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BITE H. Lowen

1 Abstract

Solutions of colloidal dispersions and polymers naturally involve widely different length
scales. Integrating out parts of the microscopic degrees of freedom leads to the concept
of effective interactions and provides a “coarse-grained” picture which can be studied
by much simpler means than a full microscopic model. This approach bridges length
scales in soft matter systems. This procedure is justified on a Statistical Mechanics level
and applied to different systems ranging from charged colloidal dispersions and polymer
solutions (including star polymers and dendrimers) to mixtures of colloids and polymers
and binary mixtures of sterically-stabilized colloids. Difficulties arising in applying this
concept to nano-scales are also discussed.

2 Introduction

By definition, soft matter systems involve different length scales Consider for example dis-
persions of spherical charge-stabilized colloidal particles (e.g. polystyrene balls) in water.
There are at least three different length scales: the microscale of the solvent molecules,
the nanoscale of the width of the electric double-layers formed by the co- and counterions
(approximately equal to the Debye screening length), and the mesoscale of the colloidal
particles (typically hundreds of nanometers). This implies that analytical theories are
complicated and that computer simulations are geting time-consuming. For example,
even neglecting the molecular nature of water, the practical limit of simulations is a
charge asymmetry between colloidal and counterion charge less than 100 [1].

In this lecture I shall discuss systematic coarse-graining procedures which lead to effec-
tive interactions between the largest, mesoscopic particles in multicomponent, multiscale
fluid mixtures. These effective interactions follow from a rigorous “tracing out” of mi-
croscopic degress of freedom. This concept allows for a simple understanding of trends
in the phase behaviour, structure and dynamics of colloids and polymers. Moreover, the
effective interaction can be used in standard simulations of samples involving only the
large particles which now play the role of molecules in atomistic simulations. After a
formal Statistical Mechanics justification of the coarse-graining procedure in section 2, we
shall briefly propose approximative density functional in section 3 which are necessary to
implement calculations within the coarse graining picture. The coarse graining concept
will then be successively applied to interacting electric double-layers (section 4), to so-
lutions of polymers (linear polymers, star polymers and dendrimers) (sections 5 and 6),
to colloid-polymer (section 7) and binary colloid mixtures (section 8). In section 9 the
new challenges of coarse-graining nanoscale rather than mesoscale colloidal systems will
be briefly considered, with biomolecular (e.g. protein) solutions in mind. A major part
of this lecture (in particular that with an emphasis of computer simulations) is already
published elsewhere in a recent review of the author with J. P. Hansen (Cambridge) [2].
Other useful review articles concerning the matter of effective interactions are those from
Likos [3] and Belloni [4], Aspects of charged suspensions are reviewed by Hansen and

Lowen [5] and a recent review on computer simulations of colloids is provided by Dijkstra
[6].
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3 The statistical concept of coarse-graining

An efficient statistical description of multi-component systems involvin'g partic]@ of widlel_v
different sizes requires a controlled-coarse-graining which may be aclucvgd by :ntegrz}mng
(“tracing”) out the degrees of freedom of the majorit)_r (:mppul‘}ents of “small partlcl(‘as,
which nﬁxy be solvent molecules, microscopic ions (“nn(‘ro—wus?' ) (.Jl‘ mon:)m'ers of”ma‘-cmr—
molecules. For the sake of simplicity, consider‘ an asymimetric 1.)1nary mlxture; of A:rl
“large” spherical particles, with centres of Aposmons {R:} (.1 S ) §. Ny), and N, >>lx i
4small” particles at positions {7} (1 < j < -N-%). Rostrlf't,lon Wl.ll be made to t 1(,1—
modynamic equilibrium states. If classical statistics apply, integration ovcr.mome{lp(rx 1.}
trivial, and the focus will be on configurational averages. The total potential energy o
the mixture may be conveniently split ino three terms:

U{BY, A7) = Un({R}) + Un({7h) + U RIATY) (1)

At a fixed inverse temperature 3 = 1/kpT), the configurational part of the Helmholtz free
energy F' of the two-component system may be formally expressed as:

exp(—=BF) = TriTryexp(—6U)
= Try exp(—BUn) Tra exp(—=B(Urz + Uz))
= Tr exp(—BUn) exp(—8 Fa({R:}))
= Try exp(-BVu({R:}) 2

where the short-hand trace notation implies integration over the configuration space of

species 1or2,ie.

1 3N
717‘(l = m/d T

V; ({ﬁ,}), the effective interaction energy of the large particles, is the sum of their direct
((;; bare) interaction energy Un1, and of the configurational free energy of the fluid of small
particles in the “external” field of the large particles Fy; the latter depends parametrically
on the configuration {R;} of the large particles

Vn({ﬁ:}) :Ull({ﬁz})—i—Fg({ﬁi}) 3)
and can be written as:
F({R;}) = —kgT In[Trs exp(—B(Urz + Uz)| (1)

é imati de.
to now, no approximation has been ma A . .
ggree key aspects of the effective interaction V;; must be underlined. Firstly, any physical
uantitY“A({ﬁi}) depending only on the coordinates of the big particles can be formally
:veragéd via the effective interaction

Try TroA({ B} exp(—=BU) = TriA({B:}) exp(—B Vi ({R:})) (5)

Hence, once the effective interaction is known, any averages (e.g. pair correlations) of the
big particles can be extracted directly.
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Secondly, due to the presence of a free energy, Fy, V4, is obviously state-dependent, and
has an entropic contribution of the small particles (F = U, — T Ss).

Finally, although the direct intergction U1 may be pair-wise additive, this is no longer
true of V1;. The free energy F3({R;}) generally has many-body-contributions, so that Vi;
will be of the more general form (with the change of notation N; — N and Vii — W)

VB =V + 3N (B B+ 5 S (R B B+ (6)

i<y i<j<k

V,S,O) is a state dependent but configuration-independent “volume” term, which has no
bearing on the local structure of the large particles, but through its contribution to the
thermodynamic properties, it can, in some cases, strongly influence their phase behaviour
[7].

Let us now give some important examples of how to apply the concept of coarse-graining
to soft matter systems. Obviously one has first of all to specify which statistical degrees
of freedom should be considered and which of those should be integrated out (“small
particles”) and which of them should be left in the effective interaction (“big particles”).
Depending on this choice one can cover quite different physical phenomena which are
summarized in Table I. These include counterion screening of charged suspensions, deple-

tion interactions in mixtures and polymer modeling by soft spheres. Most of those effects
will be described in detail in the next sections.

soft matter system microscopic degrees which | resulting physical effect

are coarse-grained

charged colloids counterions, salt-ions screening of Coulomb re-
pulsions

polymers (linear chains, | monomers polymers viewed as soft

star polymers, dendrimers) spheres

colloid-polymer mixtures | polymer coils depletion attraction be-

tween colloids

depletion attraction and
accumulation repulsion
discrete solvent effects
counterions, salt-ions entropic interaction be-
tween centers

binary mixtures of big and | small colloids
small colloids

nanoparticles in solvent solvent particles
polyelectrolyte stars

Table I: Type of microscopic degrees of freedom which

are integrated out for differ-
ent kinds of macroparticles.

