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Abstract. The simulation of complex fluids naturally invelves widely different
length scales. Inteprating out parts of the microscopic degrees of freedom leads to
the concept of effective interactions and provides a “coarse-grained” picture which
can be simulated much more efficiently than a full microscopic model. This approach
bridges length scales in complex fiuids. In this chapter, we justifly this procedure on
a Statistical Mechanics level and apply it to a variety of different systems ranging
from charged colloidal dispersions and polymer solutions (including star polymers
and dendrimers} to mixtures of colloids and polymers and binary colloidal mixtures.
Problems arising when this concept is transferred to nanc-scales are pointed out.
Finally the much harder problem of bridging different time scales in complex fluids
is briefly discussed.

6.1 Introduction

While earty Moute Cario (MC) and Molecular Dynarzics (MD) methods were
historically designed to simulate simple fluids, represented, e.g., by the hard
sphere or Lennard-Jones models, these agorithms are ill adapted to deal with
fluids of increasing complexity. or “soft matter”, because of the simultane-
ous presence of widely different length and time scales. Consider for example
dispersions of spherical (e.g. polystyrene balis), rod-like (e.g. the “tobacco
mosaic virus”, TMV} or lamellar {e.g. clay) charge-stabilized colloidal par-
ticles in water. There are at least three length scales: the microscale of the
solvent molecules, the nanogcale of the width of the clectric double-layers
formed by the co- and counterions {approximately equal to the Debye screen-
ing length), and the mesoscale of the colloidal particles {typically hundreds of
nanometers). There are at least as many relevant time scales {although they
arc not always as clearly separated), and direct simulations based on a fem-
tosecond time scale, or MC trial moves over molecular distances, are clearly
inadequate to describe large scale phenomena over times of milliseconds and
over distances of several microns. Returning to the case of charged colloids,
the practical limit of “brute force” approaches, even neglecting the molecular
nature of water (replaced by a dielectric continuum) is a total charge of less
than 100e per polyion [1].

In this chapter we describe systematic coarse-graining procedures which
lead to effective interactions between the largesi, mesoscopic particles in mul-
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ticomponent, muitiscale fluid mixtures. These effective interactions follow:
from a rigorous “tracing out” of microscopic degress of freedom, and can be
used in standard MC or MD simulations of samples involving only the iarg‘é”'
particles which now play the role of molecules in atomistic simulations. After.”
a formal Statistical Mechanics justification of the coarse-graining proccdure':'
in Sect. 6.2, it will be successively applied to interacting electric double- layers
(Sect. 6.3}, to polarizable dielectric media {Sect. 6.4), to solutions of linear-
polymers (Sect. 6.5), star polymers and dendrimers (Sect. 6.6), to colloid- .
polymer {Sect. 6.7} and binary colloid mixtures (Sect. 6.8). In Sect. 6.9 the -
new challenges of coarse-graining nanoscale rather than mesoscale colloidal
systems will be briefly considered, with biomolecular {c.g. protein) solutions :

in mind. Some conclusions will be drawn in Sect. 6.10.

It is worth stressing that this chapter will deal almost, exclusively with °
the bridging of length scale gaps in complex finids. The problem of how to -
cope with widely different time scales is far more difficult for suplamolecular

systems, and the corresponding methodology is still in its infancy.

6.2 Efficient Coarse-Graining
Through Effective Interactions

An efficient statistical description of multi-component systems involving par-

ticles of widely different sizes requires a controlled-coarse-graining which may
be achieved by integrating (“tracing”) out the degrecs of freedom of the mas

jority components of “small” particies, which may be solvent molecules, mi--
croscopic ions {“micro-ions” ) or monomers of macro-molecules. For the sake .

of simplicity, consider an asymmetric binary “mixture” of Ny “large” spher-
ical particles, with centres of positions {R;} (1 < i < Ny), and Ny » N

“small” particles at positions {r;} (I < j < Ny). Restriction will be made -
to thermodynamic equilibrium states. If classical statistics apply, integration -

~over momenta is trivial, and the focus will be on configurational averages.
The total potential encrgy of the mixture may be conveniently split ino three
terms: ’

U R} Ari 1) = Un({Ri}) + Una({r; ) + Ura({ R}, iy 1) (6.1)

At a fixed inverse temperature § = 1/kpT, the configurational part of the -

Helmholtz free energy F* of the two-component system may be formally ex-
pressed as:

exp(—GF) = T Ty exp(—pU)
= TT"] exp(—ﬁ L‘r}l) T?"Q exp(—.ﬁ([fl? + U-Q‘_Z))
=Try exp(—3UL1) exp(—8 F2({R;}))

=Tr exp(—8 VL {{R; 1)) (6.2)
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where the short-hand trace notation implies integration over the configuration

1 . AN .
Tra = N3 / e

. space of species 1 or 2, ie.

Vi ({J:}), the effective interaction energy of the large particles, is the sum
of their direct {or bare} interaction energy Uy, and of the configurational
frec energy of the fluid of small particles in the “external” field of the large
particles Fy; the latter depends parametrically on the configuration { R} of
the large particles:

Vii({R:}) = Un({Ri}) + Fo({1}) {6.3)

Up to now, no approximation has been made. If the large particles are fixed in
a given configuration, (6.3) provides the exact encrgy from which the direct-
configurational forces between the large particles can be derived. Once these
particles move under the action of these cffective forces, friction forces due
o exchange of momentum with the bath of small particles will set m, and
hydrodynamic forces due to induced flow of the latter will come into play. This
difficult problem of hydrodynamic interactions [2] is not the subject of the
present paper, which is restricted to static equilibrium properties independent
of velocity-dependent forces.

Two key aspects of the effective interaction Vi; must be underlined.
Firstly, due to the presence of a free energy, Fy, Vi is obviously state-
dependent, and has an entropic contribution of the small particles (Fp =
Uy — T 8s). Sccondly, although the direct interaction Uy may be pair-wise
additive, this is no longer truc of Vi, The free energy Fy({ R;}) generally has
many-hody-contributions. so that Vi, will be of the more general form {with
the change of notation N7 — N and Vi1 — Vi ke

Vi({R}) = VN 30D walB By) 303 % vsl e By Bi)

(5] 1<)k
(6.4)
V,(?‘} is a state dependent bt configuration-independent “volume” term,
which has no bearing on the local structure of the large particles, but through
ity contribution te the thermodynamic properties, it can, In some cases,
strongly influence their phase behaviour [3].

