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Particle-resolved instabilities in colloidal dispersions
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For colloidal dispersions, recent progress in observing, understanding and describing instabilities

resolved on the length scale of the individual particles is summarized. The instabilities are induced and

triggered by external driving fields. Various kinds of instabilities are discussed, including the buckling

transition of a colloidal monolayer, lane and band formation in oppositely driven binary mixtures, the

classic Rayleigh–Taylor instability and clustering in rod-like systems under nonequilibrium.

Particularly, the role of complementary approaches, like real-space experiments, computer simulations

and theory is emphasized.
I. Introduction

Much of the complexity in nature occurs via instabilities from

homogeneous states towards situations with much higher degrees

of intrinsic ordering.1 These hydrodynamic and thermodynamic

instabilities2 are conventionally described by coarse-grained

continuum models, which consider the system on length scales

much larger than a typical interparticle distance a. This is

a satisfactory picture as long as the emerging structures are much

larger than a, but it clearly breaks down for ‘‘microscopic’’

instability patterns formed on the interparticle distance scale.

For the latter, full microscopic approaches are needed, which

possess resolution on the corresponding microscopic length and

time scales. The counterplay between the microscopic and

macroscopic behaviour of instabilities is a topic of intense recent

research, which will be addressed in this review.
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Soft matter represents a broad material class, which is

vulnerable to small external perturbation and is thus susceptible

to instabilities.3 In particular, mesoscopic colloidal suspensions

embedded in a molecular solvent are excellent model systems to

observe instabilities on the particle scale, i.e. the emerging

structure can be particle-resolved and watched in real-space.4–11

This is intriguing for at least two reasons: first of all, new

instabilities can occur on the particle scale, which possess no

coarse-grained counterpart. One example is the buckling insta-

bility12 of a confined crystalline layer,13,14 which occurs, per se, on

the interparticle scale. Buckling will be discussed in this review in

section II. Secondly, it is intriguing to test the validity of a coarse-

grained approach downwards to the ‘‘microscale’’ of interparticle

distances.15–17 Typically it is a challenging question to understand

and characterize the conditions under which the phenome-

nology-based continuum approaches break down.

In this review, recent results about particle-resolved instabil-

ities in colloidal dispersions are summarized. The instabilities

discussed here are, in general, produced by external fields, such as

electric, gravitational or topographical (confining) fields.5,18 The

external field couples directly to the individual colloidal particles

and induces an external driving force on them which – together

with their interparticle interaction force and Brownian dynamics

– brings the suspensions into another state via an instability. This

can occur both under equilibrium and nonequilibrium condi-

tions. In equilibrium, instabilities manifest themselves typically

via a continuous (second-order) phase transition. As a represen-

tative example for an equilibrium instability, the buckling tran-

sition of a confined colloidal monolayer will be discussed in this

paper.14 Further instabilities that occur at nonequilibrium are

laning and banding in oppositely driven colloidal binary mixtures

or the classical Rayleigh–Taylor instability,2,19 where a colloidal

suspension with a positive buoyant mass is placed above a pure

solvent and is unstable due to gravity. Lastly, clustering insta-

bilities can occur in driven and self-propelled suspensions of

rod-like particles, which are genuine nonequilibrium situations.

Under the action of external and internal fields, rod-like particles

can aggregate into clusters and this can also be understood and

classified as an instability. This review clearly cannot cover all

aspects of colloidal instabilities. The following topics are not

treated: kinetics of colloidal fluid-fluid phase separation,20,21
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vorticity banding,22,23 morphological instabilities of a growing

interface near a solvent-freezing transition,24 electro-convection

effects,25 the Rayleigh–Bernard instability26 and all instabilities

that concern the solvent flow, alone.

Scientific progress in understanding instabilities on the

particle-scale has been achieved by using real-space experiments

(typically confocal microscopy), see e.g. Refs 4, 6–8, 11 and 27–

30, computer simulations17,31,32 and theory.33,34 Computer simu-

lations need a proper inclusion of hydrodynamic interactions35

mediated between the colloidal particles by solvent flow if the

instabilities occur in nonequilibrium. Theories are either based

on a linear stability analysis of phenomenology-based and

hydrodynamical approaches or involve microscopic dynamical

density functional approaches.36–39 A direct comparison of the

complementary approaches (experiment and simulation/theory)

is possible, thereby facilitating a deepened understanding of the

impact of individual particles on the instabilities.

