CHAPTER

Dynamics of Charged Colloidal
Suspensions Across the
Freezing and Glass Transition

Hartmut Lowen

-Dynamical correlations of charge-stabilized colloidal suspensions are investi-
gated using Brownian dynamics simulations. Special emphasis is put on the
kinetic glass transition in a charge-polydisperse suspension, and on long-time
elf-diffusion, particularly on a dynamical freezing rule for colloidal fluids. First,
tructural slowing down near the kinetic glass transition that shows up as a
lateaulike behavior in the time-dependent density autocorrelation function is dis-
“cussed for a supercooled polydisperse Yukawa fluid. Brownian dynamics results
.are.compared with those of molecular dynamics, which ignores solvent effects. It
found that only the intermediate time region is affected by the different types of
ort-time dynamics, but the long-time behavior is at least qualitatively similar,
cond, 2 dynamical scaling law at the freezing line of the fluid is empirically
d stating that the ratio of long-time and short-time self-diffusion has a univer-
al value close to 0.1. This constitutes a dynamical phenomenological freezing
for colloidal suspensions, similar to the Lindemann melting criterion. Third,

ime translational and orientational diffusion is discussed for a system of
townian hard spherocylinders. Along the fluid-crystal and fluid-nematic co-
tence line, both long-time self-diffusion coefficients measured in terms of
[ short-time limits are nonmonotonic as a function of the length-to-width
0.0f the spherocylinders. The ratio of long-time and short-time orientational
iffusion is roughly 0.1, constituting a simple dynamical freezing rule for
ropic fluids. For all topics, the connection o mode-coupling theories on the
and, and to experiments on the other hand, is also briefly discussed.
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8.1 Intreduction

system;, however, the length scale of structural ordering is mesoscopic roy hl

determined by the mean interparticle spacing £ = n_ 13 where 5 islt)he ar% Iy
cpnceqtration. This permits a direct visualization 0? the! particle pogitionlz uslic:le
direct image processi ng methods or video microscopy and opens a fascinating

0, forr > d

vin = {oo, forr < d (8.1)

where d is the djan_leter. of the particles. For charge-stabilized suspensions, on
the other hand, Derjaguin, Landau, Verwey, and Overbeek (DLVO) [6, 7 h,ave

calculated that at infinite dilution the effective i ion is pairws
ective interaction is W
Yukawa type parrwise and of the .

2

— (Zeffe)
Ur) = dreer exp(—xr) (8.2)_

with

Zog = Zexp(ed/2) /(1 + xd/2) (8.3)'.

Ze denoting the bare charge of the colloidal “macroions” and
K= (3 nzlkyTeye)'? (8 éi

ben.1g the inverse Debye-Hiickel screening length. Here n, and 7, are the concen
tration and charge of the jth type of impurity ion (inc[udiné the cc;unterions) inthe
solvent a‘nd T is the temperature, A Poisson-Boltzmann-cell mode] designed for
strongly interacting macroions also results in an effective Yokawa interaction [8];

A more refined ab initio study of the “primitive model,” which includes counte
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of the macroions is not too high. However, the actual values of the parameters
Z . and « eniering into Eq. (8.2) have to be renormalized with respect to the
DLVO predictions Egs. (8.3) and (8.4) valid at infinite dilution. In order to check
the charge renormalization, it is highly motivated to study structural and dy-
namical quantities for Yukawa systems by theory and computer simulations and
to compare with the experimental data gained from charge-stabilized colloidal
suspensions.

The special purpose of this chapter is to study the dynamics of Yukawa Sys-
tems, particularly in the neighborhood of phase transitions. In contrast to atomic
and molecular fluids whose dynamics are Newtonian, the complete time-scale
separation between solvent and colloidal particle relaxation leads to irreversible
Brownian motion of the macroparticles in the solvent. For dilute systems, these
dynamics can explicitly be obtained by writing the finite-difference version of
the particle displacements as follows: We consider N patticles confined to a large
volume V' with positions {r; : { = 1, ..., N}. The particle positions after a small
time step At are gained from those at time ¢ by the formula [12, 13];

vt + AR =1, (5) éFi (AL + (AT) 4 + O(AFP) (8.5)

where the random displacement (Ar)  is sampled from a Gaussian distribution

of zero mean, (Ar), = 0, and variance (Ar)i. = 0kpTAt/E. Here F,(1) are the
total forces on the particles derived from the pairwise interaction Eq. (8.1) or
(8.2), and & = 3wnd is the solvent friction coefficient (n denoting the solvent
shear viscosity), which is related to the short-time diffusion constant as follows:

Dy =kpT/E (8.6)
Dy, provides a natural scale to measure the long-time diffusion coefficient D,
defined by

Y
I
D, = Jim (2| > i - ror) 87)
- where < ... > denotes a canonical average. We remark that Eq. (8.5) also con-
- stitutes a direct algorithm for a Brownian dynamics computer simulation. In
concentrated colloidal systems, hydrodynamic forces induced by the solvent are
elevant. In principle, these could be approximately included by replacing & by a
3N x 3N matrix depending parametrically on the positions {r;}. In the follow-
g, however, also for simplicity, we take & to be diagonal and constant, thus
glecting any hydrodynamic interactions, which is a reasonable assumption for
dilute though highly interacting charged suspensions.
As regards phase transformations, several types of phase transitions are con-
ivable. The best known is the freezing transition [4]. The hard-sphere fluid
xhibits a strong first-order freezing transition into a dense-packed crystal with
arge density jump of about 10%. Also the Yukawa fluid freezes into a BCC
'FCC crystal depending on whether the interaction is soft (small «) or harsh.
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Another transition is the kinetic glass transition of an undercooled or compressed
ftuid. This is not a true thermodynamic phase transition with a non analyticity in
the free energy but a smooth transition of dynamical origin where time-dependent
correlations decay only for very long times.