Expression {6.3) for the efective Interaction, or potential of mean force,
was derived in the canonical ensemble, where the total numbers of small and
large particles are fixed {closed system). In many practical situations the bi-
nary system is in osmotic equilibrium with a pure phase of the small particles
{e.g the solvent), and the appropriate ensemble for such an open system is
the semi-grand canonical ensemble where N7 and the chemical potential pig
of the small particles (rather than Na) are fixed. The corresponding thermo-
dvoamic potential is the semi-grand potential 2 = 25(T, Ny, p2; R;), and
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the effective interaction energy of the large particles will then be:

Vil(B;) = U (R;) + $2:({R;}) (6.5)

which will again be state-dependent, a function of temperature, volume 17 .

and po {rather than ps = Ny /V).
In swnmary, the initial two-component system, involving a large num-
ber of microscopic degrees of freedom, has been reduced to an effective one-

compotent system involving cnly the degrees of freedom of the MeEsescopic

particles. The price to pay is that the effective interaction energy is state-
dependeflt and generally involves many-body terms. Approximations must
now be invoked to calculate the highly norn-trivial %3 or {25 term. i.e. the

part of the interaction energy between the large particles induced by the -

f_;mal] particles. Three different strategies have so far been used in practical
implementations;

a) For any given configuration {H;} of the large particles, the small particles
are_subjected to the “external” potential U1a({R;}, {r;}), and hence forn;
an inhomogencous fluid, characterized by a local density Fp(r: {R;}). The
thermodynamic potentials Fy or (25 are functionals of o(r), and fall use
can be made of the classical density functional theory (DFT) of non-
uniform fluids to obtain tractable forms of F, or (2, iél}. Given a form
of !_22 [p*(r)], where p*(r) is a properly parametrized trial density, the
equilibriume density follows from the variational principle: .

———— = .
510 (r) pr=p

Substi‘?uti(lm of the optimum p(r) into {2, yields the equilibrium grand
potential for any configuration { R;}. The optimization (6.6) may be im-
p}eme‘nted by steepest descent or conjugate gradient techniques, and the
resultil}g effective potential energy between large particles can then be
used directly in §ta11dard MC or MD simulations [5]. In the latter case,
the for.(:es F'; acting on the large particles may be directly caleulated from
a classical version of the Hellmann-Feynman theorem:

Py = -V, Vi1 ({R;})

= =ViUn{{R;} — (ViU({R; }, {ri})m,y (6.7)

where t'he angular bracket denotes an equilibrium average over the de-
grees of freedom of the small particles, for a fixed configuration {R;} of

the large ones. If the interaction energy Uy between the two species is
o N N Ny
pairwise additive (U = >:1 Zl uyz(|ry — Ry|)}, the force Fy is dircctly
. - - = 3: l
expressible in terms of the local density p(r):

P ~VUu(R )~ [ o) Vil -~ Rydr (63)
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The optimization can also be achieved “on the fly”, along lines directly
ingpired by the Car-Parrinello method for ion-electron systems i6]. Suc-
cessive minimization and large particle updating steps are replaced by
a single dynamical evolution, which involves the physical motion of the
large particles and fietitious dynamics of the local density of small parti-
cles, parametrized by a plane wave expansion [7].

b) The previous DFT optimization method calculates directly the total ef-
fective energy of interaction between the large particies, or the resulting
forces acting on each of these particles, without dividing Vi up into pair,
triplet and higher order interactions, as written in {6.4). Another strategy
is t0 atbempt to compute these various contributions separately. At very
low concentration of large particles, the effective pairwise interaction vg
is expected to be dominant. In order to map out vz as a function of the
distance r between two large particles, one may use standard MC or MD
algorithms to simulate a bath of small particles in the field of two fixed
large particles. Equation (6.7) may then be used to calculate the mean
forces acting on the two mesoparticles (which are opposite if the latter
are identical) for each distance r = |Ry — Ry|. The effective pair poten-
tial va(r) finally follows from an integration of the forces. This procedure
must be repeated for each distance r, but there are no time-scale or er-
godicity problems, since the two large particles are fixed. The same goal
can be achieved by appealing once more to DFT for the inhomogeneous
fuid of small particles, subjected to the force field of two fixed large
particles. The optimization may be carried out in r-space, using an ade-
quate Fucledian or non-Eucledian [8,9] grid on which the local density of
small particles is defined. For two identical large particles, the local den-
sity has obvious cylindrical symmetry, but under favourable conditions,
a considerable simplification occurs by fixing one of the large particles
and considering an infinitely dilute solution of large particles in a bath
of smal! particles around the fixed large particle. The density profile of
the large particles in the zero concentration limit is directly related to
the effective pair potential between two large particles in a bath of small
particles [10], Le.,

= N pi{r)
us(ry = —kg Tﬁlgglaln(pl(’r ~ OC)) (6.9}
The advartage is that the two density profiles pi(r) and pa(r) are now
spherically symmetric, but the method requires the prior knowledge of
an accurate density functional for an asymumetric binary mixture. This
strategy may be generalized to the calculation of three-hody and higher
order effective interactions, by considering the density profiles of large and
small particles around two or more fixed large particles [11]. Applications
of this strategy will be discussed in Scets. 6.5-6.8,
c) Although the effective interaction energy (6.3) or (6.5} is not, in general,
pairwise additive at finite concentrations of the large particles, it would
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be very convenient, for computational purposes, to rednce it, at lea

approximately, to a pairwise additive form. Contrarily to the two-bhody
potential vo(r) discussed in the previous paragraph, which is only valig
in the low density limit of large particles, the effective pair potential cor-
responding to finite concentrations is expected to be density-dependent,
and will, in some average sense, incorporate the contributions of highey

order terms in (6.4). Such effective density-dependent pair potentials can,”,

in sotne cases, be derived from approximate functionals or from inversion
procedures, examples of which will be described in Sect. 6.5.

6.3 Electric Double-Layers

Electric double-layers around mesoscopic colloidal particles of various shapes :
(spheres, rods, platelets, ...} or around polyelectrolytes make the generally

dominant contribution to the effective interaction between highly-charged

particles, which will be referred to as polyions [12,13]. Most simulations are
based on a primitive model, whereby the discrete nature of the agieous sol- -
vent is neglected, and a macroscopic value of the dielectric permittivity e -

Is assumed. At very low polyion concentration, strategy b} of the previous

section wmay be adopted to compute an effective pair interaction between two

polyions, whichi is screened by microscopic counterions of opposite sign, as
well as coions in'the presence of added salt. The resulting effective pair poten-
tial furns out to be invariably repulsive, of the screencd Coulomb form pre-
dicted a long time ago by Derjaguin, Landan, Verwey and Overbeek (DLVO)
[14] as long as the microions are monovalent. However if divalent counte-
rions are present, they are more strongly correlated, and this may lead to
a short-range attraction between equally-charged polyions, due te an over-
screening cffect [15]. Although most of the work on effective pair interactions
has focussed so far on spherical polyions, some recent MC simulations have
investigated the case of parallel lamellar colloids [16], and this work has very
recently been extended to charged discs of various relative orientations [17].
The friplet interaction between spherical polyions has similarly been caleu-
lated by MD simulations of co and counterions in the feld of three fixed

polyions [18], and turns out to be attractive under most circumstances. In

the opposite limit of high concentrations, each polyion is confined to a cage
of neighbouring polyions, so that many-body interactiofiaare expected to be
important, and pairwise additivity of the effective interaction ig cxpected to
break down. It is then reasonable to consider a Wigner-Seiz cell model, where
a cell of geometry adapted to the shape of the polyions (e.g. a spherical cell
for spherical polyions) contains one polyion at its centre, surrounded by co
and counterions, such that overall charge neutrality is ensured, and with ap-
propriate boundary conditions for the electric field on the snrface of the cell.
A physically reasonable boundary condition is to impose that the normal

component of the electric ficld vanishes on the surface, The initial problem -

: fro
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pvolving many polyions is thus approximately reduced to the much simpler

problem of a single polyion surrounded by its electric double-layer. Althoug}%
all information on correiations between polyions is lost, the cell model all.ow.s
;L caleulation of the thermodyramic properties of conce_mtratcd suspension,
1 MC or MD simulations of the inhomogeneous ﬂmld of Hll(‘)rOl()IlS CO‘il—
tained in the cell, as well as an estimate of the; effective poly.lonf Chal:ge,
taking into account the phenomenon of counterion “condensation” [19,20].