The paper is organized as follows: First a simple instability in

equilibrium, namely the buckling instability, is discussed in

section 2. Then nonequilibrium instabilities follow in the subse-

quent sections III–VI including laning, banding, the Rayleigh–

Taylor instability and clustering instabilities. Final conclusions

are given in section VII.
Fig. 1 A sketch of the buckling instability in two dimensions. Particles

are confined by a strong confining potential Vext(z) in a linear channel

forming a periodic string of a one-dimensional crystal with lattice

constant a0 at zero temperature. Layer buckling resulting in a zig-zag

structure may occur (i) by compressing the layer laterally, which leads to

an increased density per unit length (corresponding to a reduced inter-

particle spacing a1 < a0) and (ii) by weakening the confinement potential

Vext(z) in the middle of the slit.
II. The buckling instability

The buckling instability of a confined crystalline layer occurs if

the circumstances of confinement are changed. In its simplest

form, buckling shows up even at zero temperature and can

therefore be understood in terms of purely potential energy

arguments.14,40 The situation of a buckling instability is sketched

in Fig. 1 in two spatial dimensions where the solid layer is a one-

dimensional periodic string of particles confined between two

parallel lines. These strings can buckle into a zig-zag-like struc-

ture by either increasing the density or weakening the external

confinement strength, i.e. it emerges from a competition of two

energy scales, namely the confinement strength and the inter-

particle repulsion. At zero temperature, buckling can be studied

with a perturbative approach assuming a small interlayer spacing

h, which is a convenient order parameter for buckling. Typically,

the buckling instability is a second-order phase transition, say at

a critical density rc. Close to rc, the buckling order parameter h

changes continuously as hx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rc
p

for r > rc while h ¼ 0 for

r # rc.

The buckling instability can be detected on the particle scale

for colloidal suspensions by real-space experiments.41 Typically,

these particles are confined between two parallel plates and the

particles are observed by microscopy.42–46 Alternatively, buckling

has been identified by scattering methods.47,48 Microscopy has

the advantage that the lateral structure can be resolved directly.

Scattering experiments47,48 average over the lateral structure, but

focus on the height variables of the particles in the slit perpen-

dicular to the system walls.

The resulting buckling structure depends crucially on the wall-

particle and the interparticle interaction. For the latter, both

hard spheres and screened Coulomb (Yukawa) pair potentials

have been considered. The former case is an appropriate model

for sterically-stabilized colloidal suspensions. In the latter case,

the interparticle pair potential V(r) reads as
3134 | Soft Matter, 2010, 6, 3133–3142
VðrÞ ¼ V0 expð � krÞ
r

(1)

where r is the interparticle spacing, k is the inverse Debye–H€uckel

screening length and V0 is an energy amplitude, which scales with

the square of the particle effective charges. The Yukawa model is

appropriate for charge-stabilized colloidal suspensions.49–54

Besides hard-sphere and Yukawa interactions, other interac-

tions, like Lennard-Jones and Gaussian potentials,55–57 have also

been considered for buckling. More crucial is the nature of the

confining wall-particle external potential Vext(z). If this is hard,

i.e.

VextðzÞ ¼
(

0; for � L=2\z\L=2

N; else
(2)

with L denoting the plate distance, buckling occurs into a zig-zag

structure of rows, which possesses a rectangular 2 � 1 cell.58–62

This 1-1 bilayer structure shown in Fig. 2a) respects the inversion

symmetry z / �z embodied in the external wall potential. The

1-1 bilayer buckling structure occurs for both hard sphere58–60

and Yukawa interparticle potentials63 and has been confirmed in

various experiments on strongly confined colloidal suspensions,

which are touching the confining walls.41–45

On the other hand, for a parabolic wall-particle external

potential Vext(z)
This journal is ª The Royal Society of Chemistry 2010



Fig. 2 Top views of the buckled structures starting from a triangular

confined monolayer. (a) Symmetric 1-1 rows with a 2 � 1 structure, (b)

a 2-1 structure with a
ffiffiffi
3
p
�

ffiffiffi
3
p

corrugation and (c) a 1-1-1 trilayer (3D).

