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I. INTRODUCTION

Predicting the stable crystalline structure for a given material is one of the fun-
damental problems in condensed matter science, metallurgy, chemistry, and me-
chanical engineering [1]. Even if the basic interparticle interactions stem from a
pairwise potential V (r) that solely depends on the interparticle distance r, there
are a variety of different stable crystalline lattices for different shapes of the
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potential V (r) [2]. To name just a few examples in three dimensions, there are
face-centered cubic crystals for strong repulsions (like hard spheres) and body-
centered cubic crystals of soft repulsions (like point charges) [3–5], cluster and
anisotropic solids for penetrable potentials [6, 7], and isostructural solid–solid
transitions for square-well and square-shoulder potentials [8–11]. This compli-
cated problem is a bit more transparent in two spatial dimensions, that is, for
particles in the plane, where less lattice types exist than those in three dimensions
[12]. Nevertheless, even for a planar monolayer, the resulting periodic structure is
not understood completely. In most but not all cases, a triangular (or hexagonal)
crystal turns out to be stable corresponding to the close-packing limit of hard disks.
The two-dimensional Wigner crystal for classical point-like electrons in a plane
[13] has the same triangular lattice but more structured and nondivergent interac-
tion potentials can lead to stable lattices different from the triangular one. Strictly
speaking, long-range spatial periodicity exists only at zero temperature in two
dimensions [14].

The situation is much more complex for binary mixtures characterized by a set
of pairwise interactions, VAA(r), VAB(r) = VBA(r), VBB(r), where the subscript
refers to the species that interact. For mixtures of hard disks, already there is a
wealth of close-packed [15] and thermodynamically stable [16] binary crystalline
structures. Hence, it becomes clear that a further species opens the way for a new
class of complex composite crystals that need to be understood better for various
explicit forms of the interaction potentials.

Another way of increasing complexity significantly is to stick to a one-
component system but open the third dimension, that is, switch from a monolayer
of crystalline particles toward bi- and multilayers. This can be realized, for exam-
ple, by weakening the confinement conditions. Some of the particles will explore
the spatial coordinate perpendicular to the monolayer and new structures emerge.
For the close-packed structure of hard spheres confined between two parallel hard
plates, there is a zigzag buckling ending up in a staggered bilayer of two inter-
secting square monolayers, if the distance between the two confining plates is
increased. Upon further widening of the slit width, the square bilayer structure is
followed by rhombic bilayers and two intercalating triangular layers [17–19]. This
already demonstrates that complex structures emerge if the third coordinate comes
into play.

In this chapter, we review recent progress made to predict the crystalline layer
structure between two and three dimensions. Both the planar two-component case
and the one-component multilayered case will be treated consecutively. This will be
done mainly for simple models relevant for colloidal dispersions, granular matter,
and dusty plasma sheets [20]. Most considerations focus on the ground state; that
is, we are considering zero temperature.
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II. FREEZING OF BINARY SYSTEMS IN
TWO SPATIAL DIMENSIONS

A. Binary Mixtures of Hard Disks

The maybe simplest nontrivial system for a two-dimensional binary mixtures is
that of hard disks where temperature scales out since everything is governed by
entropy. This is a reasonable model for sterically stabilized colloidal mixtures that
are pending at an interface. More explicitly, the pair potential reads

VHS
αβ (r) =

{
0 if r ≥ Rα + Rβ (α, β = A, B)

∞ if r < Rα + Rβ

(1)

where RA and RB denote the two additive radii of the two species, with A(B)
referring to the big (small) disks. The first question to answer is the close-packing
configuration of hard-disk mixtures and the corresponding stable crystalline struc-
tures. For close packing, the phase diagram was calculated in Ref. [15]. For small
asymmetries, there is a complete phase separation into two pure A and B crystals,
while more complicated mixed crystals are getting stable at higher asymmetry.
The stability of most of the phases was recently confirmed at finite pressure [16].

B. Binary Mixtures of Parallel Dipoles

Superparamagnetic colloidal particles pending at an air–water interface are an
excellent realization of two-dimensional classical many-body systems [21–25].
The system can also be prepared by using binary particles with small and large
(permanent) dipole moments [26–29]. A strong enough external magnetic field B0
perpendicular to the air–water interface induces parallel dipole moments (mA, mB)
in the A and B particles, resulting in an effective repulsive interaction that scales
as the inverse cube of the particle separation r within the interface. Defining the
magnetic susceptibilities as χA/B = mA/B/B0, the pair potentials read

Vαβ(r) = μ0

4π
χαχβB2

0/r3 (i, j = A, B) (2)

where μ0 represents the vacuum permeability. Note that since the induced dipole
moment is linear in the external field, χα is field independent for low B0.

