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Charged Colloidal Dispersions
Star Polymers
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By definition, soft matter systems react sensitively upon external mechanical
perturbations., This material class includes mesoscopic complex fluids such
as colloidal suspensions. It is a major challenge to understand the fascinat-
ing properties of colloids from first principles, i.e., by deriving its properties
from the microscopic interactions. Here, conceptis horrowed from statistical
physics are described, which are capable to overbridge the gap from micro-
scopic over mesoscopic fo macroscopic length scales. This is illustrated ex-
plcitly for charged colloidal suspensions and for star polymer solutions. A
particular emphasis is placed on density functional theory,

1 Introduction

Soft matter [1] is synonvinous with *complex fluids” and “colloids” although
emphasis is put on different aspects in using these substitute names. The text-
book definition of colloids is that there is at least one mesoscopic length scale
in the range between Inm and 1ilm on which the system exhibit discontinu-
itics. The main difference between a moleculor and a colloidal system becomes
immmediately clear in comparing two liquids known from everyday life: water
and milk. Water looks like a clear and structureless fluid on a length scale
down towards nanometers and one needs molecular resolution to detect the
water and alcohol molecules. Milk, on the other hand, consists of fat globules
exhibiting already a structure on a length seale of 10 microns. Furthermore,
milk contains submicron-sized caseine micelles which are the crucial build-
ing blocks in producing cheese. Hence the length scales of the characteristic
structure are quite different in the two cases: water is a molecular and milk a
colloidal liquid.

Discontinuities on a mesoscopic scale can happen between different phases.
Accordingly [2]. there are eight different kinds of colloidal dispersions depend-
ing on whether the disperse phase and the dispersion medium are in the solid,
liquid or gas phase. The name “colloids” is also frequently used in a more
specialized sense for colloidal suspensions which are solid particles embedded
in a molecular liquid. Typical examples are printing ink, paints, blood, urine,
spittle, adhesives (e.g. glue where the name “colloid” stems from), viruses,
and muddy water.

The physics of colloids is the domain between meolecular physics occur-
ing on a length scale smaller than one nanometer and the traditional solid
state physics of small crystallites which are larger than a micron. As a char-
acteristic feature of colloids, their bulk to interface ratio is much larger than
that of a crystallite. This can readily be seen by cutting a macroscopic solid
into subunits and counting the resulting area. Hence colloidal and interfacial
properties are very much inter-related.

If the term compler fluids is nsed, emphasis is put on the corplexity of the
description which involves very different {microscopic and mesoscopic) length
scales. Finally, the cxpression soft matier puts emphasis on the mechanical
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properties of colloidal materials, They react sensitively on mechanical pertur-
bations as compression or shear. An example is given below.

Let us first focus on colloidal suspensions, i.c., solid mesoscopic particles
embedded in a molecular solvent. A theorist would immediately approximate
the solid colloidal particles by isotropic spheres. This is of course the leading
order in a systematic approximation of the particle shape but it is not that
crazy as it looks at a first glance. By sophisticated preparation methods one ig

nowadays indeed able to realize excellent model suspensions of monodisperse

submicron-sized latex or polystyrol spheres [3]. Tor high colioidal concentra-
tions, these spheres seif-organize is crystalline arrays, Le., they undergo a
freczing transition. Such a colloidal crvstal has a lattice constant o in the
tresoscopic regime which leads to different elastic propertics as compared to
molecular solids. This is illustrated strikingly by considering the shear modu-
lus G of a colloidal crystal. Roughly speaking, G scales with a typical energy
scale (say the thermal cncrgy kgT') divided by a typical volume of the elemoen-
tary crystal cell, G ~ kT /e Hence a colloidal crystal has a shear modulus
which is 9-12 orders of magnitude smaller than that of an ordinary crystall
This implies that colloidal crystals are vulnerable to shear and explaing why
the term “soft matter” is appropriate for colloidal samples.

Polymers arc other prominent examples of soft matter, They are macro-
molecules composed of many monomeric units. A fypical example is a linear
hydrocarbon chain. But there are more complicated topologies conceivable,
such as brauched polymers (called dendrimers) or star polymers which consist
of f lincar chains attached to a comunon microscopic center [4]. The monomers
can be charged resulting in a highly charged macromoiccule which is called
poivelectrolyte.