. Quch simulations provide stringent tests for approximate D¥F'T calculations,

including Poisson-Boltzmann (PB) theory. . -

At moderate polyion concentrations, the two previous strategles br(i}ak
down. Strategy a) of the previous section, based on the step by step or "0}1
the fiy" optimization of an appropriate free cnergy functional of the' mi-
CI‘OiOI; density profiles, is the most appropriate [7]. T he fr(—?e energy_functlonla_ﬂ
Fylps (), p—(r), {Ri}] of the co- and connterion densitics is conveniently split
into ideal, Coulomb, external and correlation parts:

Fa [[)4_, p_} = F;le+] + Fm‘ip—} + FC;‘OILJ{QC}

+Fezf{p+§ + Fogt [{)~] + Foorr LO+: .O—j (6}0)
where:
Fulpel = kaT [ ol Bl pulr)) 1] dr (6.11)
F:Q ' ‘ pC(T) Pc('r’) s 12
FCUMU:‘Q] = E/ d'T'/dT]W (G )

F.;;ct[,O(J = / Pext (T) ch(r) dr

Ny
=2 / wa(r — i) pa(7) dr (6.13)
i=1

In (6.12), p.(r) = zrpair)+ 2 p_(r) is the charge d-ensi.ty‘of the Hlli(ll‘()i[)l.]s
{of valences z,). The polyion-microion potentials my, in (6.13) .contam a bard
core repulsion and a long-range Coulomb attract-i_lon (counterions) or repuli
sion (coions). Rapid variations of the densities profiles ,oa(.'r) near the su‘rface.s‘
of the polyions, which would posc numerical prob.}ems in r-space (grid) (_}Z
k-space {large k Fourier components) may be avoided by the use qf applio—
priate classical polyion-microion pseudopotentials [7]. T}}e cgrrela‘mon term
F,.. may be cxpresscd within the local density approxlmatlop (LDA.) [7]-
If it is ncglected, the functional (6.10) reduces to t-he.mean-held 1P01ssonﬂ
Boltzmann (PB) form. Optimization based on the funct-lon_al (6.10-_().13) has
been achieved with the “on the fiy” MD strategy for spherical polylons with
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counterions only {no salt} [7}, and in the presence of salt (Le. with co and:
counterions) [21]. The effective forces between colioids arc reasonably weli.

represented by a pair-wise additive screened-Coulomb form provided the (&
fective) polyion charge and the sereening length are treated as adjustable

paramcters. Other applications include rigid rod-like polyions [22], and flexis:

ble polyelectrolytes [5], the latter being investigated by MC simulations con

pled with steepest descent optimization. to allow a more efficiornt exploratioi:

of polyelectrolyte configuration space. If Fl,,.,. is neglected in the functional
(6.10}, and the ideal terms are replaced by their quadratic expansion in DOW:
ers of Apa(r) = pa{r) —pa {where p, is the bulk concentration of microions)

DLVO form. The entire procedure is justified only for relatively weak mi
croion inhomogeneities (L.e. |Apa(r)|/p, < 1), e for low absolute polyior
valence | Z,|. If the polvion charge is distributed over a number v of interac-

tion sites, each carrying a charge Zpe /v, lineat screcning may be an adequate::
approximation for each interaction site. The resulting “Yukawa site” model;
where all sites on neighbouring particles interact via a screened Coulomb .
(or Yukawa} pair potential, has been used to simulate charged rods [22] or:

charged discs representing clay particles [23].

An excellent literature survey of the recent simulation work on charged-
stabilized colloidal suspensions is provided by the review of M. Dijkstra [24].

6.4 Simulating the Polarization of Dielectric Media

The coarse-graining methods developed for poly-ionic systems may be ex-

tended to take into account the polarization of dielectric media, This is im-
portant when dealing with mesoscopic interfaces, or the solvation of highly -
charged macromolecules of biological interest, like DNA or proteins, by water -
[25]. Since a full molecular description of the solvent surrounding the macro-

molecules would be computationally prohibitive, water is gencrally (reated

as a dielectric continuwm which is polarized by the charge distribution on
the macromolecules. The key probiem is to determine the spatially varying

polarization P(r) induced in the dielectric, for any configuration of the “ex-
ternal” charges carried by the macromolecules and counter- and coions and

to calculate the resulting electrostatic potential ¥(r), due to the external and -

induced polarization charges.
Electrostatic problems involving dielectric polarization can be solved vari-
ationally, as in the case of electric double-layers considered iu the previous

section, by minimizing an appropriate functional F of the polarization density =

P(r) [26] or of the polarization charge [27]

f—"pal("n) =-V.-P{r)=vV. {X(T)VQ/(TH (6'14)

b
the total functional is quadratic in the palr), and the Euler-Lagrange equas;
tions rosulting from the extremum conditions (6.6) can be gsolved analytically'.
|7]. The resulting total effective energy of the polylons is then strictly pairs:
wise additive, and the effective pair potentials are of the linearly screened:
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-where x(r) is the local dielectric susceptibility. The non-linear nature of the
.. problem is immediately apparent from the self-consistency requirement which

links W{r) 10 ppor(r):

Wir) = Wy(r) - / Ppai(T) o (6.15)

where Wy () is the “external” slectrostatic potential, due to the charge distri-
hution on the macromolecules. The advantage of using P(r) as a variational
feld is that an clectrostatic free energy functional can be constructed in the

“form [28,29]

FulP(r}] = %/ To(rip(r)dr

+% f\P(r)fo(r)drf[Qfg(r)V - P(r)dr

i

Minimization of (6.16) with respect to P(r), for a fixed macroglo}ecula.r
configuration (and hence Wp(r)), leads back to the usual const-it.ut'._lve equa-
tions of electrostatics, and the value of Fyy at the minimum coincides with
the standard expression for the electrostatic encrgy of a polarizable medium
in an external ficld. This functional has been used by Marehi et al. in MD
simulations of polypeptides, with an “on the fly” optimization strategy [26].