Then, the strength of the external magnetic field corresponds to an inverse
temperature. Therefore, these systems are similar to ferrofluids [30–32]. Indeed,
for this inverse power potential, at fixed composition and susceptibility ratio,
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m ≡ mB/mA = χB/χA, all static quantities solely depend [33] on a dimensionless
interaction strength (or coupling constant)

� = μ0

4π

χ2
AB2

0

kBTa3 (3)

where kBT is the thermal energy at room temperature and a = 1/
√

ρA the average
interparticle separation between A particles.

Another realization is a mixture of granular spheres in an external magnetic
field. Different granulate materials will lead to different dipole moments such that
a dipolar mixture is realized [34]. Typically, granulates are put on a horizontal
vibrating table. For small enough vibration strengths, the system is expected to be
close to the equilibrium ground state of zero temperature.

At zero temperature (i.e., � → ∞), the state of the binary system is completely
described by the ratio 0 ≤ m ≤ 1 of the two dipole moments and the relative
composition X of the second species (B) with smaller dipole moment. The two-
dimensional phase diagram of the mixture in the (m, X) plane was calculated at zero
temperature via lattice sum minimization in Ref. [35]. The result is shown in Fig. 1.
A wealth of different stable phases is found to be stable that is getting increasingly
more complex with increasing asymmetry [36]. Details of the crystalline structures
found are summarized and explained in Fig. 2 and Table I.

For small asymmetries m and intermediate compositions X, the system
splits into triangular phases A2B and AB2 in marked contrast to the hard-disk
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Figure 1. The phase diagram in the (m, X) plane of dipolar asymmetry m and composition X at
T = 0. The gray box indicates an unknown region. The symbol # (∗) denotes continuous (discontinuous)
transitions. Adapted from Ref. [35]. (See the color version of this figure in Color Plates section.)
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Figure 2. The stable binary crystal structures and their primitive cells. The red dark (green light)
disks correspond to A (B) particles. Adapted from Ref. [35]. (See the color version of this figure in
Color Plates section.)
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TABLE I
The Stable Phases with Their Bravais Lattice and Basis

Phase Bravais Lattice (basis)

T(A) Triangular for A (one A particle)
T(B) Triangular for B (one B particle)
S(AB) Square for A and B together

(one A and one B particle)
S(A)Bn Square for A

(one A and n B particles)
Re(A)AmBn Rectangular for A

((m + 1) A and n B particles)
Rh(A)AmBn Rhombic for A

((m + 1) A and n B particles)
P(A)AB4 Parallelogram for A

(two A and four B particles)
T(AB2) Triangular for A and B together

(one A and two B particles)
T(A2B) Triangular for A and B together

(two A and one B particles)
T(A)Bn Triangular for A

(one A and n B particles)

mixture [15] that does not exhibit such a phase separation but just demixes into
two pure triangular A and B crystals. The intermediate AB2 structure has been
confirmed by experiments on binary granular matter in two dimensions, which
were also dominated by dipolar interactions [34].

Experiments on colloidal dipolar mixtures were performed for a strong asym-
metry of m = 0.1. In the fluid state, pair correlations do agree with the dipolar
model [37]. Regarding the crystalline states, almost all predicted phases were dis-
covered in real-space experiments [38] but only as small crystallite patches and
not as large bulk phases. This gives motivation to consider the nonequilibrium
dynamics during quenching of the systems from a fluid deep into the crystalline
state [39].