‘This chapter is concerned with dynamical signatures at the freezing and fluid-
to glass transition of a charged colloidal suspension. Near the glass transition
the long-time self-diffusion coefficient D; practically drops to zero, exhibiting
a power law as a function of a typical parameter measuring the distance to the
glass transition point. One main point of this chapter is to check explicitly the
validity of this power law by performing extensive Brownian dynamics com-
puter simulations for a charge-polydisperse colloidal suspension [14]. Also the
relaxation of the density autocorrelation function is studied in order to detect the
kinetic glass transition by simple dynamical diagnostics. Particularly, the sce-
nario of the kinetic glass transition is compared to that of a system governed by
Newtonian dynamics. It is found that the long-time relaxation is very similar but
the short-time and intermediate-time relaxation is different.

At the freezing transition, the long-time self-diffusion coefficient 2, jumps
from a finite value at the fluid side of the phase coexistence line to a very
small value corresponding to diffusion of grain boundaries and vacancies in the
crystalline phase. Interestingly enough, Léwen et al. [13] found that the ratio
D, /D, exhibits a universality at the fluid coexistence line. It always equals
0.098 at the freezing transition of the fluid regardless of the interaction between

the colloidal particles. This constitutes a dynamical phenomenological freezing -

rule, similar in spirit to the Lindemann rule [16] of melting or the Hansen-Verlet

[17] freezing rule which have proved to be very helpful in estimating fluid-sohd:
coexistence lines. As early as 1910 Lindemann [16] put forward the empirical fact

that the ratio of the root-mean-square displacement and the average interparticle
distance at the solid melting line has a value of roughly 0.15. The Hansen-Verlet
criterion [17] states that the amplitude of the first maximum of the liquid structure
factor has a universal value of = 2.85 along the liquid freezing line. The Hansen-
Verlet and the dynamical freezing criterion of Léwen et al. [15] are universal in
the sense that they do not depend on the detailed nature of the spherical interaction
potential.

It is interesting to check whether the concept of dynamical universality at the
freezing line of the fluid also holds for anisotropic fluids where one has coexisting
crystalline or nematic phases. In order to clear that up, we report Brownian
dynamics simulations of hard spherocylinders for different total length-to-width
ratios p,. As a result the orientational self-diffusion coefficient measured
terms of it short-time limit also drops one order of magnitude at the fluid-liquit
crystalline transition line. The actual value, however, depends a bit on P, henc
the self-diffusion is not that universal as in the case of isotropic interactions. : -

The chapter is organized as follows: First we discuss Brownian dynamics of
supercooled charge-polydisperse Yukawa fluid near the kinetic glass transitio
Section 8.2. Then we turn to self-diffusion at the fluid freezing line in Section 8.
For both topics, the experimental and theoretical situation is first briefly reviewe
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and then computer simulation results are discussed. Section 8.4 is devoted to
self-diffusion in anisotropic fluids. We state some open problems in Section 8.5.

8.2 Kinetic Glass Transition in Colloidal Suspensions

In this section we review some recent experimental theoretical and simulational
results for the kinetic glass transition in colloidal suspensions. The main emphasis
is placed on results from a Brownian dynamics computer simulation.

8.2.1 Light Scattering Experiments

Pusey, van Megen, and co-workers [18-22] measured the time-dependent den-
sity autocorrelation function over a broad time window for a sterically stabilized
colloidal suspension as a function of the packing fraction of the particles. The
experimental method they used was dynamical light scattering. Despite the enor-
mous differences in time scales between atomic and mesoscopic glass formers,
the superceoled colloidal liquid exhibits qualitative features very similar to that

- of an atomic Hquid at the kinetic glass transition. The advantage for interpretation

is that the experimental system 1s a rather simple: It represents a hard-sphere-like
system with a small polydispersity.

Also the relaxation of spherical polystyrene micronetwork particles of meso-

scopic size, swollen in a good solvent, was recently measured over a very broad
time window by Bartsch and co-workers [23-25], representing another type of
colloidal suspension. The samples are a bit more polydisperse (p, = 0.16) than
:that used by van Megen and co-workers; consequently the glass transition oc-
urred at higher volume fractions of the colloidal spheres. Again the long-time
relaxation was found to be very similar to that of simple atomic liguids. Charge-
tabilized colloidal suspensions also form glasses; experimental studies at the
lass transition were done by Sirota et al. [26] and Meller and Stavans [27].
+ It would be interesting to apply real-space methods by tagging a single particle
nd following its way nsing video microscopy. Then one could link the results
nore easily to computer simulations. Also most of the concepts and jargon con-
erning the relaxation of the kinetic glass transition (like particle cage relaxation
d thermally activated hopping) are borrowed from real-space pictures and
ould be tested experimentally.

8.2.2 Theory

e most prominent theory of the glass transition capable of making nontrivial
dictions for the relaxation scenario is the mode-coupling theory (MCT) de-
loped by Gotze and co-workers [28]. The experimental results of van Megen
d Pusey [19] were compared with predictions of mode-coupling theory for a
rd-sphere system by Gotze and Sjdgren [29] and by Fuchs et al. [30]; good
Ieement was found between mode-coupling theory and the experimental data.
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The MCT was originally derived for molecular dynamics. It was shown ex-
plicitly by Szamel and Léwen {31] that the asymptotic predictions of MCT do
not change for Brownian dynamics. Hence, within MCT, the asymptotics of the
density relaxation are universal with respect to the short-time dynamics. For ex-
ample, the ideal glass transition occurs at the same temperature for MD and BD.
There have only been a few attempts to incorporate hydrodynamic interactions
into MCT, a first step having been done by Fuchs [32]. Again the asymptotic sce-
nario remains unaffected by the explicit form of the hydrodynamic interactions,
while there are changes for finite times.

Recently, Kawasaki [33] proposed a stochastic model particularly designed

for the Brownian dynamics of colloidal suspensions. Here also activated hopping -

is incorporated in some sense into the theory.

