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Abstract:
Melting andfreezingarevery commonphenomenain everydaylife. This reviewfocusseson thestatisticalmechanicsof

theseubiquitousphasetransitionsandhighlights recentwork on the bulk andsurfacemeltingof solids, crystalgrowth from
the melt, andthe kinetic glass transitionof supercooledliquids. Both phenomenologicalandmicroscopicdensityfunctional
approachesarediscussed.Particularemphasisis placedon colloidal suspensions,which arerealizationsof simple liquids on
a mesoscopiclength scalethatalsoexhibit meltingandfreezingphenomena.
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Introduction

Oneof the bestknownphasetransformationsis themelting of asolid or freezingof aliquid into
acrystalor aglass.This importantphasetransitionoccursin quite differentsituationsrangingfrom
ice formation in cloudsandthe preparationof rapidly quenchedmetallic alloys to the production
of window glass.During the last centuriesa lot of technicalexperiencein quite different areashas
accumulatedwherefreezing andmelting phenomenaare exploitedin order to facilitate everyday
life. Despiteof this rapidly increasingempirical andphenomenologicalknowledgeit is only since
the last decadesthat molecularaspectswere addressedaiming to a microscopicunderstandingof
the solid—liquid phasetransfcrmation.Important recentprogresswas madeusing three different
methods:

(i) well-aimedexperimentalstudies, in particular scatteringexperimentswith a resolutionon a
microscopiclength andtime scale,

(ii) computersimulationstartingfrom relatively simplemodelsfor the inter-particleinteraction,
(iii) microscopicandsemi-phenomenologicaltheoriescapturingtheessentialphysicalmechanisms

relevantfor the thermodynamicsanddynamicsof melting andfreezing.
It is enormouslydifficult to construct a generalcomprehensivepicture of three-dimensional

melting and freezing phenomena.There are at least two reasonsfor that. Firstly, the melting
transition is first order, accompagniedby a density jump, which meansthat it is highly non-
universal, i.e. the detailedscenariodependson the kind of material considered.Secondly,the
solid—liquid transitiontypically occursin concentrated,strongly interactingsystems.This implies
that it is a collectivephenomenonof amany-particlesystem.

As regardsexperiments,bulk phasediagramsof monatomicmaterialsarewell-studiedandpre-
cisely known. The bulk melting temperatureof lead under atmosphericpressure,for instance,is
known with a relativeuncertaincyof less than 1 0~!What is less clear are effectsat the surface
betweena coexistingliquid andsolid, andalsodynamical(time-dependent)processeswhichhappen
on a small and intermediatetime scale.Among thesequestionsare crystalgrowth from the melt,
dynamicsof glass formation in the supercooledliquid, surfacemelting of solidsetc.

Computer simulationsare designedfor a relatively small systemsize with N = 100—100000
particlesin abox with periodicboundaryconditions.They are very helpful andanecessarytool
in order to get “exact” resultsfor a well-definedmodel in the frameworkof statisticalmechanics.
Usually the interactionsbetweenparticles are specified as an input. By computer simulation
bulk phasediagrams,structural and dynamicalquantitiesand also interfacial problemscould be
addressed.The main caveatsarelimitations dueto finite systemsize andstatisticalerrors.

Microscopictheoriesfor freezing andmelting basedon statisticalmechanicsare still very rudi-
mentary.Strictly speaking,thereis to dateno generaltheoryof meltingandfreezing.Evenasimple
exactlysolublestatisticalmechanicsmodel with nontrivial interactionsis missingwhereone could
study the melting processas a paradigm.Also there are no rigorousresults from mathematical
physicsevenfor relatively simple (e.g. Lennard-Jones)systems.There is no rigorousprooffor the
existenceof a liquid andsolid phasein threespatialdimensions.However, in developinga general
theory,an importantstepwas recentlydonein viewing freezingas a condensationof liquid density
modeswithin the frameworkof classicaldensityfunctionaltheory.This theory is quite generalbut
still abit ad hoc. Neverthelessit makessomereasonablepredictionsfor certainmodel systems.
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252 H. LOwen, Melting, freezingandcolloidal suspensions

This review focusseson recentmolecularaspectsof meltingand freezing including experiments,
computersimulationsand theory.A particularemphasisis put on the structureanddynamicsof
solid—fluid interfacesandthe diffusion of the latentheatin solidification examinedon thebasisof
classicalstatisticalmechanics.In parallel, specialattentionis paidto colloidal suspensionswhich are
simple liquids on a mesoscopiclength scale.Colloids also exhibit all kinds of melting andfreezing
phenomenaand representexcellentexperimentalsystemsfor simple models of classicalstatistical
mechanicssuchthat sometimesevena quantitativecomparisonbetweenexperimentandtheory is
possible.

The article is organizedas follows. In chapter1, we reviewsomeof thebasicof classicalstatistical
mechanicsanddiscusssomeintrinsic propertiesof atomic andcolloidal systems.In chapters2 and
3, bothphenomenologicalandmicroscopicdensityfunctionaltheoriesof bulk melting aredescribed.
In chapter4 the melting of a solid from its surfaceclose to the triple point is studied.In contrast
to bulk melting, surfacemelting can occur at temperatureswhere the bulk liquid phaseis still
metastable.The dynamicsandkinetics of interfacesare discussedin chapter5, with emphasison
the dynamicsof surfacemeltingandadynamicalmechanismfor the creationof metastablephases.
Recentresultson crystalgrowth, hinderedby thermaldiffusionof thelatentheat,arethendescribed
within a phenomenologicalphase-fieldmodel in chapter6. Finally we consider the kinetic glass
transitionin supercooledatomicandcolloidal liquids andconcludewith a summaryandan outlook.

1. Classicalstatisticalmechanics

For conceptualand notationalclarity let us consideronly simple systemsinteractingvia apair
potential.Realizationsof suchsystemsin naturearefoundboth on an atomicandmesoscopiclevel.
They include raregasesandions for which aLennard-JonesrespectivelyaCoulombpairpotential
is an adequatedescription,andcolloidal suspensions.For the latteronehasto distinguishbetween
stericallystabilizedcolloids with ahard core interaction,andcharge-stabilizedsuspensions,whose
interactionmay be describedby an effective Yukawapotential. Interestingfundamentalquestions
which form an areaof intense recentresearchconcernthe bulk phasediagram,andthe structure
anddynamicsof agiven bulk phaseandof interfacesbetweentwo bulk phases.A particularlyrich
behaviouris expectednearthe coexistenceof threephases.

1.1. Basicsanddefinitions

A classical many-bodysystemconsistsof N particles, confined to a volume V, and is also
characterizedby atemperatureT. The numberN is muchlargerthan 1 and typically of the order
of ~~ for an atomic system.A simple criterion, to decide whether an atomic systemcan be
consideredas classical, is the ratio of the thermalde Brogue wavelengthA and a typical nearest
neighbourseparationa = p—I /3 wherep = N/V is the particlenumberdensity. The de Broglie
lengthA is definedas

A i/h2/2irmkaT (1)

wherem is the particlemass,h is Planck’sconstantandkB Boltzmann’sconstant.It turns out that
all of the heavieratoms(exceptH2, He of course)havea ratio A/a << 1 at “moderate”conditions,
which meansthatquantumcorrectionsarenegligible.
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In the following, only simple systemsare considered,i.e. one-component systemswith particles
interacting via pairwiseforces derivable from a sphericalsymmetricpotential V(r), r denoting the
mutual particle distance. The classical Hamiltonian HN therefore reads

HN=Hkjn+Hext+U (2)

where

Hki
0 = >p~/2m, (3)

Hext = >Vext(ri), (4)

U=~ ~ V(1r1—r31). (5)
i,j_—1;i~j

Here, p1, r1 are the momentaandpositionsof particle i and ~ (r) denotes an external potential
e.g. gravity or externalwalls confining the system.

The central quantity in classical statistical mechanicsis the equilibrium canonicalprobability
densitywN({pI}, {r1}; i = 1,..., N) for N particlesat temperatureT which is definedas

WN({p~},{r1}) = Z’ exp(—HN/kBT) (6)

where the normalization factor Z is the canonical partition function

Z = TrNexp(—HN/kBT). (7)

Here, TrN denotes a classical trace

TrN(.•.) = h
3NN! fd3ri . . . f d~r~fd3p

1 . . .f d
3p~~ (8)

Z is related to the canonical free energy F by

F = —kBT1nZ. (9)

It is clear that F depends on the three external quantities T, V, N. In the thermodynamic limit
N, V —~ oc, N/V = p = const.,F is an extensive quantity for Vext(r) 0, i.e. the canonical free
energy density f = F/V only dependson T and p. For further purposes it is useful to introduce
a short notation for the statistical configuration average. Wewrite

= TrN[wN({pE},{r~})A({p,},{rI})]. (10)

An important and fundamental quantity is the equilibrium density P0(r) which is the statistical

average of the particle positions

(11)



254 H. Löwen,Melting, freezingandcolloidal suspensions

One can often distinguish different thermodynamic phases by qualitatively different equilibrium
densities, then Po (r) plays the role of an orderparameter.

For theoretical and practical reasons it is often more convenient to move from the canonical
to the grand canonical ensembleby a Legendre transform with respect to N. One arrives at a
grand canonical partition function ~ depending now on T, V and the chemical potential p which
can formally be interpreted as the Lagrange multiplier for the constraint of fixed averaged particle
number. ~ is defined as

~=~TrNexp(—HN—pN/kBT) (12)

and the corresponding grand canonical free energy Q reads

Q = —k~TlnE. (13)

Its density w = Q / V only dependson T and p in the thermodynamic limit. This ensemble
can be shown to be “equivalent” to the canonicaldescriptionin the thermodynamiclimit. The
physical significanceof the grand canonical free energyQ is that it representsthe key quantity
for a calculation of aphasediagram.It also obeysan importantvariationalprinciple that we shall
discussin section2.1. The definition of (...) for a statistical average,see eq. (10), canbe easily
generalized to the grandcanonical case, now with a trace

Tr(...)=~TrN(•..) (14)

and with an added term —pN in the Hamiltonian. In the thermodynamiclimit, the resultsdo not
dependon the kind of ensembleone chosesfor the average.The definition of po(r) for instance,
see (11), canthereforealsobe readas in the grandcanonicalensembleincluding now an additional
sumoverN.

Apart from trivial noninteractingcases (V(r) 0), the trace operationin (8) and (12) cannot
be doneexplicitly in threespatial dimensions.Analytical results are sparsein classicalstatistical
mechanics,evenfor very simple models.

1.2. Realizationsofclassicalstatistical mechanicssystems

In this section, we discuss systems in nature that are described by a pairwise radial symmetric
potential V (r). There are both realizationson a microscopicandon a mesoscopiclength scale,
namelyatomic and colloidal systems,although there are some caveatssince often the systems
intrinsically containalsohigher-than-two-bodyinteractions.

1.2.1. Atomicsystems
At very high temperature, atomic or molecular systems do not feel details of the interactions but

only the strong Born repulsion due to overlappingelectronicshells of two neighbouringparticles.
In such a situation, it is often sufficient to describe the interaction by a repulsive pairwise potential
or — even more approximate — just by a hardsphereinteraction

Ioo forr<a.VHS(r)=S - (
~0 forr>a.
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The experimental measured structure then can be fitted by just one parameter, the effective diameter
a of the system.The hard-sphereinteraction is the simplestnontrivial interaction one can think
about.Due to its scaling behaviourAVHS (r) = VHS (r) for anypositiveA, it hasrelatively simple
thermodynamicproperties.However, it is clear that this potential remainsa caricaturefor the
interactionof atomicandmolecularliquids. At moderateconditionsandat relatively high density,
theinteractionis certainlymorecomplicatedthanthe hard-spheremodel. It normally also includes
morethantwo-body interactions,due to a mutualpolarizationof the electroniccloudsif threeor
moreparticlesare present.

