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Applications of Density Functional Theory in Soft

Condensed Matter

Hartmut Löwen

Heinrich-Heine University Düsseldorf, Germany

Applications of classical density functional theory (DFT) to soft matter
systems like colloids, liquid crystals and polymer solutions are discussed
with a focus on the freezing transition and on nonequilibrium Brownian
dynamics.

First, after a brief reminder of equilibrium density functional the-
ory, DFT is applied to the freezing transition of liquids into crystalline
lattices. In particular, spherical particles with radially symmetric pair
potentials will be treated (like hard spheres, the classical one-component
plasma or Gaussian-core particles).

Second, the DFT will be generalized towards Brownian dynamics
in order to tackle nonequilibrium problems. After a general introduc-
tion to Brownian dynamics using the complementary Smoluchowski and
Langevin pictures appropriate for the dynamics of colloidal suspensions,
the dynamical density functional theory (DDFT) will be derived from
the Smoluchowski equation. This will be done first for spherical parti-
cles (e.g. hard spheres or Gaussian-cores) without hydrodynamic inter-
actions. Then we show how to incorporate hydrodynamic interactions
between the colloidal particles into the DDFT framework and compare
to Brownian dynamics computer simulations.

Third orientational degrees of freedom (rod-like particles) will be
considered as well. In the latter case, the stability of intermediate liquid
crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can
be predicted. Finally, the corresponding dynamical extension of density
functional theory towards orientational degrees of freedom is proposed
and the collective behaviour of “active” (self-propelled) Brownian parti-
cles is briefly discussed.
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Introduction

Apart from their fundamental importance, soft matter materials (as col-

loidal dispersions, liquid crystals and polymer coils) represent excellent

realizations of strongly interacting classical many-body systems. In this

sense, soft matter provides us with model systems which in turn means

that a reasonable (coarse-grained) modelling of soft matter is very realistic

and can lead to valuable physical insight. This is one of the main rea-

sons why theory, computer simulations and experiments go hand-in-hand

in recent soft matter research.

A classical many-body system is typically characterized by ”effective”

pairwise interaction forces [1], derived from an (optimal) effective pair po-

tential V (r) where r denotes the interparticle distance [2]. Lots of theo-

retical and simulational efforts have been spent in the past to derive or

to compute the effective interaction. Subsequently, once the effective pair

interaction is known, equilibrium properties like structural correlations and

phase transitions can be obtained by theory and computer simulation. This

route can also be inversed: If for a particular shape of V (r) novel behaviour

is predicted by theory or computer simulation, various soft matter systems
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(in particular mixtures) can be exploited to find a convenient realization of

the prescribed potential V (r).

While the concept of effective interactions is valid for static equilib-

rium quantities, it typically breaks down for dynamical correlations [3]

and nonequilibrium situations [4]. The dynamics of colloidal particles and

polymers in solution is Brownian due to the separation of time scales be-

tween the mesoscopic particles and the solvent molecules. The overdamped

particle motion can be described using the Smoluchowski equation or the

stochastically equivalent Langevin picture [5, 6]. A wealth of nonequilib-

rium effects have been discovered in these Brownian systems [7, 8].

In this book chapter we highlight the role of density functional theory

in order to calculate phase diagrams in equilibrium and Brownian dynam-

ics in nonequilibrium. Density functional theory represents a microscopic

approach to many-body effects where the pair interaction potential V (r)

is the only input. Computer simulations, on the other hand, are necessary

to provide ”benchmark” data to test the theory. For the topics considered

here, these are mainly Monte-Carlo simulations for the equilibrium phase

diagrams and Brownian dynamics simulations for nonequilibrium dynamics.

In this contribution, we focus in particular on the freezing transition of sim-

ple systems, governed by a radially-symmetric pair potential (e.g. hard or

soft spheres) and on orientational degrees of freedom relevant for e.g. rod-

like systems. For both cases, phase diagrams and effects of nonequilibrium

Brownian dynamics are described. Some examples from recent research in

this field are used to illustrate the capacity of dynamical density functional

theory as compared to Brownian dynamics computer simulations [9].

1. Freezing of spheres

1.1. Phenomenological results

Experiments show that liquids freeze into periodic crystalline structures

at low temperatures or high densities. In these states, the translational

symmetry of the system is broken, i.e. the one-particle density

ρ(~r) =

〈
N∑

i=1

δ(~r − ~ri)

〉

(1.1)

is inhomogeneous. Here 〈. . . 〉 denotes a canonical average, and ~ri (i =

1, . . . , N) are the particle positions. As freezing is ubiquitous and general,

it is one of the most important phase transition in nature. The basic ques-
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tion is: when does it happen? Answering this question is one of the central

tasks of statistical physics. A full microscopic theory is highly desirable

which uses the interaction forces as an input and predicts the thermody-

namic conditions for freezing as an output. Since freezing is a collective

effect, this is a very demanding task.

Before turning to such a microscopic approach, let us first collect some

empirical facts for freezing, as for more details and references, see [10–15].

We shall also summarize known phase behaviour for simple model poten-

tials gained by computer simulations.

i) Lindemann-criterion of melting

If a = ρ−1/3 denotes a typical interparticle spacing (with the number

density ρ being the number of particles per volume), then one can examine

the root mean-square displacement u of a particle around a given crystalline

lattice position ~Ri, i denoting a lattice site index, which is defined as

u =

√

〈(~ri − ~Ri)2〉 (1.2)

This quantity can also be viewed as the spread of the inhomogeneous one-

particle density ρ(~r) around a lattice position, see Figure 1.1.

ρ(r)

rR1 R2

i L

Fig. 1.1. One-dimensional sketch of the inhomogeneous one-particle density ρ(~r) in a
crystalline solid with lattice points at ~R1 and ~R2. The spread of the density peak is
embodied in the Lindemann parameter L.

The Lindemann parameter L = u/a measures the fluctuations around

the lattice positions in terms of the lattice constant. The traditional Lin-

demann rule of melting states that a solid melts if L ≈ 0.1. Computer sim-

ulations have confirmed this phenomenolgical rule where the actual value

of L at melting varies between 0.129 for hard spheres and 0.18 for the one-

component plasma. But it is always roughly one order of magnitude smaller
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than the lattice constant itself.

ii) Hansen-Verlet rule of freezing

Different to the Lindemann rule, the Hansen-Verlet rule starts from the

liquid side of the freezing transition and states that the freezing occurs if

the amplitude of the first peak in the liquid structure factor S(k) exceeds

2.85. Originally found for Lennard-Jones systems, this rule has been con-

firmed also for other interactions like hard-sphere, plasma and Yukawa pair

potentials. Without any notable exception a value of 2.5-3.0 was found near

equilibrium freezing. However, the peak can be much higher in a metastable

glassy state.

1.2. Independent treatment of the different phases

The simplest theoretical approach is to construct different theories for the

different thermodynamic states (solid and liquid). In particular the inter-

nal energy of the solid phase can be accessed by a simple lattice sum of

the given pair potentials. In particular, different candidate lattices can

be assumed at fixed averaged density, and the one with minimal potential

energy will be the stable one for temperature T = 0. Finite temperature

corrections based on a harmonic phonon-picture can be added on top of

that resulting in a (Helmholtz) free energy F of the solid state.

Likewise the free energy of the liquid can be gained by using for in-

stance liquid integral equation theories [16] where different closure schemes

may be adopted. Combined with the free energy of the solid, a Mawell

double-tangent construction for the isothermal free energy per particles

versus density ρ leads to the coexisting liquid and solid densities ρℓ and

ρs, see Figure 1.2. The double tangent ensures the equality of the chemical

potential and the pressure in the two phases. If this is repeated for various

temperature, the full phase diagram emerges. In three spatial dimensions,

freezing is typically a first order transition with a considerable density jump

∆ρ = ρs − ρℓ.