§.2.3 Brownian Dynamics Simulations

In order to make a direct comparison between undercooled atomic and colloidal
fluids, Lowen et al. [34] performed an extensive simulation for a charge-stabilized

polydisperse colloidal suspension near the kinetic glass transition for both Brow-
nian and Newtonian dynamics. To date this is the only simulation for the kinetic

glass transition which takes solvent friction into account. It may be mentioned that
there are other Monte Carlo simulations of the glass transition which interprete

the fictiious Monte Carlo move dynamics as a real dynamics; see for example -

[35]. If the long-time behavior is independent with respect to short-time dynam-

ics, then one can chose one suitable fictitious dynamics to extract the long-time -
dynamics such that the actual computational time to explore sufficient statistics.

is smaller. An idea of this kind was used by Kob et al. [36, 37].

As a model system, a charge-polydisperse colloidal fluid, described by the

potential

£ Z,'Zf £ £
Us(r) = Uo; Z_Zl exp | —« 7 (8.8
was chosen in Ref. [34] where k™ = «f = Tandn , = £ are fixed. The system
is then cooled from a temperature T* = k,7T/U, = 0.45 down to T* =0.1
The macroionic charges {Z, :i =1, ..., N} are continuously distributed a

cording to a Schultz distribution with a relative charge polydispersity of 0.
The characteristic time scales for BD and MD are 7, = £ 2 U, for Brownian

and 7, = Jmet] U, for Newtonian dynamics, where m is the mass of the pa

ticle, The high value of «* chosen implies that the system behaves similar to
polydisperse hard-sphere system. In order to perform an explicit mapping fro
the charge-polydisperse onto a size-polydisperse system by using the Gibb
Bogoliubov inequality, an effective relative size polydispersity of about .13 wi
obtained [34]. Thus the data correspond roughly to those of the experiments
Bartsch et al. [23-25]. Although more complicated than a monodisperse mode
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the motivation for the charge-polydisperse model is twofold: First, crystalliza-
tion is suppressed, and one is sure to encounter a glassy state in the simulations,
Second, polydispersity is an intrinsic property of any cotloidal suspension, and it
is thus natural to incorporate it into the theoretical model directly.

The dynamical key quantities characterizing the glass transition are the density
autocorrelation functions in real space as well as in Fourier space. We define the
general density autocorrelation function as follows

N
C,=C,onr =3 sr—rO) s - ri(t))) (8.9)
ij=1
This can be splitinto a self (s) and distinct (d) part
Cinr,n=CP, v 0+ P, (8.10)
with
N
W, r, 1) = (Z 8(r —r,(0) 8 —r, (r))) (8.11)
ji=1
N
C¥ . =({ Y 8 —1,0) 867 —1,(1) (8.12)
=1

C'ff)(r, r', 1) [resp., Cf)d) (r,¥', 0)] give the joint probability density to find a
particle at position 1’ after a time 7 and the same (resp. another) particle at

_position r for zero time.

By normalization, we obtain the van Hove correlation function
Gr,v',1)=C,(r,r', 1)/ (8.13)
hat also naturally splits into a self- and distinct part

G, v, 1y =G (r,v', 1)+ G, (r,7,1) (8.14)

The distinct part of the van Hove correlation function is the time-dependent
neralization of the pair distribution function g(r)

s 4 N

Gy =g 37 8,0+ 1y @0) (8.15)
LIS
Of course, G 450 = g(ryandlim,_,_ G,(r, 1) = | in a fluid, whereas the van
‘e function has frozen-in components for large times in a glass. The self-part
s

I N
G 1) = —{ 36 = 1,(0) + 1,07 (8.16)

P j=1
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T : ; T - T T T T T i ¥ T T

For t =0, we get G, (r,0) = 8(r}/ n,, and the long-time limit is given by the

hydrodynam1cbehav10r 1.5 Brownian T=0.13 _

1 r foh = 80*n, n=1,2,3,4
G (r.1) = —@&m D 1)  exp(—r?/4D, 1) (8.17) \ AL
: n ,
P
Furthermore, one can take the Fourier transform of G,(r,1) and G,(r, 1)

with respect to r to gain corresponding Q-dependent structure factors § (Q 1),
§,(Q, t) that are defined as

4 Gs(r,t)f

N

5.(Q,1) =

3

(expliQ- Ix;0) — x; 1) (8.18)
J=1
i N

S,(0.1) = { expliQ- [r; (1) — 1, O)]}) (8.19)

nN

Irisclearthat S,(Q, 0) = S(Q); thatis, S,{Q, ¢) equals the static structure factor
for + = 0. Further Fourier transformation with respect to time ¢ then leads to the
dynamical structure factors S (Q, ), 5,(Q, w). The latter quantity is directly
accessible in dynamical scattering experiments.

As a first dynamical diagnostic for the kinetic glass transition, only the relax-
ation of the self-part of the van Hove function, G (v, r), can be used. As the system
15 gently cooled down further, there is a sudden drastic change in the relaxation. -
The function +*G ;(#, 1} now shows the buildup of a secondary peak roughly at
a mean particle d;stance £, whereas the position of the first peak remams frozen :
over “long” (i.e., 1007, 7,,) times. This is shown in Fig. 8.1, where r G [ 1) sy
plotted above and near the kinetic glass transition for Brownian cEynarrncs (BD).
Hence we have a first indication that hopping processes do occur. Of course this
qualitative change occurs gradually in a smooth manner but still in a relatively
narrow temperature interval, and it can be used to determine an estimate for the
kinetic glass transition, which is now microscopically connected with a change in
the relaxation behavior from hydrodynamic relaxation to relaxation by thermally
activated jumps. Remarkably, the temperature interval in which this dynamical
crossover occurs is the same for BD and molecular dynamics (MD). Also the
buildup of the secondary peak is present in BD, indicating that there is the sam
crossover to thermally activated jumps in the Brownian case although there are
no phonons present in the Brownian case. By this diagnostics one may estimate
the temperature for the kinetic glass transition for both MD and BD to be within

Brownian T =0.11

t/ry = 133, 267, 400 A

Arr’Ge(r )4

0.115 < T < 0.12. (8.2

plass

r/f

igure 8.1 Self-part of the van Hove function G, (7, 1) multiplied by 4wr*¢ versus
ced distance r/£ calculated with Brownian dynamics; the curves from left to right
Op to bottom) are for increasing time arguments. (a) Results for 7% = (.13 and
[Ty = 60, 120, 180, 240. (b) Results for T* = 0.11 and ¢* = 133, 267, 400. From
4].