A functional of the polarization charge (6.14), rather than of the polar-
ization itscll can be constructed, which upon minimization, leads back to
the standard relations of electrostatics [30]. At its minimum, this funciional
reduces to minus the electrostatic energy, so that it cannot be used in an ob-
vious way in dynamical optimization algorithms, but working with pp.i(v),
rather than with P{7), has two advantages. First a scalar rather than a vec-
torial field is to be handled on a grid. But more immportantly, if the interface

" between dielectrics is sharp, so that the susceptibility is essentially a step
- function, the polarization charge (6.14} reduces to a surface charge which
“may be defined on a 2d {rather than full 3d) grid, resuliing in considerable
' coxﬁputational savings. In MD or MC simulations of macromolecular charge
- distributions near interfaces, the polarization charge is efficiently caleulated
“by a steopest descent algorithm on a step by step basis. The method has

been successfully tested for simple model systems [30], and is at present be-

- ing applied te the simulation of ion channels through membranes, where tl}c
~ channel protein and the cmbedding fipid bilayer are treated as a dielectric

continuurm responding to the moving electric charges on the cations and on
- the water molecules [31]. Note that the role of the macromolecule and of water
Care inverted compared to the macromolecular hydration problem [27,26].
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6.5 Coarse-Graining Linear Polymer Sclutions wsoft” potential, and that vo{r = 0} is nite [34], L.e. the polymer coils
nay be modelled as penctrable spheres. On and off-lattice simulations of
eif‘la.voiding walk (SAW) polymers [35,36], as well as renormalization group
'RG) calculations for the continuous “thread” model [37]. show that the pair
potential vo{r) is well approximated by a single Gaussian:

A solution of lincar polymers involves many different length scales ranging
from -microscopic bond length over the persistence length and the radius e%f:
gyration (coil size) to the mean-inter coil distance, see Fig. 6.1. T hereflor '
the direct simulation of on or off-lattice models of pblymer solutions or melty
are very computer-intensive [32], because even the simplest linear polymérs
involve thousands of monomers. Even if the latter are grouped into Kuhn %eg
ments, corresponding to onc persistence length, the system will involve a very,
large number of linearly connected, interacting particles. If NV ig the numbei
(.)f polymer coils, each made up of M segments, the total number of degrees of
freedom is 3N M which is a factor of M (> 1) larger than for simple ﬂlli;i:&i or
rigid colloidal particles, assuming that the orgaulic or aqueous (for polyeiec;
t-I'(?I}’tES) solvent is replaced by a continuum. The question hence naturéﬂ
arises of how to coarse-grain the initial, fully microscopic model involving ‘11;1}*7
1'1101]0111(;"].‘3 or segments per chain. The situation is somewhat different from
the previously examined cases, involving large and small particles. The poly-
mer Case is more “democratic” in that all monomers play identical roles, at
!ea.st. in the scaling fimit A — co, where end effects becorzie negligible. An 7old
idea, which goes back at least to Flory 33] is to derive an effective intt;raction
jbetween the centres of mass (CM) of neighbouring polymer coils, by iﬁtegrat—
ing over the individual monomer degrees of freedom of two or niure coils fér
fixed relative positions of their CM’s. Consider first the case of two isolz;ted
}é(l)\lgmez‘ coils with menormer coordinases {riatuw i=1,21<a<M } and
NLY 'S: N B

2~ cexpl -t/ Ry (6:20)

whoere J =~ 1; the simulations yield [36] for M — 2o

£~ 1.80+0.05 {(6.21)
while the RQ yields the following ¢ = 4 — d cxpansion.

€ = 0.94¢ + 0.62¢” + O(e™) (6.22)

These results are independent of molecular detail, so that the simplest lat-
tice models and most efficient MC sampling {c.g. the pivot algorithm) can be
used to determine the effective interactions. Note that for self-avoiding walk
(SAW) polymers (which involve only excluded volume interactions between
monomers), the effective interaction is purely entrepic in nature as signalled
by the scaling with kg1

When nearest-neighbour attractions bebween monomers arc included to
allow for solvent conditions {strong attractions correspond to poor solvent},
the effective pair potential between the CM'’s becomes less repulsive, and
develops an attractive part as @-conditions are approached (35,38]. If ey de-
notes the depth of the attraction, ergodicity problems become more and more
severe in the simulations when e / kg7 > 1, but can be overcome by using
Bennett's overlapping distribution method [39,40]. Returning to the SAW
model, appropriate for good solvent conditions, the method for determining
the effective pair potential can be extended to effective three- and more-body
interactions, by simulating three or more polymers for various configurations
of their CM's [41]. The main qualitative results are that more-thar-two body
interactions alternate in sign (the three-body potential being mostly attrac-
tive), and that the absolute amplitudes of higher order interactions do appear
to decrease with increasing order i line with scaling theory [42].

However the strategy of adding higher order effective interactions in sim-
ulations of polymer solutions of finite concentration is computationally in-
efficient. A much more efficient strategy is to determine state-dependent ef-
fective pair interactions by a systematic inversion procedure [36]. The pair
distribution function g{r) of the CM’s of systems of SAW polymers at finite
concentration is calculated by direct simulations of a few hundred polymers
on a lattice, using efficient MC algorithums [40]. An effective concentration-
dependent effective pair potensial between the CM’s is then determined by
Ornstein-Zernike (OZ) inversion, assuming some adequate closure relatiomn,

At
R,; == Tioy (617)
=]
it U({T‘;?}) is the total potential cnergy of interaction of all monomers. the
probability distribution of the CM's is: ’

i

Qans / eIl H o{R; — Z i) HdTm- (6.18)

i=1,2 [23

P(Ry,Ry) =

wherg Qg{w is the corresponding configurational partition function {equal ta
t.h.e 611'{—dlmen5101.1ai integral in (6.18), without the § functions). By analogy
with (6.2), the effective pair interaction between the CM’s is then given by‘;

‘Ug(RlR;g) == *k‘BTlll{P(RlRQ)} (G]g)

The effective potential will only depend on - = |Ry — Rol. va{r) is cxpected
to be of the order of the radius of gyration Ry of the -};oh:mersr sincéfor
r = Iy, there will be little overlap between two coils. S‘lF\TOMCD, po]yil’dner%
in good solvent (where B, ~ MY, with v ~ 0.6, the Fiory cxponcnﬂ ar(;
highly fractal objects, i.¢. the mean monomer density insideba coll ~ A3
goes 1o zero in the scaling limit. An immediate consequence is that vy{r) is
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like the HNC closure {43]. In view of the softness of the resulting pair po- :

tential, HNC theory becomes asymptotically exact in the high concentration
limit, and is extremely accurate at all concentrations [44.45]. The inversion

15 a noniterative, cne-step procedure, and it has been proven that there is

a one-to-one correspondence between any given g{r) and a o(r) (uniqueness
theorem [46]). The resulting effective pair potentials turn out to be weakly
dependent on concentration [36]. They may be used in large-scale simuia-
tions of polymer solutions, of polymers at interfaces or of colloid-polymer
mixtures [47], to study, in particular, the effect of polymer interactions on
the depletion force between colloidal particles [36,48]. In its original formu-
lation, this coarsc-graining strategy has one obvious drawback, namely that
simlations of the full monomeric representation of polymer solutions are ini-
tially required to determine the CM pair contribution function g(r), for each
polymer concentration, a rather formidable task, even if the resulting effec-
tive potentials may then be used to explore a range of different large-scale
phenomena. However even this drawback can be overcome by calculating the
monomer-monorner pair distribution function within the accurate PRISM
theory [49], and then extracting the OM pair distribution function from its
monorneric counterpart, together with the form factor (or internal structure
factor} of a single polymer coil, using a recently proposed, accurate relation
between these three correlation functions [50).