Expression (3) for the effective interaction , or potential of mean force, was derived in the
canonical ensemble, where the total numbers of small and large particles are fixed (closed
system). In many practical situations the binary system is in osmotic equilibrium with a
pure phase of the small particles (e.g the solvent), and the appropriate ensemble for such
an open system is the semi-grand canonical ensemble where N; and the chemical potential
pa2 of the small particles (rather than Ny) are fixed. The corresponding thermodynamic
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. D . . t,
otential is the semi-grand potential Qg = Q2(T, N1, 23 R:), and the effective interaction
Energy of the large particles will then be:

Vin(R) = Un(R) + Q({R:D) (7)

which will again be state-dependent, a function of temperature, volume V and ps (rather
i N2£}‘1/e).initial two-component system, involving a large number of ml_croscoplc
:in Srl(lerczmoafr}fl;eedom has been reduced to an effective one—compopent systen} 12}\:0?;1;5
ozlgy the degrees of’ freedom of the mesoscopic particles. The pll‘lce to Ir)lav)_lbljdy ?erms.
effective interaction energy is state-dependent and geuer.ally invo Ve? mT } o
Approximations must now be invoked to calculate the highly pon-t.rlzifla d2by e
i.e. the part of the interaction energy between the large Partxcle§ ml _ucelementations:
particles. Three different strategies have so far been used in practical 1mp

a) For any given configuration {FL} of the_‘large_'particles, the small pa.rtilc(l)e:lsloag:n:\;
jected to the “external” potential U({R:}, {rj}), and hence form an in T
fluid, characterized by a local dens(iityf pl(lF; {R:}). ’{)}ée I:l}:zrén(());i)trlri:nﬁzs I;ﬁ: sy

i f p(7), and full use can
(f)lin((}tgio?lz ?}llgzgnz%l;;) g} :)u,nn-uniform fluids for the' small p:?rticles 8, 9(]_] 21;3;
uarantees the existence of a excess free energy density func.twns;l'Fm[p T
%hat the free energies Fy or §); can be written exactly as functionals:

Ny q )
Falp(A) = Fulp(] + Fexdlp@ + 3 / p(Fyuna(s — By) (®)
and
Qalp(F] = Falp(] - 2 f PP 7 (9)

Here, Fialp(#] is the functional of an ideal gas which is known exactly
Pl = kaT [ p(7) (A3 (7)) = 1107 (10)

ith A, being the thermal wave-length of the small parFicles. The do_ansity funjsl_t:)ogarlrsl
w.lt i: Eqns. (8) and (9) give the physical free energies F; or QQ. if the egux } i
iwer;t} p((:*' {]?t.}) of the small particles is inserted into the functional which follows
nsity p(75 ! s i
fr(:)m the variational minimization principle

3Q[p" (7]

8p*(7)

i i i ; di Ity is that
i trized trial density. The only difficu
*(7) is a properly parame . / ;

Where ’ (l?;he exact functional Fezc[p(7] is not known. .Tractable apprf)xnm?t;olr;s
S for hard spheres and soft potential fluids which are summarized in the
o knownt . The optimization (11) may be implemented by s_teepest descent or
nex_t Chip grrz;dicut techniques, and the resulting effective potential energy between
conjugate

=0 (11)

pr=p
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large particles can then be used directly in standard MC or MD simulations [10]. In

the latter case, the farces F; acting on the large particles may be directly calculated
from a classical version of the Hellmann-Feynman theorem:

Fi —'61“/11({1?]‘})
~VUn({B} - (F:Un({R}, (7)) s, (12)

where the angular bracket denotes an equilibrium average over the degrees of free-
dom of the small particles, for a forced configuration {R;} of the large ones. If
the interaction energy Uis between the two species is pairwise additive (Uia =

A - T -
2 2 wa([ri — Rjl)), the force F; is directly expressible in terms of the local equi-
i=15=1

librium density p(7):

Fi==ViUn({R;}) - / p(7) Viw(F; = By) di (13)

The optimization can also be achieved “on the fly”, along lines directly inspired by
the Car-Parrinello method for ion-electron systems [11]. Successive minimization
and large particle updating steps are replaced by a single dynamical evolution,
which involves the physical motion of the large particles and fictitious dynamics of
the local density of small particles, parametrized by a plane wave expansion (12].

The previous DFT optimization method calculates directly the total effective energy
of interaction between the large particles, or the resulting forces acting on each of
these particles, without dividing Viy up into pair triplet and higher order interac-
tions, as written in eq. (6). Another strategy is to attempt to compute these various
contributions separately. At very low concentration of large particles, the effective
pairwise interaction v, is expected to be dominant. In order to map out vy as a
function of the distance r between two large particles, one may use standard MC or
MD algorithms to simulate a bath of small particles in the field of two fixed large
particles. Eq. (12) may then be used to calculate the mean forces acting on the
two mesoparticles (which are opposite if the latter are identical) for each distance
r=|R — ﬁ2| The effective pair potential v(r) finally follows from an integration
of the forces. This procedure must be repeated for each distance r, but there are
no time-scale or ergodicity problems, since the two large particles are fixed. The
same goal can be achieved by appealing once more to DFT for the inhomogeneous
fluid of small particles, subjected to the force field of two fixed large particles. The
optimization may be carried out in r-space, using an adequate Eucledian or non-
Eucledian [13, 14] grid on which the local density of small particles is defined. For
two identical large particles, the local density has obvious cylindrical symmetry, but
under favourable conditions, a considerable simplification occurs by fixing one of
the large particles and considering an infinitely dilute solution of large particles in
a bath of small particles around the fixed large particle. The density profile of the
large particles in the zero concentration limit is directly related to the effective pair
potential between two large particles in a bath of small particles (18], i.e.,

v(r) = —kp T lim ln((pl#) (14)

m—0  "p(r— oo)
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The advantage is that the two density proﬁle.:s pi(r) and po(r) are now sphflrlca.liy
symmetric, but the method requires the prior k.nowledge of an accurate .enjx Y
functional for an asymmetric binary mixture. This §tra.tegy may be general'lze | to
the calculation of three-body and higher order effective interactions, by considering
the density profiles of large and small particles arpund t,w? or more fixed large
particles [16]. Applications of this strategy will be discussed in section 5-8.

¢) Although the effective interaction energy (3) or~(7) is.not, in general, pairwise acl—
ditive at finite concentrations of the large particles, it vv.'ould be very cqnv-_ar}lend,
for computational purposes, to reduce it, at lcas't approxlrr}ately, to. a pairwise a —
ditive form. Contrarily to the two-body poteliltxali 1!?(T) discussed in the irev;;)ub
paragraph, which is only valid in the low density hrr}m of' large partlcles{) t de e ::c:
tive pair potential corresponding to finite copcentratlons 18 expcc?ed Fo e ffi?&hy
dependent, and will, in some average sense, incorporate the 001'1tr1but101}slo igher
order terms in eq. (6). Such effective density-dependent pair pot.entlas cz:in, in
some cases, be derived from approximate functionals or from inversion procedures,
examples of which will be described in section 5.

4 Approximative density functionals

In this section we summarize different modern approximations_ for th-e excess .free energy
density functional Fo.[p(r] for different small-small interaction pair pqte11t1al-s ug(r),
namely hard spheres and soft particles. The case of Coulomb interactions will be re-
i sed 1 ext chapter.

discussed in the next chap A . ; Vi _
For hard spheres of diameter o the best current functional approximation is that of Rosc.n
feld’s fundamental measure theory [17]. It can be constructed also for. hard s};l).here mix-
tures but here we restrict ourselves to a one-component hard sphere fluid. In this approx-
imation one takes

Fualp) = kT [ drol{na()] (15)
where one introduced a set of weighted densities
na(7) = / dﬂp(f’)'wu(f‘— ) (16)
Q

Here, the index a = 0,1, 2,3, V1, V2 labels six different weighted densitigs and six different
assoc"iated weight functions. Explicitly these six weight functions are given by

i) = 2L 17
wo(7) = g (17)
wy(F) = u;’f:) (18)
wy(T) = 5(% —r) (19)
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wy() = 6(5 ~ 1) (20)
wy(7) = w;;gﬁ (21)
and
wealr) = 6% 1) (22)

Note that the index V' denotes a vector weight function. We can express this fact by
writing wyy = Wy1, ny1 = fiyy,... Finally the function @ is given by

D=0, + oy + Dy (23)

with
®; = —ngIn(1 — ny) (24)
®, = ning — fiyy - iy, (25)

1- n3
and
712(1 - (ﬁvg/TLQ)z)a

Pt Sl T T 26
4 247 (1 — ng)? )

The six weight functions are connected to the geometrical (fundamental) Minkowski mea-
sures [18]. There are several arguments in favor of the Rosenfeld approximation: as an
example we mention that the freezing transition can be calculated by plugging in a con-
stant density field for the fluid phase and a lattice sum of Gaussian peaks in the solid
phase. If the width of the Gaussians and the prefactor are taken as variational parameters
one gets a first-order freezing transition with coexisting packing fractions of 1y = 0.491
and 7, = 0.540 which are very close to “exact” simulation data 7 = 0.494, 5, = 0.545.