The long-time diffusion constant drops fo very small values near Tlass and a
power law with a small residual contribution A D due to jumps fits well the da
of the supercooled liguid

Dy = AD+ A(T* = T},)"
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with y = 1.4 for both BD and MD). Plots of the long-time self-diffusion constant 1 e Y
as a function of T" — T, are shown in Fig. 8.2. On a double logarithmic plot = =
the values D, fall on a straight line, indicating the validity of the power law [Eq. - Brownian 3
(8.21)]. 08 = =
Another interesting quantity is the distinct part of the van Hove function, B Qot =7.4 2
G, (r, t), defined in Eq. (8.15). At the kinetic glass transition, it turns out, again C ]
both for BD and MD, that a peak at r = 0 is built up, giving again strong 0.6 - j
evidence for particle-exchange hopping processes. In a dense supercooled liquid, o 3
however, these processes are more complicated than simple pair exchanges. In ~ - E
general, more than two particles (small clusters of particles} participate to a real S r 3
o ) . D4 = e
position-exchange process; see for example, Migayawa et al. [38]. o - 3
The other interesting quantities are the spatial and time Fourier transformations r 3
of G (r, 1) and G, (r, 1). InFig. 8.3, 5 (Q, t} is plotted as a function of time 7 ona - -
logarithmic scale for a fixed wave vector (J near the first peak of the static structure 02 = =
factor S{ Q). From this figure it becomes evident that there are qualitative different c (@) \ .
relaxations for BD and MD. For short times ¢/7,,, /7, the decay of the density c A
O & 1 \!l{ml : 1L11mJ ol ' ‘|H1||\4\:\-||=T{
0.1 0.1 1 10 100 1300
t /e
- 1 5 T 1 T T 1 i ‘ T 1 T T T 7 ¢
. A - 1 %_ T T 1 \|II>|i T \\HI4| 7 ?‘Illl‘ T l'\\(lll_l
- " = - C z
N . . -
' m —2 = L % — E Newtonian 3
- N N 0.8 — I
\"—6 L A X N E Quf = 7.4 3
aly = s - c J
o— — - - ]
©—-2.5 L B 0.6 =~ T=010
D - . i < EoT=0.11
< - a - S C .
2 g . Z S 04 = T=012 3
o = - w c . -
20 L. x - - T=0.13 .
o - - - -
- - x : Oz = (b} N3
~3.5 > : :
L y = ]
L ) - g - \L ]
oo e b [ |1 : O Convsied voveind vl T
—2 5 -2 —1.5 —1 .01 G1 1 10 100 1000
*
/
logo(T —0.115) -

.lgure 8.3 Self-part of the density autocorrelation function 5 (@, ) versus reduced
=1/Ty, 1/, (on a logarithmic scale) for O = O, = 7.4/£ and (from bottom to

p): T* = 0.13, 0.12, 0.11. and 0.10. (a) Brownian dynamics; (b) molecular dynamics.
om Ref. [34].

Figure 8.2 Double logaritmic plot of the reduced diffusion constants Dy, = D rN/
(Newtonian dynamics, crosses) and Dy = D, 7 /€% (Brownian dynamics, triangles) v
sus distance T — 0.115 to the kinetic glass transition. From Ref. [34].
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autocorrelation function is different. It starts with 1 — (O(¢%) in the MD and with
1 — O(z) in the BD case. For very long times, 5, (Q, t) and S,(Q, ) can be fitted
by a stretched exponential law ~ exp[—(#/1,)"], where t; is strongly temperature
dependent and, as v, also depends on Q. The exponent v is found to be practically
the same for BD as for MD. So the a-relaxation scenario is quite similar. From
Fig. 8.3 it becomes clear that, for times small compared to -relaxation but still
larger than 15, T, there are qualitative differences; that is, the different short-
time behavier also induces a different crossover to the long-time behavior. The
decay is smoother in the BD case, and there is no clear indication for a buildup
of a plateau near T, {Of course, for smaller temperatures there must be a
quasiplateau.) If one looks at the time Fourier transforms of S,(Q, t) or S(2.0
(at k* = 7), one finds that there is a shoulder at the corresponding frequency for
MD that is missing for BD. It is tempting to call this a 8 relaxation, and one main
conclusion is that the dynamical onset of S-relaxation is qualitatively different
for BD and MD. In mode-coupling theory, B-relaxation is defined in a different
way, namely, by an additional scaling law near g"iass whose asymptotic behavior
can be studied analytically. Again, mode coupling theory predicts no difference
for MD and BD in the asymptotic case. The difference obtained in the simulation,
however, occurs for smaller times that are not yet in the asymptotic regime.
Summarizing, the kinetic glass transition manifests itself microscopically as
a crossover from hydrodynamic relaxation to relaxation by thermally activated

jumps. This crossover is not completely sharp but occurs on a very narrow

temperature interval upon cooling. The transition temperature is the same for BD

and MD. The dynamical onset of S-relaxation, however, is different. A shoulder
in the dynamical structure factor at intermediate frequencies is present for MD -
but missing for BD. On the other hand, a-relaxation is similar, supporting the *

prediction of simple mode-coupling theory.

We finally note that a detailed analysis has also been made distinguishing”'

between low-charge and high-charge particles [39]. As expected, the high-charge

particles freeze first and then the low-charge particles follow, but everything:
happens in a smooth manner. The kinetic glass transition is connected with &

considerable change in the ratio of the long-time self-diffusion coefficients for
the low-charge and high-charge particles.