6.6 Star Polymers and Dendrimers

The ideas of coarse-graiving, as applied to solutions of linear polymer chains
in the previous section, can be gencralized to polymers with a more compli-
cated architecture. We shall discuss solutions of star polymers and dendrimers
in more detail. Star polymers [51] consist of f linear polymer chains which
are chemically anchored to a common centre { f is called functionality or arm
number ), Obviously, linear polymers are a special case of star polymers when
[ = 1,2 depending whether the end or middle segment is taken as “centre” .
Dendrimers, on the other hand, can be viewed as iterated star polymers: pe-
riodically, any linear chain branches off into » additional chains (n is called
degree of branching) which is repeated g times (g is called generation num-
ber). For f > 3, in contrast to linear chains, star polymers and dendrimers
possess a natural cenfre which serves as an appropriate statistical degree of
freedom.

Let us first focus on star polymers in o yood solvent. A full monomer-
resolved computer simulation is completely out of reach of present-cay com-
puters: If N is the number of stars and M the number of monomers per chain,
a total number of N fM particles has to be simulated, f times more than for
a solution of linear chaing and fM times more than for simple fiuids, The
strategy b) of Sect. 6.2, however, can be efficiently used to make progress.
First consider only two stars at fixed separation » and average the force acting
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Fig. 6.1. Polymer solution on different length scales. (a): microscopic picture, \.,v&ter
and hydrocarbon chains are shown, the chemical bonds have a range of typically
LA. {b}: On a larger scale, the persistence length of the chains is re}ev.a,nt. (c):. the
spatial extension o of a single polymer coil. (d): all the coils are point pa{"th]E.:S
on this scale governed by the mean intercoil distance {e): size of the macroscopic

sarmple.

on their centres during an ordinary MC or MD simulation of the monomers.
Such a simulation involves 2fM particles only. A typical simulation snap-
shot is shown in Fig. 6.2. This is repeated for different 7. By integrating she
distanceresolved data for the force, the effective interaction potential v(r)
is obtained. This interaction is repulsive, since the presence of another star
reduces the number of configurations available to the chains. For small arm
numbers f < 10, the simulation results confirm an effective pair potential of
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Fig. 6.2. Typical configuration for two stars with / = 18 and M = 50 monomers
per chain as obtained from a snapshot during a Molecular Dynamics simulation
with r denoting the distance between their centres. By courtesy of A. Jusufi.

the log-Gauss form:

5 ‘ — (L) + 54 for r < o
U(’I’) — k.B-:[v 3/2 e 27 r{ ) > 0% )
18 ! 37757 CXD (*T“Z‘J’Q) for v > o, (6.25)

where o is the corona diameter of a single star measuring the spatial extent of
the monomeric density. For large distances 7, the interaction is Gaussian as
tor linear chains. It then crosses over, af the corona diamcter of the star. to a
logarithtmic behaviour for overlapping coronae as predicted by secaling tllloory
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[52] whick implies & very mild divergence as r — 01. The matching at v = o
is done such that the force —dv/dr is continuons. In (6.23) , 7(f) is known
from a fit to computer simulation results; for f == 2 we obtain 7 = 1.03 in
line with the Gaussian potential {6.20) used for lincar chains.

For larger arm numbers, f > 10, on the other hand, a geometric blob
picture of f cones around the star centre, each containing one linear chain
is justified [33]. The effective force for nearly touching coronae decays expo-
nentially with r, the associated decay length is the outermost blob-diameter
20 /+/f. This motivates a log-Yukawa form of v(r) [54]:

r 1 .
VIR G vy *lﬂ(}‘;)‘*l—m forr < ¢
u(r) = ingTf o amVIi—a) /) po o . (6.24)

144/ F/2 7

again matched at the corona diameter r = o such that the force is continuous.
This potential was verified in monomer-resolved simulations [55] for a large
range of arm numbers.

Using scaling theory and monomer-resolved simulations of a triangular
configuration of three stars [42], triplet interactions were shown to be negli-
gibly small outside the corona and at most 11 percent of the pairwise forces
for penetrating triplets inside the corona; consequently the effective pair-wise
description for the many-body system is adequate provided the number den-
sity p, of the stars is not much higher than the overlap density 1 Jo?. Large
scale shipulations invelving many stars were performed using the pair poten-
tial of (6.24} [56,57]. Due the crossover of v(r} at v = & from a harsh Yukawa
to a soft logarithmic behaviour, uncommor structural and thermodynamical
propetties were obtained. First, the main peak of the liguid structure factor
changes non-monotonically with increasing density [57]. Secondly, the bulk
phase diagram exhibits [56] a reentrant melting behaviour for 34 < f < 44
and stable anisotropic crystal lattices. The latter finding has been supported
by experiments [38].

Next let us bricfly discuss star polymers in o poor solvent. The only work in
this direction is close to the &-point where the chains are weakly interacting.
Consequently the resulting cffective repulsion is weaker than in good solvent,
More gquantitatively, an effective potential between two plates is available
within a self-consistent field approach for polymers grafted on fiat plates
where the grafting density is high and the self-avoidance is weak [59]. This was
extended to spherical particles by employing the Derjaguin approximation
160,61} providing an analytical expression for the effective pair potential v(r).
fu the limit of small core sizes, this expression has heen successfully tested
against scattering data for f = 64 arm stars in a solvent close to € conditions
[62]. What is still unexplored is a systematic approach for arbitrary solvent
quality which contincusly switches between good solvent quality to the &
point and beyond.

Much more stretched configurations are achieved for polyelecirolyte stars
(“porcupines” ) due to the strong Coulomb repulsion of the charged menomers



182 Jean-Plerre Hansen and Hartmut Lowen

along the chains. If one brings two polyelectrolyte stars together they hardly
interdigitate but retract. A variational analysis [63] for the effective force,

which includes Coulomb interactions and entropies of the counterions, re-

veals that the entropy of the counterions which are inside the corcmae of

the two polyelecirolyte stars dominates the interaction, confirming an old
idea of Pincus [64]. The analytical theory was quantitatively verified by come-
puter simulations with explicit monomers and counterions [63]. Inside the
corona, the resulting effective force could be fitted by an inverse-power law
oc v 7 where the exponent «y slightly depends on the actual charging condi-
tions but is always around 0.7 — 0.8. By integration, an effective potential
is obtained which stays finite at the origin and behaves inside the corona
as v(r) = v{0) — Crl™7 with a positive constant €. However, the actual
value ©v(0) for completely overlapping stars is much larger than kpT so that
significant overiap is rare. Due to the softness of the interaction, similar struc-
tural anomalics as obtained for star polymers are expected including a non-
monotonic variation of the first peak in the stzucture factor for increasing
density and reentrant melting.