1.3. Unifying Microscopic theories

Both from a fundamental and esthetic point of view, a unifying theory which

treats both the liquid and the solid phase on the same footing is desirable.
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ρ ρρe s

F/N

Fig. 1.2. Sketch of the Maxwell double tangent construction to the free energy per
particle in the liquid and solid phase resulting in the two coexistence densities ρℓ and
ρs.

In the past decades, there have been considerable advances in this field. In

three spatial dimensions, classical density functional theory (DFT) can be

used to get a liquid-based description of the solid phase. Here the solid

is viewed as a strongly inhomogeneous liquid with strong density peaks.

Freezing in DFT is therefore a condensation of liquid density modes [14].

Conversely, in two spatial dimensions the Kosterlitz-Thouless approach

is a solid-based approach which treats the liquid as a solid phase with an

accumulation of defects.

In the following we shall focus on the three-dimensional freezing and

on density functional theory. We emphasize that a unifying treatment is

mandatory for the description of solid-liquid interface and phenomena like

crystal nucleation and growth out of an undercooled melt where indeed a

single theory for both phases is needed.

1.4. Phase diagrams of simple potentials

Let us first summarize some familiar phase diagrams for various model

pairwise interactions. These were obtained mainly by ”exact” computer

simulation of a many-body system [17] and therefore provide ”benchmark”

data for a microscopic theory.

a) Hard spheres
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The simplest nontrivial interaction potential is that for hard spheres of

diameter σ . The potential reads

V (r) =

{

∞, r ≤ σ

0, r > σ
(1.3)

The internal energy is completely ideal U = 3
2NkBT , i.e. the averaged

potential energy is zero. Hence Helmholtz free energy F = U − TS scales

with kBT alone (as kBT is the only energy scale for hard spheres). There-

fore, for hard spheres, the entire thermodynamic behaviour is governed by

entropy alone. This becomes different for other interactions which possess

an explicit energy scale. This is the main reason why hard spheres are the

most important models for freezing. From computer simulations, the hard

sphere phase diagram is shown in Figure 1.3. The only parameter is the

density which is conveniently scaled in terms of a volume or packing frac-

tion η = πρσ3/6. The quantity η measures the ratio of the volume occupied

by all spheres to the total available volume V of the system. For η → 0

an ideal gas is recovered, while maximal packing fo hard spheres occurs for

η = ηcp = 0.74 corresponding to stacked layers of triangular crystals. In

between, there is a first order freezing transition with coexisting packing

fractions ηell = 0.494 and ηs = 0, 545. The stable crystalline crystal is face-

centred-cubic (fcc) which has an ABC stacking sequence. Interestingly, the

freezing transition is driven by entropy. For η > ηs the solid state has a

higher entropy than the fluid state clearly showing that entropy has noth-

ing to do with structural order. More intuitively, a disordered fluid state

at high densities implies jammed configurations, and much more configu-

ration (i.e. higher entropy) is gained by taking as a reference configuration

a solid and generating more configurations from slightly displaced particles

(configurational entropy).

b) Plasma

The one-component plasma (OCP) with neutralizing background is de-

fined by the pairwise Coulomb potential V (r) = V0/r. By scaling the

classical partition function, one can show that only the coupling parameter

Γ =
3
√

4πρ
3 V0

kBT determines the structure and phase behaviour. There is iso-

choric freezing from the fluid into a body-centered-crystal (bcc) at Γ = 178.
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0

�uid fcc-crystal (ABC stacking)

η η ηηCP�uid solid
=0.494 =0.545 =0.74

fluid crystal

Fig. 1.3. Hard sphere freezing diagram versus packing fraction η. The intuitive picture
of freezing is also shown: at high densities a fluid state involves blocked configurations
and more configurations are achieved by a periodic packing.

c) Soft spheres

Inverse power law potentials where V (r) = V0(σ/r)n interpolate be-

tween the plasma (n = 1) and the hard sphere potential, formally obtained

as n → ∞. Depending on n either bcc or fcc crystals are stable.

d) Yukawa-system

The Yukawa potential V (r) = V0 exp(−κr)/r applies e.g. to charge-

stabilized colloidal suspensions. Again κ interpolates between the OCP

(κ = 0) and the hard-sphere-limit κ → ∞. The phase diagram depends

only on λ = κa (a = ρ−
1
3 ) and T̃ = kBT

V0

eλ

λ and involves a fluid, a bcc solid

and an fcc solid with a triple point as sketched in Figure 1.4.

e) Lennard-Jones-system

The Lennard-Jones potential, the traditional model for rare gases, is

given by V (r) = 4ǫ
((

σ
r

)12 −
(

σ
r

)6
)

where ǫ is the energy and σ is the

length scale. This potential has a long-ranged attractive tail. Correspond-

ingly it exhibits also a critical point separating a gas from a liquid and a

triple point with gas-liquid-fcc solid coexistence.

f) Sticky hard spheres
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λ

T

0.2

0 2 4 6

triple point

!uid

bcc

fcc

!uid

bcc

plasma

Fig. 1.4. Sketch of the Yukawa phase diagram in the plane spanned by λ and T̃ . The
special case λ = 0 is the one-component plasma.

Sticky hard sphere possess a square-well attraction and are reasonable

models for proteins. Here

V (r) =







∞ r ≤ σ

−ǫ σ ≤ r ≤ σ(1 + δ)

0 elsewhere

(1.4)

with a finite attraction range δσ and an attraction depth of −ǫ. The scaled

range δ must be larger than about 0.25 in order to get a liquid-gas separa-

tion. For small δ < 0.05 there is a novel isostructural solid-solid-transition

with a critical point [18].

g) Ultrasoft interactions

Soft (floppy) objects like polymer coils have effective interactions which

are even softer than the plasma, therefore these interactions are called ”ul-

trasoft” [19]. A log-Yukawa interaction has been proposed for star poly-

mers. Here the interaction diverges at the origin only logarithmically with

distance, i.e. V (r) ∝ kBT ln(r/σ). The phase behaviour [20] involves fluid,
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bcc and fcc solids as well as body-centered-orthogonal and diamond lattices

and exhibits reentrance effects.

h) Penetrable interactions

One may even describe soft objects with pair potentials which are finite

at the origin. Examples are Gaussian potentials which are a good model for

linear polymer coils. The phase behaviour involves again the fluid, bcc-solid

and fcc-solid phase with fluid reentrance [21]. Penetrable interactions with

other shapes exhibit again also “exotic” solid phases and reentrance [22].

Finite potentials which have a negative Fourier transform exhibit cluster

crystals [23] where a lattice points is occupied by more than one particle.

To summarize:

(1) Hard and “harsh” potentials freeze into fcc lattices.

(2) Soft repulsive potentials with an at least 1
r singularity for r ց 0 freeze

into bcc lattices.

(3) Ultrasoft v(r) ∼ −ln( r
σ ) and penetrable (V (r ց 0) = V (0) < ∞)

potentials show besides fcc and bcc structures, more open “exotic”

lattices and reentrance effects.

(4) If the Fourier transform of V (r) has negative parts, a cluster crystal

occurs.

(5) Attractions lead to gas-liquid coexistence and isostructural solid-solid

transition.

In conclusion, various shapes of the pairwise interaction potential can

lead to a rich phase behaviour and there is the theoretical challenge to con-

struct a microscopic approach in order to predict and reproduce this com-

plex phase behaviour. As will be discussed in the sequel, classical density

functional theory for inhomogneous fluids does provide such an approach.