Particles in different layers are depicted with different colors.

Fig. 3 Typical snapshots from a two-dimensional Brownian dynamics

computer simulation for a binary driven Yukawa mixture at low and high

driving forces ~F0. At high forces, the structure of lanes along the driving

field can clearly be seen. The drive is along the y-direction. Without drive,

both particle species are indistinguishable. Different colours represent

particles that are driven alike. From ref. 68.
VextðzÞ ¼
1

2
K0z2 (3)

the situation is more subtle. The parabolic form is a reasonable

model for charged colloids confined between strongly charged

parallel walls at low salt concentrations.51 Various lateral struc-

tures of the buckled layer have been suggested by Chou and

Nelson14 using a Landau-type theory for the total potential

energy. One is an asymmetric 2-1 structure, which was confirmed

in computer simulations.55 This bilayer structure is characterized

by a
ffiffiffi
3
p
�

ffiffiffi
3
p

corrugation, see Fig. 2b). It occurs genuinely if the

interparticle potential is short-ranged. However, for long-ranged

interparticle forces there is the possibility to buckle from

a monolayer directly into a trilayer.64 This 1-1-1 trilayer is

symmetric (see Fig. 2c for a sketch of its structure). In principle,

buckling could also occur into higher-order multilayers,65 but

this needs more elaboration. Interestingly, even the 2-1 structure

still needs clear experimental confirmation.

Future research activities will focus on buckling of monolayers

composed of two-component systems. For binary Yukawa

systems, the ground-states of the monolayer have recently been

identified for various screening strengths k and charge asymme-

tries revealing a wealth of different lateral and compositional

structures.66 Correspondingly, one may expect much more

complex lateral buckled structures.

Finally, the case of particles in strong gravity on a substrate is

characterized by an external potential
This journal is ª The Royal Society of Chemistry 2010
VextðzÞ ¼
�

mgz; for z . 0

N; else
(4)

Here, the buckling transition of a crystalline monolayer is first-

order with a jump in the height variables. This can clearly be seen

for hard spheres where, for strong gravity, a layer-by-layer

growth minimizes the potential energy if the areal density is

increased. While the incomplete layers are highly degenerated for

hard spheres, this is different for continuous interactions (like

Yukawa systems). Here the scenario of buckling still needs to be

explored in the future. Experiments27 that realize ‘‘gravity’’ by

using the light pressure acting on the colloidal particles have the

advantage that the strength of gravity can easily be tuned and –

when combined with confocal microscopy – are promising set-

ups to detect the resulting buckled structures in real-space.

III. The laning instability

The laning instability (or two-stream instability) occurs if

a binary mixture of particles are driven against each other. For

the standard set-up, the driving force is constant

~F ¼ �~F0 (5)

but the sign is different for the different particle species. For

strong enough driving forces ~F0, particles driven alike move

behind each other in order to avoid collisions with oppositely

driven particles. Correspondingly, long ‘‘chains’’ or ‘‘worms’’ of

particles driven alike built up in the systems. Typical snapshots

from a two-dimensional Brownian dynamics computer simula-

tion67 are shown in Fig. 3 both for low and high driving forces.

Colloidal suspensions are excellent model systems for the

laning instability. Typically, the experiments are performed in

a three-dimensional capillary cell. In fact, oppositely charged

particles, driven in a constant electric field, exhibit lane forma-

tion,69 for a confocal micrograph see Fig. 4. Therefore an electric

field is an excellent realization for the drive in eqn (5).