Finally, dendrimers in a good solvent have been addressed. For a branch-
ing degree b = 2 aad a generation number g = 4 an effective Gaussian poten-
tial can be derived theoretically [65], provided the centre-to-centre distance
r is larger than the corona diameter o. In formal analogy to linear polymer
chains one obtains:

v(r) = Bexp(—r?/o?) (6.25)

The important differcnce from the case of linear polymer chains is that the
prefactor
B M2,
kT — w/%05
is much larger than 1, with M denoting the total number of monomers
per dendrimer and vy the excluded volume parameter per monomer. The
Gaussian interaction (6.25) was confirmed quantitatively by scattering ex-
periments [65]. A detailed comparison for & = 2 dendrimers with higher
generation number ¢ = 5 reveals that the effective potential v{r) is well de-
scribed by a sum of two Gaussians [66] comprising the effect of the stiff inner
region and the floppy outer region of a dendrimer. The cffect of increasing
the degree of branching b is much less expiored. In principle a Gaussian pair
potential (6.25) (or a superposition of them) is again expected but the pref-
actor B/kgT should grow with increasing b. Therchy it should be possible to
tune the prefactor B/kgT to larger values, where freezing is expected [67].
Coarse-graining star polymers and dendrimers thus maps them onto sim-
ple liquids with soft interactions (socalled mean-field flnids) which in turn
implies peculiar propertics. Hence the concept of effective interactions not
caly allows for efficient simulation, but also provides insight into the physical
bhehaviour.

(6.26)
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6.7 Colloids and Polymers: Depletion Interactions

If a sterically-stabilized colloidal particle is brought iato a non-adsorbing
polymer solution, the latter are depleted in a zone around the colloidal sur-
faces due to the colioid-polymer repulsion. The width of this zone is of the
order of the radius of gyration d,/2 of the polymers. If one now brings two
colloidal particles close to each other, the two depletion zones overlap, which
brings about a free energy gain of the polymers relative to a situation of non-
overlapping zones, resulting in an effective attraction between the colloids,
the so-called depletion attraction. Alternatively one can view the attraction
arising from an unbalanced osmotic pressure exerted on the colloidal particles
by the surrounding polymers.

"The simplest modet for colloid-polymer mixtures including the depietion
effect is the so-called Asakura-Oosawa (AO} model [68] which assumes hard
core interactions between the colloids of diameter d,., further hard-core in-
teractions between the polymers and the colloids with a range (d. + d,}/2,
but no interaction at all between polymers. The ideality of the polymers is a
crucial approximation which is fulfilled only for dilute polymer solutions, but
it allows to investigate many of the statistical properties of the AQ model
analytically. For instance, the effective interaction v(r) between a colloidal
pair can be calculated to be the product of the polymer osmotic pressure
P, = kgTp, and the overlap volume of the two depletion zones consisting of
two spherical half-caps. Explicitly it reads

" o0 for r < d.

v{r - . 4 o 5 .

i P C O [1* sty 2 @) or de <7 S de oy (6.27)
0 forr > d. +dp

Furthermore, by a simple geometric consideration, it can be shown that ef-
fective triplet and higher-order many-body forces vanish provided the size
ratio between colloids and polymers ¢ = dp/d. is smaller than 0.154. In this
case, the AO model is formally equivalent to an effective one-component sys-
temn with & short ranged attraction, which immediately opens the way for
large-scale simulations.

The phase diagram of the AQ model was explored by computer simu-
lations on three different levels: first, one-component caleulations using the
effective pair potential (6.27) have been performed [69], which arc exact for
g < 0.154. Secondly, more recently, Dijkstra has simulated the full effective
Hamiltonian including effective many-body forces to arbitrary order forg =1
[70]. Finally, brute force simulation with explicit ideal-gas polymers have been
carried out {71]. The emerging phase diagram involves three phases: gas (i.e.
colloidal poor), Hquid {i.e. colloidal rich) and an fec colloidal crystal. A liquid
phase is stable if the ratio ¢ is larger than ¢, = 0.5.

Ou the other hand, theoretical progress was made by constructing a free
vohime theory for the fluid bulk free encrpies [72] which provides a reliable
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estimate for the gas-liquid transition. A free-energy density functional f
the AO colioid-polymer mixtures, valid for arbitrary inhomogeneous sity

tions, was constructed [73] in the spirit of Rosenfeld’s fundarmental reasiire

approach [74], which reproduces the effective interaction {6.27) for a collaig
pa-tir and the free volume theory of Ref. [72]. This density fuuctional was 3
plied to wetting phenotmena of planar walls. A novel type of wetting involvip
growth of only few colloidal liquid layers on top of the wall as liquid-gas &

existence is approached was predicted by density functional theory [75] aiig

confirmed by computer simulations [70,71]. This wetting scenario only show
up for ratios larger than g., so that one can speculate that it ig prod.uced by
the intrinsic many-body nature of the effective forces, :
Obviously, the AQ model has the short-coming of idealized interaction
More realistic models involve a non-zero polymer-polymer interaction and d
sgfter polymer-wall interaction {76]. On the other ha.ﬁd, full two-componesit
simulations of colloids and polymers were performed [77,78] where the poly
mers are defined on a lattice. Clearly these include any effective mamhboc‘i'y
interactions. A second computationally less demanding technique is to cals
culate effective pair interactions between a coloid and a polymer first b
a monomer-resolved reference simulation. This strategy was followed in the
more general context of mixtures of colloids and star polymers for small size
ratios g. Supported by theoretical scaling arguments the following pair in<
f;a;a;:;]lon betweer: a hard-sphere colloid and a star polymer wasbobtainéd'

veplr) = kaTAFY? (e (6.28)

—In( 27;(1’-:1) 4 ((2r;ga)2 = (1 +4x)/(T+ 20)) + ¢ forr < d}“’;
Cerfe(x(2r — d.) /o) jerfe(s) else,

Here, A and # are known parameters depending on the functionality f of :
the star, ( = y/merfe(x) exp(s?)/(x(1 4+ 26?), o denotes the corona diameter -

of the star and erfc(z) is the complementary error function. For r — d, /2
ti’}e potential diverges logarithmically as for the star-star interaction (6.23).
Linear polymer chains are obtained as the special case f =2 where A = 0.46
and K= 0.58. The two-component system with effective pair interactions
was investigated in detail by further simulation and liquid integral equation
theory. For different arm numbers f, the fuid-fluid demixing transition was
ca,lcu'lat-ed [79] iz good agreement with experimental data. Furthermare, the
freezing transitions was discussed. Above a critical arm number of fom 10
ftuid-fluid demixing was preempted by freesing [80). 4 ’

In case of polymer size comparable or larger than the colloidal diamcter d.
effective many-body forces play a significant role. Complementary method;
such as monomer-resolved liquid intergral equations methods combined with
the PRISM approach [81] or field-theoretic calculations [82] have provided
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aluable insight into the structure of colloid-polymer mixtures. The limit

large ¢ contains completely different physics, since the colloidal spheres
spresent then small perturbations for the long polymer chains [78].

8 Binary Colloidal “Alloys”

Binary mixtures of large and amall sterically-stabilized colioids exhibit many
inexpected phases. Such a binary colloidal “alloy” can be modelled as a two-
component hard sphere system involving two colloidal diameters dq and dy

dy < di). If the size ratio ¢ = ds/dy is larger than 0.4, a large variety of
itable phases involving different superiattice crystals are predicted by theory
33] and simulation [84] and observed experimentally [85] . We shall focus

here more on the case of small ¢, where a depletion picture, similar to that
discussed for colloid and polymer mixtures, should hold. In conirast to the
AO-model, however, many-body forces are present for any g in the hard
sphere mixture, but these can be shown to be small with respect to the
pairwise contribution [9,11].