1.5. Density Functional Theory (DFT)

a) Basics

The cornerstone of density functional theory (DFT) is an existence the-

orem combined with a basic variational principle [10]. In detail, there exists

a unique grand-canonical free energy-density-functional Ω(T, µ, [ρ]), which
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gets minimal for the equilibrium density ρ0(~r) and then coincides with the

real grandcanoncial free energy, i.e.

δΩ(T, µ, [ρ])

δρ(~r)

∣
∣
∣
∣
ρ(~r)=ρ0(~r)

= 0. (1.5)

In particular DFT is also valid for systems which are inhomogeneous on a

microscopic scale. In principle, all fluctuations are included in an external

potential which breaks all symmetries. For interacting systems in 3d, how-

ever, Ω(T, µ, [ρ]) is not known.

Fortunately, there are few exceptions where the density functional is

known exactly. First, for low density, the ideal-gas-limit is reached and

the density functional can be constructed analytically (see below). Next

leading orders for finite densities can be incorporated via a virial expansion

which is quadratic in the densities. Conversely, in the high-density-limit,

the mean-field approximation (see below) becomes asymptocially exact for

penetrable potentials.

Indeed this approximation also works surprisingly well for finite densities

beyond overlap. Furthermore, the density functional is exactly known (as

so-called Percus-functional) in one spatial dimension for the Tonks gas (had

rods on a line). However, the latter system does not exhibit freezing. Please

note that the knowledge of a functional is much more than a bulk equation

of state since it can be applied to any external potential Vext(~r).

In principle, the application of DFT to freezing works as follows: First

one has to chose an approximation. Then the density field is parameterized

with variational parameters. In the homogeneous gas and liquid bulk phase

one takes

ρ(~r) = ρ̄ (1.6)

where ρ̄ is a variational parameter. On the other hand, for the solid, the

Gaussian approximation of density peaks on the lattice positions is an ex-

cellent choice [24].

ρ(~r) =
(α

π

)−3/2 ∑

n

exp

(

−α
(

~r − ~Rn

)2
)

(1.7)

Here both the lattice structure and spacing as well as the width α are

variational parameters. Finally, for a given chemical potential µ and tem-

perature T , one has to minimize the functional Ω(T, µ, [ρ]) with respect to
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all variational parameters. As a result one obtains the phase diagram in

the µT plane.

The procedure itself is sketched close to the solid-liquid transition in Fig-

ures 1.5 and 1.6. A solid-liquid transition line in the µT plane is schemati-

cally shown in Figure 1.5 and we consider a path with fixed µ and increasing

T crossing the solid-liquid transition at µ = µcoex and T = Tcoex. Coexis-

tence implies that temperature T , chemical potential µ and pressure p are

the same in both phases. Since in the bulk p = −Ω/V (V denoting the

system volume) coexistence means that at given µ and T , Ω/V has two

minima with equal depth. A contour plot of the density functional in the

space of variational parameters is shown in Figure 1.6 for three different

temperature on the path shown in Figure 1.5. The liquid minimum occurs

at zero α while the solid is characterized by a minimum at finite α. The

global minimum is the stable phase and at coexistence, the two minima

have equal depth.

μ

μ

T
Tcoex

coex

solid

liquid

Fig. 1.5. Solid-liquid coexistence line in the µT plane. The path along which three
state points are discussed in Figure 1.6 is indicated.

b) Approximations for the density functional

Let us first recall the exact functional for the ideal gas where V (r) = 0. It

reads as

Fid(T, [ρ]) = kBT

∫

d3r ρ(~r)
[
ln(ρ(~r)Λ3) − 1

]
(1.8)

and minimization

δFid

δρ(~r)

∣
∣
∣
∣
0

= kBT ln(ρ(~r)Λ3) + Vext(~r) − µ (1.9)
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α

ρ

solid

T<Tcoex

metastable liquid

a)

α

α

(α=0)

ρ
ρ

ρ s

s

l

solid

at coexistence:  μ=μ       , T=Tcoex coex

liquid

b)

T>Tcoex

α

ρ

metastable solid

liquid

c)

Fig. 1.6. Contour plot of the grandcanonical free energy Ω(T, µ, ρ̄, α) for fixed T and
µ as a function of two variational parameters α and the averaged density ρ̄. The latter
is given by the lattice constant in the solid phase. a) with a stable solid phase, b) at
solid-liquid coexistence, c) with a stable liquid phase.

leads to the generalized barometric law

ρ0(~r) =
1

Λ3
exp

(

−Vext(~r) − µ

kBT

)

(1.10)

for the inhomogenous density. In the interacting case, V (r) 6= 0, one can

split

F(T, [ρ]) =: Fid(T, [ρ]) + Fexc(T, [ρ]) (1.11)

which defines the excess free energy density functional Fexc(T, [ρ]). Ap-

proximations work on different levels. In the mean-field approximation, we
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set

Fexc(T, [ρ]) ≈ 1

2

∫

d3r

∫

d3r′ V (|~r − ~r′|)ρ(~r)ρ(~r′) (1.12)

In fact, the mean-field approximation (together with a correlational hole in

the solid) yields freezing of the Gaussian potential [25] and is the correct

starting point for cluster crystals for penetrable potentials [23].

The Ramakrishnan-Yussouff (RY) approximation is a perturbative

treatment out of the bulk liquid which needs the bulk liquid direct cor-

relation function c(2)(r, ρ̄, T ) as an input. A functional Taylor expansion

around a homogeneous reference density up to second order yields

Fexc(T, [ρ]) ∼= −kBT

2

∫

d3r

∫

d3r
′

c(2)(|~r − ~r
′ |, ρ̄, T )(ρ(~r) − ρ̄)(ρ(~r

′

) − ρ̄)

(1.13)

The RY approximation leads to freezing for hard spheres and was histor-

ically the first demonstration that freezing can be described within DFT.

The RY functional can readily be generalized to soft interactions [26] (as

the OCP) and gives reasonable results for freezing there (though it is better

to improve the functional by including triplet correlations).

A non-perturbative functional is based on Rosenfeld’s fundamental mea-

sure theory (FMT). This works, however, only for hard spheres. In FMT

we have

Fexc[ρ]

kBT
=

∫

d3r Φ[{nα(~r)}] (1.14)

with

nα(~r) =

∫

d3r
′

w(α)(~r − ~r
′

)ρ(~r
′

) (1.15)
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where the six weight function are given explicitly as

w(0)(~r) =
w(2)(~r)

πσ2
(1.16)

w(1)(~r) =
w(2)(~r)

2πσ
(1.17)

w(2)(~r) = δ
(σ

2
− r

)

(1.18)

w(3)(~r) = Θ
(σ

2
− r

)

(1.19)

w(V1)(~r) =
~w(V2)(~r)

2πσ
(1.20)

w(V2)(~r) =
~r

r
δ
(σ

2
− r

)

(1.21)

with σ denoting the hard sphere diameter and

Φ = Φ1 + Φ2 + Φ3 (1.22)

Φ1 = −n0 ln(1 − n3) (1.23)

Φ2 =
n1n2 − ~nv1 · ~nv2

1 − n3
(1.24)

Φ3 =
1
3n3

2 − n2(~nv2 · ~nv2)

8π(1 − n3)2
(1.25)

This FMT functional yields the Percus-Yevick solution of the direct cor-

relation function as an output. It furthermore survives the dimensional

crossover [27]: If the three-dimensional hard sphere system is confined

within a one-dimensional tube, the exact Percus functional is recovered.

Moreover, in a spherical cavity which holds one or no particle at all, the

exact functional is recovered. This helps to understand that the constraint

packing argument of freezing is geometrically included in the FMT. In fact

(also with a tensor modification in Φ3 [28]), the FMT gives excellent data

for hard-sphere freezing [27], see Table 1.1 and the recent review by Roth [9].