8.3 Long-Time Self-Diffusion Across the Freezing
Transition

In this section we review some recent experiments, theories, and simuiatioﬁ
of the long-time self-diffusion coefficient for a Brownian Yukawa system vi
charge-stabilized colloidal suspension and also sterically stabilized suspension
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8.3.1 Measurements of the Long-Time Self-Diffusion
Coefficient

Different experimental technigues have been used to measure the long-time self-
diffusion coefficient D, . Most of the studies have used dynamical light scattering
[40-49]. This technique, however, may have problems with multiple scattering
for concentrated colloidal suspensions. Next also more refined methods where
some particle are dyed have been applied as forced Rayleigh scattering [30, 51,
5] and fluorescence recovery after photobleaching [52, 33]. Finally fiber-optical
quasielastic light scattering, where multiple scattering effects are negligible [54],
and pulsed-field NMR [535] experiments were performed. It has to be pointed out
that the error obtained in using the different experimental methods is still large,
lying on the 10% level for concentrated or strongly interacting suspensions.

In Refs. [15] and [51] D, /D, was measured close to the freezing transitions
of a charged colloidal suspension for different salt concentrations. It was found
that the ratio D, /D, equals 0.1 on the fluid freezing line. Also in Ref. [51]
D, /D, was systematically investigated across the freezing transition involving
diffusion in the compressed fluid, which is finite and very similar to the usual
fluid diffusion and diffusion in the solid phase which is much slower and results
from vacancy hopping and grain boundary diffusion.

8.3.2 Theories for the Long-Time Self-Diffusion Coefficient in
Strongly Interacting Colloidal Suspensions

In most of the theoretical approaches to the long-time self-diffusion coefficient in

- concentrated suspensions hydrodynamic interactions are neglected completely.
- Historically the first approach is the mode-coupling theory, which was developed
by Mori and Zwanzig {56] and applied to colloids by Hess and Klein [57].

Its starting peint is the exact expression for the tagged particle intermediate
scattering function. This expression is then analyzed and approximated using
ideas borrowed from the mode-coupling theories of simple liguids, The final result
is a nonlinear self-consistent equation for the scattering function. This equation
also involves the collective scattering function S (0, 1), for which another self-
consistent equation is written down. As nonlinear self-consistent equations are
difficult to solve, one usually approximates them further, introducing short-time
litnits of the scattering functions into friction kernels (for details, see [57-59] and
references cited therein). In this way one obtains the following expression for

D,:

-1
D, 1 o ,[S(O) — 1T
—= a1 d - 3.22
D, + 631_2”])/0‘ Q 1+ S(OQ) ( )

_Another theory has been propesed by Medina-Noyola [60]. It is based on a
alysis of the generalized Langevin equation describing the coupled motion of
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the tagged particle and the surrounding colloidal suspension. The final result for
D, is:

n, s -1
D, /D, = (E + zfdr lgr) — 1] ) (8.23)

It turns out that numerically the Eqs. (8.22) and (8.23) are very close. These
also provide a very simple explanation for the observed universality at the fluid
freezing line: Since S(Q) is universal at freezing provided @ is scaled by n;,/ 3
according to the Iansen-Verlet rule (see, e.g., [61]), D, /D, also has to be
invariant at the fluid freezing transition. This theoretical justification is, however,
too simple since the theories do only work at high dilution. Indeed the actual
value of D, /D, is 0.3; hence it is strongly overestimated by theory.

More sophisticated theories also designed for concentrated suspensions are the
modified Enskog approach proposed by Cichocki [62]) and investigated by Lowen
and Szame] [63] and the Enskog approach first used by Szamel and Leegwater
[64, 65] for hard spheres, which was then generalized to the soft Ynkawa potential
[63]. These approaches involve the particle interaction potential explicitly and
do not give universality at freezing. However, these actually give better absolute
values than the former theories for high concentrations. In Figs. 8.4 to 8.6 we

Dy /Dy

3
n,d

Figure8.4 Long-time self-diffusion ceefficient divided by its low-density limit, I, / Db,--

as a function of the reduced density n pd3 for a hard-sphere suspension. Circles: Brownia
dynamics data of Ref. {68]; solid line: Enskog theory; dashed line: modified Enskos
theory; dot-dashed line: theory of Medina-Noyola, Eq.(23). From Ref. [63]. :
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Figure 8.5 Self-diffusion coefficient divided by its low-density limit, D, /D, as a
function of the reduced density n 163 for a Yokawa suspension where the Yukawa potential
is written as U (r) = Uy (€/7) exp[—x™{(r — £)/£]. The parameters of the Yukawa potential
are ¥ = 8, k, T/ U, = 1. Circles: Brownian dynamics results; crosses: Enskog theory;
squares: modified Enskog theory; triangles: theory of Medina-Noyola, Eq. (8.23). Lines
serve only as guides to the eyes; the actual calculations were performed at the data points.

From Ref. [63].
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Igure 8.6 Same as Fig. 8.5; but now for a softer Yukawa potential with parameters
=3,kpT/ Uy = 0.8 From Ref, [63}.
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have shown the results for D, / D, for different theories and the “exact” computer
simulational results for varying particle concentration from the ditute limit to high
concentrations near the fluid freezing point. A hard-sphere system was taken in
Fig. 8.4, while two different Yukawa interactions were assumed for Figs. 8.5
and 8.6. For hard spheres the Enskog description gives satisfactory results, while
the modified Enskog theory fails. For a soft Yukawa interaction, on the other
hand, the Enskog theory fails, and its modification works well. Medina-Noyola’s
expression always fails for large concentrations. Consequently, at the moment,
there is no satisfactory theory that works for both soft and hard interactions at
low and high concentrations. Recently, Indrani and Ramaswamy [66} used a
self-consistent mode-coupling approach to check the universality of D, /D, at
freezing. Their values of &= 0.05 also seem to be too low as compared (o the
computer simulation and experimental value of 0.1.

8.3.3 Computer Simulations of the Long-Time Self-Diffusion
Coefficient

In the fluid phase, the ratio D/ D, of the hard-sphere system with simple Brow-
nian dynamics given by Eq. {8.5) has been “exactly” calculated by Brownian
dynamics simulations by Cichocki and Hinsen [67, 68] and for the Yukawa sys-
tem by Lowen et al. [63, 69]. The main problem is the finite time window, where
the extrapelation to infinite times is somewhat arbitrary. One can use the exact
sofution for hard spheres in the semidilute limit to find an exphicit long-time
extrapolation {68] or fit to a stretched exponential or some other function. The

resulting values of D, /D, change by about 5% and are thus fortunately rather -

insensitive to the extrapolation procedure, white the decay time to the asymptetic

diffusive behavior depends much more on the extrapolation scheme. Computer
simutation results are desirable since they provide an exact test of existing theo- -
ries and are the basis of comparing experimental data with results from theoretical .

models for the colloidal interaction [69].

