does not resolve the microscopic origin of the
directed motion but requires v0 as an input parameter. The orienta-
tional angle φi fluctuates freely with diffusion coefficient Dr accord-
ing to

bφ̇iN ¼ 0; bφ̇i tð Þφ̇j t
0� �
N ¼ 2Drδijδ t−t0

� �
: ð3Þ

On time scales ≫ 1/Dr, the motion of a single propelled particle be-
comes effectively diffusive with increased long-time diffusion coeffi-
cient Deff = D0 + v0

2/(2Dr) [44], making it possible to define an
effective temperature Teff∼ v0

2,which is stronglymodified for interacting
particles [32,51]. In the case of free particles it has been shown that par-
ticles being trapped in a harmonic external potential, do not follow the
concept of an effective temperature, while the sedimentation of free
self-propelled particles is describable in terms of an effective tempera-
ture [22,53,52]. In the following, we now review the key results from
numerical studies of the particle model based on Eq. (1).
3.2. Freezing

Themodel just described has been used first by Bialké et al. to study
the freezing transition of an active suspension at high densities [51].
Particles interact via the Yukawa pair potential u(r) = Γe−λr/r with a
fixed inverse screening length λ = 3.5 leaving the coupling strength Γ
and the free swimming velocity v0 as free parameters. By applying
both static and dynamic criteria for the freezing and melting, it is
shown that the suspension is first ordered structurally before dynamical
freezing can be observed. As a structural measure the local hexagonal
bond-orientational order has been evaluated, which is quantified
through

q6 ið Þ ¼ 1
N ið Þj j

X
j∈N ið Þ

ei6θij : ð4Þ

Here, θij is the angle enclosed between the displacement vector of
particles i and j and a fixed axis, and N ið Þ is the set of the neighbors of
particle i, usually within a threshold distance. By averaging q6 over all
particles and squaring its absolute value, one gets a global structural
order parameterwhich is 0 for an unordered suspension and 1 for a per-
fect hexagonal crystal. Note that although a large cluster might show a
high crystalline order, this global parameter is still 0 due to the particles
in the gas phase and the crystalline domains within the cluster which
are tilted to one another and separated by linear defects [29]. However,
by increasing the propulsion speed, the transition to a hexagonal crystal
is shifted towards higher critical coupling strengths Γc∼

ffiffiffiffi
ϕ

p
=T . Another

result of this work has been that, similar to the clustering transition, the
shifted freezing transition cannot be described by an effective tempera-
ture Teff ∼ v0

2. In related studies, Berthier et al. [54,55] have shown that a
glass forming system exhibits a shift towards higher temperatures for
the kinetic arrest to occur if particles are active. It appears that this
shift cannot be explained by the simple picture of an effective tempera-
ture, but allows the study of glasses at high packing fractions [56]. In yet
another numerical study for a soft interaction potential of a polydisperse
suspension, Fily et al. [32] have resolved the complete phase diagram,
where a fluid, a phase separated regime and, due to the polydispersity,
a glassy regime is identified, see Fig. 4(b).

3.3. Clustering

By now, extensive numerical simulations of theminimalmodel have
been performed by several groups employing different repulsive pair
potentials [26–33]. The clustering and phase separation of athermal
self-propelled particles have been reported first by Fily and Marchetti
in Ref. [27] employing the minimal model. For particle interactions,
the authors have chosen a non-diverging pair potential, i.e., harmonic
repulsion in the case of particle overlap. Moreover, the authors neglect
translational noise (D0 = 0) and treat rotational diffusion as an inde-
pendent fixed parameter. They perform molecular dynamics simula-
tions of a monodisperse suspension with up to 10,000 particles. They
show that systems above ϕ ≈ 0.4 phase separate into one big cluster
surrounded by a gas phase. The experimentally observed clustering at
lower densities (Refs. [24,25]) and phase separation into a few big and
slow clusters (Ref. [26]) are not observed in the simulations. However,
in qualitative agreement with the experiment by Palacci et al. [25],
giant number fluctuations have been reported for suspensions above
the critical density. Furthermore, the behavior cannot be mapped to a
system with an effective temperature Teff ∼ v0

2 in agreement with [51].
Finally, in accordance with the experiment by Theurkauff et al. an ap-
parently diverging behavior of the static structure factor for k → 0 is
found for phase separated systems.