Table 1.1. Coexisting number densities and solid Lindemann
parameter at coexistence for the hard sphere systems. ”Exact”
computer simulation data are shown as well as DFT data using
the Ramakrishnan-Yussouff (RY) or Rosenfeld’s fundamental
measure theory.

ρl σ3 ρs σ3 L (: Lindemann)

computer simulations 0.94 1.04 0.129

RY 0.97 1.15 0.06
Rosenfeld 0.94 1.03 0.101



16 H. Löwen

Last but not least we mention perturbation theories which can be used

for attractive tails. The total potential V (r) is then split into a purely repul-

sive short-ranged part Vrep(r) and a longer-ranged attractive part Vattr(r)

such that V (r) = Vrep(r)+Vattr(r). The repulsive part is treated as an effec-

tive hard core with an effective (temperature-dependent) Barker-Henderson

diameter

σ(T ) =

∫ ∞

0

dr
(

1 − e−βVrep(r)
)

(1.26)

and the attractive part is treated within mean-field approximation. Ac-

cordingly, the total excess free energy functional reads as

Fexc(T, [ρ]) ∼= FHS
exc(T, [ρ])

∣
∣
σ=σ(T )

(1.27)

+
1

2

∫

d3r

∫

d3r
′

ρ(~r)ρ(~r
′

)Vattr(|~r − ~r
′ |)

This procedure yields good phase diagrams for both Lennard-Jones poten-

tials and sticky-hard-sphere systems including the isostructural solid-solid

transition [18].

To summarize:

(1) Rosenfelds FMT yields excellent data for hard sphere freezing.

(2) The much less justified RY perturbative approach works in principle

for softer repulsions.

(3) The mean-field density functional approximation works for penetrable

potentials.

(4) Hard sphere pertubation theory yields stability of liquids and solid-solid

isostructural transitions.

2. Brownian Dynamics

2.1. Brownian dynamics (BD)

Colloidal particles are embedded in a molecular solvent and are therefore

randomly kicked by the solvent molecules on timescales much smaller than

the drift of the colloidal motion [5, 29].
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Let us first discuss the Smoluchowski picture. Here the time-dependent

density field is the central quantity. It should follow a simple deterministic

diffusion equation. For noninteracting particles with an inhomogeneous

time-dependent particle density ρ(~r, t), Ficks law states that the current

density ~j(~r, t) is

~j(~r, t) = −D0
~∇ρ(~r, t) (1.28)

where D0 is a phenomenological diffusion coefficient.

The continuity equation of particle conservation

∂ρ(~r, t)

∂t
+ ~∇ ·~j(~r, t) = 0 (1.29)

then leads to the wellknown diffusion equation for ρ(~r, t):

∂ρ(~r, t)

∂t
≡ D0∆ρ(~r, t) (1.30)

In the presence of an external potential Vext(~r), the force ~F = −~∇Vext(~r)

acts on the particles and will induce a drift velocity ~vD resp. an additional

current density

~jD = ρ~vD . (1.31)

We now assume totally overdamped motion since inertia effects are small

as the colloids are much bigger than the solvent molecules. This results in

~vD =
~F

ξ
= −1

ξ
~∇Vext(~r) (1.32)

with ξ denoting a friction coefficient. For a sphere of radius R in a viscous

solvent, ξ = 6πηsR, with ηs denoting the shear viscosity of the solvent

(Stokes law). Now the total current density is

~j = −D0
~∇ρ(~r, t) − ρ(~r, t)

1

ξ
~∇Vext(~r) (1.33)

In equilibrium, the one-particle density is a Boltzmann distribution

ρ(~r, t) ≡ ρ(1)(~r) = ρ(0)(~r) = A exp(−βVext(~r)) (1.34)

Futhermore, in equilibrium, the total current has to vanish. Therefore,

necessarily

D0 =
kBT

ξ
(1.35)
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which is the socalled Stokes-Einstein relation. Hence ~j = − 1
ξ (kBT ~∇ρ +

ρ~∇Vext) and the continuity equation yields

∂ρ(~r, t)

∂t
=

1

ξ
(kBT∆ρ(~r, t) + ~∇(ρ(~r, t)~∇Vext(~r))) (1.36)

which is called Smoluchowski equation (for non-interacting particles).

The same equation holds for the probability density w(~r, t) to find a particle

at position ~r for time t. For N non-interacting particles,

w(~r, t) =
1

N
ρ(~r, t) , (1.37)

and the Smoluchowski equation reads:

∂w

∂t
=

1

ξ
(kBT∆w − ~∇(w · ~∇Vext)) (1.38)

Now we consider N interacting particles. Using a compact notation

for the particle positions

{xi} = {~ri} = {x1, x2, x3
︸ ︷︷ ︸

~r1

, x4, x5, x6
︸ ︷︷ ︸

~r2

, · · · , x3N−2, x3N−1, x3N
︸ ︷︷ ︸

~rN

} (1.39)

we assume a linear relation between acting forces on the particles and the

resulting drift velocities. (The same compact notation is used for other

multiple vectors.) The details of this relation embody the socalled hydro-

dynamic interations mediated between the colloidal particles by the solvent

flow field induced by the moving colloidal particles. This linear relation is

in general

vi =

3N∑

j=1

Lij({xn})~Fj (1.40)

where ~Fj = − ∂
∂xj

Utot where Utot involves both the internal and the interac-

tion potential energy and v is the drift velocity. The underlying assumption

in (1.40) is that the hydrodynamic interactions act quasi-instantaneously.

This is justified by the fact that the timescale upon which a shear pertur-

bation is traveling through the suspension within an interparticle distance

is much smaller than that of Brownian motion. The coefficients Lij consti-

tute the socalled 3N ×3N mobility matrix and can in principle be obtained

by solving the Navier-Stokes equations of N spheres with appropriate stick

boundary conditions of the solvent flow field on the particle’s surfaces.

In general, Lij depends on ~rN , and we postulate:
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symmetry

Lij = Lji (1.41)

positivity
∑

ij

FiFjLij > 0 for all Fi,j 6= 0 (1.42)

With w({~ri}, t) denoting the probability density for interacting parti-

cles, the suitable generalization of the continuity equation is

∂w

∂t
= −

3N∑

n=1

∂

∂xn
(vtot,nw) (1.43)

with

vtot,n =

3N∑

m=1

Lmn
∂

∂xm
(kBT lnw + Utot) (1.44)

which leads to the generalized Smoluchowski equation fo interacting parti-

cles.

∂w

∂t
= Ôw (1.45)

with the Smoluchwoski operator

Ô =
3N∑

n,m=1

∂

∂xn
Lnm(kBT

∂

∂xm
+

∂Utot

∂xm
) (1.46)

In many applications, hydrodynamic interactions are neglected. This means

that the mobility matrix is constant and a diagonal

Lnm =
1

ξ
δnm (1.47)

This assumption, however, is only true for small volume fraction of the

colloidal particles.

Complementary to the Smoluchowski approach which considers diffu-

sion in phase space, stochastic trajectories in real-space are the basic ingre-

dients for the Langevin picture. A typical “cuspy” Brownian trajectories

of a colloidal particle is shown in Figure 1.7

First, we consider only one particle in an external potential Vext(~r) with

random force ~f(t). The stochastic differential equation for a single particle

is completely overdamped

ξ~̇r = −~∇Vext(~r) + ~f(t) (1.48)
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‘Brownian motion’

Fig. 1.7. Typical trajectory of a randomly kicked Brownian particle.

where ~f(t) mimicks the random kicks of the solvent and is a Gaussian

random variable which fulfills

〈~f(t)〉 = 0 (1.49)

〈fi(t)fj(t
′

)〉 = 2ξkBTδijδ(t − t
′

) (1.50)

One can show that this is stochastically equivalent to the Smoluchowski

equation of non-interacting particles. For interacting particles, the Smolu-

chowski equation is obtained from the following Langevin equations [5]:

ẋn(t) =

3N∑

m=1

Lnm(−∂Utotal

∂xm
+ fm(t)) + kBT

3N∑

m=1

∂Lnm

∂xm
(1.51)

with Gaussian random variables fm which fulfill

〈 ~fm(t)〉 = 0 (1.52)

〈fm(t)fm′ (t
′

)〉 = 2L−1
mm′kBTδ(t − t

′

). (1.53)

2.2. BD computer simulations

In Brownian Dynamic (BD) computer simulations we use the overdamped

Langevin equation (1.48) with a single realization of the stochastic process.