In the following we give some analytical fit formulae [69, 70] for the simulation :
results that are helpful for a simple comparison with experimental and theoretical '

data.

Hard Spheres

A hard-sphere system is characterized solely by its packing fraction ¢ = mn, d /6
A simple formula for D, /D, is

D, /Dy =1— 1.94¢p + 1.25¢7 — 2.042¢° (8.24)

This equation is valid for any ¢ in the fluid phase (i.e., ¢ < 0.494) and has a
relative error of less than 3%. The exact low-density limit D, /D), =1 — 2¢ +
0(¢?%) is only approximately incorporated into Eqg. {24). At the fluid freezing
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point {¢ = 0.494), we get D, /D, = 0.100 from Eq. (8.24), which is practically
identical to the universal value of 0.098 obtained from the simulations [68, 15].

Yukawa Fluids
We write the Yukawa potential as
U(r) = Uyt exp(c™) exp(—xr)/r {8.25)

where U, is an energy and 1/« the length scale. The only relevant dimensioness
parameters {71] are «™ and 7. This means that D, /D, does only depend on the
two parameters 7™ and «*. The fit formwula for D, /D, reads as

D, /Dy = 0.6457 exp(—2.3429¢)

+ 0.3183 exp[—(31.70 + 6.053« "}z, ] 4 0.03598 (8.26)
Here 7, is the ratio of the freezing temperature to the actual temperature
t, =T g, &/ T {8.27)

Meijer and Frenkel have calculated the fluid freezing line in the (T, £ ™)-diagram
[71]. Their data can be fitted by

{1*) = 0.009 + 0.030286x* — 0.009964x*>
+ 0.0033477c** — 0.0002452,** (8.28)

such that everything is explicitly known in Eq. (8.26). Equation {(8.26) stems from
40 BD simulations for different parameters scanning the whole fluid regime from
* = { (unscreened plasma interaction) to 7. It contains a small relative error of
4% for 0 < x* = 7.
At the freezing transition we have f, = 1, and only the first exponential in Eq.
(8 26) gives a relevant contribution such that we see directly the universality of
D, / D, with respect to «™, where the actual value is D /D == 0.098.

freez

8.3.4 Dynamical Test of the Effective Interaction between
Colloidal Particles

Equation (8.26) was used to analyze experimental data for D; /D, obtained from
forced Rayleigh scattering experiments on charged suspensions with varying
salt and particle concentrations [69], which then provides a dynamical test of
e particle interactions. Two different theoretical Yukawa models were tested
dgainst the experimental results: the DLVO model defined by Egs. (8.2)~(8.4),
nd the Poisson-Boltzmann cell model [8]. The results are shown in Figs. 8.7
nd 8.8. All parameters of the experimental sample were known by a careful
E_}aracterization of the colloidal suspension; in particular, the true bare particle
harge Z was determined from other measurements to be Z = 580. Once the
theoretical Yukawa description of the interaction is fixed, there is no free fitting
arameter involved in the comparison between the experimental and simulational
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D /Dy

Figure8.7 Comparison of three series of experimental data for D, / D, with Eq. (26) for

the Poisson-Boltzmann-cell model for varying salt concentration ¢ . The bare charge is -
Z = 580. The symbols correspond to packing fractions of ¢ = 0.0041, 0.0012, 0.00065.
Hatched areas: prediction using these parameters in Eq.(8.26) with 4% uncertaincy. From

Ref. [69].

Figure 8.8

DD,

ORDERING AND PHASE TRANSITION

08

cé

0.4

02 —

T

T T 1 77
$ ¢ =0.000865
O ¢ =000:2
e o =0.004]

8 -

Gt

04

02

Same as Fig. 8.7, but now for the DLVO model. From Ref. [69].

Cgapeltt molf}

T

T T

{ ©=000065
o ¢ =00012

$ ¢ =00041
Z =580

DYNAMICS ACROSS FREEZING AND GLASS TRANSITION 225

data. The hatched area in Figs. 8.7 and 8.8 corresponds to the predictions of Eg.
(8.26) within the given relative error of 4%. The symbols indicate the experimental
data points for different particle concentrations n_ (or volume fractions ¢) and
varying salt concentration. One can clearly discriminate between the DLVO
and the Poisson-Boltzmann-cell model. As expected, the DILVO model fails
since the particles are highly interacting, while the description of the Poisson-
Boltzmann-cell model gives remarkably good agreement with the experimental
data. Again we emphasize that there is no fit parameter involved. Consequently the
nature of the direct effective interparticle forces can be obtained from dynamical
measurements. The usual route consistes of a comparison with the liquid structure
factor ${(Q) (see, e.g., [72]. This quantity, however, is drastically affected by
charge and size polydispersity [73]. The advantage of the dynamical test of the
interaction potentials is that long-time self-diffusion, on the other hand, is rather
sensitive to the interparticle forces but rather insensitive to polydispersity effects.
We finally remark that there are further theoretical Yukawa models for the
effective interaction between charged colloidal suspensions. Belloni [74] has
solved the mean-spherical approximation (MSA) of the primitive model analyti-
cally where one also ends up with an effective Yukawa interaction. The result is
very close the DLVQ potential. Within the experimental error of the data from Ref.
[69], one cannot see a big difference between the MSA and the DLVO potential.
Thus the MSA model fails as the DL.VO model does. Second, there is a modified
DLVO approximation thatis empirically justified for strongly interacting particles
[50]. This Yukawa potential, in turn, is very close to the Poisson-Boltzmann-cell
- model and is capable of describing the experimental data well.