Rare gaseshavesphericalsymmetricelectronicshellsandcan,atmoderateconditions,bedescribed
by the Lennard-Jones pair potential

V(r) = 4c[(a/r)’2— (a/r)6] (16)

which includes the repulsiveas well as the attractivevan der Waalsinteraction.Here, a setsthe
microscopic length scaleandc the energyscaleof the Lennard-Jonespotential. (a should not be
confused with the hard sphere diameter of the potential (15).) A more refined version of a pairwise
potential for rare gases, the so-called Barker potential [1], is also available. However, at high
concentration and in strongly inhomogeneous situations, triplet forces become important which are
usuallyincorporatedby the Axilrod—Teller three-bodypotential [2, 3].

The interactionof ions in ahomogeneousnon-respondingelectronicbackgroundis dominatedby
the Coulombrepulsion.The one-componentclassicalplasma (OCP) is defined by the potential

V(r) = Voa/r (17)

where a again sets the length and V
0 the energy scale. Molten salts represent another simple

though two-component system where the Coulomb interaction is dominating. In such a mixture of
oppositelychargedions, apair potentialwith a 1 /r tail anda repulsivee.g. hard core part is an
appropriatedescriptionof theinteraction.

The caseof monatomicmetalsis more difficult dueto the extendednatureof the conduction
electrons.The latter clearly directly induce many-body forcesbetweenthe ions at least at high
densities.A similar situationoccursfor semiconductors.What onecando hereis to find an effective
pair potential that depends on the thermodynamic parameters (e.g. temperature T and density
p). By now there exist suitable tabulationsof effective pair potentialsfor most of the simple
monatomicmaterials,giving astructurewhich is verycloseto the experimentaldata [4]. Of course,
this effectivepairpotentialdescriptionfails in strongly inhomogeneoussituationsas for aliquid—gas
or solid—gasinterface.At this stage,it is usefulto point out that thereare recentab initio theories
combiningquantummechanicaldensityfunctionaltheory for the electronsandmoleculardynamics
for the ions, by which onecan simulatethe structureanddynamicsof crystallineanddisordered
metals andsemiconductors.This very attractiveandwidely appliedschemeincludessystematically
many-bodyforcesandcomparesfavorablywell with the experimentaldata. It was inventedby Car
andParrinelloin 1985 [5].

1.2.2. Colloidal systems
A colloidal suspensionconsistsof mesoscopicparticles, with a diameter a typically varying

between 10—8 and io~m, which are dispersed in a suspending microscopic fluid. There are lots of
examples for such dispersions including gelatin sol, solutions of proteins, soap and microemulsioñs.
Well-characterizedexperimentalmodel systemsare aqueoussuspensionsof polystyrenespheres
andpolymethylmethacrylate(PMMA) macromolecules.Such a suspensionof “macroparticles”
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Fig. 1.1.Colloidalparticles(big spheres)characterizedby a Fig. 1.2. Sterically stabilizedcolloidal particleswith a di-
mesoscopicdiametera andamassM, whicharedispersed ametera which arecoatedby polymerbrushes.Typically
in a suspendingatomic liquid (small spheres). the length of the polymeric chainsis muchsmaller than

thecolloidal diameter.If two colloidal particlescomevery
closeto eachother,thepolymerbrushesoverlapandarepul-
sion of entropicorigin preventsthe particlesfrom sticking
together.

embedded in an atomic liquid is sketched in fig. 1.1. Since the mass M of the colloidal particles
is muchbigger than the atomic massof the solvent, thereis acompleteseparationof time scales
of colloidal and solvent motion. The latter is of the order of 0.1 ps whereas the motion of the
big particleshappenson a time scaleof about 1—10000 ns. Furthermore,it becomesclearthat a
typical trajectory of a particle is Brownian on a time scalerelevantfor macroionmotion, due to
random kicks with the solvent. This is very different to the atomic case where a particle trajectory
is smoothandobeysNewtonianor moleculardynamics.This differencehasimportantimplications
on time dependent quantities in atomic and colloidal systems.

Let us now focus on the forcesbetweenthe colloidal particles.The first contributionnaturally
stemsfrom thevan der Waalsdipole—induced-dipoleattraction.This attractiondiverges at particle
contactandvanishesas r6 for intermediate and as r7 for very largeinterparticledistancesr. Would
this be the only interparticleinteraction,acoagulationinstability would resultwherethe particles
stick togetherandform alargecluster. Only the strongBorn repulsionof thecontactingbig particles
would prevent a complete collapse of the system. Therefore, to ensure the stability of a colloidal
suspensionwith respect to irreversible flocculation, an additionalstabilizingforceis needed.There
are two different stabilizationmechanismsfor colloidal systems:(a) steric stabilizationand (b)
chargestabilization.

As regards steric stabilization, the colloidal particles are coatedwith polymer brusheswhich
leads to an “entropic” repulsion if polymer brushes of two neighbouring particles do overlap. This
is visualized in fig. 1.2. Since the length of apolymer chain typically is much smaller than the
colloidal diameter a, one can describe this repulsive force simply by the pairwise hard sphere
potential (15). The PMMAparticles represent a paradigm of sterically stabilized colloidal particles.
By “index-matching” of the colloidal particles and the solvent, one can practically suppressthe
van der Waalsinteractionsuch that the simplehard-sphereinteractiondominatesthe interparticle
forces. Careful experiments on the structure and the phase diagram reveal that the interaction of
PMMA particlesis really very well describedby excludedvolume effectsonly. Thus theyrepresent
an excellent experimental system for the hard sphere model which existed until recently only in the
brainsof the theoreticians!The characteristicparameterdeterminingthe bulk phasediagramand
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macrolons,Z-100-10000
coLIlterlons,q~1,2

0 • ... +

ô~00 sO +~.+~+9 C) ((lilY
Fig. 1.3. A charge-stabilizedcolloidal suspensionconsists Fig. 1.4. Size-polydispersecolloidal suspension.Thediam-
of macroionswith amesoscopicdiametera andachargeZ eters of each big particle are not equalbut distributed
of tOO—t0000elementarycharges,microscopiccounterions arounda meanvalue with a secondmomentthat defines
with achargeof q = 1,2 andthemicroscopicpolarsolvent the relativepolydispersity.
shownassmall dots. Here, the macroionshave a negative
and the counterionsapositive charge;this can of course
also be reversed.Two macroionsrepelthemselvesdueto
the Coulombrepulsion of an overlappingelectric double
layer.

the structureis the numberdensityp = N/V of the big particlesor the packingfraction

= 7rpa~/6. (18)

Due to the scaling propertyof the hardspherepotential,the temperatureT only entersin the time
scaleof dynamicalprocesses.Interestinglyenough,,~canbevariedexperimentallyfrom few percent
to 0.74, the limiting valuefor adensedpackedfcc or hcp crystal structure.So onecan scanthe
whole relevantparameterspaceexperimentally.

Ontheotherhand,a charge-stabilizedcolloidal suspensionresultswhenbig particleswith surface
radicalsareput into apolar solventlike water. Most of the thesechargedsurfacegroupsdissociate
into the solvent and form counterionscarrying one or two elementarycharges.Consequently,
the colloidal particlesbecomehighly chargedandmay be called macroions;they carry typically
Z = 100—10000 elementarycharges.Essentially, the counterionsare locatedaroundthe charged
colloidal surfacesforming adiffuseelectricdoublelayer. Sincethe counteriondistributionis diffuse
dueto their finite temperature,screeningof the macroionsis imperfect anda screenedCoulomb
repulsionbetweenthe macroionsresults.In fig. 1.3, such acharge-stabilizedcolloidal suspensionis
shownas a three-componentsystemconsistingof macroions,counterionsandthe solvent.A typical
experimentalsystemwhichforms a charge-stabilizedcolloidal suspensionsis an aqueoussolutionof
polystyrenespheres.One fundamentalproblemin characterizingsuchasuspensionexperimentally
concernsthe direct determinationof the macroion chargeZ. One canonly get upperboundson
Z by conductometrictitration. If onecomparesexperimentaldatawith theories,one is therefore
forced to treat Z as a fit parameter.Typically, a charge-stabilizedsuspensionis rather dilute,
i.e. the macroionpackingfraction ij is small (0.001—0.4).Neverthelessdueto the high macroion
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charge, the interaction is very strong resulting in a markedstructure.Such avery dilute system
can evenexhibit crystallization. For packingfractionsof abouti~~ 0.3 the suspensionrepresents
a concentratedstrongly interacting systemwhose theoreticaldescriptionis of coursemuch more
complexthan in the dilute case.

The questionafter the interactionbetweenmacroionshas along history. An explicit expression
for a pairwise potential incorporatingcorrectionsdueto a finite macroiondiametera was given
by Derjaguin,Landau,VerweyandOverbeek(DLVO) [6]. This DLVO potentialwas derivedby
linear Debye—Hückelscreeningtheoryandconsistsof an electrostaticandthe van der Waalspart.
The electrostaticpart hasthe Yukawaor screenedCoulombform:

V(r) = Z*2e2exp(_Kr)/er (19)

wheree is the dielectricconstantof the solventand

IC = \/4lrpC(qe)2/ekBT (20)

is the inverse Debye—Hückelscreeninglength, Pc denotingthe meancounterionnumber density

andqe their charge.Furthermorethe renormalizedchargeZ * is relatedto the barechargeZ via
— ~ (21)
— l+Ka/2~

If p N/V is the numberdensityof macroions,global chargeneutrality requires

Zp = —qp~. (22)

The celebratedDLVO potentialis an effectivepair potentialbetweenthe macroions.The complex
three-componentsystem has been reducedto a one-componentsystem. The discretenature of
the solvent has beenneglectedcompletely. It only entersvia its dielectric constante in the
effectivepotential.Thecounterionicdegreesof freedomhavealsobeenintegratedout approximately.
They determinethe screeningparameterK. In addition, the DLVO potential dependson the
thermodynamicparameterslike thetemperatureT and, via (22), the macroiondensityp.

Although thedescriptionvia the effectiveDLVO-pair potentialis expectedto work for verydilute
suspensions,the assumptionof linear screeningmustbreakdown for concentratedsuspensions.In
particular, onewould expectthat effective many-body forceson the macroions,inducedby the
counterions,becomerelevant [7].

In order to reducethe screenedCoulombrepulsionbetweenthe macroionsin a charge-stabilized
colloidalsuspensions,oneusuallyaddssaltto thesolution.If the ionsof thesalthavethe samecharge
q as the counterions,the colloidal suspensionconsistsoffour components:macroions,counterions,
coionsandthe solvent.Within DLVO-theory, onecanagainfind an effectivepairpotentialbetween
the macroions.In the high dilution limit, the effective interactionremainsYukawa-like, see (19),
but the inverseDebyescreeninglength K is enhancedto

K = iJ[4,r(qe)2/ek~T](pcq2e2+ pcoq2e2) (23)

wherePco = NCO/V is the coion concentration.

1.3. Polydispersityin colloidal suspensions

In a real colloidal suspension,the particlesare not identicalbut differ in size andcharge.This
property is called polydispersity.Polydispersity makes a direct comparison of experimental data
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with that of simple liquid modelsdifficult. Thereforeonehas to introducemore complexmodels.
Polydispersefluids can alsobe viewed as infinite-componentmixtures.

1.3.1. Polydispersity in size
For stericallystabilizedcolloidal suspensions,polydispersityin size is convenientlydescribedby

the hard spherepotentialbetweentwo particles i andI

V(r) — foo for r � ~.(a1+ ai), (24)— ~0 else

where the particle diameters{a,} are now continuouslydistributed according to a distribution
functionP (a) with a meandiameter

~=fdaP(a)a (25)

anda relative polydispersity Pa as the secondmomentof the distribution

00 1/2

Pa (~fda(a_~)2P(a)) . (26)

Suchasize-polydispersesuspensionis sketchedin fig. 1.4.