In the following, recent progress to understand and charac-

terize the laning instability is reviewed. First, Brownian dynamics

computer simulations in two spatial dimensions for repulsive

interparticle interactions have revealed that lane formation is

a first-order phase transition,67 i.e. it occurs with a notable
Soft Matter, 2010, 6, 3133–3142 | 3135



Fig. 4 A confocal micrograph of a three-dimensional, oppositely

charged, colloidal mixture in an external electric field. The arrow shows

the direction of the electric driving field. The particles are colored

according to their charge. Lane formation along the drive can clearly be

seen. The length bar is a micron. From ref. 69.
hysteresis if the field is increased and decreased. There is re-entry

of the lane-free state for fixed drives and increasing density. For

an example of the steady-state diagram, see Fig. 5. In fact, for

increasing density and fixed driving strength, the sequence of

steady states involves no lanes - lanes - no lanes.68 The instability

can be quantitatively described using dynamical density func-

tional theory with an additional phenomenology-based current

term.70 However, a microscopic justification of this additional

current term is still needed. Data obtained from a dynamical

density functional theory are also included in Fig. 5.

More recent, extensive Brownian dynamics computer simula-

tions71 for oppositely charged hard-core Yukawa mixtures in

three dimensions exhibit a much richer scenario of different

steady states. For fixed driving strength, the steady-state diagram

is summarized in Fig. 6. What is varied here is the colloid

concentration as embodied in the total colloid packing fraction f

and the inverse Debye–H€uckel screening length k. Apart from

a region in the parameter space where no laning occurs, namely

for small density f, there is a transition towards laning for any

k. A snapshot of particle positions projected on a plane

perpendicular to the drive reveals the lateral order of the lanes.

There is a network structure with a finite spacing at high k.
Fig. 5 A steady state diagram for laning in the parameter space of

density (x-axis) and driving strength Fc
*. Computer simulation results

(——) and data from dynamical density functional (----) are shown. The

lines separate the parameter space into two regions: lane formation and

no lane formation. (a), (b), and (c) denote three states along a path of

constant force and increasing density. From ref. 68.

Fig. 6 A steady-state phase diagram of laning for an oppositely charged

hard-core Yukawa interaction and fixed driving strength as a function of

the particle volume fraction F and reduced screening parameter k* (a) for

no hydrodynamic interactions, (b) for a driving electric field with the

Long–Ajdari mobility tensor and (c) for a driving gravitational field with

a Rotne–Prager mobility tensor. The snapshots represent projections on

a plane perpendicular to the driving field and characterize the different

steady-states. From ref. 72.

3136 | Soft Matter, 2010, 6, 3133–3142
However, for lower k, the lanes crystallize into two-dimensional

lattices, which can possess triangular, rhombic and square

structures. Finally, for small f and small k, chains of lanes are

forming possibly on the way to complete phase separation

towards a square crystal.

Since the moving colloidal particles induce a solvent velocity

field, there is an issue about the importance of hydrodynamic
This journal is ª The Royal Society of Chemistry 2010



Fig. 7 Lane formation in complex plasmas. A short burst of small

(3.4 mm) particles is injected into a cloud of big (9.2 mm) background

particles (close to the midplane of the chamber, indicated by horizontal

dashed line). Small particles are driven towards the center, stages of (a)

initial lane formation and (b) merging of lanes into larger streams are

shown. Particles are illuminated by a thin laser sheet of x0.35 mm; each
interactions mediated by the solvent flow. One can include them

in their leading order by the long-ranged pairwise Rotne–Prager

tensor35 if the driving field is gravity or by the shorter-ranged

Ajdari–Long tensor73 if the driving field is electric. In the latter

case, the long-ranged Oseen tensor is screened due to the counter-

motion of counterions in the electric field, which is absent for a

gravitational drive. Indeed, this guarantees72 that hydrodynamic

interactions do not destroy the topology of the steady-state

diagram, shown in Fig. 6. However, for gravity (sedimentation),

laning is connected with macroscopic phase separation and the

stability range of a lateral lane crystal is strongly suppressed. The

same qualitative difference occurs for the order of the laning

instability. Simulation reveals that it is first order for sedimen-

tation, but continuous (i.e. without any notable hysteresis) for

a driving electric field.74 The same is true for experiments on

oppositely charged colloids in electric fields.