Even larger systemswith up to 512,000 particles have been simulat-
ed by Redner et al. [29]. In contrast to the previouswork, particles inter-
act through the WCA potential [57] as appropriate for hard colloidal
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Fig. 3. Phase separation dynamics for theminimalmodel at two densities: area fractionϕ=0.3 (left) andϕ=0.4 (right). The snapshots showparticle-resolved simulations forN= 40000
particles at three different times given in units of a typical Brownian time. The suspension is equilibrated at v0 = 0 and then quenched instantaneously to v0 = 100. At lower density we
observe a nucleation-type scenario: after a delay one single cluster starts to grow until the steady state is reached. In contrast, at higher density multiple domains form immediately after
the quench and then grow and merge until eventually a single dense droplet is reached. This scenario is usually described as spinodal decomposition. Particles are colored according to
their q6 value, where red particles correspond to q6 = 0 and blue particles to q6 = 1.
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particles. Translational noise is included and the rotational diffusion co-
efficient is coupled to translational diffusion via the Stokes–Einstein–
Debye relation Dr = 3D0/a2, where a is the particle diameter which is
defined through the potential. By varying the packing fraction ϕ and
the propulsion speed v0, extensive simulations have lead to a phase di-
agram characterized by the fraction of particles in the dense cluster
phase. Again, similar to Fily and Marchetti in Ref. [27], a clustering
transition is observed. Moreover, a remarkable result is that a simple
model of rate equations for particles joining and leaving a given cluster
shows excellent agreement with the numerical data. The authors also
studied structural properties within the dense phase through bond-
orientational order, cf. Eq. (4), where one notices 5-fold and 7-fold
point defects as well as linear defects separating crystalline domains
within the cluster. The authors also measure the spatial correlation of
the bond-orientational order parameter in large clusters, where they
observe a transition from liquid-like exponential decay to a hexatic-
like power-law decay as they increase the swimming speed, which is
similar to the freezing by heating transition observed by Helbing et al.
[58]. Furthermore, different phase separation scenarios are observed:
on the one hand the system shows delayed nucleation like an equilibri-
um system near the binodal and one observes the growth of one single
cluster. On the other hand, a denser system shows a spinodal-like coars-
ening behavior with several clusters (see Fig. 3 for data obtained for a
similar system). Redner et al. also report that the asymptotic growth
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Fig. 4.Numerical phase diagrams: (a) For amonodisperse active suspension inwhich par-
ticles interact via the short-ranged repulsiveWCApotential. The color scale corresponds to
the fraction of particles in the dense phase, whereby open symbols indicate a homoge-
neous suspension and closed symbols indicate the clustered phase. Also shown is a predic-
tion for the instability line (solid and dashed lines). The vertical dashed line indicates the
equilibrium freezing density with triangles corresponding to the solid state as identified
from the bond-orientational order parameter Eq. (4). (b) For a polydisperse active suspen-
sion (neglecting translational noise) employing a soft repulsive pair potential. Here a
glassy region instead of freezing is observed. Red regions correspond to systems with
high number fluctuations, while blue ones show systems with slow dynamics.
Adapted from Ref. [33] and arXiv:1309.3714v1.
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of the mean cluster size follows ∼ t1/2. However, the value of the
exponent has to be treated with care and more recent results indicate
an asymptotic value of 1/3, which is also expected for passive phase-
separated suspensions [33,59].

In Fig. 4 two numerical phase diagrams for the minimal model are
presented. In Fig. 4(a) results employing the hard WCA potential are
shown, where a range of state points (ϕ,v0) have been simulated. In
Fig. 4(b), a similar model has been studied but without translational
noise and employing a much softer repulsive potential, that allows par-
ticles to overlap.Moreover, the particle sizes are not identical but drawn
from a distribution. As mentioned, this leads to a qualitative change at
high densities with the appearance of a glassy phase. Together, these re-
sults demonstrate that the described phase separation in active suspen-
sionswith a purely repulsive pair potential is a robust phenomenon that
does not depend so much on the interaction details.