‘8.4 Self-Diffusion in Liquid-Crystalline Systems

In this section we study the long-time diffusion of rodlike particles; that is,
we are dealing with anisotropic liquids. In this case one has translational and
otational long-time diffusion, which are investigated in the framework of a
imple model of hard spherocylinders {70]. In order to keep the model simple, we
onsider Brownian dynamics of hard sphi »cylinders neglecting hydrodynamic
nteractions. The spherocylinders have a total width L. and diameter d,, and
-rod configuration is characterized by its center-of-mass coordinates R, :i=
..., N} and orientations {§2, : i = 1,..., N}, where £, is a unit vector. The
otential energy is simple a excluded-volume type: It is zero if the rods do not
erlap and infinite otherwise. Due to this simple interaction, the temperature T
scales out and the rod number density n, is the only thermodynamic variable.
is density is conveniently expressed in terms of the rod packing fraction ¢ =
Edf[d /6 + (L, — d }/4]. Choosing the rod diameter d_ as the typical length
le, the only additional geometric quantity is the length-to-width ratio

po=L./d, (3.29)
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The perpendicular part, on the other hand, diffuses with the perpendicular

of the rods. Hence all structural and thermodynamic quantities including the bulk
diffusion constant D

phase diagram only depend on ¢ and p,. For L, = d_the isotropic case of hard

spheres is recovered. bl
We adopt Brownian dynamics of the rods and approximate the short-time RE( + A1) = RE(1) + —F Ly Ar

dynamics by that of one single rodin a solvent characterized by two translational kpT

short-time diffusion constants, D+ and D", perpendicular and parallel to the rod + (A RiL)Rei () + (AR iL)Resz ® (8.38)

axis, and a rotational short-time diffusion constant D". As a function of p_, these
three diffusion constants have been calculated by Broersma §75] and Tirado et al.

76,17

. 1 1 - Lo .

wh?re again L(AR1 }r and (AR5 ), are Gaussian distributed with zero mean and
variance 2D~ At. Furthermore, e, (1) and €,,(t) are two orthogonal unit vectors
perpendicular to €2, (r).

o D_S(ln 40839 4 0.185/p, +0.233/p 2y (8.30) Finally the orientational degree of freedom diffuses as
T 4x c ; : ¢ ’ « r

pt = 2an . — 0207 +0.980/p, -0.133/p2) (8.31) BOTAD KO PO MO A ne ) Fne,) (539)

27 ¢

R here now M., (¢} is the torgue actin di : i

D w ‘ q gonrodi and x,, x, are Gaussian rand

D= g(ln p,—0.6624+0917/p, — 0.050/,03) (8.32) numbers with lzero mean and variance 20" Az, v o
12 Using this kind of Brownian motion, extensive BD simulations for the long-

time translational and rotational diffusion coefficients were carried out by Léwen

with
[70] over the whole range of the fluid phase in the (¢, p .} phase diagram. The

Dy =kgT/nL, (8.33) ; translational long-time self-diffusion coefficient [, is defined as
where 7 the shear viscosity of the solvent. ‘ . D} = ti_l)rgo D (1) (3.40)
The corresponding finite difference equations for Brownian dynamics of rods : i
are a bit more complicated than Eq. (8.5) for spheres. At a given time”f, the W
center-of-mass position R, (#) of the ith rod canlbe split intg a part Rj(t) = D) = W) /6t S.41)
[Q, () R, (D15 parallel and another part R; (1) perpendicular to the rod .
orientation §2,{¢) such that \?vhe:te
N

. 1
R (1) =R} + R () (8:34). Wi = ;‘ < [R,() — RO >=< [R() ~R(OF >  (842)
The same separation into a parallel and perpendicular part can be done for the

. \ . sthe mean square dis i —of- e
total force F, (1), acting on the ith rod due to the interaction with the other rods 4 placement of the center-of-mass coordinate. A natural scale

or Dj is its short-time limit D' = lim, _, D'(r) given by:
1 L
D'= 32D+ D) (8.43)

The long—time orientational self-diffusion coefficient D}, on the other hand,
defined via the long-time limit of a diffusive process on the unit sphere:

F.(1) =Fl() + FH @ (8.35)

Then for a finite time step At the temporal evolution of R, {z) is given by

D! : g
1 =Rl ] ! _ F
RI(r+ A =R (1) + kBTFi (1) Ar + (ARM ,€2,(r) {8 36 D) = tl—g& D) B44)
L th
where (AR”) R is @ random displacement due to solvent kicks, which is |
Gaussian-distributed random number with zero mean, (AR“)R =0, and vari Dty = -5 In[< $2,(0)%2, (1) >] (8.45)

ance :
_ Of ourse, the short-time limit D" = lim, _, D"(z) provides a natural scale for
(ARDZ = 201 Ar (8.37 1.
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It is tempting to check whether there are dynamical freezing rules by looking 1.0 *
at the values of D /D' and D} /D" at the freezing line of the liquid. The phase di-
agram of hard spherocylinders is known by Monte Carlo simulations of Veerman
and Frenkel [78] involving stable fluid, crystalline, nematic, and smectic phases.
In particular, the location of the fluid-nematic and fluid-crystalline coexistence
line is known for p, =1, 2,4, 6 {78]. For p_ > 6 the theory of Lee [79] gives
explicit data for the coexisting fluid and nematic densities including the limit
p,. — oo, which is known exactly from Onsager’s theory [80-82].The Monte
Carlo simulations have also revealed that the coexisting phase is crystalline for
p.<4.5, whereas it is nematic for p,z4.5.

For very high p_ (p, > 30) Onsager’s theory yields an asymptotically exact
expression for the finid density ¢ ¢ al the fluid-nematic transition [81, 821

; = 3.2906/p, (8.46)

Furthermore the tube model (see, e.g., Doi and Edwards [83]) yields D} /D" =
b.(n LC3) 2, where an estimate of b . can be obtained by fitting the simulation
data of Doi et al., resulting in &, = 540 [84]. This yields the asymptotic prediction .

nematic

/DY, DI /D

t
L

D

1/p.