In the complementary case of very soft interactions, on the other hand, it has recently
been shown that a mean-field approximation for the density functional is a very good
approximation (19, 20, 21]. If the pair potential ug(r) is finite at the origin, then it can
be shown that a mean-field functional is exact in the limit of very large densities. It

works, however, amazingly well also for finite densities. In the mean-field approximation
one takes:

Feelol= 3 / dF / 4 p(7)p (7 Yuzal|7 = ) (27)

All other intermediate cases are more difficult. Some success is to map harsh interaction
onto effective hard spheres employing some ideas from the construction of Rosenfeld’s

functional [22]. Treating attractive tails has mainly been limiting to mean-field-like ap-
proaches as well.
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5 Charged colloidal dispersions

Flectric double-layers around mesoscopic colloidal particles of Variou§ ‘Shap?S Esy;he::os;
rods, platelets, ...) or around polyelectrolytes make the.generall?r don'ulngnt L;)ll 'r‘ldnz ,1<l3
to the effective interaction between highly-charged I)Aal't_lﬁles, which wil T) rct}elugd L ‘o (Z(s
polyions [5, 4]. Most simulations are based on a primitive Tno.del, x;' 1eref yth ed‘ T:Cr; i(:
nat‘ﬁre of the aqueous solvent is neglected, and a macrf)scoplc va 11e] o f‘ﬂe ie ,i(’mg/
permittivity € is assumed. At very low polyion_ Con(‘e:nt-ratlon, §truhcgy h) of the prle\. s
section may be adopted to compute an effective pair 11.1tera.ct10n bctwcejuv th) po :ylogb;
which is sereened by microscopic counterions of (.)pposlte ggn, as well as ({)molnsr n}' ]‘ 11 )
presence of added salt. The resulting offecti\.ve pair potcngal turnT 0111; t9 e 111\;12;1(;& i
repulsive of the sereened Coulomb form predicted a lo'ng t:unc ago by erJ?glim,However
Verwey and Overbeek (DLVO) [23] as long as the microions are monovz et? g I o
if divavleut counterions are present, they are more st.rongly.correlated, an lylS may 5
to a short-range attraction between equally—(:ha.rged 1?01}f101xs, (%ue to anf o\cT‘s?(;e:‘gl fagr;
effect [24]. Although most of the work on eﬂe(.?tlve pair yllcra.cmonz hlas ocusz; -y
on spheri()al polyions, some recent MC simulations have 1nvest1gated the ;ase | giSCS -
Jamellar colloids [25], and this work has very recently. been extende L0.01la1ge1 .
arious relative orientations [26]. The triplet interaction betwegn sphenca polyions ha
\'dn'll Iy been caleulated by MD simulations of co and counterions in the field of three
?ilm]ddr zlvions [’27], and tlirllS out to be attractive under most circumstanc@. In §he
o;f)osipte .limit of high concentrations, each polyion is confined tg a cage ?f nex(%hb;l;s;i
polyions, S0 that many-body interactions are expected to b'e 11111p(-)T’5Sn., an Ozable =
additivity of the effective interaction is expected to break down. It (;s 131 ‘rs?fs 4
consider a Wigner-Seiz cell model, where a cell gf geometry. adapte t10~ !L‘btl'a‘f) o,
polyions (e.g. a spherical cell for spherical polyions) contains one p? yien at its d n(i
rrounded by co and counterions, such that overa_ll charge neutra 1ty is ensure ,Ha "
i‘rlith appropriate boundary conditions for'the glectrlc field on the surlface of then tc(:,) f,the
physically reasonable boundary condition }s'té impose the}t the -uorm;:;t —c’omll)o.ne ‘is e
Jectric field vanishes on the surface. The initial problem uwf)lvmg many po ylonsd ; b;
;i oximately reduced to the much simpler problem of a single polyion surrounded by
fippr] tric double-layer. Although all information on correlations between polyions is
o eli fcéll model allows a calculation of the thermodynamic properties of Concentr'flted
B Lon from MC or MD simulations of the inhomogeneous fluid of microions contained
.Susienszell ’as well as an estimate of the effective polyions charge, taking intoh accoupt the
mht zmex{ou of counterion “condensation” [28, 29]. Such simulations provide stringent
i)egilsl for approximate DFT calculations, including Poisson-Boltzmann (PB) theory.
At moderate polyion concentrations, the two previous st“rategies brfak QO\Yn.t.Stratfegy
) of the previous section, based on the step by step .or on the ﬂy optm'nza ion 0. an
5 ropriate free energy functional of the microion density profiles, is the most'approprila-te
?11)2{; Tphe free energy functional F [0+ (), p— (1), {Ri}] of tl?e co- and c:n.mtenon densities
is conveniently split into ideal, Coulomb, external and correlation parts:

Fialp+] + Fialp=] + Fooulpd]
+F¢:n[l)+] + Fc:t[P—] + Fcorr[p%-’p—] (28)

Fylps,p-] =
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where:
Fulpa] = kHT/pa(F} (In(A2 po(7) = 1] dF (29)
_ € [ g [ gePelP pel®)
Fc'uul[pu] B 5/[17 _/dTT—TI (30)
Fralpe] = / Geat(7) palF) dF
N;
= 3 [ walr - B (e (31)
=1

In (30), po(F) = z4p4(F) + 2_p_(7) is the charge density of the microions (of valence
z4). The polyion-microion potentials u,, in (31) contain a hard core repulsion and a
long-range Coulomb attraction (counterions) or repulsion (coions). Rapid variations of
the densities profiles p, () near the surfaces of the polyions, which would pose numerical
problems in 7-space (grid) or k-space (large k Fourier components) may be avoided by
the use of appropriate classical polyion-microion pseudopotentials [12]. The correlation
term F,,, may be expressed within the local density approximation (LDA) [12]. Ifit is
neglected, the functional (28) reduces to the mean-field Poisson-Boltzmann (PB) form.
Optimization based on the functional (28-31) has been achieved with the “on the fly” MD
strategy for spherical polyions with counterions only (no salt) [12], and the presence if salt
(i-e. with co and counterions) [30]. The effective forces between colloids are reasonably
well represented by a pair-wise additive screened-Coulomb form provided the (effective)
polyion charge and the screening length are treated as adjustable parameters. Other
applications include rigid rod-like polyions [31], and flexible polyelectrolytes [10], the latter
being investigated by MC simulations coupled with steepest descent optimization, to allow
a more efficient exploration of polyelectrolyte configuration space. If F,,,., is neglected
in the functional (28), and the ideal terms are replaced by their quadratic expansion in
powers of Apy(7) = po () — po (Where p, is the bulk concentration of microions), the total
functional is quadratic in the p,(7), and the Euler-Lagrange equations resulting from the
extremum conditions (11) can be solved analytically [12]. The resulting total effective
energy of the polyions is then strictly pair-wise additive, and the effective pair potentials
are of the linearly screened DLVO form. The entire procedure is justified only for relatively
weak microion inhomogeneities (i.e. |[Ap,()|/pa < 1), ie. for low absolute polyion
valence |Z,|. If the polyion charge is distributed over a number v of interaction sites,
each carrying a charge Z,e/v, linear screening may be an adequate approximation for
each interaction site. The resulting “Yukawa site” model, where all sites on neighbouring
particles interact via a screened Coulomb (or Yukawa) pair potential, has been used to
simulate charged rods [31] or charged discs representing clay particles [32].