1.3.2. Polydispersityin charge
In acharge-stabilizedcolloidal suspension,thereoccursboth, polydispersityin size andcharge.

Such a polydispersesuspensionis shownin fig. 1.5.
AssumingtheDLVO potential (19) for theinteractionbetweenmacroions,it is the effectivecharge

which is continuouslydistributed.Note that within linear screeningtheory, the Debyescreening
parameterK (20) remainsunaffectedby polydispersity.Hencethe correspondingpotentialis

V,~(r)=Z,Z~Uoexp(—Kr)/r=:Z,Z~U(r) (27)

where now the effective chargesare distributedaccordingto a function P(Z) andone can again
define ameanvalueZ anda relativechargepolydispersityPz as the first andsecondmomentof
the distributionP(Z).

1.4. Atomic versuscolloidal systems:analogiesand differences

The main analogybetweenatomic and colloidal systemsis that they both representclassical
statistical mechanicssystemswhose interactions can be describedin terms of a pair potential.
Consequently,theoriesknown from statisticalmechanicscan be appliedto both kind of systems.
The first important difference is that the parametersof the pair potentialcan be tuned in the
colloidal case, e.g. by adding salt or by samplepreparation,whereasthey are fixed for atomic
systems.This permits an flexible explorationof the relevantparameterspace.

As alreadyemphasizedearlier, the inherent length scale (called a in the previoussection) is
different: it is microscopic(1—10 A) for atomic andmesoscopic(lOO_l06 A) for colloidal systems.
Thus,the structureand the phasediagramis expectedto be similar in the two cases,but it occurs
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Fig. 1.5. Charge-stabilizedcolloidal suspensionwhich is Fig. 1.6. Shapeof the different pair potentials used to
polydispersein sizeandcharge.This leadsto apolydisper- model various simple systemsof classical statistical me-
sity in theeffective chargewithin the DLVO-picturewhere chanics:hard-spherepotential (dot-dashedline), Lennard-
the interactionbetweenthe macroionsis describedby a JonespotentialV(r) = 4V

0[(air) 12_(a/r)
6] (solid line),

Yukawapotential. OCP potentialV(r) = V
0a/r (dashedline), andYukawa

potentialV(r) = V0(a/r)exp(—,c(r—a)/a)with K = 2.
Here,a denotesalengthscaleandV0 an energyscale.

on a different length scale. Experimentally,the mesoscopiclength scaleimplies that diffraction
experimentsof visible light ratherthanX-raysarenecessaryin orderto explorethe structure.There
are alsoreal spacetechniqueslike direct imageprocessingwhich are only possiblein the colloidal
case.

The timescalerelevantfor dynamicalprocessesof the atomic or colloidal particlesis different,
too. For an atomic system, one typically has a relaxation time of 0.1 ps whereasthis time is
shifted to 1—10000 ns for a colloidal suspension.This implies that dynamicalphenomenalike
crystalgrowth etc. mayoccur on atime scalemoreconvenientfor experimentalresolution,which
constitutesanotheradvantageof colloidal suspensions.The dynamicsthemselves,however, are
different: they are Newtonian (Molecular Dynamics (MD)) for atomic systemsand Brownian
(BD) for colloidal suspensions.This hasan importantinfluenceon time-dependentprocessesand
will be extensivelydiscussedin section 1.5.3. For aconcentratedcolloidal suspension,the solvent
mediateshydrodynamicinteractions,suchthat the actual dynamicsof acolloidal systemaremuch
more complicatedthan for atomic systems.Only in the dilute limit, the dynamics are simple
Brownianwithout any hydrodynamicforces. Thesehydrodynamiceffects, however,fortunately do
not affect staticstructuralquantities.

Onedisadvantageof colloidal suspensionsis their intrinsic polydispersityin size andcharge.By a
careful samplepreparation,the polydispersitycanbe kept small, but cannotbe alwayscompletely
neglected.In this casethe muchmorecomplicatedmodelsdiscussedin section1.3haveto be used.

Summarizing,wehavediscusseddifferentrealizationsfor classicalstatisticalmechanicalsystems
in atomic andcolloidal context. We found that the possible pair potentialsare of hard-sphere,
Coulomb, Lennard-JonesandYukawa form. The shapeof thesedifferent potentialsis plotted in
fig. 1.6 which clearly showsthatthey arequalitativelydifferent.The phasediagramsandthe static
anddynamicalbehaviourdependscrucially on the detailedform of the interaction.
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1.5. Questions of classicalstatisticalmechanics

1.5.1. Bulk phase diagrams
The first fundamentalquestionconcerns the natureof the different thermodynamicphases.

Henceforthlet us set Vext(r) 0; thenthe questionis: How many andwhat kind of phasesdo occur
for agiveninteractionpotentialV (r) as afunètionof thethermodynamicalparameterstemperature
T anddensityp (or chemicalpotential1u)?

For a classicalmanybody system, this is anontrivial difficult question,in general.During the
last decadeprogresswas madeusingthe following methods:

(1) Computersimulationmethods,mainly MonteCarlo andMolecularDynamicscodes.
(2) Experimentson well-characterizedmodel systems(e.g. sterically stabilizedcolloidal suspen-

sions).
(3) Ab initio theories starting from first principles, i.e. with the pair potential V (r) as the

only input. Up to now, thereis no such generallyapplicabletheorybut thereis someremarkable
progressduring the last decadewith so-calleddensityfunctional theory that startsfrom the phase
with homogeneousdensityand thenpredictsa freezingtransitioninto asolid.

The liquid to solid phasetransitiontakesplacealonga coexistenceline in the (T,9u) -planeand
is first order, in general. It is also called melting or freezingtransitiondependingon whetherone
goesfrom the solid to the liquid stateor vice versa.

As for example for the freezing transition, let us first considerpurely repulsivepotentialsV(r)
thatare governedby onelengthscalea. Typical examplesareinversepowerpotentials

V(r) = Vo(a/r)°, ii >0. (28)

In this case,therearetwo phases:acrystal for low temperaturesanda liquid for hightemperatures.
For a liquid, the equilibrium density is a constant,P0(r) p whereas in the solid the density
exhibitspeakson a regularlattice. The structureof thelatticeat freezingdependson the “softness”
of the repulsion:it is face centered cubic (fcc) for hard repulsions, i.e. for u,~6, and body centered
cubic (bcc) for soft cores (v.’z6). Thus a hard spheresystem, formally obtainedfrom (28) by
setting j/ = 00, freezesinto an fcc solid. The transitionis strongly first orderwith ‘lj = 0.49 and

= 0.54 for the packingfractions of the coexisting fluid and solid phases[8]. On the other
hand,a one-component plasma (u = 1) freezesisochoricallyinto a bcc crystal if the dimensionless
couplingparameterF (4irp/3)’/

3aVo/k
8Tequals 180 [9]. The lattice spacingand the width of

the solid densitypeaksclearly dependon T and ,u.
The softnessof the Yukawapotential exp(—K (r — a))/r dependson the screeningparameter

K. For K = 0, one recoversthe OCP casewhereasfor large K the repulsionbecomesharder.
Correspondingly,as a function of K, the bulk phasediagramof the Yukawa systemshowsliquid,
bcc and fcc solid phases.This result was confirmedby extensivecomputersimulations[10, 11].

The Lennard-Jonespotential (16) hasalsoan attractivetail. In this case,thereare threephases,
two of them with homogeneousdensity,namely the solid, liquid andgasphase.Most conveniently,
the phasediagramis shown in the (F, T)-plane,where P denotesthe pressure.Thereare three
coexistencelineswhich meetatatriple point.Furthermoretheliquid—gascoexistenceline terminates
at thecritical point. This is schematicallyillustratedin fig. 1.7.

1.5.2. Thestructureof a givenphase
The secondquestionaddressesthe detailedstructuralpropertiesof a given thermodynamicbulk

phase.A basic static quantity is the two particle probability density~(
2) (r, r’) that gives the joint
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3 ~fcc—solid

~~tquid ~
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Fig. 1.7. Schematicphasediagramof a Lennard-Jonespo- Fig. 1.8. Qualitativeshapeof thepairdistributionfunction
tential in the P — T plane. Thereare threephasessolid, g(r) for a dense liquid (solid line), a gas (dot-dashed
liquid, gasmeetingat the triple point (Pr, TT). The gas— line) and an fcc solid (dashedline). In the latter case,
liquid coexistenceline endsat thecritical point, the sphericalaveragedpairdistribution functionis plotted.

Thepeakscorrespondto nextandfurthernearestneighbour
shells in thesolid.

probability densityto find aparticleat position r andanotherparticleatposition r’. It is naturally
definedin the canonicalensembleas

p~2~(r,r’)= ( ~ ö(r — r~)~(r’—ri)). (29)
i,j=1;i~j

By normalization,thepair distributionfunction g (r, r’) is definedas

g(r,r’) = ~(2) (r,r’)/po(r)po(r’). (30)

For ahomogeneousphasewith density Po(r) = p, g (r, r’) is a function only of the separation

— r’I and (30) canbe rewritten as

~ ô(r_(ri_rJ))). (31)
i,j= 1,i~j

The pairdistributionfunction playsacentralrole in the physicsof liquids andsolids. Therearetwo
main reasonsfor that. Firstly, the Fourier transformof the pair distributionfunction is measurable
by scatteringexperiments.Secondly,for ahomogeneousphase,thermodynamicpropertiesof a fluid
canbe written as integralsoverg(r); soonecan recoverthefree energiesthat determinethe bulk
phasediagram.A famousexampleis the virial expressionfor the pressureP

P = kBTp — ~ fdr r3~]~g(r)). (32)
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Whereasg (r, r’) showslong-rangedpositionalorderin the solid phase,g (r) decaysto 1 for larger
in a homogeneousphase.In agas,g(r) ~ exp(— V (r ) / (kBT)) doesnot exhibitmarkedoscillations,
but in a denseliquid it is strongly peakedaroundr p~1i3. Thereare alsolesspronouncedsecond
andhigherorderpeaksat higher r which correspondto nextandfurthernearestneighbourordering
in the liquid. In fig. 1.8, the qualitativedifferent shapeof g(r) is shown for the gas, liquid and
solidphase.

Another importantquantity is the direct correlationfunction c~21(r, r’) that is implicitly defined
by the Ornstein—Zernikeequation

h(r,r’) = c~2~(r,r’)+fd3r” p
0(r”)h(r,r”)c~

21(r”,r’) (33)

with

h(r,r’) = g(r,r’) — 1. (34)

Fora homogeneoussystemc~2~(r,r’)andh(r,r’) only dependon r—r’I andthe Ornstein—Zernike

relationreducesto
h (r) = c~2~(r) + d3r’ h (r’)c12~(Ir — r’I). (35)

This canbe solvedby Fouriertransformation

= fd3rex~(_ik .r)c~2~(r) (36)

to expressë(2~(k)by h(k):

= h(k)/(l + ph(k)) (37)
c(2) (r) is typically negativefor small r andapproaches— V (r ) /kBT for large r.

Finally, onecanalso definethe static structurefactorS(k) by

S(k) = 1 + piz(k) (38)

that is directly measuredin scatteringexperiments.In a denseliquid, S(k) has its main peakat
k ~ 2irp113 and is then oscillating andapproaches1 as k —~ oo. An exampleof S(k) is shownin
fig. 1.9.