Applying this to a finite time step ∆t and integrating

xn(t + ∆t) = xn(t) + ∆t

3N∑

m=1

Lnm(−∂Utotal

∂xm
) + ∆n + kBT∆t

∑

m

∂Lnm

∂xm

where ∆n =

∫ t+∆t

t

dt
′
∑

m

Lnmfm(t
′

) is Gaussian distributed

and possesses the moments

〈∆n〉 =

∫ t+∆t

t

dt
′
∑

m

Lnm〈fm(t
′

)〉 = 0

〈∆n∆n′〉 = 2kBT∆tLnn′ ,
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which is the basic equation for BD computer simulations. For each step

we need to generate a Gaussian random number and update the Langevin

equation by calculating xn(t+∆t). Although this algorithm is less efficient

than MD/MC for equilibrium correlations, it is unavoidable for calculation

of colloidal dynamics.

2.3. Dynamical density functional theory (DDFT)

Here we derive a deterministic equation for the time-dependent one-particle

density from the Smoluchowski equations [25]. We follow the idea of Archer

and Evans [30]. First, we recall Smoluchowski equation for the N -particle

density

w(~r1, . . . , ~rN , t) ≡ w(~rN , t) , ~rN = {~r1, . . . , ~rN} as

∂w

∂t
= Ôw =

1

ξ

N∑

i=1

~∇i · [kBT ~∇i + ~∇iUtot(~r
N , t)]w (1.54)

with

Utot(~r
N , t) =

N∑

i=1

Vext(~ri, t) +

N∑

i,j=1
i<j

V (|~ri − ~rj |) (1.55)

Here, hydrodynamic interactions have been neglected. Now the idea is to

integrate out degrees of freedom. In fact, an integration yields

ρ(~r1, t) = N

∫

d3r2 . . .

∫

d3rN w(~rN , t) (1.56)

The 2-particle density is analogously obtained as

ρ(2)(~r1, ~r2, t) = N(N − 1)

∫

d3r3 . . .

∫

d3rN w(~rN , t) (1.57)

Integrating the Smoluchowski equation with N
∫

d3r2 . . .
∫

d3rN yields

ξ
∂

∂t
ρ(~r1, t) = kBT∆1ρ(~r1, t) + ~∇1(ρ(~r1, t)~∇1Vext(~r1, t)

+ ~∇1

∫

d3r2 ρ(2)(~r1, ~r2, t)~∇1V (|~r1 − ~r2|) (1.58)

In equilibrium, necessarily ∂ρ(~r1,t)
∂t = 0 which implies

0 = ~∇
(

kBT ~∇ρ(~r) + ρ(~r)~∇Vext(~r) +

∫

d3r
′

ρ(2)(~r, ~r
′

)~∇V (|~r − ~r
′ |)

)

(1.59)
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The constant must vanish for r → ∞ and is thus identical to zero. Therefore

0 = kBT ~∇ρ(~r) + ρ(~r)~∇Vext(~r) +

∫

d3r
′

ρ(2)(~r, ~r
′

)~∇V (|~r − ~r
′ |) (1.60)

This is also known as Yvon-Born-Green-hierarchy (YBG).

In equilibrium, DFT implies:

δF
δρ(~r)

= µ − Vext(~r) (1.61)

= kBT ln(Λ3ρ(~r)) +
δFexc

δρ(~r)
, since F = Fid + Fexc (1.62)

We now apply the gradient which gives:

~∇Vext(~r) + kBT ~∇ ln(Λ3ρ(~r)) + ~∇δFexc

δρ(~r)
= 0 (1.63)

combined with YBG we obtain
∫

d3r′ ρ(2)(~r, ~r′)~∇V (|~r − ~r′|) = ρ(~r)~∇ · δFexc[ρ]

δρ(~r)
(1.64)

We postulate that this argument holds also in nonequilibrium. In doing

so, non-equilibrium correlations are approximated by equilibrium ones at

the same ρ(~r, t) (via a suitable Vext(~r) in equilibrium). Equivalently, one

can say that it is postulated that pair correlations decay much faster to

their equilibrium one than the one-body density. Therefore the basic ap-

proximation of DDFT is sometimes called adiabatic approximation. (For

an alternate derivation, see Marconi and Tarazona [31, 32] or Español and

Löwen [33].)

Hence:

ξ
∂ρ(~r, t)

∂t
= ~∇(kBT ~∇ρ(~r, t) + ρ(~r, t)~∇Vext(~r, t)

+ ρ(~r, t)~∇ δFexc

δρ(~r, t)
) (1.65)

or equivalently

ξ
∂ρ(~r, t)

∂t
= ~∇ρ(~r, t)~∇ δΩ[ρ]

δρ(~r, t)
(1.66)

which constitutes the basic equation of dynamical density functional theory

(DDFT).
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The applications of DDFT are numerous. The dynamics of a strongly

inhomogeneous Brownian fluid has found to be a good agreement with BD

computer simulations. [34, 35]

2.4. An example: Crystal growth at imposed nucleation clus-

ters

The dynamical density functional theory can also be used for the dynam-

ics of the crystal. This is demonstrated by an example in the following.

A two-dimensional system with the repulsive inverse power-law potential

V (r) = V0/r3 corresponds to dipoles in a plane whose dipole moments are

perpendicular to the plane. Two-dimensional systems are best realized for

superparamagnetic colloids pending at an air-water interface in an external

magnetic field [36, 37]. The RY functional gives a reasonable description

for the two-dimensional crystallization [26].

The dynamical version can be applied to a situation where a cluster of

19 particles from a prescribed cut-out of a triangular lattice is imposed and

offered as a nucleation seed to an undercooled fluid. This cluster is first fixed

and then instantaneously released. Depending on the lattice constant of the

prescribed nucleation cluster, there is either subsequent crystal growth or

relaxation back to the undercooled fluid. Two examples are shown in Figure

1.8. The one-particle density field is shown for fixed time as a contour plot.

In both examples, the crystalline seed is compressed relative to the stable

bulk one. If the compression is significant but not too large (Figure 1.8, left

panel), there is still crystal growth, but if the crystal is compressed further,

the seed is too dissimilar to the bulk crystal as to initiate crystal growth

(Figure 1.8, right panel). The same qualitative behaviour has been found

in Brownian dynamics computer simulations [38].

This example shows that dynamical density functional theory represents

a reliable microscopic approach to nonequilibrium phenomena like crystal

growth in an external field [39]. A similar behaviour has been seen for

growing crystal fronts [38, 40] and for vacancy dynamics in two-dimensional

solids.