6 Coarse-graining linear polymer solutions

A solution of linear polymers (e.g. hydrocarbon chains in water) involves many different
length scales ranging from microscopic bond length over the persistence length and the
radius of gyration (coil size) to the mean-inter coil distance, see Figure 1. Therefore,
the direct simulation of on or off-lattice models of polymer solutions or melts are very
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computer-intensive [33), because even the sin‘lplest’linear polyme:rs ‘mv‘(;iv)eo ltlgi);lsaa)dl 1(])2
Iﬁonomers. Even if the latter are grouped into Kuhn segmcutsf, ;OH 1\1} (mmegcted ne
persistence length, the system will involve a very lz’u‘gg number of linearly f,M o ,me,nts
4 ticles. If N is the number of polymer coils, each made up o seg ,
e e os of freedom is 3N M which is a factor of (> 1) larger than
: particles, assuming that the organic or aqueous (for
by a continuum. The question hence naturally arises
of how to coarse-grain the initial, full micross:opic model mvolvm% J\ISlln(;izﬁie;Zdoz :;eci
ments per chain. The situation is somewhat different frm.n the prﬁwllci:w zfm;icﬂ e ,dli
involving large and small particles. Thg polymer (v:asel'ls 1:1(2{]6 _() eoo BE i m et
monomers play identical roles, at lfzf\slt in t‘llebs:;h:tg : el;l; ,LO e [,34] i e s
igible old idea, which goes back at y . :
becon}e ne%(lnlxg;(btll(ou ;\)zzltwcen t,hev centres of mass (CM) of neighbouring polyn'xer coils, Vb(yl
o e individual monomer degrees of freedom of two or more coils, f(.)r ﬁ}te
i CM’s. Consider first the case of two isolated polymer coils with
i =1,2;1 < a < M)and CM’s:

the total number of degre :
for simple fluids or rigid colloidal
polyelectrolytes) solvent is replaced

integrating over the
relative positions of their
monomer coordinates {Fia}ar (1

M
Ri=) fa (32)
a=1

If U({Fia}) is the total potential energy of interaction of all monormers, the probability
distribution of the CM’s is:

P(Ry, ) = 5 / o) T 6(F: = 3o ria) [ [ dria (33)

M i=1,2 «

here Qo is the corresponding configurational partition function (eqqa}l to th;)ﬁi\}{;
g'rl:l;ﬁio;al integral in eq. (33), without the S-functions). By analogy with eq. (2), the
- . : WM ig 3 oz
effective pair interact ion between the CM’s is then given by:

1’2(&1&2) = —k?BTllllp(ﬁlég)] (34)

The efective potential will only depend on r = |Ri — R_»| 'ufg(r)'xs> eg)ectt}?gr etow?ne 1tc))(i;

ler of the radius of gyration Ry of the pol)fmers, since for r > Ry, wu B
t‘l g Jap between two coils. Swollen polymers in good solvent (where Ry ~ M”, wi
fitge O\'YCI }dI Fl;r (,)\ onent) are highly fractal objects, 1.e. the mean monomer densm.y
i o tlel \?1“3‘}’) goes to zero in“the scaling limit. An immediate consequence is
Loyt C ¢ :‘:soft“ potential, and that vy(r = 0) is finite [35), i.e. the polymer 'cc.nls
(it ol ]Z xllc(‘l a,s penetrable spheres. On and off-lattice simulations of st?lf-avmdmg
i beAn\;V(')) c)01 /mers [.36 37], as well as renormalization group (RG) calculations .for the
want(irglsxous “llllrga(l” model [38], show that the pair potential va(r) is well approximated
con hre

by a single Gaussian:
;T(?) = Eexp(=J(r/Ry)") (35)
'B

where J = 1, the simulations yield [37] for M — oo:

£ ~180x0.05 (36)
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while the RG yields the following € = 4 — d expansion.
€ = 0.94¢ + 0.62¢* + O() (37)

These results are independent of molecular detail, so that the simplest lattice models
and most efficient MC sampling (e.g. the pivot algorithm) can be used to determine the
effective interactions. Note that for self-avoiding walk (SAW) polymers (which involve
only excluded volume interactions between monomers), the effective interaction is purely
entropic in nature as signalled by the scaling with kgT.

When nearest-neighbour attractions between monomers are included to allow for solvent
conditions (strong attractions correspond to poor solvent), the effective pair potential
between the CM’s becomes less repulsive, and develops an attractive part as ©-conditions
are approached (36, 39]. If ¢, denotes the depth of the attraction, ergodicity problems
become more and more severe in the simulations, but can be overcome by using Bennett’s
overlapping distribution method [40, 41]. Returning to the SAW model, appropriate for
good solvent-conditions, the method for determining the effective pair potential can be
extended to effective three- and more-body interactions, by simulating three or more
polymers for various configurations of their CM’s [42]. The main qualitative results are
that more-than-two body interactions alternate in sign (the three-body potential being
mostly attractive), and that the absolute amplitudes of higher order interactions do appear
to decrease with increasing order in line with scaling theory [43].

However the strategy of adding higher order effective interactions in simulations of poly-
mer solutions of finite concentration is computationally inefficient. A much more efficient
strategy is to determine state-dependent effective pair interactions by a systematic inver-
sion procedure [37]. The pair distribution function g(r) of the CM’s of systems of SAW
polymers at finite concentration is calculated by direct simulations of a few hundred poly-
mers on a lattice, using efficient MC algorithms [41]. An effective concentration-dependent
effective pair potential between the CM’s is then determined by Ornstein-Zernike (0Z)
inversion, assuming some adequate closure relation, like the HNC closure [44]). In view
of the softness of the resulting pair potential, HNC theory becomes asymptotically exact
in the high concentration limit, and is extremely accurate at all concentrations [45, 3].
The inversion is a noniterative, one-step procedure, and it has been proven that there is a
one-to-one correspondence between any given g(r) and a v(r) (uniqueness theorem [46]).
The resulting effective pair potentials turn out to be weakly dependent on concentration
[37]. They may be used in large scale simulations of polymer solutions, of polymers at
interfaces or of colloid-polymer mixtures [47], to study, in particular, the effect of poly-
mer interactions on the depletion force between colloidal particles 37, 48]. In its original
formulation, this coarse-graining strategy has one obvious drawback, namely that sim-
ulations of the full monomeric representation of polymer solutions are initially required
to determine the CM pair contribution function 9(r), for each polymer concentration,
a rather formidable task, even if the resulting effective potentials may then be used to
explore a range of different large scale phenomena. However even this drawback can be
overcome by calculating the monomer-monomer pair distribution function within the ac-
curate PRISM theory [49], and then extracting the CM pair distribution function from
its monomeric counterpart, and the form factor (or internal structure factor) of a single

polymer coil, using a recently proposed, accurate relation between these three correlation
functions [50].
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7 Star polymers and dendrimers

The ideas of coarse-graining, as applied to solutions of linear polymer chains in the last
chapter, can be generalized to polymers with a more complicated architecture. We shall
discuss solutions of star polymers and dendrimers in more detail. Star polymers [51]
consist of f linear polymer chains which are chemically anchored to a common centre
(f is called functionality or arm number). Obviously, linear polymers are a special case
of star polymers when f = 1,2 depending whether the end or middle segment is taken
as “centre”. Dendrimers, on the other hand, can be viewed as iterated star polymers:
periodically, any linear chain branches off into n additional chains (n is called degree of
branching) which is repeated ¢ times (g is called generation number). For f > 3, in
contrast to linear chains, star polymers and dendrimers possess a natural centre which
serves as an appropriate statistical degree of freedom.