In shis chapter I shall discuss systematic coarse-graining procedures which
lead to effective interactions beiween the largest, mesoscopic particles in multi-
component, multiscale fAuid mixtures. These effective interactions follow from
a rigorous “integrating out” of microscopic degress of freedom. This concept
aliows for a simple understanding of trends in the phase behaviour, structure
and dynamics of colloids and polymers. Moreover, the effective interaction can
be used in standard simulations of samples involving only the iarge particles
which now play the role of molecules in atomistic simulations. After a formal
Statistical Mechanics justification of the coarsc-graining procedure in Sect. 2,
we shall briefly propose approximative density functional in Sect. 3 which are
necessary to implement calculations within the coarse graining picture. The
coarse graining concept will then he successively applied to interacting electric
double-layers (Sect. 4), to solutions of star polymers (Sect. 5). A major part of
this chapter (in particular that with an emphasis of computer simulations) is
already published elsewhere in a recent review of the author Hansen [5]. Other
useful review articles concerning the matter of effective interactions are those
from Likos [6] and Belloni [7], aspects of charged suspensions are reviewed by
Hansen and Léwen [8] and a recent review on computer simulations of colloids
is provided by Dijkstra [9].
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2 Effective Interactions

From a more theoretical point of view, the great challenge in soft malter
is to understand and predict the macroscopic propertics starting from 'ttxhe
microscopic interactions. Already for pure molecular systems such an ."a.b
initio” calculation poscs a very hard problem. For a soft matter system this is
even more complicated due to the presence of intermediate mesoscopic length
scales. A . .

Typical quantities of intercst are the osmotic pressure of a collolidal dis-
persion, the elastic moduli or the phase behavior of colloidal suspensions as a
function of internal thermodynamic or external parameters. A general frame-
work to overbridge the different length scales is highly desirable because: i.) a
fundamental understanding of the thermodynamics of soft matter includllng
biological macromolecules can be reached and ii) new material properties
could be predicted.

Tt is clear that meshods of classical equilibrium statistical mechanics should
be applicable as most of the constituents are described as Cl:c'lSS'l{'i‘riti pal.'ticles.
Bridging the different length scales is most conveniently don.e in different stell)s
from microscopic to mesoscopic and then from mesoscopic to MACIORCOpic
length seales. The first step can be mzade by using the important c.onccept of _the
effective interaction. The second step is performed using ideas from classical
many-body theory. Let us firsl outline these concepts briefly in general and
then illustrate them for examples, in particular. .

An efficient statistical description of multi-component systems involving
particles of widely different sizes requires a (:oﬂtrolled—(:oal'se—grgh"ling Which~
may be achieved by integrating (“fracing”) out the degrecs of freedom of
theb majorisy components of “small” particles, which may be solvent mole-
cules, microscopic ions { “micro-ions™) or monomers of macro-meiecul?s. Fm
the sake of simplicity, consider an asymunetric binary “mixture” of va“la.rgey"
apherical particles, with centres of positions {R,} (1 <@ < \1) a.n'd Ny e N
“small” particles at positions {r;} (1 < j < Nj}. Restriction WJH be mz}de
to thermodynamic equilibrivun states. If classical statistics apply, integration
over mamenta is trivial, and the foens will be on configurational averages.
The total potential energy of the mixture may be conveniently split ino three
terms:

U{R} Ar ) = Du({R}) + Uoal{r; 1) + Us({Ri} . 4y 3) (1)
At a fixed inverse temperature 3 = 1/kpT, the configurational .part of the
Helmholtz free energy F of the two-compornent system may be formally ex-
pressed as:
exp(—FF) = Try Try exp(—FU)

= Try exp(—BU11) Tra exp(—F(Urz + Usz))

= Try exp{—3TU11) exp(—5 FR{({Ri}))

= Tr) exp(—0 Vi1 ({R:})) (2)



144 1. Léwen

where the short-hand trace notation implies integration over the configuration
space of species I or 2, i.e.

Tr, =

1 .
3N .
N /d 7 (3)

Vi1 ({R;}), the effective interaction cuergy of the large particles, is the sum
of their direct {or bare} interaction emergy 071, and of the confieurational
free energy of the fAuid of small particles in the “external’ field ot? the large
particles /o the latter depends parametrically on the configuration { R-} oi:
the large particles a

Vn({Ri}) = Un({R:}) + F2({R;}) (4)

and can be writfen as:
Fg({R,}) = —kgT 1II[TT9 GX])(*,H(U]_Q -+ 0—22” (5)

Up to now, no approximation has been made.

_ Three key aspects of the effective interaction Vi1 must be underfined.
Firstly, any physical guantity A({R,}) depending only on the coordinates
of the big particles can be formally averaged via the effective interaction

Try TIQ.A{{R,}) CXI)(—J@ U) =1Tr; A({R? }) exp(—m’()’ V'll({Rz})) (6)

Hence, once the effective interaction is known, any averages {e.g. pair corre-
lations) of the big particles can be extracted directly.