- Figure 8.9 Translational and rotational long-time diffusion coefficients, Dr (circles)
cand Dy (stars), measured in terms of their short-time limits, D' and D', versus 1/ P, at
: coe;ustence of the liquid with the crystalline or nematic phase. The dot- dashed line is the
~asymptotic law Eq. (8.47). The dashed line separates the nematic and crystalline region.
From Ref. [70].

r/D" =308/p* (8.47) .

along the fluid-nematic transition line, which becomes valid for p_=30. On the
other hand, the translational diffusion tends to D} /D" = as p. — coaccording
to the tube model.

In Fig. 8.9, the simulational results of Lowen [70] for D} /D" and D} /D"
are plotted versus 1/p, for ¢ being on the fluid freezing line. Both simulational
data and the asymptotic formula Eq. (8.47) are shown. It turns out that along
the freezing line both D /D" and D} /D" are nonmonotonic with p_ . - The trans-
lational diffusion is nonmonotonic in the crystalline region. This is connected
to the nonmonotonicity in p, of the coexisting fluid packing fraction ¢,. In the
nematic region, D / D' increases monotonically to its “tabe limit" 1 /3. This limit
is practically reached for p 2 10.

On the other hand, D] / D'is strongly decreasing for small increasing p, in the
crystalline region. Then, for 2 < p_ < 6, it stays more or less constant = 0.12
irrespective of whether the coexisting phase is crystalline or nematic. If p, is
increased further, D} /D" increases again and then decreases approachmg it$
asymptotic law given by Eq. (8.47) for p,_z.20.

Hence it becomes clear that both diffusion ratios D} /D' and D} /D" vary
significantly along the freezing line, both in the crystalline and nematic regicn
Consequently a simple universal dynamical freezing criterion that would guara
tee a unjversal value of D} /D' or D7 /D" for arbitrary p, is missing. Neverth
less, in the relatively broad region 2 < p. < 6 where the coexisting phase may be
crystalline or nematic, D7 /D" is roughly constant. This is the rotational analo' !
of the dynamical freezing rule for spherical systems: It states that an anisotro,
Sfluid freezes if its long-time rotational self-diffusion coefficient is one order.g
magnitude smaller than its short-fime limit.

8.5 Some Further Open Problems

Let us finally list some fascinating open problems that are relevant to the context
of dynamics of colloidal suspensions across the freezing and glass transition.
They are mainly connected to systems with reduced geometry.

The kinetic glass transitions has not yet been studied in detail for a fluid
- confined to pores or between plates. It is expected that boundaries strongly
nfluence the location of the kinetic glass transition point. If crystallization
at the walls can be circumvented, the glass transition should occur at much
higher temperatures than in the bulk fluid if the dimensions of the sample
the pore diameter or the distance between the plates} is comparable to the
_mean interparticle spacing £ [85, 86). Recently, Fehr and Liwen [87] have
considered a soft-sphere mixture between two parallel plates. In order to
void wall crystallization, a lateral disorder was introduced on the walls. The
orresponding bulk kinetic glass transition was extensively investigated by
Roux, Barrat, and Hansen [88, 89]. The preliminary results indicate a shift of
¢ glass transition temperature to significantly larger values as compared to
he bulk glass transition known from Refs. [88] and [89]. Up to now, there
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has been no attempt to perform a simple mode-coupling theory in restricted
geometry to study the shift of the glass transition theoretically. This is a
challenging problem for the future.

2. Tf the distance between parallel charged plates confining a charged colloidal
suspension is enhanced or the surface charge is increased, one finally ends
up with a quasi-two-dimensional system. The fundamental question arises
whether the kinetic glass transition in two spatial dimensions is fundamentally
different from that in three dimensions or not. Recent computer simulational
results for a two-dimensienal Lennard-Jones liquid by Ranganathan [90] in-
dicate that the qualitative scenario in two dimensions is qualitative similar
to that in three dimensions. This is different from the freezing and melting
transition, which is definitively different in two dimensions. One should also
do quantitative comparison with mode-coupling theory in this case.

3. What about a dynamical freezing rule in two dimensions? Recent investiga-
tions of Grier and Murray [5] studying the nonequilibrium formation of quasi-
two-dimensional crystal indicate that it is fulfilled in 2D. The fundamental
problem is that the nature of the freezing transition is still not completely clear
in two dimensions. This concerns mainly the existence of a hexatic phase with
long-range orientational order that would intervene between the fluid and solid
phase. Strictly speaking [91] there is no translational long-range order in two
dimensions, and consequently a crystal phase with long-range order is not
thermodynamically stable.

For quasi-two-dimensional colioidal fluids a Yukawa interaction is an ap-
proximate description of the interaction, and Brownian dynamics simulations
have been performed to get the long-time self-diffusion coefficients by Lowen
[92]. In contrast to molecular dynamics in two dimensions, where the long-time
self-diffusion coefficient diverges, it is finite for 2D Brownian dynamics.

Another problem is how to locate the fluid coexistence line exactly. Recent
simulations with the 2D Yukawa potential by Naidoo and Schnitker [93] are still
too inconclusive to decide the exact phase behavior in two dimensions.

4. The glass transition in liquid crystals is more complicated. To date no computer
simulation has been reported observing a fluid phase with slow dynamics. Ap-
parently nematic phase formation is fast enough to exclude a glass transition.
More detailed work from theory, experiments, and computer simulations is
needed to study the slowing down of translational and orientational motion in
compressed or supercooled anisotropic fluids.

5. Fxcellent realizations of charged colloidal rodlike systems are aquecus sus-.
pensions of tabacco mosaic viruses. Recently it was shown by Lowen [94]

by using an “ab initio" calculation that the Yukawa scgment mode] originally

introduced by Klein and co-workers [95, 96] (see also Ref. [97)) is a good.

description of the interaction. There is a considerable need to explore the

complete phase diagram of the Yukawa segment model by computer simula-
tion or density-functional theory and to investigate time-dependent correlation

functions by Brownian dynamics simulations. One first step in this direction:
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was dope by Kirchhoff et al., who calculated long-time orientational and
translational self-diffusion for the Yukawa segment model [98].
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