A further observation of lane formation has been recently

found in dusty plasma clouds.75 Small dust particles were injected

with high speed into a cloud of big dust particles in experiments on

the International Space Station.76 In fact, for the given initial

condition, both particles quickly form lanes and penetrate each

other via laning, as demonstrated in Fig. 7. The degree of laning

was characterized by an anisotropic scaling index and quantita-

tive agreement was found with computer simulations. The simu-

lations involve inertia and low friction for the particle dynamics

and adopt a repulsive Yukawa form for their interactions.76

In conclusion, laning is an instability, which occurs on the

particle scale, i.e. the size of the structures formed are of the order

of interparticle distances. Therefore particle-resolved experi-

ments, simulations and theories are needed to understand the

details of laning. In the future, for laning in charged colloidal

dispersions, a full simulational treatment of hydrodynamics and

explicit microions is needed in order to elucidate the role of the

electric dipole moments induced by the applied field. Modern

simulation techniques,77–81 which incorporate both hydrody-

namics and electrostatics will be helpful in this respect.

figure is a superposition of two consecutive images (1/50 s apart), the time

difference between them is x1.2 s. At stage (b), big particles also form

well-defined lanes. The frame indicates the region used for the analysis of

big-particle dynamics. From ref. 76.

IV. The banding instability

If particles segregate perpendicular to the driving field into

bands, the associated instability is called banding (or axial

segregation).34,82 This has been recently observed both for peri-

odically shaken granular matter83–86 and in Brownian dynamics

simulations, appropriate for colloidal suspensions in time-oscil-

latory external driving fields.82 Here, the driving force is time-

dependent and given by:

~F (t) ¼ �~F0cos(ut) (6)

where u denotes the driving frequency and the two different signs

correspond to two species of the particles, which are driven

against each other. In the limit of u / 0, one recovers a constant

drive which, was discussed in the preceeding section, see eqn (5).

The strength of the drive can be characterized by a dimensionless

Peclet number Pe, which is defined as

Pe ¼ F0

s

2kBT
(7)

where s is the particle diameter and kBT the thermal energy.
This journal is ª The Royal Society of Chemistry 2010
An example for the emerging steady-state diagram in a plane

spanned by the driving frequency u and the Peclet number Pe is

shown in Fig. 8. Banding occurs for intermediate parameters and

is followed by laning for higher Peclet numbers. On the other

hand, there is no pattern formation for small Peclet numbers and

high frequencies. This becomes immediately clear by observing

that high frequencies lead to an almost vanishing net force if the

time-scale of the external drive is much faster than the viscous

response time of the particles. The intuitive mechanism for

banding is that particles driven alike perform the same harmonic

excursions induced by the external field. It is more profitable for

the system to arrange into bands since there are only two big

collision events involving two oppositely driven bands during

one oscillation cycle, which is preferred to a steady friction of

lanes. Since banding is a highly collective process, the formation

of bands needs a long time, i.e. many oscillation cycles if started

from a completely mixed configuration. Finally, the tilted bands
Soft Matter, 2010, 6, 3133–3142 | 3137



Fig. 8 [(a)–(d)] BD simulation snapshots for fixed driving frequency

usD ¼ 4(sD denoting a typical diffusive time scale) but different Peclet

numbers Pe after 104 periods starting from a fully mixed configuration.

Particles colored in green are of species A while particles colored in red

are of species B. Symbols in the left upper corner correspond to symbols

used in (e). In (a) the coordinate frame is shown and the direction of the

driving field is indicated by the broken arrow. In [(a)–(d)] the length of the

solid bars (bottom left corner) correspond to the amplitude of a free

particle driven without noise in the external field. For small Pe, a disor-

dered state (a) is observed, for intermediate Pe, colloids segregate into

stripes oriented perpendicular or tilted (tilt angle q) to the direction of the

oscillating force [(b)–(c)], on the other hand, for high Pe, lanes are formed

parallel to the direction of the oscillatory force (d). Parameters are usD ¼
4 and Pe ¼ 2, 10, 20, 110 from (a) to (d). (e) A nonequilibrium steady-

state phase diagram for fixed area fraction f ¼ 0.4. The solid line

describes a simple theoretical estimate of the disordered-to-segregated

phase boundary. The parameters of the snapshots [(a)–(d)] are also

indicated, and fA, B ¼ �F0. From ref. 82.