Secondly, due to the presence of a free energy, f:}. V11 is obviously state-

dependent, and has an entropic contribution of the gmall particles (Fy - Us —
T 5,).
. Finally, aithough the direct interaction U7, may be pair-wise additive, this
15 no longer true of Vy:. The free energy 75({R;}) generally has 111&111y—50dy—
contributions, so that ¥}, will be of the more general form' (with the change
of notation N1 — N and Vi, — Vi ) O

Vv{{Ri}) = Vf&'m +Z Z'U?(Rif R;) ‘=LZ Z Z‘US(Ri-, R Ry)+.... (7

13 i<k

V\(G Vis a state dependent but configuration-independent “volume” term. which
has no bearing on the local stricture of the laree particles. bat throngh its
contribution to the thermodynamic properties, it can, in sorfle cascs, str%xlo‘ly
influence their phase behaviour [10]. ' J -
Let us now give some important examples of how to apply the concept
of Coaln'se—gmining to soft matter systemss. Obviously one has'ﬁrst of all to
specify which statistical degrees of freedom should be considered and which
of those should be integrated out (“small particles”) and which of them should
be left in the effective interaction (“big particles” ). Depending on this choice
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Table 1. Type of microscopic degrees of freedom whick are integrated out for dif-
ferent kinds of macroparticles.

microscopic degrees which|resulting physical effect
are coarse-grained

soft matter systoem

charged colloids counterions, salt-ions screening of Coulomb repul-
sions

polvmers {lmnear chains |monomers polymers viewed as soft

gtar polymers, dendrimers) spheres

colloid-polymer mixtures |polymer coils depletionn  attraction be-
tween colloids

binary mixtures of big and|small colloids depletion attraction and ac-

small colloids cumulation repulsion

nanoparticies in solvent  |solvent particles discrete solvent effects
polyelectrolyte stars counteriong, salt-ions entropic  imteraction be-

Lween centers

one can cover quite different physical phenomena which are summarized in
Table 1. These include counterion screening of charged suspensions, depletion
interactions in mixtures and polymer modeling by soft spheres. Most of those
effecss will be described in defail in the next sections.

Expression (4) for the effective interaction, or potential of mean force, was
derived in the canonical enscruble, where the total mumbers of small and large
particles are fixed (closed system). In many practical situations the binary
system is in osmotic equilibrium with a pure phase of the small particles {e.g
the solvent), and the appropriate ensemble for such an open system is the
semi-grand canonical ensemble where Ny and the chemical potential po of the
small particles (rather than Ny) are fixed. The corresponding thermodynamic
potential is the semi-grand potential 25 = (2(7T, N1, pig; I;), and the effective
interaction energy of the large particles will then be:

Vit (R:) = Un(Ry) + S ({ Ry} (8)

which will again be state-dependent, a function of temperature, volume V' and
jto (rather than pp = Nao/V).

In surmnary, the initial two-component system, invelving a large mum-
ber of microscopic degrees of freedom, has been reduced to an effective one-
component system invoiving only the degrees of freedom of the mesoscopic
particles. The price to pay is that the effective interaction energy is state-
dependent and generally involves many-body terms. Approximations must
now be invoked to calenlate the highly non-trivial Fa or £25 term, ie. the part
of the interaction energy between the large particles induced by the small
particles. Three different strategies have so far been used in practical imple-
mentations:
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For any given configuration {R;} of the large particies, the small particles
are subjocted to the “external” potential U2 ({R,;}, {r;}), and hence form
an inhomogeneous fluid, characterized by a local density p(r; {R;}). The
thermodynamic potentials /% or (2o are functionals of p(r), and full use
can be made of the classical density functional theory (DFT) of non-

uniform fuids for the small particles {11,12]. DFT guarantees the existence .

of a excess free energy density functional F..[p{r] such that the free
energies Fy or {2, can be written exactly as functionals:

Ny oo
Bylo(r] = Fualp(r] + Feaelp(r] + Z] plryua(r, — Ryydr - (9)

and

Snlptr| = Falotr] = pa [ plodr (10)

Here, F.4[p{r] is the functional of an ideal gas which is known exactly

Fulptrl = b [ o) (45 ) = U dr (1)

with Ay being the thermal wave-length of the small particles. The density -

functionals given is (9) and (10} give the physical free energies Iy or (2

it the equilibrium density p(r; { R;}) of the small particles is inserted info

the functional which follows from the variational minimization principle
6 afp"(r)]

§p* (T) ipte=p

where p*(r) is a properly parametrized trial density. The only difficulty -

is that in general the exact functional F,..[p(r] is not known. Tractable
approximations are known for hard spheres and soft potential fluids which

are summarized in the next c¢hapter. The optimization (12} may be im-

plemented by steepest descent or conjugate gradient techniques, and the
resulting effective potential energy between large particles can then be

used directly in standard MC or MD simulations [13]. In the latter case, -
the forces F; acting on the large particles may be directly caleulated from

a classical version of the Hellinann-Feynman theorem:

Fi=-V;Vu({R;}) _
= -V Un({R;} — (ViU R} Am b (ry {13)
where the anguiar bracket denotes an equilibrium average over the de-

grees of freedom of the small particles, for a forced configuration {Ry}
of the laree ones. If the interaction energy Uis between the two species

is pairwise additive (U2 = TN ZP:I wial|r; — Rjl)), the force Iy is =

i=1
directly expressible in terms of the local equilibrium density p(r):

=0 12)
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F,.=-V,; U;]({Rj}) — / [J(T) Vi ulg(n — RJ) dr (14)

The optimization can also be achieved “on the fly”, along lines directly
inspired by the Car-Parrinello method for ion-electron systems [14]. Suc-
cessive minimization and large particle updating steps are replaced by
a single dynamical evolution, which mvolves the physical motion of the
large particles and fictitions dynamics of the local density of small parti-
cles, parametrized by a plane wave expansion [15].