3.4. Hydrodynamic effects

Although the numerical results shown have been obtained using the
simple particlemodel given by Eq. (1), one already observes qualitative-
ly quite good agreement with the experiments. For a more faithful
modeling of the experimental setups one needs to include hydrody-
namic interactions, not only between particles, but also between parti-
cles and confining walls. One promising direction is the hydrodynamic
model derived by Ishikawa et al., which prescribes the tangential sur-
face velocity vis of the fluid at swimmer i according to

vsi ¼ B1 1þ βei � rsi
� �

ei � rsi
� �

rsi−ei
� �

; ð5Þ

where ris denotes the normalized vector pointing from the particle cen-
ter to a surface point [60]. This type of hydrodynamic swimmers is
called squirmers. The free swimming velocity is proportional to B1,
while the factor of proportionality depends on the spatial dimensions
of the system. The quantity β determines the symmetry of the velocity
field and characterizes a particle with β b 0 as “pusher” and with β N 0
as “puller” [61]. For β = 0, the velocity field at the particle surface is
symmetric and the particle can be considered as a neutral squirmer.
For the connection between propulsion mechanism and the squirmer
model, see, e.g., Ref. [62].

For suspensions of active particles, the required computational
power limits the total number of particles that can be simulated to cur-
rently a few hundreds so that results have to be analyzed carefully re-
garding finite size effects. Ishikawa and Pedley [63] have simulated up
to 196 squirmers restricted to a two-dimensional motion in a monolay-
er within in an unbounded three-dimensional fluid. Although particles
tend to align, which counters the self-trapping mechanism discussed
before, they observe the formation of clusters. In addition they have
considered bottom-heavy particles, i.e., particles with a shifted center
of mass, which tend to swim upwards and are able to prevent sedimen-
tation [64]. In this case the formation of bands is observable. Another
work by Fielding [65] considers 256 neutral squirmers restricted to
two dimensions in a two-dimensional fluid. It is shown that phase sep-
aration is strongly suppressed due to hydrodynamic interactions. The
mechanism responsible for the suppression is an effective hydrodynam-
ic torque turning particle orientations so that head-on collisions (and
thus the trapping time) are reduced. More recently, Zöttl and Stark
[66] have considered 208 squirmers moving in strong confinement. In
the case of β ≠ 0 they also found that phase separation is suppressed.
However, neutral squirmer phase separates more clearly into a crystal
phase and a gas phase than particles modeled by Eq. (1). This effect is
caused by a slow down due to hydrodynamic interaction between par-
ticles and hydrodynamic swimmer–wall interactions. The authors show
that the angular distribution of the squirmers is broadened and particles
also tend to orient perpendicular to the cell wall thus enhancing the
self-trapping mechanism. This could be one of the reasons why
experimental systems tend to cluster at lower densities than observed
in the Brownian dynamics simulations neglecting hydrodynamics.

4. Mean-field theory

4.1. Derivation

We now briefly sketch the systematical derivation of the coupled
mean-field, effective hydrodynamics equations of motion developed
in Ref. [30]. As a starting point, we note that an equivalent description
of the numerical model given by Eq. (1) is provided through the
Smoluchowski equation

∂tΨN ¼
XN
i¼1

∇i � ∇iUð Þ−v0ei þ∇i½ �ΨN þ Dr

XN
i¼1

∂2ΨN

∂φ2
i

; ð6Þ

where ΨN({ri,φi},t) is the joint probability distribution of all possible
configurations. Since particles are identical, one random particle is
tagged and the subscript for position and orientation is dropped. Then,



a

b

Fig. 5. (a) Anisotropic pair distribution function from numerical simulations using the
WCA potential plotted in the xy-plane. The white circle represents the tagged particle
with the white arrow indicating the particle orientation. (b) Plot of the normalized force
imbalance coefficient ρζ=v� as a function of the reduced swimming speed v0/v∗ for two
area fractions ϕ. The characteristic speed is set by v� ¼ 4

ffiffiffiffiffiffiffiffiffi
DDr

p
. The dashed vertical lines

correspond to the phase transition points determined with the help of finite-size scaling.
The two solid lines represent the boundaries of the instability region determined by
Eq. (18).
Adapted from Ref. [30].
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ΨN is integrated over all other particle positions and orientations to ob-
tain the one particle probability distribution Ψ1(r,φ,t). Its evolution
obeys

∂tΨ1 ¼ −∇ � Fþ v0eΨ1−∇Ψ1½ � þ Dr∂
2
φΨ1; ð7Þ

where F is the mean force acting on the tagged particle, which depends
on higher many-body probability distributions and leads to the well-
known BBGKY hierarchy [67].