Fig. 9 A sketch of the classical Rayleigh–Taylor instability. A heavy

liquid (dark grey) is placed above a lighter liquid (light grey), m1r1 >

m2r2, and an interface fluctuation with a wavelength l is considered. For

l > lc, the situation is unstable.
seen in the simulations might be artifacts of the periodic

boundary conditions used in the simulations.

A theoretical description, as well as an experimental realiza-

tion, of banding in the colloidal context is a challenging task for
3138 | Soft Matter, 2010, 6, 3133–3142
the future. Since banding appears as a secondary instability on

top of initial laning, a theoretical description is not easy and

probably needs terms beyond a linear stability analysis.33
V. The Rayleigh–Taylor instability

If a heavy liquid is placed above a lighter one, it is unstable since

the system will tend to minimize its potential energy. The clas-

sical Rayleigh–Taylor instability is a fingering instability and

results from a growth of unstable interface fluctuations. In fact,

typically, there are two competing mechanisms that determine

the stability of the interface: surface tension due to an increase of

the interfacial area, which will work against a growing interface,

and potential energy, which tends to destabilize the sample. For

the simple, two-dimensional situation shown in Fig. 9, where

a periodic undulation of the interface with an amplitude h0 and

wavelength l is shown, the increase in line tension g per unit

length is proportional to p2h0
2g/l2, while the potential energy

gain per unit length is l-independent and given by h0
2g(m1r1 �

m2r2) where (m1r1 � m2r2) > 0 measures the mass density

contrast between the upper and lower liquid and g denotes the

gravitational acceleration. Therefore, there is a critical wave-

length

lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2g

gðm1r1 �m2r2Þ

s
(8)

which separates a stable from an unstable regime: interface

undulations with l > lc are unstable while for l < lc they are

stable. Clearly, if the surface (or line) tension is zero, all undu-

lations are unstable.

In the initial (linear) regime, unstable modes grow exponen-

tially in time f exp(n(l)t). The actual growth rates n(l) can be

obtained from a study of the Navier–Stokes equations2 revealing

a maximal unstable one, i.e. the growth rate n(l) exhibits

a maximum at a finite wavelength lm. The latter mode will clearly

dominate after finite time such that the interfacial structure

should exhibit a peak in its Fourier transform close to 2p/lm.

The physical reason for the maximal growth rate is obvious

and explained as follows. Consider the case of vanishing surface

tension, g ¼ 0 first. As l / 0 much mass diffusion is needed to

grow the undulation, hence n(l / 0)¼ 0. On the other hand, for

l / N, viscous friction of the opposite layers will slow down the

motion, implying n(l / N) ¼ 0. Therefore, in between, there

must be a maximal growth rate.

It is an intriguing question, how the classical Rayleigh–Taylor

instability looks on the particle scale where continuum concepts
This journal is ª The Royal Society of Chemistry 2010



like surface tension g and viscosity etc. break down. Here

colloidal dispersions mark the dividing line between molecular

systems who typically do not feel gravity on single particles and

granulates for which a typical thermal energy is neglected against

gravity. The actual impact of gravity can again be characterized

by the Peclet number

Pe ¼ mgs

kBT
(9)

where s is the particle diameter. For granular systems,87,88 Pe [

1, while for colloids Pe is of the order of unity.

Recent investigations of the Rayleigh–Taylor instability were

performed for sterically-stabilized spherical colloidal suspen-

sions, which can be modelled as hard spheres.17,89–91 Under

gravity, the suspension sediments to the bottom of the sample

leaving a couple of layers there. When the sample is quickly

turned upside down, the set-up for a Rayleigh–Taylor instability

is realized. However, there is no surface tension g in this case,

which leads to the expectation that all undulations are unstable.

Experimental data within an observation slice containing the

gravity direction ~g and perpendicular to it are presented in

Fig. 10.