The previous DFT optimization method calculates directly the total ef-
fective energy of interaction between the large particles, or the resulting
forces acting on each of these particles, without dividing Vi up into pair
triplet and higher order interactions, as written in (7). Another strategy
is to attempt to compute these various contributions separately. At very
low concentration of large particles, the effective pairwise interaction wg
is expected to be dominant. In order to map out vy as a function of the
distance r hbetween two large particles, ane may use standard MC or MD
algorithms to simulate a bath of small particles in the field of two fixed
large particles. Equation {13) may then he used to calculate the mean
forces acting on the two mesoparticles (which are opposite if the latter
are jdentical} for each distance r = |Ry — Rg|. The effective pair potential
ua{r) finally follows from an integration of the forces. This procedure must
be repeated for each distance v, but there are no time-scale or ergodicity
problems, since the two large particles are fixed. The same goal can be
achieved by appealing once more to DFT for the inhomogeneous fluid of
small particles, subjected to the force field of two fixed large particles. The
optimization may be carried out in r-space, using an adequate Bucledian
or non-Fucledian [16] grid on which the local density of small particles
is defined. For two identical large particles, the local density has obvi-
ous cylindrical symmetry, but under favourable conditions, a considerable
simplification occurs by fixing one of the large particles and considering
an infinitely dilute solution of large particles in a bath of small particles
around the fixed large particle. The density profile of the large particles
in the zero concentration limit ig directly related to the effective pair
potential between two large particies in a bath of small particles [17], i.e.,

vao(r) = kg1 lim In (m—fl—(L) (15)
pL—0 1 — oo)

The advantage is that the two density profiles g (r) and pa(r) are now
spherically symmetric, but the method requires the prior knowledge of
an accurate density functional for an asymmetric binary mixiure. This
strategy may be generalized to the caleulation of three-body and higher
order effective interactions, by considering the density profiles of large and
small particles around two or more fixed large particles [18].

Although the effective interaction energy (4) or (8) is not, in general, pair-
wise additive at finite concentrations of the large particles, it would be
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very convenient, for computational purposes, to reduce it, at least approx-
imately, to a pairwise additive form. Contrarily to the two-body potential
v (r) discussed in the previous paragraph, which is only valid in the low
density limit of large particles, the effective pair potential corresponding
o finite concentrations is expected to be density-dependent, and will, in
some average sense, incorporate the contributions of higher order terms in
(7). Suck effective density-dependent pair potentials can, in some cases,
be derived from approximate functionals or from inversion procedures,
examples of which will be deseribed in Sect. 5.

3 Approximative Density Functionals

In this section we summarize different modern approximations for the excess
free energy density functional Feg.ip(r]| for different small-small interaction
pair potentials wgo(r), namely hard spheres and soft particles. The case of
Coulomb interactions will be re-discussed in the next chapter.

For hard spheres of diameter ¢ the best current functional approxima-
tion is that of Rosenfeld’s fundamental measure theory [19]. 1t can be con-
structed also for hard sphere mixtures but here we restrict ourselves to a
one-component hard sphere fluid. In this approximation one takes

Fradlpl = kT [ drdl{na(r)} (16)
where one introduced a set of weighted densities

na(r) = ]Q dr’ o(rwe(r —7') (17)
Here, the indéx e =0,1,2,3, V1, V2 labels six different weighted densities and

six different associated weight functions. Explicitly these six weight functions
are given by

wolr) = i”j—g—) as)
wi(r) = “;E;) (19)
wa(r) = (% ) (20)-
wa(r) = © (% - ) (21)
wy (r) = “’;;Ef) (22)

and
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Note that the index V denotes a vector weight function. We can express this
fact by writing w1 = wyq, ny1 = ny,. .. Finally the function @ is given by

with
Py = —ngln{l — ng) (25)
1Tk — Ty - Ty
@ j—
2 1 —ng (26)
and )
na(l — (nya/ng)2ye
@3 — 3( ( ¥ 2/ 2) ) (27)

247(1 — ng)?