2.5. Hydrodynamic interactions

Here we address the question how Lnm({xj}) looks like explicitely. Solving

the linearized Navier-Stokes equations with the appropiate stick boundary
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Fig. 1.8. Snapshots of the central region of the dimensionless density field ρ(r, t)/ρ
of two colloidal clusters with strain parameters Aρ = 0.7 (left panel) and Aρ = 0.6
(right panel) at times t/τB = 0, 0.001, 0.1, 1.0 (from top to bottom; t/τB = 1.0 only for
Aρ = 0.7). A is the area of the crystal unit cell. From [38]

.

conditions on the particle surfaces, is a difficult problem. Furthermore it is

problematic that

i) Lnm({xj}) is long-ranged in terms of distances between particles

ii) H.I. have many-body character, pair expansion only possible at low

concentrations

iii) H.I. have quite different near-field behaviour. They are divergent lu-

brication terms.
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The linear relationship (1.40) can be rewritten as

~vn =

N∑

m=1

¯̄Hnm
~Fm (1.67)

where each quantity ¯̄Hnm is a 3 × 3 matrix. In particular, we can discrim-

inate the following cases:

1) no H.I. Hnm = 1
δnm

ξ

2) Oseen-tensor

In the Oseen approximation, ¯̄Hnn = 1

ξ

¯̄Hnm = ¯̄H(~rn − ~rm
︸ ︷︷ ︸

~r

) for n 6= m (1.68)

with the Oseen tensor

¯̄H(~r) =
1

8πηs
(1 + r̂ ⊗ r̂)

1

r
, r̂ =

~r

r
(1.69)

This is the leading far field term for two particles at large distance ~r. The

symbol ⊗ denotes the dyadic product or tensor product.

3) Rotne-Prager-tensor

In this approximation, the next leading correction is included.

Hnn =
1

ξ
, Hnm = ¯̄HRP (~rn − ~rm) (1.70)

with

¯̄HRP (~r) =
D0

kBT

(
3

4

RH

r
[1 + r̂ ⊗ r̂] +

1

2

R3
H

r3
[1 − 3r̂ ⊗ r̂]

)

(1.71)

Higher order expansions of higher order than 1
r3 are possible. These in-

clude also terms of sphere rotation. Finally the triplet contribution can be

estimated.

The DDFT can be generalized to hydrodynamic interactions [41]. Again

the starting point is the Smoluchowski equation which we now write in the

form

∂w(~rN , t)

∂t
=

N∑

i,j=1

~∇i · ¯̄Hij(~r
N ) ·

[

~∇j + ~∇j
Utot(~r

N , t)

kBT

]

w(~rN , t) (1.72)
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We use the two particle approximation

¯̄Hij(~r
N ) ≈ D0

kBT



1δij + δij

∑

i6=j

ω11(~ri − ~re) + (1 − δij)ω12(~ri − ~re)





(1.73)

on the level of the Rotne-Prager expression

ω11(~r) = 0 (1.74)

ω12(~r) =
3

8

σH

r
(1 + r̂ ⊗ r̂) +

1

16
(
σH

r
)3(1 − 3r̂ ⊗ r̂) + O((

σH

r
)7) (1.75)

where σH is the hydrodynamic diameter.

Integrating Smoluchowski equation [25] then yields [41]

kBT

D0

∂ρ(~r, t)

∂t
= ∇r ·

[

ρ(~r, t)∇r
δF [ρ]

δρ(~r, t)

+

∫

d~r′ ρ(2)(~r, ~r′, t)ω11(~r − ~r′) · ∇r
δF [ρ]

δρ(~r, t)

+

∫

d~r′ ρ(2)(~r, ~r′, t)ω12(~r − ~r′) · ∇r
δF [ρ]

δρ(~r, t)

]

(1.76)

A possible closure is via the Ornstein-Zernike equation

ρ(2)(~r, ~r′, t) = (1 + c(2)(~r, ~r′))ρ(~r, t)ρ(~r′, t)

+ ρ(~r′, t)

∫

d~r′′((ρ(2)(~r, ~r′′, t) − ρ(~r, t)ρ(~r′′, t))c(2)(~r′′, ~r′))

(1.77)

with

c(2)(~r, ~r′) = −β
δ2Fexc[ρ]

δρ(~r, t)δρ(~r′, t)
(1.78)

In an easier attempt, one can approximate

ρ(2)(~r, ~r′, t) ≈ ρ(r, t)ρ(r′, t)g(|~r − ~r′|, ρ̄) (1.79)

where ρ̄ is a suitable averaged density and g(r, ρ̄) is a pair distribution func-

tion in the equilibrium bulk fluid.

Finally we describe an example which involves hard sphere colloids of di-

ameter σ moving in a time-dependent oscillating radial-symmetric trapping

potential Vext(r, t). The potential reads as

Vext(r, t) = V1r
4 + V2 cos(ωt)r4 (1.80)
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and corresponds to a shape which switches between stable and unstable

situations at the origin r = 0 but is globally stable. The amplitudes are

V1 = 10kBT/4096σ4, V2 = kBT/σ2 and the external switching frequency

is ω = 4πD0/σ2. As a result, the density profile is picking up the external

frequency ω and exhibits a breathing mode, i.e. it is periodically expanding

and compressed again by the external potential (1.80). Time-dependent

density profiles ρ(r, t) are presented in Figure 1.9 in the steady breathing

state.

Fig. 1.9. Steady-state DDFT (solid curves) and BD (noisy curves) results for the time-
dependent density profile ρ(r, t). In Fig. (a) and (b) hydrodynamic interactions are
taken into account while in (c) and (d) they are neglected. (a) and (c) correspond to the
expanding half period and (b) and (d) to the compressing half period, respectively. The
profiles correspond to the following time sequence: t0 = 2.5τB , t1 = 2.6τB , t2 = 2.7τB ,
t3 = 2.75τB in (a) and (c), and t3 = 2.75τB , t4 = 2.85τB , t5 = 2.9τB and t6 = 3.0τB ,
τB = σ2/D0. From Ref. [41].

Figures 1.9(a) and (b) show results for hydrodynamic interactions in-

cluded on the Rotne-Prager level. DDFT data are in very good agree-

ment with Brownian dynamics computer simulations which include hydro-

dynamic interactions on the same Rotne-Prager level. On the other hand,

in Figure 1.9(c) and (d), hydrodynamic interactions are ignored. The den-

sity profiles are qualitatively different to that shown in Figures 1.9(a) and
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(b) but again DDFT data are in agreement with Brownian dynamics com-

puter simulations. This demonstrates that DDFT is a reliable microscopic

theory both if hydrodynamic interactions are included or ignored.

3. Rod-like particles

3.1. Statistical mechanics of rod-like particles

Density functional theory can readily be extended to rod-like particles

which possess an additional orientational degree of freedom described by a

unit vector û. A configuration of N particles is now fully specified by the

set of positions of the center of masses and the corresponding orientations

{ ~Ri, ûi, i = 1, . . . , N}, see Figure 1.10.

rod i

orientation vector

center-of-mass coordinate

û

R

i

i

Ri

ûi

platelet i

Fig. 1.10. Sketch of the center-of-mass position ~Ri and the orientational unit vector ûi

for the ith particle both for a rod-like and plate-like particle.

Example for ansiotropic particles include

(1) molecular dipolar fluids (e.g. H2O molecule)

(2) rod-like colloids (e.g. tobacco-mosaic viruses)

(3) molecular fluids without dipole moment (apolar), (e.g. H2 molecule)

(4) plate-like objects (clays)

The canonical partition function for rod-like particles now reads [42]

Z =
1

h6NN !

∫

V

d3R1 ...

∫

V

d3RN

∫

R3

d3p1 ...

∫

R3

d3pN

×
∫

S2

d2u1 ...

∫

S2

d2uN

∫

R3

d3L1 ...

∫

R3

d3LN e−βH (1.81)
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with the Hamilton function

H =

N∑

i=1

{
~p2

i

2m
+

1

2
~Li(

¯̄Θ)−1~Li

}

+
1

2

N∑

i,j=1

v(~Ri − ~Rj , ûi, ûj)

+
N∑

i=1

Vext(~Ri, ûi) (1.82)

which comprises the kinetic energy, the pair interaction energy and the ex-

ternal energy. Here ¯̄Θ is the inertia tensor and S2 the unit-sphere in 3d.