In fact, the magnetic field can almost instantaneously be changed on the diffusive
timescale of motion of the colloidal particle [39]. Since formally the strength of the
magnetic field corresponds to temperature, this represents an ultrafast temperature
quench that is typically hard to realize in molecular systems. In Fig. 3, experimental
two-dimensional snapshots of a colloidal mixture with m = 0.1 and X = 0.4 are
shown. Before the quench, the system is exposed to a low magnetic field where
the effective dimensionless coupling constant is � = 1, which is then changed to
a high magnetic field where � = 71. Figure 3a shows the snapshot that is just
after the quench while Fig. 3b shows the one that is after a time of 60τ, where
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Figure 3. (a) Fraction of B particles belonging to a crystalline square surrounding (see inset) and
(b) fraction of A particles belonging to a crystalline triangular surrounding (see inset) versus reduced
time t/τ for an ultrafast quench from � = 1 to � = 71. The lines are experimental data while the
symbols (∗) are data from BD simulations. Two experimental snapshots for a time t/τ = 0.6 just after
the quench (c) and a later time t/τ = 60 (d) are shown. Big particles are shown in blue if they belong
to a triangular surrounding and in red if they belong to a square surrounding. All other big particles
are shown in white color. Few big particles belonging to both triangular and square surroundings are
shown in pink color. The small particles are shown in green if they belong to a square center of big
particles, otherwise they appear in yellow. Also included are simulation data for an instantaneous
“steepest descent” quench from � = 1 to � = ∞ (	) and for a linear increase of � from � = 1 to
� = 71 on a timescale of 30τ (+). Adapted from Ref. [39]. (See the color version of this figure in
Color Plates section.)

τ is a convenient Brownian diffusive timescale for particle motion. Big particles
with a triangular surrounding of other A particles are colored in blue while big
particles with a square-like surrounding are colored in red. The fraction of blue
and red colored particles increases with time as shown in Fig. 3 and reaches a
saturation. Both experiments and Brownian dynamics computer simulation data
are in agreement.

After the ultrafast quench, there is a nonmonotonic behavior in evolution of the
partial pair distribution functions gij(r), which are shown in Fig. 4 for three differ-
ent times. Clearly, the amplitude in the first peak of gBB(r) exhibits a nonmonotonic
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Figure 4. Partial pair distribution functions gAA(r), gAB(r), and gBB(r) of A and B particles
versus reduced distance r/a at three different reduced times (a), (d), (g) (t/τ = 0); (b), (e), (h) (t/τ = 1);
and (c), (f), (i) (t/τ = 80). BD results (solid lines) are compared to experimental data (symbols).
Adapted from Ref. [39]. (See the color version of this figure in Color Plates section.)

bahavior in time. For small times, the small particles are slaved to the big ones
that are quickly moving to their energetically favorable positions. This gives rise
to an increase in the peak height in gBB(r). Only on a larger timescale the smaller
particles relax as well. This peculiar feature is again found in both experiment and
Brownian dynamics computer simulations. Within the allotted time, the binary
mixture does not find its true ground state as shown in Fig. 1 but is quenched to a
“glass” with patches showing similarities to the stable bulk crystals. It is challeng-
ing to probe the dynamics in the patchy crystalline regions. In fact, the dynamics is
significantly slower in the patchy crystalline regions than in the disordered parts.
This might give a clue to understand at least parts of the dynamical heterogeneities
in glasses [40–43].
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C. Binary Yukawa Mixtures

While the dipole–dipole interactions are long range, charged suspensions confined
between two charged plates are conveniently modeled by short-range screened
Coulomb or Yukawa interactions [44–46], similar to that in three spatial dimensions
[47]; for an experimental realization in the context of colloids, see Ref. [48].
Another realization of two-dimensional Yukawa particles are dusty plasma sheets
[20]. Since the Yukawa interaction involves the screening length as an additional
parameter, there is more freedom for topology of the phase diagram. The Yukawa
model for a binary mixture is characterized by the pairwise potentials in detail:

VAA(r)= V0ϕ(r), VAB(r) = V0Zϕ(r),

VBB(r) = V0Z
2ϕ(r) (4)

The dimensionless function ϕ(r) is given by

ϕ(r) = exp(−κr)

r
(5)

where the energy amplitude V0 sets the energy scale. In Debye–Hückel theory,
the prefactor reads as V0 = Z2

A/4πε0ε, where ε is the dielectric permittivity of
the solvent (ε = 1 for the dusty plasma). Typically [49, 50], ZA is on the order of
100–100,000 elementary charges, e, such that V (r)/kBT at interparticle distances
r = 1/κ equals Z2

AκλB/e2. Furthermore, the Bjerrum length λB = e2/4πε0εkBT

is a few angstroms at room temperature and the Debye screening length, 1/κ, is
about a micrometer, such that V (r)/kBT is much larger than unity for high charges
ZA. This justifies formally zero-temperature calculations for the Yukawa particles.
On the other hand, the screening microions possess a finite temperature that enters
in the inverse Debye screening length κ.