So our secondquestionis: How can oneobtain structuralpropertiesembodiedin the functions
g(r), c(2) (r), S(k)? Firstly, of course, there are experimentalscattering techniques.Another
possibility is provided by computersimulation. Thirdly, there are now well-establishedtheories
(mainly integral equationsin the liquid state)to calculateS(k) (orequivalentlyc(2) (r), g(r)) for
agiven pair potential V (r). As an example,avery successfulltheory for the structureof thehard
spheresystemis the Percus—Yevickclosure [12, 13]. Combining the exact relation g (r) = 0 for
r < a and the approximationc~2~(r) = 0 for r> a, one getsan explicit expressionfor the direct
correlationfunction

(2) [0 forr�a,c~(r) = ~ —A
1 + 6iiA2r/a — ~,jA1(r/a)

3 else
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3 ________________________________________
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ka r/a
Fig. 1.9.StructurefactorS(k) versuska within thePercus— Fig. 1.10. Direct correlationfunctionc~(r) versusr/a
Yevickapproximationfor ahard-spheresystem.Theresults within the Percus—Yevickapproximationfor ahard-sphere
for threedifferent packing fractions ‘i = 0.1, 0.3,0.48are system.The resultsfor threedifferent packing fractions
given.Themain peakincreasesfor increasingpackingfrac- ,~= 0.1, (uppercurve) 0.3, and0.48 (lowestcurve) are
tion. given.

with A1 = (1 + 2i~) 2/ (1 — ij ) ‘~ andA2 = (1 + ~) 2/ (1 — i~)~. Here,~j is the packingfraction of the
hardspheres,see (18), anda is the hard-spherediameter.Thisexpressioncomparesfairly well with
computersimulationsup to packingfractions~<0.3. It is displayedin fig. 1.10 for threedifferent
packingfractions.An improved versionfor c(2) (r) was given in refs. [14, 151. Also, the structure
factorS(k) of ahardspheresystemwas plotted within thePercus—Yevickapproximationfor three
different packingfractionsin fig. 1.9. One advantageof the Percus—Yevickapproximationis that
it canbe solvedalsofor apolydispersehard-spherefluid (24) [16, 17]). As expected,it turns out
that the structureis smoothenedout by polydispersity.This means,for instance,that the height of
the main peakof the liquid structurefactordecreasesfor increasingrelativepolydispersity.On the
otherhand,for acharge-polydisperseliquid, describedby theYukawapotential (27), muchlessis
known comparedto the size-polydispersecase.The so-calledmean-spericalapproximationcan be
handledanalytically [18]. Recentattemptshavefocusedon the applicability of moresophisticated
liquid integral equations[19,20] andon a mappingto a size-polydispersereferencesystem[21].

1.5.3. Dynamics;time-dependentcorrelationfunctions
Until nowwehaveonly consideredstaticquantities,i.e. time-independentcorrelations.Obviously,

onecanalsocorrelatequantitiesatdifferenttimesprovidedthe dynamicsof the systemarespecified.
In a classical atomic systemthe dynamics are just simply Newtonian and are called Molecular
Dynamics (MD) which meansthat the particle trajectoriesin phasespaceobeyNewton’scoupled
differentialequations

dr1/dt = ~ (40)

dp,/dt=F~, (41)
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Fig. 1.11. Typical trajectoryof aparticlein a denseliquid Fig. 1.12. Force autocorrelationfunction versusreduced
for MolecularDynamics.For asmoothpair potential,the time t/r wherer is a characteristicrelaxationtime, for a
trajectoryis smoothandan analyticalfunctionof the time Yukawasystem.The solid curveis for NewtonianDynam-
t. icsandthedashedcurvefor BrownianDynamics.Notethat

theshapesarecompletelydifferent,althoughthe samether-
modynamicparametersandthe samepotentialwas used
for both curves.

with theforce

a a
F~= —~-—V

10~= —b—- (~V(lr~—r~))+ Vext(ri) J . (42)
\i~&J /

A finite differenceversionof Newton’sequationsfor the particledisplacementis

r(t -i-At) = r1(t) + -
1—p~(t)At + Fe(t) ~t2 +O(At3). (43)

A typical particletrajectory in adenseliquid is sketchedin fig. 1.11. In particular,it is asmooth,
analyticalfunctionof time t if the interparticlepotentialandthe externalpotentialaresmooth.The
time-developmentof ageneraldynamicalvariableA(t) dependingon positionsandmomenta

A(t) = A({r
1(t)},{p~(t)}) (44)

is governedby theLiouville operator

(45)

andexplicitly given by

A(t) = exp(rt)A(0). (46)
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We canconstructan autocorrelationfunctionassociatedto thedynamicalvariableA that correlates
A(t) with A(0) by

CA(t) (A(0)A(t)) = (A(0)exp(Ct)A(0)) (47)

wherethe averageis now over the initial conditions {r1(0)}, {p,(0)}. Due to the time inversion

symmetryof Newton’sequations,we get the short time expansion
CA(t) = CA(O) + 0(t

2). (48)

Among physical interestingexamplesis the velocity autocorrelationfunction

Z(t) = 3kBTm (~~~j(0) .P.(t)) (49)

The valueof Z (t) at t = 0 is 1 which canbe derivedimmediatelyfrom the equipartitiontheorem.
In a solid, Z (t) has long-lived oscillations associatedwith phonons. In a dense liquid, on the
otherhand, Z (t) decaysto zero for large times, but hasan oscillatorybehaviouron a time scale

= v1ma2/kBT, where a is a typical microscopiclength scale. A secondexample is the force
autocorrelationfunctionthat is just the secondtime derivativeof Z (t):

1 N d2
CF(t) = (~~FJ(o).FJ(t)) = -3kBTm~--~Z(t). (50)

An exampleof the force autocorrelationin a denseliquid is plotted in fig. 1.12 (solid line).
According to (50), it exhibits oscillationson the sametime scaleas the velocity autocorrelation
functiondoes.

Another importantrepresentativeis the densityautocorrelationin real spaceas well as in Fourier
space.If we takeA(t) to be the densityoperator

A(t) =~ö(r-r~(t)) (51)

we candefine the generaldensityautocorrelationfunction

C~(t) C~(r,r’,t) = (~ö(r_ri(0))ö(r’_ri(t))). (52)
i,j=1

This canbe splittedinto aself (s) anddistinct (d) part

C~(r,r’,t)= C~(r,r’,t) + C,~’~(r,r’,t), (53)

C~(r,r’,t) = (~ö(r_ri(O))ö(r’_ri(t)))~ (54)

C~(r,r’,t) = ( ~ ô(r_rJ(0))ö(rl_ri(t))). (55)
i,j= 1;i~j
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c~(r, r’, t) (respectivelyC~1~(r, r’, t)) givethejoint probabilitydensityto find aparticleatposition
r’ aftera time t and thesame(respectivelyanother)particleat positionr for zero time. Obviously,
for t = 0, the distinct part reducesto the static two particle distribution function p~2~(r,r’)as
definedin the previoussection.

By normalization,we obtainthe van Hovecorrelationfunction

G(r, r’, t) = C’~(r, r’, t)/po(r)po(r’) (56)

which also naturally splits into aselfanddistinct part

G(r,r’,t) = G
5(r,r’,t) + Gd(r,r’,t). (57)

For a homogeneousphase,the distinct part of the van Hove correlation function is the time-
dependentgeneralizationof the pair distributionfunction g(r)

Gd(r,t) = ~ ö(r-r1(0) +rJ(t))). (58)
i,j=l;i~éj

Of course,Gd (r, 0) = g(r) and lim1..00Gd(r, t) = 1 in a liquid, whereasthe van Hovefunction
has frozen-in componentsfor large times in a solid. The self part simplifies for a homogeneous
systemcorrespondingly:

G5(r,t) = ~(Eö(r_rf(0) +rf(t))). (59)

For t = 0, we getG5 (r, 0) = ö (r ) /p andthe longtimelimit is givenby the hydrodynamicbehaviour

G5(r,t) ~ p’(4JrDLt)
312exp(—r2/4DLt) (60)

where

(61)

is thelong time diffusion coefficient.Again, for a solid,DL is extremelysmall,andthereis afrozen
structurefor large times. The van Hove functions G

5 (r, t) and Gd (r, t) play an importantrole as
dynamicaldiagnosticsof the kineticglasstransitionin supercooledliquids.

Furthermore,onecan take the Fouriertransformsof G5 (r, t) and Gd (r, t) with respectto r to
obtain the correspondingk-dependentstructurefactorsF5(k,t), Fd(k, t) which aredefinedas

F5(k,t) = -~>(exp[ik. (r1(t) —r~(O))]), (62)

Fd(k,t) = -~ ~ (exp[ik. (r~(t) -r,(0))]). (63)
l,j=1;l~&j
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Fig. 1.13. Typical particletrajectory in a densecolloidal liquid with Brownian Dynamics.Thesolvent kicks the colloidal
particlerandomlyon a time scalerelevantfor the big particles.Consequently,the trajectoryis not smooth; thereare no
particlevelocities.This is completelydifferent to the MolecularDynamicscase (fig. 1.11).

It is clearthat Fd(k,0) = 5(k), i.e. Fd(k,t) equals the static structurefactor for t = 0. Further
Fouriertransformationwith respectto time t thenleadsto the dynamicalstructurefactorsS~(k, co),
5d(k, co). The latterquantity is directly accessiblein dynamicalscatteringexperiments.

Mesoscopiccolloidalsystems,on the otherhand,areembeddedin a microscopicsolventandobey
irreversibleBrownian Dynamics(BD) on a time scalerelevant for the mesoscopicparticles, due
to solventfriction. Consequentlythe velocities are not defined anddo not occur as independent
statisticalvariables;justthe positionsoccur in the partitionfunction integral.Forgiven interparticle
forces,the staticpropertiesare exactlythe samefor BD andMD, but the time dependenceof the
correlationfunctionsis different.

The irreversiblecoupledequationsof motion read

= F’(t) + R(t) (64)

whereR denotesaLangevinrandomforce and~ the solvent friction coefficient.
In concentratedcolloidal systems,hydrodynamicforces inducedby the solventare relevant. In

principle, they could be approximatelyincluded by replacing~ by a 3N x 3N matrix depending
parametricallyon the positions{r

1} althoughthe explicit form of this matrix is not knownexactly.
Hence,alsofor simplicity, we shall take ~ to be diagonalandconstantin the following, which is a
reasonableassumptionfor dilute suspensions.

Finite differenceintegrationof equations(64) leadsto the BD algorithm [22,23]:

r1(t + At) = r,(t) + ~‘F~(t)At + (Lir)R + O(At
2) (65)

wherethe randomdisplacement(Ar)R is sampledfrom a Gaussiandistribution of zero mean,
(Ar)R = 0, and variance (Ar)~ = 6k~TAt/~.This should be contrastedwith (43). A typical
trajectoryof acolloidal particleis visualizedin fig. 1.13. Hence,alsoon ashort time scale(“short”
with respectto atypicaltime for themovementof thebig colloidalparticles)the motionis diffusive
with the short-timediffusion constant:

D
0 = k~T/~. (66)

D0 providesa naturalscaleto measurethe long-timediffusion coefficient DL definedby (61).
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The time developmentof anydynamicalvariable

A(t) = A({r1(t)}) (67)

is nowgovernedby the adjoint Smoluchowskioperator

O = ~~‘[—a(Hext + U)/8r~ + kaTO/ôr~].ô/O,j (68)

andgiven by

A(t) = exp(Ot)A(0). (69)

The short time expansionof an autocorrelationfunction

CA(t) = (A(0)A(t)) = (A(0)exp(Ot)A(0)) (70)

hasnow alinear term dueto the irreversibility of solvent friction:

CA(t) = CA(0) + 0(t) (71)

which should be contrastedto the MD expansion (48). In fig. 1.12 the force auro-correlation
functionis shownfor NewtonianandBrowniandynamics.Clearly their shapeis completelydifferent
althoughthe thermodynamicparametersarethe same.

So our third questionconcernsthe time dependenceof correlation functions in a given bulk
phase.This is of coursemoredifficult thanthe correspondingquestionfor the staticstructuresince
the dynamicalquantitiesdependmoresensitiveon the microscopicinteractionpotentialV(r) and
sincethe dynamicsitself also dependon the physicalnatureof the system(atomic or colloidal).