Let us first focus on star polymers in a good solvent. A full monomer-resolved computer
simulation is completely out of reach of present-day computers: If N is the number of
stars and M the number of monomers per chain, a total number of N fM particles has
to be simulated, f times more than for a solution of lincar chains and fA times more
than for simple fluids. The strategy b) of section 2, however, can be efficiently used to
make progress. First consider only two stars at fixed separation r and average the force
acting on their centres during an ordinary MC or MD simulation of the monomers. Such a
simulation involves 2fM particles only. A typical simulation snapshot is shown in Figure
2. This is repeated for different . By integrating the distance-resolved data for the force,
the effective interaction potential v(r) is obtained. This interaction is repulsive, since the
presence of another star reduces the number of configurations available to the chains. For
small arm numbers f < 10, the simulation results confirm an effective pair potential of
the log-Gauss form:

—In(Z) + 5= for r < o;

o 38
747 €Xp (—72’26+"2) forr > o, (38)

B e

v(r) = I—Skg Tf {
where o is the corona diameter of a single star measuring the spatial extent of the
monomeric density. For large distances r, the interaction is Gaussian as for linear chains.
It then crosses over, at the corona diameter of the star, to a logarithmic behaviour for
overlapping coronae as predicted by scaling theory [52] which implies a very mild diver-
gence as 7 — 0%, The matching at r = o is done such that the force —dv/dr is continuous.
In Eqn (38) , 7(f) is known from a fit to computer simulation results; for f = 2 we obtain
7 = 1.03 in line with the Gaussian potential (35) used for linear chains.
For larger arm numbers, f > 10, on the other hand, a geometric blob picture of f cones
around the star centre, each containing one linear chain is justified [53]. The effective force
for nearly touching coronae decays exponentially with r, the associated decay length is
the outermost blob-diameter 20'/+/f. This motivates a log-Yukawa form of v(r) [54]:

5 3/ —ln(§)+—l+\}7/2 forr <o
u(r) = EkBTf ot S el s (39)

again matched at the corona diameter » = & such that the force is continuous. This
potential was verified in monomer-resolved simulations [55] for a large range of arm num-
bers.
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Typical configuration jor two stars wi =18 an = 50 monomers per chain
Fig. 2: Typic | configuration for two st ith f =18 ( dz'\l 0 . spetmc .
: 'bt .med from a snapshot during a Molecular Dynamics simulation with v denoting the
as obta $

distance between their centres. By courtesy of A. Jusufi.
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Using scaling theory and monomer-resolved simulations of a triangular configuration of
three stars [43], triplet interactions were shown to be negligibly small outside the corona
and at most 11 percent of the pairwise forces for penetrating triplets inside the corona;
consequently the effective pair-wise description for the many-body system is adequate
provided the number density p, of the stars is not much higher than the overlap density
1/03. Large scale simulations involving many stars were performed using the pair potential
of Eqn (39) [56, 57]. Due the crossover of v(r) at = o from a harsh Yukawa to a
soft logarithmic behaviour, uncommon structural and thermodynamical properties were
obtained. First, the main peak of the liquid structure factor changes non-monotonically
with increasing density [57). Secondly, the bulk phase diagram exhibits [56] a reentrant
melting behaviour for 34 < f < 44 and stable anisotropic crystal lattices. The latter
finding has been supported by experiments (58].

Next let us briefly discuss star polymers in a poor solvent. The only work in this direction
is close to the ©-point where the chains are weakly interacting. Consequently the resulting
effective repulsion is weaker than in good solvent. More quantitatively, an effective po-
tential between two plates is available within a self-consistent field approach for polymers
grafted on flat plates where the grafting density is high and the self-avoidance is weak
[59]. This was extended to spherical particles by employing the Derjaguin approximation
[60, 61] providing an analytical expression for the effective pair potential v(r). In the
limit of small core sizes, this expression has been successfully tested against scattering
data for f = 64 arm stars in a solvent close to © conditions [62]. What is still unexplored
is a systematic approach for arbitrary solvent quality which continously switches between
good solvent quality to the © point and beyond.

Much more stretched configurations are achieved for polyelectrolyte stars (“porcupines”)
due to the strong Coulomb repulsion of the charged monomers along the chains. If
one brings two polyelectrolyte stars together they hardly interdigitate but retract. A
variational analysis [63] for the effective force, which includes Coulomb interactions and
entropies of the counterions, reveals that the entropy of the counterions which are inside
the coronae of the two polyelectrolyte stars dominates the interaction, confirming an
old idea of Pincus [64]. The analytical theory was quantitatively verified by computer
simulations with explicit monomers and counterions [63]. Inside the corona, the resulting
effective force could be fitted by an inverse-power law o 7~ where the exponent v slightly
depends on the actual charging conditions but is always around 0.7 —0.8. By integration,
an effective potential is obtained which stays finite at the origin and behaves inside the
corona as v(r) = v(0) — Cr'~" with a positive constant C. However, the actual value v(0)
for completely overlapping stars is much larger than k5T so that significant overlap is
rare. Due to the softness of the interaction, similar structural anomalies as obtained for
star polymers are expected including a non-monotonic variation of the first peak in the
structure factor for increasing density and reentrant melting.

Finally, dendrimers in a good solvent have been addressed. For a branching degree b = 2
and a generation number g = 4 an effective Gaussian potential can be derived theoretically
[65], provided the centre-to-centre distance 7 is larger than the corona diameter o. In
formal analogy to linear polymer chains one obtains:

v(r) = Bexp(—1?/0?) (40)
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The important difference from the case of linear polymer chains is that the prefactor

B M?vq (41)
kyT T opd/2g8

is much larger than 1, with A denoting the total number of monomers pcte.r de(xl((i)gnncr
; ’r ian interaction was
' » parameter per monomer. The Gaussian in
and vp the excluded volume parame . - fnesmenmnn o
»d quantitativ ; scattering experiments [65]. etailed compse .
confirmed quantitatively by sca . )
imers wi i smeration number g = b reveals that the eflective 1 bial
{endrimers with higher genera ; A t . |
;s well described by a sum of two Gaussians [66] comprlsm{% the Fffe(,t of.‘rhetsl;ltexffdggrf;
; o the fley 3 ¢ imer. The effect of increasing t
i ter region of a dendrimer. T ]
region and the floppy ou e : - A e
i i ¥ rinciple a Gausslan pair poten
-anching b is much less explored. In princip (
et is again expected but the prefactor B/kpT should grow with

srposition of them) o
b ould be possible to tune the prefactor B JkpT to larger values,

increasing b. Thereby it sh

ere freezing is expecte 1 19]

Wh re free g Xp ( ‘

C(H se-graining s tar )01\1[1@19 (llld LlC‘lld mers hus maps them onto sin le quias w 1
,0al g p

oft interactions (socalled mean-field fluids) which in turn implies peculiar properties.
S > S (¢

i i i i but
Hence the concept of effective interactions not only allows for efficient simulation,

also provides insight into the physical behaviour.