The six weight funciions are connected to the geometrical (fundamental)
Minkowski measures [20]. There are several arguments in favor of the Rosen-
feld approximation: as an example we mention that the freezing transition
can be calculated by plugging in a constant density field for the fluid phase
and a lattice swn of Gaussian peaks in the solid phase. If the width of the
Gaussians and the prefactor are taken as variational parameters one gets a
first-order freezing transition with coexisting packing fractions of 5,y = 0.491
and 1, = 0.540 which are very close to “exact” simulation data ny = 0.494,
s = (0.545.

In the complementary case of very soft interactions, on the other hand,

it has recently been shown that a mean-field approximation for the density
functional is a very goed approximation [21-23]. If the pair potential ugs(r) is
“finite at the origin, then it can be shown that a mean-field functional is exact

1 the limit of very large densities. It works, however, amazingly well also for
finite densities. In the mean-field approximation one takes:

femc{p] = % ] dr / dr’p(r)p(r’)uggﬂ'r — fr") (28)

All other intermediate cases are more difficult. Some success is to map

‘harsh interaction onto effective hard spheres employing some ideas from the
- “construction of Rosenfeld’s functional [24]. Treating attractive tails has mainly

been limiting to mean-field-like approaches as well.

4 Charged Colloidal Dispersions

Electric double-layers around mesoscopic colloidal particles of various shapes
(spheres, rods, platelets, ...) or around polyelectrolytes make the generally
(_:'tlominant contribution to the effective interaction between highly-charged par-
bicles, which will be referred to as polyions [7,8]. Most simulations are based
on a primitive model, whereby the discrete nature of the aqueous solvent is
neglected, and a macroscopic value of the dielectric permittivity e is assumed.
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At very low polyion concentration, strategy b) of the previous section may be .

adopted to compute an cffective pair interaction between two polyions, which
is screened by microscopic counterions of opposite sign, as well as colons in
the presence of added salt. The resulting effective pair potential turns cut to
be invariably repulsive of the screened Coulomb form predicted a long time
ago by Derjaguin, Landau Verwey and Overbeck (DLVO) [25] as long as the
microions are monovalent. However if divalent counterions are present, they
are more strongly correlated, and this may lead to & short-range attraction be-
tween equally-charged polyions, due to an overscreening effect [26]. Although
most of the work on effective pair interactions has focussed so far on spherical
polyions, some recent MC simulations have investigated the case of lamellar
colloids [27]. The triplet interaction between spherical polyions has similarly
been caleulated by MD simulations of co and counterions in the field of three
fixed palyions [28], and turns out te be attractive under most circumstances.
In the opposite limit of high concentrations, each polyion is confined to a cage
of neighbouring polyions, so that many-body interactions are expected to be
important, and pairwise additivity of the effective interaction is expected to
break down. It is then reasonable to consider a Wigner-Seiz cell model, where
a cell of geometry adapted to the shape of the polyions {e.g. a spherical cell
for spherical polyions) contains one polyion at its centre, surrounded by co
and counterions, such that overall charge neutrality is ensured, and with ap-
propriate boundary conditions for the electric field on the surface of the cell.
A physically reasonabie boundary condition is to imposce that the normal-
component of the electric field vanishes on the surface. The initial problem
involving many polyions is thus approximately reduced to the much simpler
problem of a single polyion surrounded by its electric double-layer. Although
all information on correlations between polyions is lost, the cell model allows a
calculation of the thermodynamic properties of concentrated suspension, from
MC or MD simulations of the inhomogeneous finid of microions contained in
the cell, as well as an estimate of the effective polyions charge, taking into
account the phenomenon of counterion “condensation” (29, 30]. Such simu-
lations provide stringent tests for approximate DFT calculations, including
Poisson-Bolizmann {PB} theory.

At moderate polyion concentrations, the two previous strategies break
down. Strategy a) of the previous section, based on the step by step or

“on the fly" optimization of an appropriate free energy functional of the mi- |
¥ P 55

croion density profiles, is the most appropriate [15]. The free energy functional
Ex[py(r), p_(r), {R;}] of the co- and counterion densities is convenicntly split
ingo ideal, Coulomb, external and corrclation parts:

F-)_ [[).5_: p_] = Fq,d[ﬁJr} -+ Ffid [,0-1; + AFC'UU.I [,O(J
%Fﬁ:ﬂl’,[p-‘)—} + l:ﬁﬁzr,t [,0—} + F(:or‘r[p+: pf} (29)

where:
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Ftlpal = kT / pa () [n(A% poalr)) — 1) dr (30)
1 Pe {"" pelr )
FC’au[ p& - ] fd |'I' _ 'I‘" (31)

Fowt [pa} = / Pemt (7‘) Pu(’l") dr

Wy
- Z [ula (7" - R't} P (T) dr (32)
=1

In (31), palr) = z4p4(r} + z_p_(r)} is the charge density of the microions
(of valence z,). The polyion-microion potentials ui, in {32) contain a hard
core repulsion and a long-range Coulomb attraction {counterions) or repulsion
{colons). Rapid variations of the densities profiles p,(r) near the surfaces of
the polyions, which would pose numerical problems in r-space {grid) or k-
space (large k Fourier compoments) may be avoided by the use of appropriate