In fact, the crystalline ground states have been addressed again by lattice sum
minimization [51]. In the plane spanned by the charge asymmetry Z = ZB/ZA and
the composition X, phase diagrams for three different fixed pressures are presented
in Fig. 5.

Similar to the extremely short-range hard-disk interactions, there is complete
phase separation into pure A and B triangular crystals at small asymmetry where
Z ≈ 1. This is quite persistent over a broad range of asymmetries down to Z ≈
0.5 − 0.6. For higher asymmetries, the phase behavior is getting more complex. As
a function of imposed pressure, at fixed charge asymmetry, there are more stable
phases at higher pressure than at lower pressure. This has to do with the intuitive
idea that small changes are more relevant for strong repulsion, that is, at higher
pressure.
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Figure 5. The phase
diagram in the (Z, X) plane of
charge asymmetry and com-
position at T = 0 for an effec-
tive pressure (a) p∗ = 0.01,
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D. Binary Mixtures of Oppositely Charged Particles with Different Sizes

As a final example, we discuss a two-component mixture of oppositely charged
particles. To keep the model simple, there is no screening here, and the system
is globally charge neutral. Both species carry the same magnitude of charge but
opposite signs and the species possess a different hard-core radius Rα. Therefore,
the binary pair potentials reads as

uαβ(r) =
{ qαqβ

4πε0r
if r ≥ Rα + Rβ (α, β = A or B)

∞ if r < Rα + Rβ

(6)

where qA = −qB = q. A typical setup is to consider zero imposed pressure, that
is, P = 0 [52, 53]. Then, again at zero temperature, one can find the minimum by
a lattice sum minimization of the total potential free energy [54]. Owing to the
hard-core part in the interaction, traditional minimizers fail to get to the correct
minimum. An escape is the so-called penalty method [55], where the hard-sphere
part is made penetrable without changing the minimum such that traditional min-
imization routine can be used.

Two setups have been considered in detail in Ref. [56], the “interfacial model”
and “the substrate model,” which are shown in Figs. 6 and 7. In the interfacial
model, all centers of mass are confined to a common plane. This setup is designed
for realizations where oppositely charged colloids [57] are confined to an interface
[58]. On the substrate model, on the other hand, all particles are lying on the same
plane. The latter is realized for granular metallic balls on a horizontal table. The
granulates can be prepared with opposite charges [59–61].

In Fig. 6, the stable crystalline structures are presented as a function of the
size asymmetry RB/RA for the interfacial model [56]. These structures minimize
the potential energy per particle pair and are also classified according to their
“connectivity” and coordination number. In particular, a “touching” configuration
implies connecting big spheres and Nc measures the contacts between big and
small spheres per big particle. By increasing the size asymmetry, the following
cascade is found:

	(touching, Nc = 2) → 	(touching, Nc = 3) →
	(nontouching, Nc = 3) → Rh(touching, Nc = 3) →

�(touching, Nc = 4) → �(nontouching, Nc = 4)

Here, 	 (�) means a triangular (square) structure of the big particles and Rh
denotes a rhombic cell (see Fig. 6).
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Figure 6. Stable structures of oppositely charged spheres versus their size asymmetry σ =
RB/RA in the interface model, where all sphere centers fall on the same plane: (a) side view, (b)
energy per ion (scaled). The discontinuous transition is indicated by a solid bar. Continuous transitions
are denoted by a broken bar. Unit cells of the corresponding stable phases are shown, where the big
(small) have a radius RA (RB). (See the color version of this figure in Color Plates section.)

For the substrate model, on the other hand, the stable structures are shown in
Fig. 7. The cascade now is

empty crystal of dipoles (nontouching, Nc = 1) →
empty crystal of chains (nontouching, Nc = 1) →

empty crystal of chains (touching, Nc = 1) →
empty crystal of chains (touching, Nc = 2) →

empty crystal of chains (nontouching, Nc = 2) →
	(nontouching, Nc = 3) → �(nontouching, Nc = 4)

Here, the notation “empty” means that at least one lattice constant is diverging.
An empty chain crystal has one diverging distance between chains, whereas the
empty dipole crystal has two diverging lattice constants.