Again informationon the dynamicscanbe gainedby threedifferent methods:computersimula-
tionswith moleculardynamicsor Browniandynamicscodes,dynamicalscatteringexperiments,and
theories.In theoreticalapproaches,oneoften starts from the Mori—Zwanzig projectorformalism
andconstructsso-calledmodecouplingtheoriesby which one arrivesata closed set of equations
for the correlationfunctions.Here the staticquantitiesserveas an input.

1.5.4. Interfacesbetweentwo coexistingbulkphases
Our fourth classof questionsconcernsinterfacialproblems.If the thermodynamicvariables(e.g.

temperatureT andchemicalpotentialp) aresuchthat two phasescoexist,an equilibrium situation
with an interfacebetweenthesetwo phasesis conceivable.The surfacetension,the densityprofile,
thestructureand the role of fluctuationsat suchinterfacesarethe key quantitiesthatareof interest
here.The simplestexample is the liquid—gasinterfacethat was studiedalreadyin thelast century
by vander Waals [241, see ref. [25] for an extensivereview. Solid—liquid or solid—gas interfaces
aremore complicatedsincetheir structuredependson the orientationof the solid phase.

Another interestingquestionconcernsinterfacesnearthe triple pointwhere three phases(solid,
liquid, gas, for a simple material) are in coexistence.If two phasesA and B coexist and one
moves along their coexistenceline towardsthe triple point where the phase C also becomes
thermodynamicallystable as a bulk phase,one may think about wetting the third phase may
intervenebetweenphasesA and B, evenwhenthe triple point is not yet reached.The thickness1
of the layerwith phaseC will be finite, dependingon the distanceto the triple point. Complete
wettingis definedby adivergenceof 1 as onemovesto the triple point. For an extensivereview of
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wetting phenomena,seeref. [26]. An importantexamplethat will be pursuedfurther in chapter3
is surfacemelting whereone moveson the sublimationline towardsthe triple point. The question
hereis whetherthereis a quasiliquidlayerformation at the solid—gasinterface.

A very muchrelatedsituationis aphasein contactwith anexternalwall, whereonemayexamine
interfacialphenomenaat the wall like wetting, drying or wall-inducedmelting transitions.

Fluctuationsare importantin particularnearthe critical point; theyalsodrive rougheningtransi-
tionsof interfaces.Herewe shall considerexclusivelyfirst orderphasetransitionswherefluctuations
maybe neglected.Fora review on the role of interfacialfluctuations,we refer e.g.to ref. [271.

Again, computersimulationshavegiven muchinsight into interfacialproblems,but alsopowerful
experimentaltechniqueslike X-ray and ion scattering, low energyelectron diffraction (LEED)
and other methodshavebeensuccessfullyapplied to study interfaces,see ref. [28] for a recent
review. Lastbut not leastmicroscopictheories,mainly densityfunctional theories,can be usedto
calculatethe interfacial structure.An examplewill be given in the contextof surfacemelting in
chapter4. One canalso reducethesemicroscopictheoriesto a Ginzburg—Landaudescriptionthat
canthenbe consideredas aphenomenologicalapproachwith few parametersthat are determined
microscopically.Thesesimplesquare-gradientmodelshavefrequentlybeenusedto studyqualitative
featuresof interfaceswith andwithout fluctuations.We shallgivean examplein chapter4. A great
advantageis thatthe qualitativefeaturesshouldbe universalandthereforealsobe applicableto more
complexsystems.In the simplestsetting, oneconsidersa functional for the surfacetensionE Em]
of adimensionlessorderparameterfield m(z), only dependingon asurfacenormalcoordinatez,
wherem 0 in the A andm 1 in the B phase:

X[m] =fdz [~fo~ô2m(z)/8z2+f(m(z))]. (72)

Here ~m is a microscopicbulk correlationlength, fo an energydensity scale,and f (m) denotes
the bulk free energydensityfor a spatiallyconstantorderparameter.At AB coexistence,f (m) has
two minima at m = 0, 1 of equaldepth. The meanfield solution of a planar interfacialprofile in
z direction, is thenobtainedby the minimization

ô.�7öm= 0 (73)

with the boundaryconditions

limm(z) = 0, lirnm(z) = 1. (74)

1.5.5. Dynamicsofinterfaces
SupposethataphaseA ispresentandthethermodynamicparametersarechanged(e.g.by cooling)

so that phaseB is now thermodynamicallystableas a bulk phase.A descriptionof the temporal
evolutionof the conversionfrom phaseA into phaseB representsa formidablechallengeto theory
and experiments.Of course,this situation is at least one order of magnitudemore complicated
than the equilibrium caseof the last section, since we are dealing now with a nonequilibrium
situation. Normally onecan distinguishbetweentwo stages:nucleationof phaseB, taking place at
inhomogeneitiesand forming small germsof phaseB, andthe subsequentgrowth of phaseB. For
long times,onefrequently arrivesat a steadystatesituation, i.e. the interfacegrowswith aconstant
velocity v. Evidently the descriptionof a steadystatesituationis easierthanthe nucleationprocess.
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It is important whetherthe phasesthemselvesare describedby a conservedor non-conserved
order parameter.Their dynamicsclearly are different: a conservedorder parameterhas to obey
a generalizedcontinuity equationwhereas a nonconservedorder parametercan be createdand
annihilatedarbitrarily. Consequently,growth is slower if a conservedorderparameteris involved.

Physicallyimportantexamplesarecrystalgrowth from theundercooledliquid, dynamicsofwetting
transitionsandadynamical creationof metastablephases.A full microscopictheory for all such
phenomenais still missing,althoughtherearesomefirst attemptsin dynamicalextensionsof density
functional theories.One thereforerestrictsoneselfto phenomenologicalGinzburg—Landaumodels
and studiessimple model dynamics for conservedand nonconservedorder parameters(Cahn—
Hilliard respectivelyGinzburg—Landaudynamics),see ref. [291 for a review. Explicitly, with the
notationof theprevioussection,the dynamicalevolutionof anonconservedorderparameterprofile
m(z, t) is governedby the equation

am/at = —F~öI/ôm (75)

whereasthe Cahn—Hilliardpicture of aconservedorderparameteris

am/at = I~(a2/az2)o~’/am. (76)

Here, F~andI’~are phenomenologicalkinetic coefficientsthat set the microscopictime scaleand
the functionalZ is takenfrom (72).

The growing andkineticsof an A—B interfaceprovidedphaseB hasbeennucleatedmaybe more
complicatedandnon-steady-stateif latentheatis producedas A is convertedinto B. This heatalso
hasto diffuse away andcanhinder the growth of the B phase.This is examinedin moredetail in
chapter6.

Thereare also lots of growth experimentsin different setupsand for differentphysicalsystems.
Recentlyalso detailedinvestigationsof crystal growth in colloidal suspensionswere performed,
see e.g. refs. [30, 31]. Sinceherealso powerful direct imagetechniqueare applicable,one can be
optimistic that much more detailsof growth effects are experimentallyaccessiblein nearfuture.
Computersimulationsfor nonequilibriumsituationsare muchharderthanequilibrium simulations
but, in the last decade,interestingresultson nucleationandgrowthhavebeenobtained.

2. Criteriaand theories for freezing and melting

2.1. Phenomenologicalcriteria for freezingandmelting

Although in general the melting and freezing transitionis non-universal,there are someuseful
phenomenologicalcriteriawhich areusuallybasedon thepropertiesof only oneof thetwo coexisting
phases.The advantagesof theseempiricalrules is that theypermit an estimationof the solid—liquid
coexistenceline avoiding anyfree energycalculation.Typically theypredictquasi-universalvalues
of certainstaticor dynamicalquantities.By quasi-universalwe meanthat aquantity is not exactly
constantbut is close to a fixed numberwithin ~ 10%.

Onehasto distiguishbetweentwo kindsof universalities.First,onecanvarythetemperaturefor a
given systemwith a fixed pair potentialandstudypropertiesalongthe melting line of this material.
By scalingpropertiesof inversepowerpotentials,for instance,it becomesimmediatelyclear that
any dimensionlesssuitablescaledquantity is universalalong the melting and freezing line. This
first universalityis thus trivial for inversepower potentialsbut less trivial for more complicated
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(e.g. Lennard-Jones)potentials.The secondmore generaluniversalityholds if apropertyhasthe
samevaluefor freezing/meltingevenfor differentsystems(with different pairpotentials).

2.1.1. TheLindemanncriterion of melting
A first phenomenologicalmeltingrule was put forwardas earlyas 1910 by Lindemann[32, 33]. It

statesthatthe ratio L of the root-mean-squaredisplacementandthe averageinterparticledistance
at the melting line of the solid has a universalvalue in the senseof the first weakeruniversality.
More interestingis the questionwhetherL is quasi-universalwith respectto different potentials.
This was aquestionof intense researchduring the last decade.In fact, by computersimulation,
it turned out that the actualvalue of L dependsa bit on the detailed form of the microscopic
interaction.However, it alwayshasthe sameorderof magnitudeof 0.15. For the extremelysoft
interactionof the classicalOCPonegetsL = 0.185 [34] at meltingof the OCPbcc crystal. For a
Yukawapotential,L was calculatedby Meijer andFrenkel [11] andsubsequentlyby Stephensand
Robbins[35]. As a result,L is alsoclose to 0.17. On the otherhand, for thehard spherefcc solid,
L equals0.129at melting [36, 37]. Intuitively one can understandthe Lindemanncriterion as a
breakdownof the orderedcageformedby neighbouringsolid particlesif the particledisplacement
exceedsa critical value which is one order of magnitudesmaller than the meandistanceto the
neighbours.A generalizationof the Lindemannrule was discussedby Ross [38].

2.1.2. The Hansen—Verlet freezing rule
A secondcriterion was formulatedby Hansenand Verlet in 1969 [39]. For a Lennard-Jones

liquid they found by computersimulation that the first maximumof the liquid structurefactor
S(k) hasaconstantamplitudeof 2.85 alongthe freezingline. It is thusuniversalwith respectto
the first kind of universality.Indeedit was confirmedby scatteringexperimentsand by computer
simulationof other thanLennard-Jonessystemsthat the maximum of 5(k) is alwaysclose to 3
at freezing and that thus the Hansen—Verletcriterion is also universal in the more general sense.
It showsthatfreezingsetsin if the order in the liquid system,measuredby the first maximumof
S(k), exceedsacertainquasi-universalvalue. Anothercriterion, working with the bridge function,
was discussedby Rosenfeld[40].

2.1.3. Dynamicalcriterionfor freezingin colloidal suspensions
It is temptingto look for quasi-universaldynamicalquantitiesat the freezing andmelting line.

Sincedynamicalquantitiesdependmuchmoresensitiveon detailsof the microscopicinteraction,it
is clearthat suchquantitiesaremuch harder to obtain. Recently,adynamicalcriterion was found
by Löwen, PalbergandSimon [411 for Browniandynamics:the ratioof the long-timeself-diffusion
coefficient,DL, andthe short-timeself-diffusionconstant,D0, is very closeto 0.1 alongthe freezing
line of acolloidal liquid. This was confirmed both by Brownian dynamicscomputersimulations
alongthe freezingline of aYukawaliquid (includingthe OCP andthe hardspherecase)andalso
by forcedRayleighscatteringexperimentson charge-stabilizedcolloidal suspensions.The criterion
is thus universalin the more generalsensesince it is valid for different pair potentials.It should
be emphasizedthat this criterion is only valid for Brownian dynamics.In contrast,for Newtonian
dynamics,asimple scale for the long-time self-diffusion is missing andconsequentlya dynamical
criterion is only valid in the weakuniversalitysense.