The effective depletion potential v(r) between a pair of big spheres in a
sen, of small spheres has been efficiently calculated and analytically param-

eterized, based on the procedure of Roth et al. {10} as applied to the two-
" component hard sphere density functional of Rosenfeld {74]. As a function of
* 7, v(r) involves a short-ranged attraction followed hy an oscillatory behaviour

decaying exponentially with the bulk correlation length of the small spheres.

" The density functional predictions were confirmed by computer simulations

[86,87] and by experiments [88].

One key question addressed during the last decade was whether the de-
pletion attraction is strong enough to drive fluid-fluid phase separation {for a
recent review see [24]). The problemw was finally solved by computer simula-
tion using the effective one-component model with the depletion pair poten-
tial [89,90]: a fluid-fuid demixing is obtained for ¢ < 0.1 but this is always
metastable with respect to the freezing transition into an fee solid made up
by the big spheres. The simulations of the effective one-component model
were confirmed by full simulations of the true binary system {89] showing
once more that the influence of triplet forces is negligible {9,11]. Simulation
results for the phase diagram, as presented in terms of the packing fractions
m = wpydi /6 of the big particles and 75 of a reservoir of small particles in
coexistence with the whole system, are shown in Fig. 6.3 for ¢ = 0.2,0.1,0.05.
Besides the fluid-fluid demixing which remains metastable, an isostruetural
solid-solid transition occurs at high mp for ¢ < 0.05, as familiar for one-
component systems with a short-ranged attraction [91,92]. As g decreases,
the fluid-solid coexistence line becomes more and more horizontal until the
sticky hard-sphere limit (g — 0%) is achieved where a vacuum coexists with a
close-packed crystal. This example shows again that the effective interaction
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picture allows qualitative and quantitative understanding of the topology of
phase diagrams.

Further current rescarch is focused on the sensitivity of the depletion po-
“tential 5o polydispersity of the small particles [93], and to small-small and big-
qmall interactions beyond the hard sphere model [94]. Polydispersity smears
out the oscillatory behaviour, while keeping the deep attraction near contact
auchanged. Different small-small and big-small interaction have a significant
impact on the effective big-big interaction: for instance, an attraction be-
rween the small particles or the hig and small particles leads to repulsive ef-
foctive interactions due to an accumulation of small particles on the surtaces
of the big ones. This “inverse depletion effect” may be called accumulation
repulsion. These recent findings imply that the effective interactions can be
systematically tuned via the basic interactions and polvdispersity.

6.9 From Colloidal to Nanoscales

Although the concept of effective Interactions as described in Sect. 6.2 1s ex-
act in principle, there are limitations in applying it in practice. These limita-
tions become more and more important if one considers smaller and smaller
macroparticles, such that molecular details become more relevant. In fact,
on nanosecales, chormical specificity is starting to become crucial, resulting
in many different phenomena like solvation effects, hydration, hydrophilic-
ity, hydrophobicity, forces determined by chemical bonding ete. In fact, these
effects are essential to explain the stracture and function of biclogical macro-
molecules in solution, e.g. of proteins. Under these circumstances, it is clear

q=0.05 () that one cannot get away with relatively simple effective interactions, char-
o acterized by few parameters, like those discussed previcusly in the context

of colloidal length scales. The immediate question arising is when and where
does the simple coarse-graining concept break down if one crosses over from
the colleidal to the nanoscale, Basically there arc fwo major coveats: The first
concerns the choice of the microscopic degrees of freedom which are to be in-
tegrated out; the second concerns internal degrees of freedorn and modelling
of the big particles themselves. In the sequel we shall discuss these two points
in detail and illustrate them using two examples,

Regarding the first point, even on nanoscales there remains an encrmous
nwnber of microscopic degrecs of freedom. The relevant guestion is which of
these have to be included explicitly in the starting Hamiltonian or may be
ignored or replaced by effective parameters. This is a fricky question when
length scales are less clearly separated than in colloidal systems. For long
polymer chains, scaling theory implies that molecular details are unimpor-
tant for most purposes, such that one can get away with simple lattice models
(s discussed for linear polymer chains) or with a simple monomeric descrip-
tion of beads (as discussed for star polymers). For charged colloids, in the
primitive approach, the solvent molecules are not considered explicitly but

Fig. 6.3, Phase diagram of binary hard-sphere mixtures with size ratios {a) g = 0.2,
{(b) ¢ = 0.1, and (¢) g = (.05 as a function of the large-sphere packing fraction
and the small-sphere reservoir packing fraction n%. F and S denocte the stable fuid
and solid {fec) phase. F + 9, F' + F, and S + S denote, respectively, the stable
fluid-solid, the metastable fluid-fluid, and the (meta)stable solid-solid coexistence
regions. The solid and dashed lines are the effective one-component results; the
squares and the asterisks (joined by lines to guide the eye) denote, respectively,
the fluid-solid and the solid-solid transition obtained from direct simulations of the
true binary mixtures. Reproduced from Ref. [89] with permission.
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only enter via the dielectric constant. The charged microions, on the other

hand, are included explicitly, since their Coulomb interaction is stronger than
the dipolar forces acting hetween the solvent. While this seems to be Jjustified

for micron-sized colloidal particles with typical interparticle spacing of mi-

crons (provided molecular details on the colloidal surface are encaptured by .
an effective colloidal charge), it is questionable when the colloidal diameter or
the intercolloidal distance is becoming comparable o the correlation lenth or :

interaction range of the microcopic degrees of frecdorn, i.e. for nanoparticles.

As an illustration, we consider the effective interaction between two nano-
sized charged colloidal particles in a hard sphere solvent. A systematic com-
parison between primitive-mode! calculations where the solvent is neglected
and the full system including the hard sphere solvent was performed recently
by Allakyarov and one of us [95,87). On an intermediate level, one can for-
mally integrate cut the solvent, ending np with effective interactions between
the charged particles. If these are approximated to be pairwise, one obtains
the so-called solvent averaged primitive ode! [96]. In this model, the inter-

action hetween charged species comprises the bare Coulomb interaction and ;

the effective depletion interaction between hard spheres as discussed in Sect.
6.8. Extensive computer simulations [95,87] have shown that the total effec-

tive force between charged colloidal particles docs depend on the presence of

the discrete solvent. Even the sign of the effective interaction can be different
in the primitive model as compared to the full solvent result. An example
for divalent counterions and a charge asymmetry of Gp © G = 64 1 2 1s shown
in Fig. 6.4 where the ratio of the three hard-core diameters of colloidal par-
ticles, counterions and solvent particles is dpide tds =141 2: 1. In fact,
interpreting the solvent size as a microscopic scale, the colloidal diameter
is 14 times larger and thus falls into the nano-regime. While the primitive
wodel reference calculations yicld a repulsive effective force, the simulations
including a hard-sphere solvent result in an attractive force.