8 Colloids and polymers: depletion interactions

If a sterically-stabilized colloidal particle is brough't. into a non—adsorbmtgh pc»lylilmia(r1 _so(l)lllt;(;gr‘
the latter a;'e depleted in a zone around the colloidal Surfuces.due m. e co od g 3fr s
: i The width of this zone is of the order of the radius of gyration d,/2 o :
i If one now brings two colloidal particles close to each other, tbe two d_eplctfon
SR lap wiqich brings about a free energy gain of the polymers relative to a s%tuatlon
e OVGYr "illa,))ing zones, resulting in an effective attraction between the co.llf)lds, the
of 110n:§‘zle )ie]tion attra(Ztion. Alternatively one can view the attraction arising frf)m
SOI- Cs:]llc)alan(l'ed osmotic pressure exerted on the colloidal particles by the surrounding
ar ed Os

})o]yn}efs-l t model for colloid-polymer mixtures including the depletion effect is the so-
o Smip'(;: ‘ra-()o:mwa (AO) model [67) which assumes hard core interactions between
ey 11 gdl li)f dim;leter d... further hard-core interactions between the polymer.s anq the
the (%01 O]('ts} arange (d, ,—H; )/2, but no interaction at all between polymers. The 1deah§y of
COHOldig - rls is a L%‘ﬁcigl appproximation which is fulfilled only for dilute polymer solu'mons,
the o ){Imx?vs {0 investigate many of the statistical properties of the AO model analytically.
e 1't at (:mlc the effcctive interaction v(r) between a colloidal pair can be calculated to
Fortin: )a'I‘Odl;CL of the polymer osmotic pressure P, = kpTp, and F}?e oyerlap volume of
b?e t—,]wol depletion zones consisting of two spherical half-caps. Explicitly it reads

tl
o0 for r < d,
' ‘ - < 12
U _ (ot d)? |1 - iy + | forde<r Sdetdy (42)
s 0 for > do +d;

thermore, by a simple geometric consideration, it can be shown that effective' triplet
Fucrl higher o}dér many-body forces vanish provided the size ratio between colloids and
an -orde ) )
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polymers ¢ = d,,/d, is smaller than 0.154. In this case, the AO model is formally equivalent
to an effective one-component system with a short ranged attraction, which immediately
opens the way for large-scale simulations.
The phase diagram of the AO model was explored by computer simulations on three dif-
ferent levels: first, one-component calculations using the effective pair potential (42) have
been performed [68], which are exact for ¢ < 0.154. Secondly, more recently, Dijkstra
has simulated the full effective Hamiltonian including effective many-body forces to arbi-
trary order for ¢ = 1 [69]. Finally, brute force simulation with explicit ideal-gas polymers
have been carried out [70]. The emerging phase diagram involves three phases: gas (i.e.
colloidal poor), liquid (i.e. colloidal rich) and an fce colloidal crystal. A liquid phase is
stable if the ratio g is larger than g, = 0.5.
On the other hand, theoretical progress was made by constructing a free volume theory
for the fluid bulk free energies [71] which provides a reliable estimate for the gas-liquid
transition. A free-energy density functional for the AQ colloid-polymer mixtures, valid
for arbitrary inhomogeneous situations, was constructed [72] in the spirit of Rosenfeld’s
fundamental measure approach [17], which reproduces the effective interaction (42) for a
colloid pair and the free volume theory of Ref. [71]. This density functional was applied
to wetting phenomena of planar walls. A novel type of wetting involving growth of only
few colloidal liquid layers on top of the wall as liquid-gas coexistence is approached was
predicted by density functional theory [73] and confirmed by computer simulations [69, 70].
This wetting scenario only shows up for ratios larger than g, so that one can speculate
that it is produced by the intrinsic many-body nature of the effective forces.
Obviously, the AO model has the short-coming of idealized interactions. More realistic
models involve a non-zero polymer-polymer interaction and 2 softer polymer-wall inter-
action [74]. On the other hand, full two-component simulations of colloids and polymers
were performed [75, 76] where the polymers are defined on a lattice. Clearly these include
any effective many-body interactions. A second computationally less demanding tech-
nique is to calculate effective pair interactions between a colloid and a polymer first by
a monomer-resolved reference simulation. This strategy was followed in the more general
context of mixtures of colloids and star polymers for small size ratios g. Supported by

theoretical scaling arguments the following pair interaction between a hard-sphere colloid
and a star polymer was obtained [77, 47):

Vep(r) = kpTA 32 (2—‘_’5) (43)
. {*ln(”—;&) + (B - (1 +40)/(1+20) + ¢ forr < (de +0)/2;
)

Cerfc(k(2r — d.)/o)/erfe(k else,

Here, A and x are known parameters depending on the functionality f of the star, (=
vmerfe(x) exp(k?)/(k(1 + 2x2), o denotes the corona diameter of the star and erfe(x) is
the complementary error function. For r — d./2 the potential diverges logarithmically
as for the star-star interaction (38). Linear polymer chains are obtained as the special
case f = 2 where A = 0.46 and x = 0.58. The two-component system with effective pair
interactions was investigated in detail by further simulation and liquid integral equation
theory. For different arm numbers f, the fluid-fluid demixing transition was calculated

[77] in good agreement with experimental data. Furthermore, the freezing transitions was
discussed. Above a critical arm number of fe

~ 10, fluid-fluid demixing was preempted
by freezing [78].
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In case of polymer size comparable or larger than the colloidal diameter d., éffectl\ffz

; “; bodyI forces play a significant role. Complementary methods I\siuch as 1111011[;19?01—

i e i al equats 1 3! PRISM approach or

iquid intergral equc s methods combined with the

lved liquid intergral equations me with ¢l SA 9] or

gisl?i—theorgtic calculations [80] have provided valuable insight m?o the btr\llCtL‘lre of (011(11;119

lymer nﬁxture<. The limit of large ¢ contains completely different p. 1}?65, 51[r712§\ he
Ic)(())llyoid“’il spheres represent then small perturbations for the long polymer chains .

9 Binary colloidal “alloys”

Binary mixtures of large and small sterically-stabilized colloids exhibit manif lunre(;q:t;lteclni
s. Such a binary colloidal “alloy” can be modelled as a t.wo_—comp'onen - ha L ld s
S;sa:::l involving twé colloidal diameters d; and da (d-gl < dl()ijﬁ‘nr;}if ::lj)ee:ﬁ:f?ic(i ;W:talé
’ a large variety of stable phases involving different ystals

3 largerl't“ltnt(? ?)\1 ’tﬁ(}(?;f’ C[?S\lq]rl:ullzl :fmulatioln [82] and observed experimeut.ally" [83] . We
i pre(-l( Lheré mor/e on the case of small g, where a depletion picture, similar to that
S}‘lall f(~)fc?sfor ('(;lloid and polymer mixtures, should hold. In contrast t? the AO-model,
dlscus{t man{hbodV forces are present for any ¢ in the hard S]?hcre mixture, but these
howi‘izes’hownlto be small with respect to the pairwise c-ontrlbutlo'n [14, 16]. ik
o ffective depletion potential v(r) between a pair of big spheres in a sca of small spheres
Fheg - oﬂll('iémlv caleulated and analytically parameterized, based O.D the prf)ceduref
i 1 [lrl] as applied to the two-component hard sphere density functional o
e (;L 1a7] A:)% a‘function of r, v(r) involves a short-ranged attra(?tion followed by
ROSS;l(fiE{{;t([)r)' .behtlviour decaying exponentially with the bulk correlation length of the
an oscillat 2he )

sma. 1 pher densit; MCT10! 1al pr ictions TEC C rmed b compu 8! s
S €S. T'he density 1 ed we: onfirme ) uter imulatio