. classical polylon-microion pseudopotentials [15]. The correlation term Fl,pr

may be expressed within the local density approximation {LDA) [15]. If it is
neglected, the functional {29) reduces to the mean-field Poisson-Boltzmann
(PB) form. Optimization based on the functional (29)-(32} has been achieved

* with the “on the fly” MD strategy for spherical polyions with counterions only

(no salt) [15], and the presence if salt {i.e. with co and counterions) [31]. FThe

effective forces between colloids are reasonably well represented by a pair-wise

additive screened-Coulomb form provided the (effective) polyion charge and
the screening length are treated as adjustable parameters. Other applications
include rigid rod-like polyions [32], and flexible polyelectrolytes [£3], the lat-
ter being mvestigated by MC simulations coupled with steepest descent opti-
mization, to allow a more efficient exploration of polyelectrolyte configuration
space. If Fiorr I8 neglected in the functional (29}, and the ideal terms are re-
placed by their quadratic expansion in powers of Apo(r) = po(r) — p. (where
fo is the bulk concentration of microions), the total functional is gquadratic
in the p, (1}, and the Euler-Lagrange equations resulting from the extremum
conditions (12) can be solved analytically [15]. The resulting total effective en-

- ergy of the polyions is then strictly pair-wise additive, and the cffective pair
© potentials are of the linearly screened DLVO form. The entire procedure is jus-

tified only for relatively weak microion inhomogeneities (i.e. |Ap,(r)]/pe < 1),
Le. for low absolute polyion valence |Z,|. If the polyion charge is distributed
over & number i of interaction sites, each carrying a charge Z,e/v, linear

- screening may be an adequate approximation for each interaction site. The

resulting “Yukawa site” model, where all sites on neighbouring particles in-
teract via a screened Coulomb (or Yukawa) pair potential, has been used to
simuiate charged rods {32] or charged dises representing clay particles [33].
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Fig. 1. Star polymer solution on different length scales. (a): microscopic picture,
water and hydrocarboen chains are shown, the chemical beonds have a range of typi-
cally 1A, (b): On a larger scale, the persistence length of the chains is relevant. (¢):
the spatial extension ¢ of a single polymer star. {d}: all the coils are point particles
on this scale governed by the mean intercoil distance (e): size of the macroscopic
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5 Star Polymers

Star polymers [4] consist of | linear polymer chains which are chemically
anchiored to a common centre (f is called functionality or arm number). Ob-
viously, linear polymers are a special case of star polymers when [ = 1,2 de-
pending whether the end or middle segment is taken as “centre”. Dendrimers,
on the other hand, can be viewed as iterated star polymers: periodically, any
linear chain branches ofl into » additional chains (n is called degree of branch-
ing) which is repeated g times (g is called generation number). For f > 3, in
contrast to linear chains, star polymers and dendrimers possess a natural cen-
tre which serves as an appropriate statistical degree of freedom.

Let us first focus on star polymers in a good solveni. A Tull monomer-
resolved computer simulation is completely out of reach of present-day com-
puters: If ¥V is the number of stars and M the number of monomers per chain,
a total number of N fM particles has to be simulated, f times more than for
a solution of linear chaing and fM times more than for simple fluids. The
strategy b} of Sect. 2, however, can be efficiently used to make progress. First
consider only fwo stars at fixed scparation ¢ and average the force acting
on their centres during an ordinary MC or MD simulation of the monomers.
Such a simulation involves 2fA particles only. A typical simulation snap-
shot is shown In Fig. 2. This is repeated for different r. By integrating the
distance-resolved data for the force, the effective interaction potential v(r)
is obtained. This interaction is rcpulsive, since the presence of another star
reduces the number of configurations available to the chains. For small arm
numbers f < 10, the simulation results confirm an effective pair potential of
the log-Gauss form: '
—In(%) + =iz for v <o;

P

(33)

a L
v(r) = TR Fide

1 2r%—o”
sragz oxp [~ ) for v >0,

where ¢ is the corena diameter of a single star measuring the spatial extent
of the monomeric density. For large distances r, the interaction is Gaussian
as for linear chains. It then crosses over, at the corona diameter of the star,
to a logarithmic behaviour for overlapping coronae as predicted by scaling
theory [34] which implies a very mild divergence as r — (", The matching at
r = ¢ i3 done such that the force —duv/dr is continuous. In {33), 7{f} is known
from a fit to computer simulation results; for / = 2 we obtain 7 = 1.03 in line
with a Gaussian potential used for linear chains,

For larger arm numbers, f > 10, on the other hand, a geometric blob
picture of f cones around the star centre, each containing one linear chain
is justified [35]. The effective force for nearly touching coronac decays expo-
nentially with v, the associated decay length is the outermost blob-diameter
20 /+/F. This motivates a log-Yukawa form of v(r) [36]:

5 wIn(Z) + for r<¢
olr) = S p T Es? o/ T2 = .
L(f) = lSkBTf :;_ exp(—+/T{r—o)/2a) for r> o (34)
1+/7/2 ¥
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within a self-consistent field approach for polymers grafted on flat plates where
the grafting density is high and the self-avoidance is weak {44]. This was
extended to spherical particles by emploving the Derjaguin approximation
.'{45‘%} providing an analytical expression for the effective pair potential v(r}.
Tn the limit of small core sizes, this expression has been successfully tested
against scattering data for f = 64 arm stars in a solvent close to © conditions
[47]. What is still unexplored is a systematic approach for arbitrary solvent
quality which continously switches between good solvent quality to the @
point and beyond.

Much more stretched configurations are achieved for polyelectrolyte stars
(“porcupiues”) due to the strong Coulomb repulsion of the charged monomers
along the chains. If one brings two polyelectrolyte stars together they hardly
interdigitate but retract. A variational analysis [49] for the eflective force,
which includes Coulomb interactions and entropies of the counterions, reveals
that the entropy of the counterions which are inside the coronae of the two
olyelectrolyte stars dominates the interaction, confirming an old idea of Pin-
cus [48]. The analytical theory was quantitatively verified by computer sim-
dlations with explicit monomers and counterions [49]. Iuside the corona, the
regulting effcctive foree could be fitted by an inverse-power law oc r =7 where
the exponent v slightly depends on the actual charging conditions but is al-
ways around 0.7 — 0.8, By integration, an effective potential is obtained which
gtays finite at the origin and behaves inside the corona as v(r) = (0} — Cr1 7
with a positive constant C. However, the actual value v(0) for completely over-
lapping stars is much larger than kT so that significant overlap is rare. Due
to the softness of the interaction, similar structural anomalies as obtained for
gtar polymers are expected including a non-monotonic variation of the first
peak in the structure factor for increasing density and reentrant melting.

Fig. 2. Typical configuration for two stars with f = 10 and M = 50 monomers
per chain as obtained from a snapshot during a Molecular Dynamics simulation!,
The distance between the two black lines is the centre-to-centre separation r. By
courtesy of A, Jusufi .

again matched at the corona diamcter v+ = o such that the force is continuous
This poteritial was verified in monomer-resolved simulations [37] for a large
range of arm numbers.

Using scaling theory and monomer-resolved simulations of a triangular:
configuration of three stars [38], triplet interactions were shown to be negli-’
gibly small outside the corona and at most 11 percent of the pairwise forces’
for penetrating triplets inside the corona; consequently the effective pair-wise:
description for the many-body system is adequate provided the number den-
sity ps of the stars is not much higher than the overlap density i/c”. Large’
scale simulations involving many stars were performed using the pair poten:
tial of (34) 139,40]. Due the crossover of v(r) at r = & from a harsh Yukawa.
to a soft logarithmic behaviour, uncommon structural and thermodynaisical:
properties were obtained. First, the main peak of the liquid structure factor
changes non-monotonically with increasing density [40]. Secondiy, the bulk:
phase diagram exhibits [39] a reentrant melting behaviour for 34 < f < 44
and stable anisotropic crystal lattices. The latter finding has been supported.
by recent experiments on various block-copolymer micelles [41-43].

Next let us briefly discuss star polymers in a poor selvent. The only work in:
this direction is close to the ©-point where the chaing are weakly interacting.
Consequently the resulting effective repulsion is weaker than in good solvent.:
More quantitatively, an effective potential between two plates is available’

6 Colloids and Polymers: Depletion Interactions

If a sterically-stabilized colloidal particls is brought into a non-adserbing poly-
mer solution, the latter are depleted in a zone around the colloidal surfaces
due to the colloid-polymer repulsion. The width of this zone is of the order
of the radius of gyration d,/2 of the polymers. If one now brings two col-
loidal particles close to each other, the two depletion zones overlap, which
brings about a free energy gain of the polymers relative to a situation of non-
overlapping zcnes, resulting in an effective attraction hetween the colloids,
the so-called depletion attraction. Alternatively one can view the attraction
arising from an unbalanced osmotic pressure exerted on the colloidal particles
“by the surrounding polymers.