The solvent-averaged primitive model, on the other hand, reproduces the
data of the full solvent simnlation rather well. The simulation time for the
solvent-averaged primitive model is similar to that of the primitive model,
since the number of particles simulated is the same, while the full simulation
requires the inclusion of many solvent particles. Hence the concept of effective
interactions as applied to the solvent degrees of freedom alone, makes simnla-
tions feasible in the spirit of MeMillan-Mayer theory. But even more impor-
tantly, the solvent-averaged model also provides insight into the basic physics:
the depletion attraction between a colloidal sphere and counterions favours
an accumulation of the latter on the colloidal surfaces, thus enhancing the
screening. It is this effect which, together with strong Coulomb correlations,
leads to the attraction evident in Fig. 6.4 which is completely missing in the
primitive model. For large colloidal spheres, on the other hand, it was shown
in Ref. [87] that the effect of a discrete hard sphere solvent can completely be
accounted for by taking a different (effective) colloidal charge as input in the
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400

Fig. 6.4. Reduced distance-resolved force F{r)dp/kaT versus rcduoed distla.nce
r/dy between two charged colloids as obtained by computer simulations. The inset
shows the same for nearly touching polyions of melecular distances. The pz}rametors
arel e = 2, gp = —04, dp 1 do 1 dy =14:2: 1, e = 81, the :olu;{ze f.ractlo.n of the
polyions in the periodically repeated box is 1, = 5.8 x 1077, Solid hnet with error
bars: full simulation including the hard sphere solvent; long-dashed line: S(.jlivel.lt
averaged primitive model; short-dashed line: primitive model; dot-cashed line in

inset: solvent depletion force alone (for comparison}.

primitive model calculations. Consequently simple coarse-graining is justified
provided an effective colloidal charge is used. o '
The second caveat for coarse-graining concerns the description of the big
colloidal particles. Up to now we have modelled them as homogeneously
charged hard spheres in the context of charged suspensions. .Commg down
to nanoscales, the molecular details and internal degrees of freedom of the
large particles themselves, which are neglected in statistical devscriptiogs of
colloidal dispersions, are becoming more and more relevant. We skall illus-
trate this using an example where the discrefencss of the charge pattern on
the colloidal surfaces turns out to be crucial provided the particles are nano-
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sized. This is of particular importance for proteins which are characterized.
by nanoscale electrostatic patches.

In a recent computer simulation [97], the effective interaction betweern
two nano-sized colloidal spheres (modelling globular proteins) with a discrete’
charge pattern was calculated within the primitive model as a function of:
added salt concentration. A snapshot of a protein pair is shown in Fig. 6.5,
Discrete clementary point charges were placed on the protein surface with &
finite depth. Consequently the effective interaction not only depends on the

centre-to-cenire distance r but also on the rclative orientations of the two:

proteins. These represent additional statistical degrecs of freedom associated

with the macroparticies. The data were compared to the standard description
with the charge uniformly smeared over the particle surface. A key quantity

controlling protein crystaliization [98] is the second osmotic virial cocfficient:
By which can readily be measured by scattering methods in dilute protein
solutions. By can be shown [97] to be related to the effective interaction by

B, = -j;{/ d*r [l — exp{—v(r)/kgT)] (6.29)

in formal analogy to the orientation-independent case of the smeared charged -

model. Here v(r) is the integral of the canonical orientational average of the
distance-resolved effective force projected onto the separation vector between
the two proteins [97].

A detailed caloulation of Bz as a function of added salt reveals that it be- _ :

haves non-monotonically as a function of added salt concentration, in agree-

ment with several experimental studies [99]. This non-monotonicity, however, .
disappears when the surface charge uniformly smeared ont. It can thus be -
traced back to strong Coulomb correlations induced by the discrete binding .
centers near the surface. This example shows that important effects arc lost

even qualitatively, when the coarse graining of nanoparticles is pushed too
far. .

6.10 Conclusions

In surimary, we have demonstrated that the concept of effective interactions
allows large-scale simulations and provides additional insight into the physical
mechanisms governing colloidal dispersions and polymer solutions. We con-
clude with a discussion about multiple time scales in the context of colloidal
dispersions.

‘The dynamics of colloidal particles embedded in a solvent involves many.

different time scales ranging from the collision time 7, =~ 10 4sec of the
solvent molecules, over the relaxation time 75 &= 10 %sec of the total colloid
momentum and the propagation time 75 = 10™ ?sec of hydrodynamic inter-
actions, o the Brownian time o A~ 107 %ec on which diffusive motion of the
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T

Fig. 6.5. Sinulation srapshot of a micreion configuration around two model pro-
teins separated by © = 1.7d,, d, denoting the protein hard core diameter. The
proteins carry 15 discreic charges e, monovalent salt molarity is ¢; = 0.208870l/L.
The globular protein molecules are shown as two large grey spheres. The embedded
small dark spheres on their surface mirmic the discrete protein charges. The small
grey spheres are counterions, while the black spheres are coions.

colloidal particles is observed. Consequently there is almost complete time
scale separation

Ty << TR X TH << To. (6.30)

It is a challenging question whether - in analogy with bridging length
scalc gaps - one can “integrate out” the fast dynamical processes which hap-
pen on the time scale 7, in order to arrive at an “effeciive dynamics” on
larger time scales. The traditional approach is a stochastic one, as embodied
in Langevin and Fokker-Planck formulations {114,115}, but a rigorous deriva-
‘tion of the Fokker-Planck equation from the initial full Liouville equation for
dilute colloidal suspensions exposes the intringic lmitations of the Fokker-
Planck equation, due to the similarity of the time scales 75 and 74 [116].
Clearly a dynamical counterpart of the effective interaction concept gov-
‘erning the thermodynamics and statics is missing. From a simulation point
‘of view however, relying on an (almost) complete time scale separation be-
tween solvent and colloidal dynamics, ane typically describes the motion of
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the colloidal particles by a completely overdamped Langevin equation with:

stochastic forces exerted onto the colioids modelling the random solvent kicks
[100,101]. Within such a Brownian approach operating on a time scale 7, the
hydrodynamic interactions act instanfaneously. Much recent effort was spent,
to treat these hydrodynamic interactions approximatively [102] by using dif-
ferent computational schemes such as lattice-Boltzmann techniques [103];
Stokesian Dynamics [104], dissipative particle dynarics [105], and fluidizing
the solid colloidal particles [106]. Although these algorithms are powerful in
different applications, it iz falr to say that all of these approaches lack a
rigorous theoretical jussification.

Having established a stochastic Brownian approach for the colloidal par-

ticles resulting from the selvent dynamics, a much more modest guestion
concerns the dynamical utility of the effective interaction concept originat-
ing from integrating out small particles different from the solvent (counter-
and salt ions, polymers, small colloidal particles etc). One may conjecture

that it is only in the case of a complete time scale separation between the -

big and small particle dynamics that the effective interaction has a true dy-

namical meaning. This is the recason why the effective interaction potential

is frequently combined with Brownian dynamics simulations for the colloids.
For instance, the effective DLV O-potential has been combined with Brownian
dynamics simulations in order to investigate the glass transition {107], long-
time self-diffugion [108], lincar shear Aow [109-111], and phase transitions in
driven colloidal mixtures [112,113]. Tt would be very interesting to test and
study systematically how far one can get with the coarse-graining approach
as far as dynamical questions are concerned.
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