s experiments |86). . ol
(84, 515{59] 'auudelﬁO(I;i);drossod ([h\r]ing the last decade was whether the‘depletlor‘) attr?ctlon }i
ot 1 ;h to drive fluid-fluid phase separation (for a recent review see [6]). The pro :
g enf(i) ; 'El’ll r'vsolved by computer simulation using the effective. 011e-cgmponeut mode
le'm {7y dm)lit iAon pair lpotem.ial 187, 88]: a fluid-fluid demixing is Aobtaiumed for g < 0:1
R t]'l? . l\;x;a 's metastable with respect to the freezing transition into an fee solid
7 l]j athe i)lig sl;heres. The simulations of the effective one-component model were
mad‘e upd r f\ill simulations of the true binary system [87] showing once more t-hat the
‘Conﬁrmwe f) };ri Jlet forces is negligible [14, 16]. Simulation results for the Pllase dlagrram,
i tod Vinltorr‘ms of the packing fractions n; = 7p1d3 /6 of the big partlc}es a'nd n% of a
y siir ef all particles in coexistence with the whole system, are shown in Flg}lre 3 for
reserVOlfool Sén(;{) ]Bésides the fluid-fluid demixing which remains metastable, an isostruc-
e ?ilic'i-;ol'id At,ransition occurs at high 7, for ¢ < 0.05, as familiar .for ope-compf)11ont
i ith a short-ranged attraction (89, 90]. As ¢ decreases, the ﬂuldjsglld coexmtfncle
4 ot S IT;OI‘(" and more horizontal until the sticky hard-sphere limit (g — 0%) is
lme‘ becomf e a vlflcuum coexists with a close-packed crystal. This example shows -agam
?}C)h‘lce‘:}?g :flf(l:(e‘iive ilit,éraction picture allows qualitative and quantitative understanding of
a > S
/ 5 rams.
o ey Oft I;}elj::r?}llai ?'mnsed on the sensitivity of the depletion potential to poly-
Fyrther‘ C“r; irll 51;1111 particles [91], and to small-small and big-small interactions bey01.1d
i Oh 10) m(;del [92). Polydispersity smears out the oscillatory behaviour, while
r(he }}::;dt;g dfgp attr'r‘lction near contact unchanged. Different small-small and big-small
eepl
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Fig. 3: Phase diagram of binary hard-sphere miztures with size ratios (a) ¢ = 0.2, (b)
q =01, and (c) ¢ = 0.05 as a function of the large-sphere packing fraction 1, and the
small-sphere reservoir packing fraction n5. F and S denote the stable fluid and solid
(fec) phase. F+ S, F+ F, and S+ S denote, respectively, the stable fluid-solid, the
metastable fluid-fluid, and the (meta)stable solid-solid coexistence regions. The solid and
dashed lines are the effective one-component results; the squares and the asterisks (joined
by lines to guide the eye) denote, respectively, the fluid-solid and the solid-solid transition

obtained from direct simulations of the true binary miztures. Reproduced from Ref. [87]
with permission.
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interaction have a significant impact on the effective big-big int.eracltlor;: fgr 1tnstancel, 1;‘1/2
1 i S i 3 epuls
i ticles or the big and small particles leads to r .
attraction between the small par 1 : N
ive i ions é 50 lation of small particles on the surlac he
ctive interactions due to an accumu ; >
EH(Cas This “inverse depletion effect” may be called accumulation repulsion. Thes;s r(-i)cel?t
11 . ) . T g
I?indings imply that the effective interactions can be systematically tuned via the basic
interactions and polydispersity.

10 From colloidal to nanoscales

Although the concept of effective illter:jmctjioxls ast Adcscrlgﬁ:;:ellrill nc?tzlt)itj;sl{) (1; ;r)lclzcltnl(:lr ep::d
imitations in ¢ i ractice. ;
ciple; t - ?r C11‘11?:1?2122151:11(11‘;;13.}21\1/1‘:121;0lrt ;ﬁé)smaller macroparticles, such tl?at nlolécular
mOr(? oo ore reievaut. In fact, on nanoscales, chemical specificity is startlxlg to
5 beCOIFel nrl)sﬂltiﬁg in many different phenomena like solvation effects, hydration,
bccomeh'clr‘1-1"351:a ilV(iI’O]‘;hOl)i(‘itV, forces determined by chemical bonding etc. In fact, theﬁe
e }L tial to cxplaiﬁ the structure and function of biological macromolecules in
CﬁeCt_S - eSsufl roteins. Under these circumstances, it is clear that one cannot get away
sqlutlolll: f’vg.lo s}i)m ;lc eﬁective interactions, characterized by few paramet?rs, like tl?ose
W'lth r? 3 - yiousllr in the context of colloidal length scales. The immediate que.stlons
dléC_USbe‘ pvr}el::n an()i where does the simple coarse-graining concept break df)wn if one
e V\r from the colloidal to the nanoscale. Basically there are tiu? magjor cavegts;
?ﬁzsgsrszvfoncems the choice of the microscopic degrfeis oj freedo(;n wlgcl}ii s;eotfoﬂ?ee ;,I;
ut: ; .oncerns internal degrees of freedom and mode :
tegrlng; Sl?!ljnzl;lpvesf C(I)Eih(::(((;llzl we shall disfuss these two points in detail and illustrate
partic selves.
sing two examples. _

gflzrzirl:;gtmoﬁi:t p(l>int,, even on nanoscales there.rem?ins an enorm(?us Ilgn’(llber cl)f ;1111-

i degrees of freedom. The relevant question is which have to t‘)e included explic ly
qoscoplc ;g ilamiltouian or may be ignored or replaced by effective para@eters. This
o the_ e mgﬁtiou when length scales are less clearly separated than in collonda~1 systems.
bty qll“:ner chains, scaling theory implies that molecular details are unun_portant
B Se ) 0ses (such ‘that one can get away with simple lattice models (as dfscussed
i Y.nOSt I)llrll)me;,cllaills) or with a simple monomeric description of beads (as discussed
e l)10 3;erﬂ) Fc;r charged colloids, in the primitive approach, the solvent molecules
ot ylide;ea explicitly but only enter via the dielectric constant. Tl}e charged
arfe nl?t COUOSH the otlher hand, are included explicitly, since their Coulollnb interaction
%mCTOlOUS, than the dipolar forces acting between the solvent. While th1.S seems 'to be
o St-ror(ligf;r icron-lSiZed colloidal particles with typical interparticle spacing of microns
Justlﬁ.e W H;eéular details on the colloidal surface are encaptured by an e'aﬂectl.ve col-
(pronded ) t is questionable when the colloidal diameter or the intercolloﬂal}dwtanc:e
!Ol(éaizg?nﬁfge)c’()lmpa(rlable to the correlation lenth or interaction range of the microcopic
is be $

i.e. for nanoparticles.

degrees’ = ‘ftr?egznm’:\;: consider It)he effective interaction between two nanosized .chz.ir'ged
- a.n e lta' les "m a i;ard sphere solvent . A systematic comparison betweep primitive-
gl i)arl llf'ons where the solvent is neglected and the full system including the hgrd
e = 1cu at lwas performed recently by Allahyarov and one of us [93, 85]: On an in-
iphereedisa?t: elzvel one can formally integrate out the solvent, ending up with effective
erm )
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F(r) d /k,T

Fig. 4: Reduced distance-resolved force F(r)d,/kgT versus reduced distance r/ dp between
two charged colloids as obtained by computer simulations. The inset shows the same for
nearly touching polyions of molecular distances. The parameters are: g =2, g, = —64,
dp :de:idy =14:2:1, € = 81, the volume fraction of the polyions in the periodically
repeated bozx is 1, = 5.8 x 1073, Solid line with error bars: Sull simulation including the
hard sphere solvent; long-dashed line: solvent averaged primitive model; short-dashed line:
primitive model; dot-dashed line in inset: solvent depletion force alone (for comparison,).

interactions between the charged particles. If these are approximated to be pairwise, one
obtains the so-called solvent averaged primitive model [94]. In this model, the interac-
tion between charged species comprises the bare Coulomb interaction and the effective
depletion interaction between hard spheres as discussed in section 8. Extensive computer
simulations [93, 85] have shown that the total effective force between charged colloidal
particles does depend on the presence of the discrete solvent. Even the sign of the effective
interaction can be different in the primitive model as compared to the full solvent result.
An example for divalent counterions and a charge asymmetry of g, : g. = 64 : 2 is shown
in Figure 4 where the ratio of the three hard-core diameters of colloidal particles, coun-
terions and solvent particles is dy, : d, : d, = 14 : 2 : 1. In fact, interpreting the solvent
size as a microscopic scale, the colloidal diameter is 14 times larger and thus falls into the
nano-regime. While the primitive model reference calculations yield a repulsive effective
force, the simulations including a hard-sphere solvent result in an attractive force.