The sedimentation experiments were performed in a slit-like

geometry. The slit width L was about 20–30 times the hard

sphere diameter. While qualitative agreement is achieved

between the experimental data and computer simulations, which

include hydrodynamic interactions between the colloids by using

the multiparticle-collision dynamics,32,92 quantitative agreement
Fig. 10 (a) A schematic illustrating the spatial parameters s, l and L. (b–

e) Simulation snapshots of a system, which contains N¼ 433858 colloidal

particles in a simulation box with dimensions L/s¼ 18 and Ly/s¼ Lz/s¼
81. The value of the Peclet number is Pe¼ 1.6. (b–d) The time series of the

system at time t/sS ¼ 3.2(b), 6.4(c), 9.6(d). sS is the time a single particle

needs to sediment over its own radius. The snapshots are slices of

thickness 2s done in the xy plane. (e) A slice of thickness 2s in the yz

plane at time t/sS ¼ 9.6. The height of the yz plane is x/L ¼ 2/3, as

indicated by the dashed line in (d). (f–i) The experimental realisation of

the Rayleigh–Taylor-like instability. (f–h) A time series of images taken

with a confocal microscope in the xy plane for the volume fraction f ¼
0.15, and Pe¼ 1.1 and L/s¼ 18 at times t/sS¼ 1.43(f), 5.5(g), 11.22(h). (i)

A slice in the yz plane at a height x/L ¼ 2/3 (indicated by the dashed line

in (h)) at time t/sS ¼ 11.22. In (f–i) the scale bars denote 40 mm. (f–h) are

2D images reconstructed from 3D confocal scans. From ref. 17.

This journal is ª The Royal Society of Chemistry 2010
can be seen in the wavenumber-resolved initial growth rates of

interfacial fluctuations. An example is shown in Fig. 11. Exper-

imental data (filled symbols) agree with computer simulations

(open symbols). The solid lines are the predictions of a linearized

stability theory based on the Navier–Stokes equation.2,17 It can

be concluded that a colloid diffusion correction f � Dk2 is

needed to get agreement between the experimental and simula-

tional growth rates, Here, D denotes the colloid diffusion coef-

ficient and k ¼ 2p/l the wavenumber. Nevertheless, there is

amazing agreement between theory and experimental/simula-

tion, showing that the coarse-grained Navier–Stokes equations

are valid almost down to ‘‘microscopic’’ (i.e. interparticle) length

scales.

Alternate observations of the Rayleigh–Taylor instability on

the particle scale are experiments of colloids in a dielectric

bottle93 and for colloid-polymer mixtures with finite surface

tension.94 But here, a quantitative comparison to simulation and

theory has not yet performed.

Finally a connection between the Rayleigh–Taylor instability

and the laning instability was pointed out in ref. 19. In contrast to

molecular dynamics,95 for colloidal particles, which are described

by Brownian dynamics, the laning instability is the ultimate limit

of the Rayleigh–Taylor instability if the fastest growing undu-

lation wavelength is comparable to the interparticle distance. In

this sense, lane formation can be viewed as the particle-resolved

Rayleigh–Taylor instability. The result in ref. 19 was gained for

a two-dimensional model for colloids under the absence of

hydrodynamic interactions. In three spatial dimensions, the

relation between the Rayleigh–Taylor and the laning instabilities

still needs to be explored.
VI. Clustering instabilities in rod-like suspensions
under nonequilibrium

Rod-like particles offer more possibilities for equilibrium phases

than spherical ones. Their phase diagram typically includes

liquid-crystalline phases which possess translational and orien-

tational order at various degrees. Correspondingly, in nonequi-

librium, if rods are driven by external forces, there are even richer

scenarios for instabilities, which can manifest themselves by

mutual rod alignment and by accompanied cluster formation. In
Fig. 11 The growth rate nsD versus wave number ks ¼ 2ps/l. Simula-

tion results of n(k) for different wall separation distances L/s ¼ 18, 12, 9

and fixed Pe ¼ 1.6. sD is the time a single particle needs to diffuse over its

own radius. From ref. 17.
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Fig. 12 A schematic overview of the instabilities discussed in this paper

in terms of length scales on which the pattern exhibits a structure and of

time scales on which these structures form for an unperturbed starting

configuration.
particular, in two spatial dimensions, the mutual alignment effect

is strongly pronounced if rods are approaching each other. In

this context, Brownian dynamics computer simulations have

been useful to explore and discover cluster formation in driven

rod-like colloids in two dimensions. We shall focus on two

examples in the following.