Recent experiments on oppositely charged granular sheets with σ ≈ 1 [59, 60]
have indeed revealed a stable �(nontouching) configuration that is confirmed by
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Figure 7. Stable structures of oppositely charged spheres versus their size asymmetry σ =
RB/RA in the substrate model, where all sphere surfaces touch the same plane: (a) side view, (b)
energy per ion (scaled). Discontinuous transitions between the structures are indicated by a solid bar.
Continuous transitions are denoted by a broken bar. Bottom views of the unit cells of the corresponding
stable phases are shown, where the big (small) have a radius RA (RB). (See the color version of this
figure in Color Plates section.)

our calculations. More experimental investigations on systems with higher size
asymmetry are required to see the 	(nontouching) and the predicted empty crystals
of chains and dipoles. Our crystalline structures can also be verified for molecular
salts. However, here a soft core description may be relevant, which can alter the
phase diagram.

III. EXPLORING THE THIRD DIMENSION: BUCKLING AND
LAYERING TRANSITIONS

The third dimension is explored via an external potential Vext(z) that confines the
particles to a planar layer where z is the coordinate perpendicular to the layer.
There are several models for this confining potential, and two of them have been
considered in more detail, namely, hard slit confinement and parabolic (or har-
monic) confinement. The hard slit confinement just involves geometric constraints
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and contains no energy scale. In this case, Vext(z) reads as

Vext(z) =
{

∞ if − L/2 ≤ z ≤ L/2

0 else
(7)

if the confining walls are located at z = ±L/2, where L is the total (effective) slit
width. In the parabolic case, on the other hand,

Vext(z) = 1

2
K0z

2 (8)

The amplitude K0 involves an energy scale. Furthermore, charged colloids between
charged plates experience a screened Coulomb interaction potential such that

Vext(z) = V0 cosh(κz) (9)

is a reasonable approximation for this situation [62]. For small z, Eq. (9) obviously
reduces to the parabolic form (8).

In the sequel, we shall describe results for hard spheres in a hard slit and for
Yukawa particles in a hard slit. We then turn to parabolic confinements.

A. Hard Spheres Between Hard Plates

Hard spheres confined between two slits constitute the simplest nontrivial model
system for exploring the third dimension since temperature is irrelevant for hard in-
teractions. Hence, there are only two parameters characterizing the system, namely,
the slit width L and the packing fraction. The latter can be expressed in terms of
a rescaled number density per area, N/A, as

ρ∗ = N

AL
σ3 (10)

where σ is the hard sphere diameter. Note that ρ∗ is dimensionless. It is also
convenient to introduce a scaled (dimensionless) slit width

h = (L − σ)/σ (11)

such that h = 0 is the pure two-dimensional situation of perfect confinement. The
quantity ρ∗ varies between 0 and close packing. For increasing h, the following
cascade of close-packed configurations is obtained [17–19]:

1	 → b → 2� → r → 2	 (12)

These corresponding structures are shown in Fig. 8. In Eq. (12), 1	 is a triangular
(or hexagonal) monolayer and b denotes a buckled phase of linear arrays of spheres
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(a) (b)

Figure 8. The various close-packed structures. (a) 1	, linear buckling, and zigzag buckling.
(b) 2�, linear rhombic, zigzag rhombic, and 2	 (from top to bottom). Spheres from the lower layer
are dark shaded, while spheres from the upper layer are transparent.
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Figure 9. Monte Carlo result for the phase diagram of hard spheres of density ρ∗ con-
fined between parallel plates with separation distance h for different total particle numbers N =
192(+); 384, 512(♦); 576(	); and 1024, 1156(�). Solid lines are a guide to the eye. Thin horizon-
tal lines represent two-phase coexistence.

having a perpendicular zigzag structure. Then two intersecting square layers are
stable, which is denoted by 2�. This configuration shears upon further increased h

via the rhombic phase r until a situation of two staggered triangular layers occurs,
which is called 2	 structure (see Fig. 8).

Beyond the bilayer regime limited by 2	, the cascade is even more complicated
[63, 64]:

2	 → 2hcp-like → 2hcp(100) → 2hcp-like → 2P� → 3� (13)

and involves a prism phase (P�) and more complicated cutouts and derivations
from the hcp phase [64–66]. All the corresponding structures have been confirmed
in experiments in the limit of high salt concentration [64, 65, 67–69].

In the regime of small h, the phase diagram in the (ρ∗, h) plane is shown in
Fig. 9. There is only a small stability regime for the rhombic phase. Exploring
the phase diagram beyond the 2	 phase away from close packing is still an open
question.