Again the central quantity is the one-particle density ρ
(1)
0 (~r, û) which is

defined as

ρ
(1)
0 (~r, û) :=

〈
N∑

i=1

δ(~r − ~Ri)δ(û − ûi)

〉

(1.83)

Integrating the orientations over the unit sphere S2 results in the density

of the center-of-masses

ρ0(~r) =
1

4π

∫

S2

d2u ρ
(1)
0 (~r, û) (1.84)

On the other hand, the globally averaged orientational order is gained by

integrating over the center-of-mass corrdinates and given by

f(û) =
1

V

∫

V

d3r ρ
(1)
0 (~r, û) (1.85)

û1 û2

R1

r

R2

1 2

Fig. 1.11. Sketch of two interacting rods. The interaction potential depends on ~r =
~R1 −

~R2 and û1, û2.

In analogy to the isotropic case, one can define a pair correlation func-
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tion

g(~R1, ~R2, û1, û2) :=

〈
N∑

i,j=1
i6=j

δ(~R1 − ~Ri)δ(~R2 − ~Rj)δ(û1 − ûj)δ(û2 − ûj)

〉

ρ
(1)
0 (~R1, û1)ρ

(1)
0 (~R2, û2)

(1.86)

Now different phases are conceivable which can be classified and distin-

guished by their one-particle density field.

1) Fluid (disordered) phase, isotropic phase

Here the center-of-mass-positions and orientations are disordered:

ρ
(1)
0 (~r, û) = ρ0 = const (1.87)

2) Nematic phase

Here, positions are disordered and orientations are ordered, i.e.

ρ
(1)
0 (~r, û) = ρf(û) , û0 : nematic director (1.88)

Typically the orientation is distributed around a nematic director û0. In

order to quantify orientational order, it is convenient to introduce a nematic

order parameter. In fact, this is defined via the second rank tensor

¯̄Q =

〈

1

N

N∑

i=1

(
3

2
ûi ⊗ ûi −

1

2
1

)〉

(1.89)

where the dyadic product is

ûi ⊗ ûi =





uixuix uixuiy uixuiz

uiyuix uiyuiy uiyuiz

uizuix uizuiy uizuiz



 (1.90)

One can easily show that the tensor ¯̄Q is trace-less

Tr ¯̄Q =
1

2
〈Tr(3ûi ⊗ ûi − 1)〉 (1.91)

=
1

2
〈3 · 1 − 3〉 = 0 (1.92)

Furthermore ¯̄Q is clearly symmetric and hence diagonalizable with three

eigenvalues λ1 ≥ λ2 ≥ λ3 where λ3 must be −λ2 − λ1. The largest eigen-

value λ1 is called nematic order parameter S. The corresponding eigen-

vector is called nematic director. For perfect alignment along ~u0 we have



Applications of Density Functional Theory in Soft Condensed Matter 31

~ui ≡ û0 for all i. Then, S = 1. If the two lower eigenvalues are identical,

λ2 = λ3, the call it a uniaxial nematic phase. If λ2 6= λ3 , the orientation

is called biaxial. In the isotropic phase: S = 0. Orientational distribu-

tions are accessible experimentally, by e.g. birefringence.

3) Smectic-A phase

The socalled smectic-A phase is positionally ordered along an orienation

axis û0. The associated one-particle density is periodic in the z-direction

along û0:

ρ
(1)
0 (~r, û) = ρ(z, û) z-periodic (1.93)

4) Smectic-B phase

The smectic-B phase is similar to the smectic-A phase but exhibits an

in-plane triangular lattice.

5) Columnar phase

The columnar exhibits crystalline order perpendicular to the director û0

but is disordered positionally along ~u0. The one-particle density field thus

reads as

ρ
(1)
0 (~r, û) = ρ(x, y, û) (1.94)

6) Plastic crystal

In a plastic crystal, the positions are ordered in all three spatial directions

but the orientations are disordered. Therefore:

ρ
(1)
0 (~r, û) = f(~r) (1.95)

7) Full crystalline phases

Finally, in the full crystalline phase, positions and orientations are both

ordered.

The list (1)-(7) of liquid crystalline phases is by far not exhaustive.

There are more “exotic” phases such as an AAA stacked phase, a smectic-

C with tilted rods, or cholesteric phases which possesses a helical twist with

a pitch length lp.
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3.2. Simple models

Let us now discuss simple models for interactions between anisotropic rods.

The phase behaviour of hard objects, as shown in Figure 1.12, is dominated

by the shape. Temperature scales out in this case such that packing fraction

alone (apart from the particle shape) is the only parameter. Hard sphe-

rocylinders have been studied, as well as hard platelets (“hard coins”) or

thin needles which arise from spherocylinders in the limit of infinite aspect

ratio L
D → ∞.

h L

D
hard

spherocylinders
hard coins hard needles

limit:
D
L ∞

Fig. 1.12. Sketch of differently shaped hard bodies.

A) Analytical results by Onsager

In the limit p = L
D → ∞, a virial expansion up to second order is getting

asymptotically exact. There is a isotropic-nematic transition which can be

calculated analytically [43]. It is first order with a density jump. The scaled

coexistence densities of the coexisting isotropic and nematic phases are

ρisoL
2D = 4.189 . . . (1.96)

and

ρnemL2D = 5.376 . . . (1.97)

At coexistence, the nematic order parameter in the nematic phase is

S = 0.784. However, in practice, one needs pretty large aspect ratios

(about p & 200) in order to get reasonably into this Onsager limit.

B) Computer simulations

Full phase diagrams can be obtained by Monte Carlo computer simuations

[44]. Hard spherocylinders show for various densities ρ and aspect ratios p

the following stable phases: isotropic, plastic, ABC stacking, AAA stacking,

smectic-A, and nematic phases. All those transitions are purely driven by

entropy.
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Another anisotropic system are hard ellipsoids which are characterized

by two different axial lengths a and b. The phase diagram involves isotropic,

nematic fully crystalline and plastic crystalline phases [45]. There is a re-

markable symmetry in x → 1
x for the topology of the phase diagram where

x = a
b . x < 1 correspond to oblate and x > 1 to prolate objects.

C) Density functional theory

Again density functional theory tells us that there exists a unique grand-

canonical free energy functional Ω(T, µ, [ρ(1)]) (functional of the one-particle

density) which becomes minimal for the equilibrium density ρ
(1)
0 (~r, û) and

then equals the real grand canonical free energy, i.e.

δΩ(T, µ, [ρ(1)])

δρ(1)(~r, û)

∣
∣
∣
∣
ρ(1)=ρ

(1)
0 (~r,û)

= 0 (1.98)

Here, the functional can be decomposed as follows

Ω(T, µ, [ρ(1)]) = kBT

∫

d3r

∫

d2u ρ(1)(~r, û)[ln(Λ3ρ(1)(~r, û)) − 1]

+

∫

d3rd2u (Vext(~r, û) − µ)ρ(1)(~r, û) + Fexc(T, [ρ(1)])

(1.99)

The first term on the right hand side of equation (1.99) is the functional

Fid[ρ
(1)] for ideal rotators. The excess part Fexc(T, [ρ(1)]) is in general un-

known and requires approximative treatments.

For hard spherocylinders, Fexc(T, [ρ(1)]) can be approximated by a

smoothed density approximation (SMA) [46] yielding several stable liquid-

crystalline phases, namely: isotropic, nematic, smectic-A and ABC crys-

talline. A modified weighted density approximation (MWDA) was subse-

quently proposed [47] which improves upon the SMA by exhibiting stable

plastic crystalline and AAA crystals as well.

An important recent progress was archieved by generalizing Rosenfeld’s

fundamental measure theory from hard spheres to hard objects with any

shape [48]. For spherocylinders the functional was worked out explicitly.