A theoreticaljustification of the dynamicalfreezing criterion is still missingand its relationto
the staticHansen—Verletcriterion is not yet fully understood.Somesimpletheoriesfor Di.,/Do only
involve k-integralsoverafunctionof S(k) [42—44]. Dueto theuniversalityof S(k)atfreezing [45]
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theresultsfor DL/Do arepracticalthe samefor softandhardspheres.Thus universalityof D17D0 at
freezingfollows in suchtheoriesbut theytypically strongly overestimateDL/DO. Anothertheoretical
approachto DL/DQ is an Enskogtheorywhich was discussedby LeegwaterandSzamel [46]. This
theory is superiorto the simple onesfrom a theoreticalpoint of view, since it incorporatesthe
two-particledynamicsexactlyandweightesthe solutionwith the pair correlationfunctiong (r). The
theoriesdiscussedbefore only sumup apart of the completetwo-particledynamicscorresponding
to two particlesgoing apartandcomingbackonly once.The Enskogtheory gets reasonablevalues
for D1jD0 for hard spheres,but underestimatesDL/DO strongly for soft repulsivepotentials.This
was shownrecently in the contextof Yukawa potentialsby Löwen and Szamel [47]. Finally a
modifiedEnskogapproach,originally introducedby Cichocki [48], was investigated[47]. It yields
good resultsfor soft spheresbut overestimatesD1JD0 for hard spheres.Sincethe expressionsfor
DL/DO of both Enskogtheoriesalsoinvolve the potentialitself, theyfail in predictinguniversality
of DL/DO. Nonethelesstheir absoluteresultsare closer to the resultsof computersimulationthan
thatof the simpleapproaches.

At presentthe approximationsinvolved in the dynamicaltheoriesremainsomewhatuncontrolled
for long times and have to be checkedcarefully by simulations. In conclusion,a theory which
predictsavalueof DL/DO close to 0.1 at freezingand universalityis still missing.

2.2. Theoriesfor freezingandmelting

Therearetwo different theoreticalapproachesto bulk meltingandfreezing.The first startsfrom
the liquid phaseandthe secondfrom the solid phase.Still therearesomedifficulties in constructing
amoregeneraltheorywhichincludespropertiesfrom both,liquid andsolid, phasesalthoughquite
recentlysomefirst stepsweremadein this direction, seee.g. refs. [49,50].

2.2.1. Liquid-basedtheory
In this kind of approachone uses the density functional formulation of classical statistical

mechanicswhich is discussedin detail in the following chapter.Basicallyoneusespropertiesof the
uniform liquid phase,as the equationof state,static pair and triplet correlations,at anyuniform
density.With theseinputs, onethenconstructsan approximatefree energydensityfunctional. The
physically realizeddensityminimizesthe functional.Here the solid is parameterizedby a periodic
densityansatzon a regular lattice. Hence the long-rangedpositionalorder of the solid is assumed
andnot an output of the theory. The key point is that the short rangeorder in the solid is not
very muchdifferent thanthat in the liquid at a suitabledensity. Consequentlyfreezingis viewed
as a condensationof liquid densitymodes.The first importantoutput of the theory is the bulk
phasediagram.For hard sphereandLennard-Jonespotentialsthe resultingphasediagramsare in
goodagreementwith the simulationaldata. For soft potentialsthereare at the momentstill some
difficulties with the densityfunctional approach.Also the structureof the solid, like its density
distribution or its pair correlationsare a further nontrivial output. Details of theseproperties,
however,arenot reproducedexactly [37].

Although the denistyfunctionalapproachhasshedmuchmorelight on the microscopicpointsof
the freezingprocess,the disadvantageof the approachis that the constructionof the approximative
functional is ad hocand only the resultsjustify the approximation.Thereis no uniquerecipeto
constructa functional and thus the constructionis arbitrary. Despitethis criticism, the density
functionalapproachis thebesttheoryof freezingto date.
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2.2.2. Crystal-basedtheory
The secondapproachis a crystalbasedtheorywhereonestartsfrom a crystalwith defects.Melting

is viewedas an accumulationand unbindingof defects.The melting point is identified with the
situationwherethe free energyof dislocationscoresassumesnegativevalues.Whenthis happens,
dislocationcoresare spontaneouslycreatedto fill the crystal to capacity,the crystalabsorbslatent
heatand losesits resistanceagainstshearforces.

In two spatial dimensions,this conceptwas used by Kosterlitz and Thouless in 1973 [51]
and further developedby Nelson and Halperin in 1980 (see e.g. ref. [52]). Thermally excited
dislocation dipoles do indeed drive a phasetransition from a dilute gas of dipole pairs to a
plasmaof unbounddislocationsin which translationalorder is lost. Thistwo-dimensionalmelting
transitionis continuousandpredictstheexistenceof an intermediatehexaticphasewith long-ranged
orientationalorder,betweenthe solid and liquid. In the absenceof firm experimentalevidenceof
this phase,however,thereappearsto be an unsolvedissue with computersimulationsthat favor
a first order transition,see ref. [53] for a review. Strictly speakingthereis no solid phasewith a
long-rangedpositional order in two dimensions,see theproof of Fröhlich andPfister [54], which
appliesto any relevantpair potentialexceptfor hard-discs.

In threedimensions,there are some attemptsto constructa dislocationtheory of melting, see
ref’s. [55, 56] and the textbook of Kleinert [571. The topology of defects is more complicated
in 3D thanin 2D [58], and thusthe theory is more difficult in 3D. Also computersimulations
of defect generationin superheatedsolids were performedto support the picture of dislocation
generation[59]. Recently,Lund [60] re-examinedthe instability driven by dislocationloops in
threedimensionsandfoundthat the solidshearmodulusvanishesas a powerlawof thetemperature
distanceto theinstability with exponent 0.5. In his analysis,the 3D dislocation-mediatedmelting
is achievedwithout a suddenproliferationof unbounddislocationloops in contrastto the simpler
earlier calculations.

The main critique for thesekind of approachis that the melting transitionin threedimensionsis
first order. At the meltingpoint, the shearmodulusis finite andthe defectconcentrationsmall. It
becomesthusclearthat the defectgenerationcannotbe the physicalmechanismfor bulkmelting. In
contrast,experimentalobservationsas well as theoreticalstudiesshowthat meltingis not initiated
by dislocationsbut by the crystallinesurface. It is via the surfacewhich is a natural defect in
the solid order that disordersetsin. This importantmechanismwhich is extensivelydiscussedin
chapter4 alreadyshowsup well belowthe bulk melting temperature.Despitethis fact a solid can,
under suitableconditionse.g. by coating it with anothermaterial,be overheatedand finally loses
its stability dueto spontaneousdefectgeneration.All theoriesbasedon dislocationgenerationthus
do not decribethe bulk melting transitionbut maybe applicableto an superheatedcrystal.

3. Density functionaltheory

The fundamentalmicroscopictool for calculating melting and freezing is the classicaldensity
functional theory.We discussconcreteapproximationsof the functional andexplain how phase
diagramsareobtainedfor hardspheresandothergivenpairpotentials.We alsomentionapplications
of densityfunctionaltheory to interfacesand relatedtopics.
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3.1. Fundamentalaspects

Adopting the notation of section 1.1, we consider a grandcanonicalfree energy functional
Q(T, ~u,[w]) of distribution functions w dependingon the numberN of particles and on the
positionsandmomentaof thoseparticles:

Q(T,jz,[w]) = Tr{w(HN —,uN+ kBTlnw)}. (77)

Q(T,~u,[w 1) alsodependsparametricallyon the grandcanonicalthermodynamicparameters,tem-
peratureT and chemicalpotential ,u. All distribution functions are subject to the normalization
constraint

Tr{w} = 1. (78)

The equilibrium distributionfunction w0 of the grandcanonicalensembleis given by

= ~‘exp(—(HN—/1N)/kBT) (79)

which is the grandcanonicalextensionof WN, seeeq. (6). If oneevaluatesthe functional Q at w0,
onefinds thatit equalsthe real equilibriumgrandcanonicalfree energy

~7(T,.u,[too]) = Q(T,~u). (80)

If it is evaluatedat someother distribution function w ~ to0, onegets via the Gibbs-inequality

[61] (or the convexity of the logarithmicfunction)

= kaT{Tr(wlnw)—Tr(wlnwo)} >0. (81)

For a fixed interactionpotential V(r), the distribution function to0 is determinedentirely by the
externalpotentialVext (r). Onecanshow [621 that T’~(r) is uniquelydeterminedby the equilibrium
densitypo(r). Thisthen implies the importantresultthat w0 is afunctionalof P0(r) which we call
W0 [Po]. ChayesandChayes[63] haveprovedthatanypositive densityp(r) canbe viewed as an
equilibriumdensityfor asystemin asuitableexternalpotential Vext(r). Consequently,

.‘F(T, [p1) = Tr{wo[p](Hu~ + U + kBTlnwo[p])} (82)

is awell-definedfunctionalof p (r). We can constructonefurtherfunctional by the extension

Q(T,~t,[p]) =1(T~[~])+Jd3rp(r)Vext(r)_iLJd3rp(r). (83)

If onetakesthis functional at the equilibrium density,onegets the equilibrium grandcanonicalfree
energy

Q(T,~u,[po(r)]) = Q(T,du). (84)

Next, onecanshowthatQ is minimized at p (r) = po(r), which follows directly from the fact that
Q is minimal at w = too. Thus the equilibrium densityminimizesthe functionalQ(T,~u,[p1) and
it follows

ÔQ(T,,tt, [P])/
5PIp=po(r) = 0. (85)
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Equations(84) and (85) constitutethe basicvariationalprinciple: thereexists auniquefunctional
Q(T,~u,[p]) which becomesminimal for the equilibrium density po(r) and then equalsthe real
grandcanonicalfree energy.

Let us now discussthe implications of this variational principle: first, consider an external
potential Vext (r) whichbreaksany symmetryandis strongenoughto avoid anytwo phaseregion.
In this case,there is auniqueminimum of the functional which correspondsto the one-particle
densityrealizedexperimentally.In particular,all fluctuationsfrom the thermodynamicaverageare
takeninto accountexactly providedoneknowsthe exactfunctional.

If the externalpotentialis zero, the minimizing equilibrium densitydefinedvia (11) is homoge-
neousbut it is not necessarilya “laboratory”densitysinceit canbean averageoverasetof possible
densitieswhich are experimentallyrealizable.To see this, considera point in the phasediagram
wherethe solid is stable.Thenthe equilibrium densityPo (r), as definedin (11), is homogeneous.
It canbe thoughtof as asuperpositionof solid densityrealizationswith peakson aperiodiccrystal
lattice. Different realizationsjust differ by a translation in real space.A fundamentalproblem
is how to decomposethe homogeneousequilibrium density uniquely into experimentallyrealized
densitiesandhowto do areducedthermodynamicalaveragearounda“laboratory” density.Closely
connectedto this problemis the proper incorporationof all experimentallyrealizedfluctuations.
Onepossiblestrategyto get a “laboratory”densityfor Vext(r) = 0 is to switchon asmallsymmetry
breakingpotentialV~(r), calculatethe equilibriumdensityandthentakethe limit Vext(r) —~ 0. But
evenhere,it remainsobscurewhich fluctuationsareproperly accountedfor. Forexample,onecan
get a realizationof asoliddensityby this procedure,but onedoesnot knowwhetherall fluctuations
in the solid statelike defects,dislocationsetc. areincorporatedproperlyinto the density.