First, if a spherical particle is slowly driven through a two-

dimensional nematic phase96 perpendicular to the nematic

director, it will locally destroy the nematic order and leave a trail

behind it, which will again relax back to equilibrium nemtic

order. In ref. 97, it was shown that this situation, however, is

unstable at higher drives and exhibits a clustering instability:

beyond a critical drive, rods will accumulate in front of the

particle. Once a rod is pushed by the particle, it will need some

time to rotate around the particle. During this time, more rods

will be swept up by the particle such that a cluster is quickly

forming. If the growing cluster exceeds a certain size, it rotates as

a whole around the driven particle and the process starts again.

Therefore the cluster formation is rhythmic in time, i.e. a typical

frequency can be identified, which is associated with the cluster

formation and release. The rhythmic clustering scenario was also

obtained within a simple phenomenology-based theory in

quantitative agreement with the computer simulations.97 Though

the clustering instability is quite general, it has not yet been

confirmed in experiments on nematic films.98

Second, a clustering instability was found in self-propelled

particles99–101 upon confinement in microchannels. Rods were

studied, which move along their orientational axis and perform

Brownian motion.102 Once such a self-propelled rod is hitting the

wall, it needs some time to align to the wall. If other particles are

approaching, they will get stopped and then self-assemble into

a rod cluster, which has a hedgehog-like shape. Clearly this

hedgehog clustering instability is an out-of-equilibrium phenom-

enon. It was confirmed by dynamical density functional theory102

and should show up in various confining geometries.

In general, one may expect cluster formation in driven rod-like

particle suspensions for very general circumstances if some kind

of confinement is involved103 and the drive is strong. A prominent

recent example concerns self-starting micromotors of objects,

which have the shape of a ‘‘cogwheel’’ in a bath of self-propelling

particles.104 The unusual collective effects of active rods can be

exploited for sorting and filtering devices in mixtures.105,106
VII. Conclusions

In conclusion, colloidal dispersions are ideal model systems to

see instabilities on the particle scale. The individual colloidal

positions can be resolved and watched in real-space. Conse-

quently, ‘‘microscopic’’ information is available in order to

understand various instabilities. This is, by now, well-established

for thermodynamic instabilities, such as phase separation by

spinodal decomposition107–109 as well as crystallization and glass

formation,110,111 as obtained on the particle-level in pure colloidal

dispersion or in colloid/polymer mixtures. In this review, the

same idea was put forward for instabilities that are generated by

employing external driving fields. Examples of these instabilities

included buckling, laning, banding, fingering and ‘‘active’’

clustering.
3140 | Soft Matter, 2010, 6, 3133–3142
Fig. 12 summarizes the key length and time scale upon which

the instabilities are formed if an unperturbed situation is chosen

as an initial configuration. While the undulation length of the

Rayleigh–Taylor instability spans to macroscopic length scales

depending on the actual system parameters, all other instabilities

occur on the particle scale. As far as time scales are concerned,

the banding instability took most time in order to develop

completely while buckling is almost instantaneous.

There are many more examples that are beyond the scope of

this review. To mention just a few, there is shear-banding for

sheared suspensions112 (i.e. a banding into coexistence regions

with different internal shear rates). Related to buckling is the

Asaro–Tiller–Grinfeld113,114 instability of a strained solid film,

which was recently explored by calculations on the particle

scale.115,116 Furthermore, other hydrodynamic instabilities, like

the Marangoni effect,117,118 can be seen directly on the particle

scale for colloids. Temperature fields can be imposed to induce

instabilities based on thermophoresis.118–120

Apart from the buckling instability, the situations discussed

here involve fluid (disordered) phases. One could imagine much

more complicated scenarios where solids are involved. Laning

and banding can be studied for solid systems121 with novel

reentrant phenomena emerging, in particular if several crystalline

phases are competing.122 Colloidal dispersions will provide

excellent model systems to explore these questions in the future.
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