This functional could be exploited also for attractions by employing a per-

turbation theory for the attractive parts in the potential. Finally, a mean-

field density functional for rods with soft segments was proposed and stud-

ied [49].
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3.3. Brownian dynamics of rod-like particles

In order to derive a dynamical density functional theory (DDFT) for rod-

like particles one can start from the Smoluchowski equation for the full

probability density distribution w(~r1, · · · , ~rN ; ~u1, · · · , ~uN , t) of N rods with

their corresponding center-of-mass positions ~rN = (~r1, · · · , ~rN ) and orien-

tations ûN = (û1, · · · , ûN) which reads [6]

∂w

∂t
= ÔSw (1.100)

where the Smoluchowski operator is now given by

ÔS =

N∑

i=1

[

~∇~ri
· ¯̄D(ûi) ·

(

~∇~ri
+

1

kBT
~∇~ri

U(~rN , ûN , t)

)

+DrR̂i ·
(

R̂i +
1

kBT
R̂iU(~rN , ûN , t)

)]

(1.101)

where U(~rN , ûN , t) is the total potential energy. Here the rotation operator

~̂Ri is defined as ~̂Ri = ûi × ~∇ûi
and the anisotropic translational diffusion

tensor is given by

¯̄D(ûi) = Dqûi ⊗ ûi + D⊥(~1 − ûi ⊗ ûi) (1.102)

The two diffusion constants Dq and D⊥, parallel and perpendicular to the

orientations reflect the fact that the translational diffusion is anisotropic.

For hard spherocylinders there are valid approximations for Dq and D⊥ [50].

Following the idea of Archer and Evans [30] one can integrate the Smolu-

chowski equation by now applying N
∫

d3r2 · · ·
∫

d3rN

∫
d2u1 · · ·

∫ 2

d
un on

both sides of Eqn (1.100). This results in [49]:

∂ρ(~r, û, t)

∂t
= ~∇~r · ¯̄D(û) ·

[

~∇~rρ(~r, û, t) +
1

kBT
ρ(~r, û, t) · ~∇~rVext(~r, û, t) −

~F (~r, û, t)

kBT

]

+ DrR̂ ·
[

R̂ρ(~r, û, t) +
1

kBT
ρ(~r, û, t)~∇~rVext(~r, û, t) − 1

kBT
~T (~r, û, t)

]

(1.103)

with an average force

~F (~r, û, t) = −
∫

d3r′
∫

d2u′ ρ(2)(~r, ~r′, û, û′, t)~∇~rv2(~r − ~r′, û, û′) (1.104)
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and average torque

~T (~r, û, t) = −
∫

d3r′
∫

d2u′ ρ(2)(~r, ~r′, û, û′, t)R̂v2(~r − ~r′, û, û′) (1.105)

The two-particle density which is in general unknown can be approximated

in equilibrium by using

~F (~r, û, t) = ρ0(~r, û)~∇~r
δFexc(T, [ρ0])

δρ0(~r, û)
(1.106)

respectively

~T (~r, û, t) = ρ0(~r, û)R̂
δFexc[ρ]

δρ0(~r, û)
(1.107)

Similar as in the isotropic (spherical) case we now employ the “adiabatic”

approximation. We assume that the pair correlations in nonequilibrium are

the same as those for an equilibrium system with the same one-body density

profile (established by a suitable Vext(~r, û, t)). The resulting dynamical

equation for the time-dependent one particle density ρ(~r, û, t) is then given

by Ref. [49]:

kBT
∂ρ(~r, û, t)

∂t
= ~∇~r · ¯̄D(û) ·

[

ρ(~r, û, t)~∇~r
δF [ρ(~r, û, t)]

δρ(~r, û, t)

]

+ DrR̂

[

ρ(~r, û, t)R̂
δF [ρ(~r, û, t)]

δρ(~r, û, t)

]

(1.108)

with the equilibrium Helmholtz free energy density functional

F [ρ] = kBT

∫

d3r

∫

dû ρ(~r, û)
[
ln(Λ3ρ(~r, û)) − 1

]

+ Fexc(T, [ρ]) +

∫

d3r

∫

dû ρ(~r, û)Vext(~r, û, t) (1.109)

This sets the frame for dynamical density functional theory (DDFT) for

rods.

As for a special application of DDFT to dynamics in the confined

isotropic phase we refer to [49] where the mean-field approximation for

the functional was employed. More recent work has used the Rosenfeld

functional for hard spherocylinders [48] for driven nematic phases [51, 52].
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3.4. “Active” (self-propelled) Brownian particles

“Active” particles are self-propelled by their own intrinsic motor. In fact,

apart from swimming bacteria, there are artificial microswimmers made

by colloidal particles [53, 54]. Ignoring hydrodynamic interactions, these

swimmers can simplest be modelled by rod-like particles which are driven

by a constant force along their orientations; the force corresponds to an

effective drift velocity and mimicks the actual propulsion mechanism. On

top of the intrinsic propulsion, the particles feel Brownian noise of the

solvent. The corresponding motion is intrinsically a nonequilibrium one and

even the dynamics of a single Brownian swimmer was solved only recently

[55, 56].

Starting from the Smoluchowski equation with an appropriate intrinsic

drift term, a dynamical density functional theory can be derived using the

same adiabatic approximation (1.64) as in the “passive” case. The resulting

equation of motion for the one-particle density then [57] has an extra term

on the right-hand side of Eqn. (1.108), namely

−F0
~∇ ¯̄D(û)ρ(~r, û, t)û (1.110)

where F0 denotes the internal driving force. This represents a micro-

scopic theory for concentrated ”active” matter. For swimmers in a two-

dimensional channel, the time-dependent density profiles were found to be

in agreement with Brownian dynamics computer simulations [57] even if a

crude Onsager-like density functional approximation [43] was used. Qual-

itatively, the transient formation of hedgehog-like clusters ear the channel

boundaries was reproduced by the dynamical density functional theory.

4. Conclusions

In conclusion, there is a variety of topologies for equilibrium phase dia-

grams, even for relatively simple radially-symmetric pair potentials V (r).

Examples include freezing into crystalline lattices with unusual open struc-

ture and reentrant melting effects if the interaction is soft and isostructural

solid-to-solid transition for system with short-ranged attractions. The ef-

fects are predicted by Monte Carlo computer simulations and can in princi-

ple be confirmed by density functional theory of freezing. Colloidal particles

can be used as model systems to realize these interactions.

Rod-like systems with anisotropic interactions, on the other hand, ex-

hibit liquid crystalline phase with different degrees of orientational and
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positional ordering. Again density functional theory of freezing can be

formulated and be applied to predict the topology of the phase diagram.

Rod-like colloidal particles represent ideal model systems to explore and

test the phase behaviour experimentally.

Effects of colloidal dynamics in a solvent both in equilibrium and

nonequilibrium are conveniently simulated by Brownian dynamics com-

puter simulations. The density functional theory can be extended towards

dynamics, so-called dynamical density functional theory to tackle various

nonequilibrium phenomena. This was demonstrated for crystal growth at

imposed nucleation seeds and for the collective behaviour of ”active” Brow-

nian particles. In general, dynamical density functional theory is in good

agreement with the simulations. This may be different for undamped New-

tonian dynamics which occurs for example in molecular liquid crystals or

in a complex plasma [58].
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[4] J. Dzubiella, H. Löwen, C. N. Likos, Phys. Rev. Letters 91, 248301 (2003).
[5] M. Doi, S. F. Edwards, The Theory of Polymer Dynamics, Oxford Science

Publications, Clarendon Press Oxford (1986).
[6] J. K. G. Dhont, An Introduction to Dynamics of Colloids, Elsevier, Amster-

dam, 1996.
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