For apractical calculation, the usual procedureis as follows: first, the functional is not known
exactly, so oneis forced to makean approximationfor the functional. Next, onemakesa density
ansatzwhich correspondsto an experimentallyrealizabledensity (for example:peakson a fixed
crystallinelattice to characterizethe solid). Third, one normally doesnot perform a calculation
explicitly with a symmetry-breakingexternal potential. If, for a given T and ~u, there are two
solutionswith equalgrand canonicalfree energy,one interpretsthis as the coexistenceof the two
realizabledensities. Using this strategy,it is unclearwhich fluctuationsare accountedfor; one
endsup with a picture which is a mean-field-like descriptionof a statistical mechanicssystem.
Nevertheless,on this mean-fieldlevel, densityfunctional theory remainsa useful tool to study
phasetransitions,in particularthefreezing transition:Onegetsan approximationof thefree energy
for the solid andthe liquid whichcanbe usedto calculatethe bulk phasediagram.

Beforewe describeconcreteapproximationschemesfor the functionalin the nextsection,let us
introducesomefurtheruseful relations.

(a) For the noninteractingcase(the ideal gas), V(r) = 0 andoneknowsF ( T, [p]) exactly

F(T~[P])mFid(T~[P])=kBTfd3rP(r)[ln(A3P(r))_l] (86)

whereA is the thermalwavelength,see (I). Minimization of Q (T, ~u,[p]) thenimmediatelyleads
to the generalizedbarometricexpressionfor the equilibrium densityof an ideal gas in an external
potential:

po(r) = A3exp[—(V~~
1(r)—p)/kBT]. (87)

(b) For the generalinteractingcase,it is convenientto introducethe separation

F(T, [P1) = Fjd(T, [p]) + Fexcess(T,[p1) (88)
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which is just a definition of Fex~ss( T, [p1). In general, Fexcess(T, [p]) is not known. One can,
however,prove that the direct correlation function, introducedin section 1.3.2, can be obtained
from Fexcess(T, [p]) by

1 Ô2F
c~2~(r, r’) c~2~(r, r’, [P0(r)]) = excess (89)

kBTôp(r)ôp(r ) p=po(r)

For an arbitrary density, this relation can directly be generalizedby taking the derivativeat this
arbitrarydensityto definea functional c~2~(r, r’, [p]). Integratingthis twice in densityspaceleads
to the exactrelation [25]

Fexcess(T,[p1) = kBT/da (a— l)f d3rf d3?c~2~(r,r’, [ap])p(r)p(r’) (90)

whichforms the basisfor different approximations.

3.2. Approximationsfor the densityfunctional

The simplestapproximationis the local density approximation (LDA)

Fex~ss(T, [p1) = fd3 r fexcess(T, p (r)) (91)

where fexcess(T, p) is the excessfree energydensityof a homogeneoussystemwith densityp at
temperatureT. Henceforthwe assumethat this homogeneousstateexistsandis thermodynamically
stable.In the LDA, the direct correlationfunction is just approximated(see(89)) by aö-peak

c~2~(r,r’[p]) = iafxC~Ss(T~P(r))~
5(rr~) (92)kBT ap

So, LDA canonly be usedfor weak inhomogeneities.
The local density approximation can be improved by adding a nonlocal mean-field energy,

quadraticin the density,as follows:

F~~~~55(T,[pl) = Jd3r [fex~ss(T,p(r)) — ~Vop
2(r)]

+~.fd3rfd3r’ V(Ir—r’I)p(r)p(r’) (93)

with V
0 beingthe zerothmomentof the interparticlepotentialV(r)

V0 = fd3r V(r) (94)

which we have assumedto exist. The approximation (93) can be called LDA plus mean-field

approximation. In this approach,the correspondingdirect correlationfunction is approximatedby
c~

2~(r,r’[p])= -k- [(a2fexce~T~Pfrfl _~~)ô(r-r’) + V(Ir_r’I)]. (95)



278 H. LOwen, Melting, freezingand colloidal suspensions

The LDA plus mean-fieldapproximationis generallyapplicable to inhomogeneousliquids, but
not to very inhomogeneoussituationslike packingeffects in a denseliquid at an externalwall or
freezing.

In 1979, RamakrishnanandYussouff [641 proposedthe first functional that describesfreezing.
Thiswas alsoreformulatedin familiar densityfunctionallanguagein 1981 by HaymetandOxtoby
[65]. It consistsof aTaylor expansionup to secondorderarounda homogeneoussystemwith a

fixed liquid referencedensityp(r)

Fexcess(T, [p1) F0 + f d
3r (T, ~‘) [p (r) —p(r)

+.~-fd3rfd3r’ ô2~~~T~~f1 [p(r)—~][p(r’)—p]. (96)

Constantslike F
0 are irrelevant for the minimizing density and the term linear in p (r) only

renormalizesthe chemical potential it. So the relevantterm is the quadraticonewhosekernel is
essentiallythe direct correlation function c~

2~(Ir — r’I, p) for ahomogeneoussystem,see eq. (89).
Thus the correspondingdirect correlationfunction is incorporatedexactly,but only for one single
liquid referencestate,andhigher-than-second-orderdirect correlationsdo vanishin this approach.
TheRamakrishnan—Yussoufffunctionalcanbe systematicallyimprovedby extendingthe expansion
in (96) to the third term and using liquid state theory [661 for the triplet direct correlation
function, seee.g. ref. [67].

A betterbut morecomplicatedfunctionalis constructedin suchaway that it reproducesthe direct
correlationfunction for any density in the homogeneouslimit. In particular, a so-calledweighted
densityapproximation(WDA) hasbeenproposedby Tarazona[68] andCurtin andAshcroft [69].
Here onechooses

= fd3rp(r)~’(T~ii(r)) (97)

where W (T, p) is the excessfree energyper particle in the homogeneouscase(usedas an input),
andtheweighteddensityis given implicitly by

~(r) = fd3rl~~(Ir_rhj,~(r))p(r~). (98)

The weight function ui (r, p) is normalizedandchosenin such a way that the secondfunctional
derivative equalsthe direct correlationfunction for any homogeneousdensity. In this approach,
one systematicallyincludesall informations from the liquid state, i.e. fexcess(T, p) pW(T, p)
andc~2~(Ir — r’I, p). Also this densityfunctional yields freezing, so we havedevelopeda theory of
freezingbasedon the liquid state.The higher-than-second-orderdirect correlationsare non-zeroin
generaland, for certaingeometries,agreein principle with computersimulationdata [66, 70—73].
Althoughit hasseveralinconsistenciesandshortcomings,the WDA functionalseemsto be the best
generallyapplicablefunctionalthat is knownso far, at leastfor hardspheresystems.

Another functional,calledmodifiedweighteddensityapproximation(MWDA) was introducedby
DentonandAshcroft [74]. It is computationallymuchsimpler thanthe original WDA but hasthe
sameunderlyingphilosophy.However, it is not written in a local form andthereforenot directly
applicableto interfacialsituations.Here,oneapproximates

Fexcess(T,[p1) = N~l’(T,/i) (99)
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with a scalar density/5 given by the implicit relation

/5 = ~Jd3rfd3r’ p(r)p(r’)th(~r—r’~,ji). (100)

Theweightfunctionui~(r, p) is normalizedandc~2~(r, p) is reproducedfor anyhomogeneousdensity.
Thereis also an attemptto combineboth approaches,MWDA andWDA, andconstructa hybrid
weighteddensityapproximation(HWDA) by Leidl andWagner [75]. In thecontextof hard-sphere
systems,the MWDA andWDA are inconsistentsincethey admit densitieswith overlappinghard
spheres[76, 77]. A modificationof the MWDA that producesaconsistentfunctionalwas proposed
by Ohnesorgeet al. [781.

Therehavebeenmany other approximationsdiscussedin the literature, often constructedfor
specialapplicationsandspecialsystems(like hard spheresor OCP-freezing),for areview seerefs.
[79, 801. Simplervariantsof the WDA with an explicit form for the weight functionwere examined
by Tarazona[811. We also mentiondifferentkindsof effective liquid approximationsby Baus and
coworkers[82—85]andLutsko [86], the variantsof MeisterandKi-oll [87], Igloi andHafner [88],
Grootandvander Eerden [89], andotherrelatedforms [90—99].

Thereare alsosomefundamentallydifferent approachesusingonly thermodynamicpropertiesof
the solid as an input for the functional [49, 50]. Thenthe liquid structureis predictedfrom the
solid side, i.e. onehasasolid-basedtheoryof melting.

3.3. Cakulationof bulkphasediagrams

If the concreteform of the functional Q (T, p, [p1) hasbeen chosenthe next step is to find a
suitable parameterizationfor the density p (r) with somevariational parameters.The energyof
the homogeneousphaseis easily obtainedby plugging a constantp(r) p into the functional
Q(T, p, [p1) andminimize with respectto p. For a solid, the parameterizationmost frequently
employedare Gaussianpeakswith avariablewidth a on a fixed solid lattice. The solid latticeis
describedby the latticevectors{R~},with oneparticleper lattice site:

a 3/2p(r) = (—) ~exp[—a(r—R~)2]. (101)

The lattice structureis an input (normallythe lattice constantis varied, too), but in principle one
cantry with different latticetypesandtakethatwith thelowest free energy;alsoonecanvary with
respectto the form of the [100]. Parameterizationsgoing beyondthe Gaussianparameterization
(101) [101,76, 102, 37] indeedrevealthat the correctionsare very small. The parametera plays
the role of an crystalline order parameter.It is zero in the liquid phaseandnonzeroin the solid
phaseindicating long-rangecrystallineorder.

In order to get the bulk phase,onelooks at which T andp the functionalQ (T, p, [p1) hastwo
equalminima. This meansthat two phaseswith sametemperatureT, chemical potential~uand
pressureP = —Q/Vdo coexist.

In the following, we shall discussthe successof densityfunctional theory in describingfreezing
for differentpotentials,namelyfor hardandsoft spheres,YukawaandLennard-Jonesinteractions.

3.3.1. Hard spheres
The hard-spheresystemrepresentsthe simplestnontrivial liquid with a freezingtransition,andis

thusthe prototypof amodelwheretheoriesandsimulationsof freezingcandirectly be compared.In
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fact, it is for this systemthatdensityfunctionaltheory hashadits mostnotablesuccess.The liquid
correlations,usedas an input for densityfunctional theory,are well known, see e.g. the Percus—
Yevick expression(39). The Ramakrishnan—Yussouffas well as WDA, MWDA-type functionals
all yield a freezing transitionwith coexistingdensitiesthat are in prettygood agreementwith the
simulationdata, for areview seerefs. [103,79]. This successmotivatesahard-sphereperturbation
theory for otherpotentials.However,detailsof the solid phasedeviatefrom simulationaldata; for
examplethe Lindemann-parameterof the solid at coexistenceturns out to be too small, and the
direct correlationfunction in the solid is inconsistentwithin the MWDA [78].

3.3.2. Soft cores
Much effort was put into the challengeto find a functional that describesfreezing of the OCP

into abcc crystal [104—106,67,107—109]. An MWDA-type approximationwas proposedrecently
by Likos et al, 1992 [110]. It turns out that higher-than-second-orderdirect correlations,at least
liquid triplet correlations,shouldbe incorporatedinto the functional. Furthermore,the free energy

difference betweenabcc lattice anda fcc or hcp latticeis tiny; so this differencewill sensitively
dependon detailsof the approximationsused.

Freezingof soft cores,describedby ageneralinversepowerlaw in r, see (28), was examinedby
Barrat andcoworkers [111, 112], see also refs. [113, 114]. The usual schemes(like the WDA or
the MWDA) do fail for soft cores.A hard sphereperturbationtheory, performedby Lutsko and
Baus [1151,on the otherhand,givesgood resultscomparedto the simulationdata.

3.3.3. Yukawa systems
Kesavamoorthyet al. [116] applied the Ramakrishnan—Yussoufftheory of freezing to Yukawa

systems,describedby the potential (19).Also, the MWDA wasappliedto Yukawasystemsby Laird
andKroll [114]. For high screening,i.e. largeK, the potentialis prettyhardandgoodagreementof
the densityfunctionalandsimulationaldatawasobtained.ForsmallK, of course,onegetsthe same
failure as for soft corepotentials,discussedin the previousparagraph.The bcc—fcccoexistencewas
studiedwith the Ramakrishnan—Yussouffdensityfunctionalby SenguptaandSood [117]. There
was alsoastudyfor aYukawaplus hardcorepotentialby Kloczkowski andSamborski[118].

