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The cornerstone of density functional theory of inhomogeneous classical fluids [1] is based on
a variational principle as first derived in 1964 by Kohn and Hohenberg [2] for zero temperature
and later generalized by Mermin [3] to finite temperatures 7. This principle guarantees
the existence of a grand canonical free-energy functional Q(7, u, [p(F)]) of the one-body
density p () depending parametrically on the temperature and the chemical potential . If
the functional is minimized, the minimum is the actual grand canonical free energy of the
system and—even more importantly—one can generate any static many-body correlations
by taking functional derivatives with respect to the one-body density p (7). Hence the full
thermodynamics and structure of the system can in principle be calculated.

To date, there have, however, been two serious limitations on and obstacles to making
practical use of the density functional approach:

e For a given interparticle interaction, the density functional is not known exactly. It is
only in special cases (such as one-dimensional hard rods) that the functional is explicitly
known. In general, one has to rely on approximations.

e The density functional language itself is limited to time-independent structural
correlations. For dynamical quantities, both in equilibrium and non-equilibrium, there
is an urgent need to generalize density functional theory.

As regards the first limitation, tractable approximations have been developed during the last
few decades. Recent progress is comprehensively summarized in a Special Issue of the Liquids
and Soft Matter section of the Journal of Physics: Condensed Matter (issue 46 of volume 14,
2002). This issue is dedicated to the memory of the late Y Rosenfeld, one of the leading
pioneers in classical density functional theory. For steep repulsive pair interactions between
the particles (e.g. for hard spheres), Rosenfeld’s fundamental measure approach [4] provides
a very accurate approximation scheme which can be generalized to multi-component systems
and non-convex bodies. For very soft repulsions, on the other hand, it has been shown by Likos
and co-workers [5] that the simple mean-field approximation becomes asymptotically exact for
large densities and works amazingly well for finite densities. This approximation—also known
as RPA (random-phase approximation) in the liquid integral equation context—approximates
the direct correlation function ¢(r) &~ —V (r)/kpT where V (r) is the interparticle interaction
potential and kpT is the thermal energy. Numerous realizations of such soft interactions
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are found in solutions of polymers coils, star polymers and polyelectrolyte stars. Mean-field
density functionals for soft interactions are very popular now and have been used to study
various static equilibrium problems including those of interfaces [6] and wetting [7].

Apart from those using the traditional local Cahn—Hilliard equation, attempts to generalize
non-local density functional theory to dynamical properties are rare. Generalizing Fick’s law
in the density functional context, Dieterich et al [8] proposed and discussed the following
equation for the time-dependent density field p (7, 1):

kT dp(F. 1) -
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where D is the short-time self-diffusion coefficient of the underlying ‘microscopic’ Brownian
dynamics. The continuity-like equation (1) immediately implies conservation of the total
particle number. Unfortunately, the paper of Dieterich et al went almost unnoticed, although
the dynamical equation (1) plays a basic role in density functional theory. In fact, more recently,
Marconi and Tarazona [9, 10] have justified equation (1) on a more fundamental level; the only
approximation left is the assumption that the equal-time two-point correlation function out
of equilibrium has the same properties as its equilibrium version. Equation (1) was used
in various different contexts with a noise term added to its right-hand side; valuable former
approaches of model-B-like dynamics which use such additional fluctuations were developed
in the groups of Kirkpatrick [11] and Kawasaki [12]. One main point of the analysis of
Marconi and Tarazona is that such additional noise terms artificially double the thermal noise
if the exact density functional is taken in equation (1). For the system of one-dimensional rods
where the density functional is known exactly, Marconi and Tarazona [9, 10] found that the
non-equilibrium relaxational dynamics as predicted by equation (1) agrees well with ‘exact’
data from Brownian dynamics computer simulations. This is a remarkable result, building a
basis for tackling dynamical problems with density functional theory in a very simple way
for systems governed by a Brownian ‘microscopic’ dynamics. Still, as far as a systematic
comparison with simulations is concerned, only the one-dimensional hard-rod model was
tested and one can ask whether it is the peculiar one-dimensional dynamics with non-crossing
of hard rods which leads to a fortunate coincidence with the ‘exact’ simulation dynamics.

In a letter in this issue of Journal of Physics: Condensed Matter, Dzubiella and Likos [13]
go one step further and apply equation (1) to three-dimensional systems with soft interparticle
interactions approximating the density functional within the accurate mean-field approach. For
various time-dependent external potentials corresponding to the physical case of squeezing and
relaxing Brownian soft particles in a time-dependent external (e.g. optical) trap, the dynamical
density fields agree almost perfectly with non-equilibrium Brownian dynamics computer
simulations. What is amazing is that not only are the qualitative features of the different
dynamical processes reproduced by the dynamical density functional theory, but also even the
full quantitative time resolution is contained in equation (1). The importance of the letter of
Dzubiella and Likos is that it opens the way to applying dynamical density functional theory
to various important problems of soft matter driven to non-equilibrium. A generalization of
equation (1) to two-component mean-field fluids that exhibit an equilibrium fluid—fluid phase
separation is immediate. Therefore an accurate microscopic description of homogeneous and
heterogeneous gas—liquid nucleation [14] and wetting dynamics [7] lies ahead. In particular, it
is interesting to investigate how these phenomena are controllable by external potentials [15]
(e.g. an optical tweezer for the soft particles), since density functional theory is perfectly suited
to treat different external potentials. Another area where a considerable stimulus from the work
of Dzubiella and Likos [13] can be expected is the microscopic dynamical understanding of
spreading and dewetting phenomena in thin polymer films. What is still open, however, is
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the problem of finding a tractable framework for including hydrodynamic interactions in the
dynamical description.
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