The simplest model for colloid-polymer mixtures including the depletion
effect i3 the so-called Asakura-Oosawa (AQ} [50] or Asakura-Oosawa-Vrij
(AOV) [51] model which assumes hard core interactions between the colloids
of diameter d., further hard-core interactions between the polymers and the
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colloids with a range (d. + d,)/2, but no interaction at all between polymers.
The ideality of the pelymers is a crucial approximation which is fulilled only
for dilute polymer solutions, but it allows to investigate many of the statistical
properties of the AQ model analytically. For instance, the effective interac-
tion v(r) between a colloidal pair can be calculated to be the product of the
polymer osmotic pressure P, = kgTp, and the overlap volume of the two
depletion zones consisting of two spherical half-caps. Explicitly it reads

v(r)

kpT
oo for r<d,

= pp5(de +dy)° [1 - 2(df}:}1p) + %(dcﬂp)a} for d.<r<de+dy (35)
0 for r>d.+dp

Furthermore, by a simple geomnetric consideration, it can be shown that effec-
tive triplet and higher-order many-body forces vanish provided the size ratio
between colloids and polymers g = d,/d. is smaller than 0.154. In this case,
the AQ model is formally equivalent to an effective one-component system
with a short ranged attraction, which immediately opens the way for large-
scale simulations.

The phase diagram of the AQ model was explored by computer simulasions
on two different levels: first, one-component calculations using the effective
pair potential (353) have been performed [52], which are exact for ¢ < 0.154.
Secondly, more recently, Dijkstra has simulated the [ull effective Hamiltonian
including effective many-body forces to arbitrary order for ¢ = 1 [53]. The
emerging phase diagram involves three phases: gas (i.c. colloidal poor), liquid
{i.e. colloidal rich) and an fee colloidal crystal. A liquid phase is stable if the
ratio ¢ is larger than g, = (.5,

On the other hand, theoretical progress was made by constructing a free
volurne theory for the fluid bulk free encrgies [54] which provides a reliable
estimate for the gas-liquid trangition. A free-energy density functional for the
AO ecolloid-polymer mixtures, valid for arbitrary inhomogeneous situations,
was constructed {55] in the spirlt of Rosenfeld’s fundamental measure ap-
proach [19], whick reproduces the effective interaction (33) for a colloid pair
and the free volume theory of [54]. This density functional was applied to
wetting phenomena of planar walls. A novel type of wetfing involving growth
of only few colloidal liquid layers on top of the wall as liquid-gas cocxistence
is approached was predicted by density functional theory [56] and confirmed

by computer simulations [53]. This wetting scenario only shows up for ratios -

larger than g, 50 that one can speculate that it is produced by the intrinsic
many-body naturc of the effective forces.

Obviously, the AO model has the short-coming of idealized interactions.
More realistic models involve a non-zero polymer-polymer interaction and a
softer polymer-wall interaction 57]. On the other hand, full two-component
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sunulasions of colloids and polymers were performed [58, 59] where the poly-
mers are defined on a lattice. Clearly these include any effective many-body
interactions. A second computationally less demanding technique is to cal-
culate effective pair interactions between a colloid and a polymer first by a
monomer-resolved reference simulation. This strategy was followed in the more
general context of mixtures of colloids and star polymers for small size ratios
q. Supported by theoretical scaling arguments the following pair interaction
hetween a hard-sphere colloid and a star polymer was obtained [60,61]:

?-*‘(-'P (T) = kBrFAf:S/Q (27‘?&3)
(2 (B ) (1 am) /(1 26) ¢ forr € (et 0)/2:

Cerfe(k(2r — dp) /o) ferfo(k) clse,

b

(36)

Here, A and x are known parameters depending on the functionality f of
the star, ¢ = /merfe(x) exp(x?)/(x(1 + 2x?), o denotes the corona diameter
of the star and erfc(x) is the complementary error function. For v — d./2
the potential diverges logarithmically as for the star-star interaction (33}
Linear polymer chains are obtained as the special case [ = 2 where A = (0.46
and & = 0.58. The two-component system with effective pair icteractions
was investigated in detail by further simulation and liquid integral equation
theory. For different arm numbers f, the fluid-fluid demixing fransition was
caleudated [60] in good agreement with experimental data. Furthermore, the
freezing transitions was discussed. Above a critical arm nuwmber of f. &~ 10,
finid-fluid demixing was preempted by freezing [62]. More recently, the fluid-
fluid interfacial tension was calculated on the basis of the realistic effective
interactions between colloids and linear palymers (being the special case f =1
in (35} [63].

In case of polymer size comparable or larger than the colloidal diameter
d.. effective many-body forces play a significant role. Complementary methods
such as monomer-resolved liquid intergral equations methods combined with
the PRISM approach [64] or field-theoretic calculations [65] have provided
valuable ingight into the structure of colloid-polymer mixtures. The hmif of
large g coutains completely different physics, since the colloidal spheres vep-
resent then small perturbations for the long polymer chains [59)].

7 Conclusions

In conelusion, we have demonstrated that the concept of effective interactions
allows large-scale simulations and provides additional insight into the physical
mechanisms governing colloidal dispersions and polymer solutions.

The open problems are in the application of effective inferaction to dy-
namical questions both in equilibrum and nonequilibrium [66]. This is much
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harder to establish since there is no clean statistical mechanics guideline in -

H. Lowen

this case.
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