B. Yukawa Particles Between Hard Walls

At zero temperature, the stable crystalline structure for Yukawa particles in a hard
slit was obtained for various screening strengths and densities. It is now convenient
to introduce the two dimensionless parameters characterizing the system, namely,
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a reduced screening constant

λ = κL (14)

and a reduced two-dimensional number density

η = N

2A
L2 (15)

Here, λ = 0 corresponds to the unscreened Coulomb system [70–74], while the
hard sphere case is obtained in the opposite limit λ → ∞. Dusty plasmas represent
another realization for Yukawa bilayers. Here, static and dynamical correlations
were simulated and analyzed [75, 76].

In the bilayer regime, the phase diagram was obtained in Refs. [77, 78] and is
shown in Fig. 10. The phases 1	, b, 2�, 2	, known from the hard sphere case,
are also present at finite screening. However, there is an additional rhombic phase
with a reentrant behavior (see Fig. 10), called IVA, that is missing for the hard
spheres. Experiments on charged suspensions [64, 79] have confirmed the bilayer
phase diagram [80].

Solvation force experiments provides an alternative access to freezing phe-
nomena of confined charged suspensions [81]. The regime beyond bilayers was
explored more recently [63] and a complex transition scenario from the 2	 to
the 3� layered phase was found. This is shown in Fig. 11. Apart from two prism
phases P	 and P� with triangular or square bases, a 2hcp-like and a 2hcp(100)
phase are stable. Furthermore, there is a double-buckle structure that is reminiscent
to a Belgian waffle iron and is therefore called BWI (Belgian waffle iron). Some
of these additional phases have been confirmed experimentally [64, 67], but not
all. In particular, the BWI phase still needs experimental verification. Finally, we
mention that finite temperatures were also explored in Monte Carlo simulations
[82].

C. Charged Particles in a Charged Slab

A parabolic confinement [83, 84] leads to stable structures that are different from
those known from hard slit confinement. In general, a parabolic confinement tends
to keep more particles to the central part of the slit. A special model for parabolic
confinement was recently considered in Ref. [85]. Here, the counterions of con-
fined macroions were smeared out homogeneously across the slit. This leads to a
parabolic confining potential

Vext(z) =

⎧⎪⎪⎨
⎪⎪⎩

ηq

ε0εL3 z2 for − L/2 ≤ z ≤ L/2

ηq

ε0εL2 |z| − πηq

4ε0εL
else

(16)
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Figure 10. Phase diagram of the Yukawa bilayer in the (η, λ) plane. (a) The hard sphere limit
λ → ∞ is shown on top. The dashed (solid) lines denote continuous (discontinuous) transitions. The
filled region corresponds to the coexistence domain of phases IV and V. The vertical arrow indicates
the double reentrant behavior of phase IVA. The insets show the lattice geometries, where the filled
(open) circles correspond to the lower (upper) layer. (b) Magnification of (a) showing a reentrant
behavior of phase IVA occurring at moderate λ. The four diamonds along the arrow indicate state points
that show reentrant behavior. Adapted from Ref. [77]. (See the color version of this figure in Color
Plates section.)
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Figure 11. Zero-temperature phase diagram of a Yukawa system confined between two hard
plates with screening strength λ and reduced density η in the multilayer regime between two triangular
and three square layers. Stability regions of the Belgian waffle iron (BWI) phase, prism phases with tri-
angular (2P	) and square bases (2P�), and 2hcp-like and 2hcp(100) phases are shown. For comparison,
the hard-sphere limit of infinite screening is shown separately at the top. The arrows indicate a path of
constant screening with increasing density. (See the color version of this figure in Color Plates section.)

where ε is the dielectric constant of the solvent, q is the macroion charge, and
η = NL2/2A is the reduced number density. For increasing density η, the cascade
of stable phases is shown in Fig. 12. In detail, the cascade is

1	 → 3	 → 2� → 2R → 2	 → 3� → 3R →
3	 → 4� → 4R → 4	 → 5R → 5	 → 6R · · · (17)

Here, 3R, 4R, 5R, and 6R denote rhombic phases with 3, 4, 5, and 6 layers and
with the stacking sequence ABA, ABAB, ABABA, and ABABAB, whereas the
triangular phases 3�, 4�, and 5� occur with a stacking sequence ABC, ABCA,
and ABCAB, respectively. Figure 12 shows the maximal interlayer spacing D, that
is, the distance between the two outermost layers, versus density. Remarkably, the
buckling transition from a monolayer occurs into a trilayer structure 3	. This is
in marked contrast to the hard slit, where buckling occurred into a bilayer with a
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rectangular unit cell. As a remark, a third possibility of buckling that was predicted
in Landau expansions [86] and discovered in Lennard-Jones systems [87] is an
asymmetric bilayer. All three structures are summarized in Fig. 13. However,
the buckling both into a trilayer and into the asymmetric structure still needs
experimental confirmation. Clearly, more work is needed to map out the stability
of various buckled structures for different parabolic confinements.