As a closure already on the level of the single particle density, we
project the mean force onto the orientation of the tagged particle,
F ≈ (e ⋅ F)e and introduce an effective diffusion coefficient (for details
see Ref. [30]). We thus find the mean-field evolution equation for the
one particle density.

∂tΨ1 ¼ −∇ v ρð Þe−D∇½ �Ψ1 þ Dr∂
2
φΨ1: ð8Þ

Here, ρ denotes the local density, D the long time diffusion coeffi-
cient in a passive suspensions, and

v ρð Þ ¼ v0−ρζ ð9Þ

is the effective swimming speed. Here, we have assumed that the local
density ρ(r,t) is a sufficiently slowly varying field so that we can replace
the homogeneous density ρ with the local density ρ(r,t). This assump-
tion holds close to the onset and during the initial stages of the dynam-
ical instability. Although a linearly decaying v(ρ) has been considered
before [34], Bialké et al. have shown the derivation from first principles.

The effective swimming speed given by Eq. (9) is reduced due to the
interactions with other particles as quantified by the force imbalance
coefficient

ζ ¼ ∫∞
0
dr r −u

0
r

h i
∫2π

0
dθ cosθg r; θð Þ; ð10Þ
where the prime denotes the derivative with respect to the argument
and θ is the angle enclosed between the orientation of the tagged parti-
cle and the displacement vector from the tagged particle to another par-
ticle at distance r. The physical picture behind Eq. (9) is that particle
collisions are more likely occurring in the direction of propulsion, caus-
ing an anisotropic two-dimensional pair distribution function g(r,θ).
This picture is confirmed in computer simulations, see Fig. 5(a). While
we found a linear relationship Eq. (9), Cates and coworkers have consid-
ered more general functional dependences v(ρ) and have shown that a
reduced particle mobility in dense regions might lead to further accu-
mulation of particles in these regions and finally to phase separation
[36–38]. Note that the competition of time scales is also reflected in
Eq. (9). The mean collision rate is connected to the density ρ and swim-
ming speed v0, while the rate of reorientation influences the value of ζ.
This is demonstrated in the limit Dr → ∞, where orientational fluctua-
tions are so fast that on average thepair distribution function is isotropic
and the force imbalance vanishes, ζ = 0.

The local density ρ(r,t) and the orientational field p(r,t) are given
by

ρ r; tð Þ ¼
Z 2π

0
dφψ1 r;φ; tð Þ ð11Þ

and the first moment

p r; tð Þ ¼
Z 2π

0
dφeψ1 r;φ; tð Þ; ð12Þ

respectively. The equations of motion for these two fields become the
continuity equation

∂tρ ¼ −∇ � vp−D∇ρ½ � ð13Þ

for the density and, through neglecting the coupling to second har-
monics of the orientational angle,

∂tp ¼ −1
2
∇ vρð Þ þ D∇2p−Drp: ð14Þ

The first term on the right hand side can be interpreted as an effec-
tive pressure P ρð Þ ¼ 1

2v ρð Þρ , the second term is akin to a viscosity
term, and the last term describes the local relaxation due to the rota-
tional diffusion.While these equations have been derived systematical-
ly from the Smoluchowski Eq. (6), they can also be obtained from the
phenomenological equations of Toner and Tu [68] (see, e.g., Ref. [32])
by neglecting all higher order terms. Of course, in this case the various
coefficients are in principle unknown.

4.2. Dynamical instability

The linear stability of Eqs. (13) and (14) against density fluctuations
has been studied by Speck et al. and Fily et al. [27,30,32,33]. By consid-
ering large length scales and time scales much longer than 1/Dr,
Eq. (14) can be written as

p≈− 1
2Dr

∇ vρð Þ; ð15Þ

so that the orientational field is adiabatically connected to the density
field. By putting this expression into Eq. (13), we obtain the diffusion
equation

∂tρ ¼ ∇D ρð Þ∇ρ: ð16Þ



374 J. Bialké et al. / Journal of Non-Crystalline Solids 407 (2015) 367–375
While we have thus eliminated the orientational field p, the
effects of the force imbalance are retained through the effective swim-
ming speed and give rise to a density-dependent, collective diffusion
coefficient.