B17.23
Colloids and Polymers

The solvent-averaged primitive model, on the other hand, reproduces the data of t‘he. tf.ull
solvent simulation rather well. The simulation time for the solvent-aver'aged Prlnil th
model is similar to that of the primitive model, since the .number of particles s1ml.;‘ale
is the same, while the full simulation requires the inclusion of many solvent fp?r 1((; es.
Hencer the cvonccpt of effective interactions as applied to tl;\(; solvil}ult degre}ssestc:e Vex:ein 22
i i ible in the spirit of McMillan-Mayer theory. Bu
alone, makes simulations feasible in . llan ) o
: - lso provides insight into the basic physics:
i tantly, the solvent-averaged model al . ‘ -
i;lgl(:tion a}tltraction between a colloidal sphere and counterions favm;rs' ar; }?ccu;lutatxﬁ?cﬁf
i 2 i t is this eftect w. s
id faces, thus enhancing the screening. i
the latter on the colloidal sur 3 : e
i lomb correlations, leads to the attractio:
i COI'I i imiti del. For large colloidal spheres, on the
hich is completely missing in the primitive model. .
thl?gf hland itp was shown in Ref. [85] that the effect of a discrete him}i1 sphere .solve?t (3;2
. Y i i i idal charge as input in
; fferent (effective) colloidal g
letely be accounted for by taking a di ¢ lloidal charg '
;(;?rigtive i]nodel calculations. Consequently simple coarse-graining 1s justified provided an
tive colloidal charge is used. o . i :
eTH}?fCtsl::ond caveat for coarse-graining concerns the description of the big collm;ilal par
ti 123 Up to now we have modelled them as homogeneously charged hard ?p f;rets 1ln
tllf c;)ntext of charged suspensions. Coming down to nanoscales, tkllxehmolecu alr 1;edal’s
y i lves, which are neglected in
i f the large particles themselves,
d internal degrees of freedom o : '
::atistical descriptions of colloidal dispersions, are becoming 111}3;2 anc’il more r:tlz:r:; :}1\12
i is usi le where the discreteness of the charge pa th
shall illustrate this using an example W : k: L e
i ; ] provided the particles are n : i
dal surfaces turns out to be crucial |
C?lgzrticular importance for proteins which are characterized by nanoscale electrostatic
s
?atCh::éent computer simulation [95], the effective interaction between two nano—sxlzed
nlliidal spheres (modelling globular proteins ) with a discrete charge paftternAwas cal ﬁu»;
fot d within the primitive model as a function of added salt c_oncentratlon. slmaLp(s1 o
2} s rotein pair is shown in Figure 5. Discrete elementary pomt_cha:rges were p acte (;n
Oha protein surface with a finite depth. Consequently the eﬁectl‘{e mte.ractloln nol foi1hy
:1 ; l;ds on the centre-to-centre distance r but also on the relative orlentatu.)ns (;) -tﬁ
2 roteins. These represent additional statistical degrees of frefed(?m as.s,ocxate hw1
t;lVO pacroparticles. The data were compared to the standard deSCl'lpt.lOIl with Fhe c argle
: e'fn;mly smeared over the particle surface. A key quantity controlhpg protein cry:tzla) -
;m t(;on [96] is the second osmotic virial coefficient B, which can readily be measllin'te thy
lZ:t:tering methods in dilute protein solutions. By can be shown [95] to be related to the
sc

effective interaction by
By = %/dfir[l — exp(—v(r)/ksT)) (44)

in formal analogy to the orientation-independent case of the smea}'ed chargedlm%d:;f.eg?iee
is the integral of the canonical orientational average of the d1§tance-reso ve
2ty ted onto the separation vector between the two proteins [95].
Ty PI:OJ:;C alculation of B as a function of added salt reveals that it behaves non-
& detaﬂ? l(i as a function of added salt concentration, in agreement with several ex-
IIK)I‘wtomcla gudies [97). This non-monotonicity, however, disappears when the surface
penmenta'fsrml smeared out. It can thus be traced back to strong Coulomb correla-
:harsg (ianlérllllcgd b; the discrete binding centers near the surface. This example shows that
ion:
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Fig. 5: St ] CTO
o ft : szTmﬁlaltz;); sv;apshot of a microton configuration around two model proteins sep-
grated ¢ yrha;ges. s Oy denlotmg the protein hard core diameter. The proteins carry 15
] c s €, monovalent salt molarity is cs = 0.206Mol /(. T ]
diserete. 1 A 2 ol/l. The globular protein
ecules are shown as two large grey spheres. The embedded small dark spheres on their

smfzce mimic the discrete proiein char S T ) S ar

tein cha ges The small e, T

-y spheres are 1 A

/ o l grey sy are ({)l“lt{ﬂll)ns, while
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important effects are lost even qualitatively, when the coarse graining of nanoparticles is
pushed too far.

11 Conclusions

In conclusion, we have demonstrated that the concept of effective interactions allows large-
scale simulations and provides additional insight into the physical mechanisms governing
colloidal dispersions and polymer solutions. We conclude with a discussion about multiple
time scales in the context of colloidal dispersions.

The dynamics of colloidal particles embedded in a solvent involves many different time
scales ranging from the collision time 7, =~ 10~Msec of the solvent molecules, over the
relaxation time T & 107 %sec of the total colloid momentum and the propagation time
ry ~ 107%sec of hydrodynamic interactions, to the Brownian time 7o = 107%sec on
which diffusive motion of the colloidal particles is observed. Consequently there is almost
complete time scale separation

T, << TR = T << To- (45)

It is a challenging question whether - in analogy with bridging length scale gaps - one can
“integrate out” the fast dynamical processes which happen on the time scale 7, in order
to arrive at an “effective dynamics” on larger time scales. The traditional approach is
a stochastic one, as embodied in Langevin and Fokker-Planck formulations [98, 99], but
a rigorous derivation of the Fokker-Planck equation from the initial full Liouville equa-
tion for dilute colloidal suspensions exposes the intrinsic limitations of the Fokker-Planck
equation, due to the similarity of the time scales 75 and Ty [100]. Clearly a dynamical
counterpart of the effective interaction concept governing the thermodynamics and statics
is missing. From a simulation point of view However, relying on an (almost) complete
time scale separation between solvent and colloidal dynamics, one typically describes the
motion of the colloidal particles by a completely overdamped Langevin equation with
stochastic forces exerted onto the colloids modelling the random solvent kicks [101, 102].
Within such a Brownian approach operating on a time scale 7p, the hydrodynamic inter-
actions act instantaneously. Much of the recent effort was spent to treat these hydrody-
pamic interactions approximatively [103] by using different computational schemes such
as lattice-Boltzmann techniques [104], Stokesian Dynamics [105], dissipative particle dy-
namics [106], and fluidizing the solid colloidal particles [107]. Although these algorithms
are powerful in different applications, it is fair to say that all of these approaches lack a
rigorous theoretical justification.

Having established a stochastic Brownian approach for the colloidal particles resulting
from the solvent dynamics, a much more modest question concerns the dynamical utility
of the effective interaction concept originating from integrating out small particles differ-
ent from the solvent (counter- and salt ions, polymers, small colloidal particles etc). One
may conjecture that it is only in the case of a complete time scale separation between
the big and small particle dynamics that the effective interaction has a true dynamical
meaning. This is the reason why the effective interaction potential is frequently combined
with Brownian dynamics simulations for the colloids. For instance, the effective DLVO-
potential has been combined with Brownian dynamics simulations in order to investigate
the glass transition (108], long-time self-diffusion [109), linear shear flow [110, 111, 112},
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and phase transitions in driven colloidal mixtures (113, 114]. It would be very interesting
to test and study systematically how far one can get with the coarse-graining approach
as far as dynamical questions are concerned.
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