IV. CONCLUSIONS

In conclusion, we have summarized recent progress made by theory, computer
simulation, and experiment for colloidal crystallization between two and three
dimensions. In particular, a strictly two-dimensional binary system was considered.
For increasing asymmetry between the two species, the stable crystalline structures
were getting more complex and involved mainly triangular, square, and rhombic
bases, sometimes with complicated unit cells. Explicit results were discussed for
hard disks as well as for dipolar and Yukawa interactions and oppositely charged
mixtures. Theoretical predictions were compared to experiments, in particular to
superparamagnetic particles at a pending air–water interface and to oppositely
charged granulates on a table.
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Figure 13. Top views of
the buckled structures starting
from a triangular confined mono-
layer. (a) symmetric 1-1 rows
with a 2 × 1 structure, (b) 2-1
structure with a

√
3 × √

3 cor-
rugation, and (c) 1-1-1 trilayer
(3	). Particles in different lay-
ers are indicated by different col-
ors. White lines denote primitive
unit cell of each structure. (See
the color version of this figure in
Color Plates section.)

Then, a slit-like confinement was considered and buckling and layering transi-
tions were described for one-component systems, such as hard spheres and Yukawa
particles, both in hard-slit and harmonic (parabolic) confinement potentials. Here,
a comparison of the theoretical calculations can be done to real-space experiments
of charged colloids confined between two glass plates. There are, however, multi-
layered structures that have not yet been confirmed experimentally.

Future research is expected to cover the following directions. First, it would
be interesting to study anisotropic particle interactions. These can describe
anisotropic particles with a fixed orientation or orientable particles with additional
rotational degrees of freedom. Possible examples include apolar hard anisotropic
particles such as spherocylinders [88, 89], ellipsoids [90] or cubes [91], and Yukawa
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segment rods [92–94]. Also, polar particles can be considered including dipoles
with their moment lying in the plane [95, 96] or tilted relative to the plane [97–100].
Furthermore, chains composed of individual dipoles can be considered [101].

There are only few studies of two-dimensional binary mixtures of nonspherical
particles [102, 103] revealing already interesting phase behavior. Owing to the
additional degrees of freedom more complicated crystalline solids are expected,
leading to a wealth of new phenomena that should be explored in the future.

On the other hand, there are more studies on one component of anisotropic
particles in confinement, most of them in the fluid state [104–106]. The crystalline
state is much less explored under strong confinement. For instance, the close-
packed configuration of orientable hard spherocylinders in hard-slit confinement
is not yet known. Also, the glass transition for anisotropic confined particles [107,
108] needs a better understanding.

A second line of research for the future is the inclusion of gravity. Gravity can
be experimentally realized by simply tilting the sample or by imposing an external
light pressure field [109]. If gravity is acting in the plane of a binary crystalline
monolayer, increasing the position coordinate relative to the gravity direction cor-
responds to an isothermal path in the plane spanned by the two chemical potentials
[110]. This may result in an unexpected phase sequence for increasing height. For
instance, a floating liquid layer was identified in a colloid–polymer mixture [111].
If gravity, on the other hand, acts perpendicular to a confining slit plane, the up–
down symmetry is broken. Gravity shifts the buckling transition from second to
first order [112]. It will also induce asymmetric layering situations and will there-
fore create a new scenario of layering.
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10. C. N. Likos, Z. T. Németh, and H. Löwen, J. Phys. Condens. Matter, 6, 10965 (1994).



colloidal crystallization between two and three dimensions 247
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27. N. Hoffmann, F. Ebert, C. N. Likos, H. Löwen, and G. Maret, Phys. Rev. Lett., 97, 078301
(2006).
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78. R. Messina and H. Löwen, Phys. Rev. E, 73, 011405 (2006).

79. A. B. Fontecha, T. Palberg, and H. J. Schöpe, Phys. Rev. E, 76, 050402(R) (2007).
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