D ρð Þ ¼ Dþ v0−ρζð Þ v0−2ρζð Þ
2Dr

ð17Þ

If D ρð Þb0 the system becomes locally unstable and density fluctua-
tions grow exponentially until they saturate due to the coupling to non-
linear modes. The criterion D ρð Þb0 is fulfilled if ζ− ⩽ ζ ⩽ ζ+ with

ρζ�
v�

¼ 3
4

v0=v�ð Þ � 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0=v�ð Þ2−1

q
: ð18Þ

This result implies that at least a propulsion speed v0Nv� ¼ 4
ffiffiffiffiffiffiffiffiffi
DDr

p
is

necessary for the instability to occur, see Fig. 5(b).
This prediction has been tested for numerical results employing the

WCA potential, see Fig. 5(b). For two densities, the transition speeds vc
have been estimated with the help of finite-size scaling of an order pa-
rameter, in our case the mean fraction of particles in the largest cluster
[30]. For each propulsion speed v0 we have also determined the force
imbalance through Eq. (10) from the measured pair distribution func-
tion, and the passive long-time diffusion coefficient D at that density,
which determines v∗. The result in Fig. 5(b) shows good agreement
between the estimated transition speeds vc and the crossing of the
imbalance coefficient into the instable region.

5. Concluding remarks

To conclude, we have reviewed experimental, numerical, and ana-
lytical work on the phase behavior of self-propelled colloidal particles
without explicit alignment interactions in (quasi-)two dimensions.
Although different physical mechanisms are responsible for the
“swimming” of particles in the three experimental setups, clustering
of particles is observed to be a generic, robust feature of active suspen-
sions. Supported by computer simulations of a minimal model, it has
been established that the self-propulsion of repulsive particles is able
to induce a phase separation into dense and dilute regions. In the
mean-field picture, this phase separation can be explained as a dynam-
ical instability, where in the dilute regions the fast particles exert an ef-
fectively higher pressure compared to dense but slow regions. Although
active suspensions are genuinely out-of-equilibrium systems, this
phenomenon is surprisingly similar to liquid-vapor phase separation
in a passive suspension with sufficiently strong attractive interactions.
At higher densities, the self-propulsion shifts the freezing (or glass-
forming) transition. In particular, at fixed density the suspension is
melted before entering the phase-separated state as the propulsion
speed is increased.

The pivotal role in the mean-field theory is played by the force im-
balance. This takes into account that the pair distribution function is
not isotropic with respect to particle orientations although particles
are spherical. In computer simulations, we found good agreement
with themean-field prediction for the onset of the dynamical instability.

Departing from theminimal model, there are several directions into
which further studiesmight go. Recently,first studies have started to in-
vestigate the phase behavior of theminimal model in three dimensions
[31,69] and the influence of attractive forces [50,70] or non-spherical
particle shape [16,71]. Active particles (bacteria or colloidal particles)
with entropic attraction due to depletants (polymers) have been stud-
ied in Refs. [72,73], showing that phase separation is suppressed if align-
ment interactions are introduced. For catalytic swimmers, the effects of
local fuel depletion leading to collective chemotactic behavior have
started to receive attention [74–76].

Another open issue is themore faithfulmodeling of the experiments
in order to achievemore than qualitative agreement. An important step
is to include hydrodynamic interactions. While the squirmer model
seems to be a good starting point, it is not yet clear towhich extent it re-
produces the actual flow pattern of self-propelled colloidal particles in
particular in dense suspensions. Moreover, accessible system sizes are
still rather small. From the experimental side, it would be highly desir-
able to clarify to what degree the propulsion of a particle within a
(quasi-two-dimensional) cluster is comparable to free propulsion. This
might seem questionable for both the chemically driven particles con-
suming H2O2 as well as the particles driven by reversible demixing of
the solvent. In thefirst caseH2O2might be depletedwhile for the second
case shared demixing zones within clusters develop, leading to a reduc-
tion of directed motion.

But even for theminimalmodel Eq. (1) there is plenty of work left to
do. For phase transitions in passive systems an elaborate framework has
been developed over the years, which allows to reliably construct phase
diagrams and to study critical phenomena in finite-size computer sim-
ulations. Not much is known yet for active suspensions.
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