3.3.4. Lennard-Jonespotentials
The Lennard-Jonespotential (16) exhibits threedifferent phasesanddensity functionaltheory

hasbeensuccessfullyapplied using both Ramakrishnan—Yussouff[120,102] and other schemes
[112]. A quantitativeagreementwith the simulationalphasediagramwas alsoobtainedby usinga
hardspherereferencesystemandhardsphereperturbationtheory.Thiswas bothperformedfor the
WDA by Curtin andAshcroft, 1986 [121], andfor the MWDA with its consistentformulationby
Ohnesorgeet al [78]. The latter result is shownas a T—pdiagramin fig. 3.1. In fact, in this figure,
ashort-rangedfit for the Lennard-Jonespotentialis usedandcomparedwith the simulationdata
of ashort rangedcutoff Lennard-Jonespotential.The quantitativeagreementof the microscopic
densityfunctional theory is really convincing.Thus this theory canbe usedas astartingpoint for
an interfacialstudynearthe triple point.
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H 1.5

density pa3

Fig. 3.1. Bulk phasediagramfor aLennardJonessystemwithout long rangedpotentialtail. Squaresdenotesimulationdata
from refs. [119,39], for atruncatedLennard-Jonespotential.From ref. [78].

3.4. Densityfunctionaltheory ofinterfaces

3.4.1. Direct minimization
The ideal procedurefor a calculationof a densityprofile and the surfacetension for a planar

interfacewould be a free minimization of the densityfunctional Q(T,
4u, [p1) whereoneof the

coexistingphase(A) is on the left andthe other(B) is on the right side. Ofcoursefor complicated
e.g. WDA-type functionalsthis is avery hardnumericalproblem.The first promisingattemptsof a
free minimizationweremadeusing the simulatedannealingmethodin order to find the minimum
in avery high-dimensional(of the orderonemillion) parameterspaceby Ohnesorgeet al. [371.A
concretecalculationfor the solid—liquid interfacewas doneby Curtin within the original WDA both
for hardspheresystems[122], anda Lennard-Jonespotential [123]. Buthereonly two variational
parameterswere taken to determinethe interfacial profile. Another successfulcalculation of the
hard-sphereand Lennard-Jonessolid—liquid interfacewas recently performedby Man andGast
[124]. They usedalaterally averageddensityandaplanarweigtheddensityapproximationfor the
densityfunctional.

We adda final remarkconcerninginterfacialfluctuations.As wediscussedin section3.1, it is not
clear how they are containedin the densityfunctional solution. In this aspect,densityfunctional
theory remainsa “mean-field-type” description.

3.4.2. Gradientexpansion,Landauand van der Waalstheories
Let us considera multicomponentorder parameterm = (m1,m2, . . . , mN) parameterizingthe

density

p(r) = p(m,r). (102)

A concretechoice is the meandensityfor m1 and for m1, I > 1, the Fourier coefficients of the
densityon a fixed solid lattice. Then onecan define abulk grandcanonicalfree energydensity
f(m) by

f(m)~Q(T,~u,[p(m,r)])/V. (103)
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At coexistenceof two phasesA and B, f (m) has two equal minima at mA and m ~ the order
parametersdescribingthe two bulk phases.If the perpendicularcoordinateof a planar interface
betweenA and B is denotedby z, we can parametenizethe densityby a z-dependentset of
order parametersp (r) = p (m (z), r). As long as the order parametersvary slowly with respect
to amicroscopiclength scale,a gradientexpansionup to secondorder in the orderparametersis
justified.Thisapproximationhasfrequentlybeenemployedin theliteraturefor variousapplications,
see e.g. refs. [65, 125—1281. The mostgeneralandsystematicderivationwas given by Löwen et
a!. [129, 1301. The final result for the interfacial grandcanonicalfree energyper areaA, alias the
surfacetension.� = Q/A, is

I[m] = Jdz (~~ gjj(m(z)) + f(m(z))) (104)
—00 i,j=I

with the matrix

g11(m) = _ fd3rfd3r’ (z — z’)
2c’~2~(r,r’,~ Op(m,r’) (105)

where c~2~(r,r’, [p]) is given by (89). This expansionis valid for short rangedinterparticle
potentialsV(r); if V (r) is long ranged,gjj (m) doesnot exist sincec (2) (r, r’, [p]) V(~r — r’ I) for
large r r’~)in the liquid phase.In this case,one separates

V(r) = 1~(r)+ I~(r) (106)

where V~(r) is short rangedand J~(r) is a slowly varying long rangedtail. Then, onetreats VE (r)
in mean-fieldfashionanddoesthe squaregradientexpansiononly for the short-rangedpart. One
arrivesat (104) whereonehasto adda long rangedterm ~ to I [m]. If rn

1 is the meandensity
and rn for i> 1 arecrystallinity orderparametersthat vanishin the liquid phase,~ only depends
on m1

~fdzfdz’w(Iz_z’f)[mi(z) -rni(z’)]
2 (107)

where

w(z) = f d2r” V,(\/r~l2+ z2) (108)

is the parallel-integratedlong-rangetail. Furthermore,in (104), ~ hasto be replacedby the direct
correlationfunction for the systemdescribedby V~(r).

If one startsfrom the reducedfunctional (104) one dealswith a (generalized)Landautheory,
whereasan addedlong rangeterm leadsto a van der Waals type theory (sincevan der Waalswas
the first to write down a long rangeexpressionlike (107) for the liquid—gas interface [24]).

The physicalrealizedsolutionis obtainedby solving

= 0 (109)

with the boundaryconditions

lim m(z) = mA, lim m(z) = mB. (110)
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If therearemultiple solutions,onehasto takethatwith minimal surfacetensionI in orderto get
the physical realizedone.

At this stage,let usnotean interestinganalogyto classicalmechanics.Thefunctional (104) looks
like a classical Lagrangianof a fictitious “particle” in order parameterspace;z plays the role of
“time”; gjj (m) is a positiondependentanisotropicbut positivedefinite ‘mass’tensor,and—f (m)
definesa “potential” in which the particlemoves. At coexistence,—f (m) hastwo equalmaxima
(“hills”), the boundarycondition (110) meansthat we are looking for connectingtrajectoriesof
thefictitious classical“particle” starting from “hill” A andendingat “hill” B. This classicalanalogy
helpsin understandingthe qualitativebehaviourof the solutions.For long rangeforces,however,
thereis alsoa “memory-term”, associatedwith the kernelw (z) in (107)which resemblesa “polaron
action” [131].

In the context of the liquid—vapour interfacewhere the density itself is the order parameter,
the correspondingsquaregradientexpansionhas a long history, seeref. [251 for a review. It was
alsotransferredto solid—liquid interfacesbut often the masstensoris approximatedby adiagonal
constant matrix and f (m) is taken to have an ad hoc form with two equalminima. Then one
recoversthe functionalI discussedin the first chapter,seeeqs. (72)—(74). The microscopicinter-
actionsonly entervia few numbersandonecanalsousethesekind of theoriesas phenomenological
approachesto more complexsystems.If one takesthe full expressions(103), (105), on the other
hand, the solution of (109) still representsa full thoughapproximatereducedtheory, sincedetails
of the interaction and the T, au-dependenceenterin a set of functions gjj (m) andf (m). If one
wants to calculatenumbers,the rn-dependenceof gjj and the full function f (m), containingall
informationson the bulk phasediagram,is essential.We shallexaminesurfacemelting (i.e. solid—
vapourinterfacesnearthe triple point) within this vandenWaalsapproachin the nextchapter.In
addition, (104) establishesa microscopicfoundationandjustificationof purely phenomenological
Landautheories.

3.5. Otherapplicationsof densityfunctionaltheory

Until nowwe havediscussedthe applicationof densityfunctional theory to calculatebulk phase
diagrams,interfacial structuresandnoncrystallinesolidsfor simplesystems.Thereis a hugevariety
of otherrelatedapplicationsfor simplethree-dimensionalliquids.

First somedetailsof the crystallinephasewere studiedwithin the liquid-baseddensityfunctional
theory: successfulldensity functional studiesfor the elastic constantsof the an fcc hard sphere
crystal were done by VelascoandTarazona[132] andXu and Baus [1331.Also vacanciesin the
crystal [134, 1351, dislocations[136] andnon-Gaussianandanisotropicbehaviourof the solid peak
density [102, 37] were investigated.Recently,also phononfrequenciesin the solid were studied
[137,138]). With densityfunctional theory one can also calculatethe free energyof a metastable
phase.Suchapplicationsin the contextof hard-spheresystemswere donefor quasicrystals(e.g. ref.
[139]) and glasses[140—142].

Othersituationswhichwereattackedby densityfunctionaltheory includeadsorption at interfaces
[143, 144], andthe crystallizationofa liquid in an external periodic potential [145].

Density functional theory was alsoapplied to othersthanclassicalliquids: liquid metals [146]
where the quantumcharacterof the electronsis relevant, freezing of different quantumfluids
[147—154],andsuch “exotic” systemslike vortex liquids in high-Ta superconductors[155].

Finally, we mention dynamical (thoughstill phenomenological)extensions of densityfunctional
theories [156,157].
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4. Surfacemelting

The decisivemechanisminitiating bulk meltingof acrystal is via the solid surface.We describe
recent experiments, theories andsimulational studiesof surfacemelting. In addition, for complete
surface melting, scalinglaws for thecrystallinitiesin the quasiliquidfilm aregiven andthe influence
of gravity and finite crystalsize is examined.

4.1. Introductory remarks

4.1.1. What is surfacemelting?
In chapter2 we discussedalreadythat solid bulk melting is not accompagniedby a sudden

proliferationof dislocations.How doesmeltingmanifestitselfmicroscopically?Onemayconjecture
thatbulk melting maybe initiated at point defects,vacancies[158, 159], grain-boundaries[160—
163] or at the crystal surfacewhich is a naturaland omnipresentdefect in the crystallineorder.
This is basedon the commonexperiencethat liquids may easily be undercooleddue to kinetic
obstaclesof nucleationbut crystals can hardly be overheated.That the crystal surfaceplays a
decisiverole to initiate meltinggainsfurthersupportfrom theexperimentalobservationthat silver
crystals (melting temperature1234 K) coatedby a thin film of gold (melting temperature1337
K) can be substantiallyoverheated[164]. This was also recently confirmed by a simulationof
Broughton [165]. Let us first focus on an idealizedplanar and equilibrium situation of surface
melting. A semi-infinite three-dimensionalcrystal being in coexistencewith its gas is heatedup
alongthe sublimationline until the temperatureapproachesthe triple point temperatureT-r where
the liquid phasebecomesthermodynamicallystable. The correspondingpathin the P—T diagram
is visualizedin fig. 4.1.

The distanceto the triple point is convenientlymeasuredby the reducedtemperaturedistance

r~(TT—T)/TT>0. (111)

The crystal is cut along a fixed planewith an areaA, the position perpendicularto this planeis
z. A key quantity in characterizingthe solid—gas interfaceis the parallel-integrateddensity~(z)

Fig. 4.1. Schematic(F, T) bulk phasediagram.TT and~r arethe temperatureandpressureat which the solid, liquid and
vapourphasesareat coexistence.The path alongthe solid—vapourcoexistencecurve, indicatedby the arrow, corresponds
to thetrajectorystudiedin thecontextof surfacemelting.
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Fig. 4.2. Crystal—gasinterfaceawayfrom the triple point. Fig. 4.3. Sameas fig. 4.2 but now near the triple point. In
The upperplot showsthe positions of the particlesfor a the caseof surfacemelting, a quasiliquid layer intervenes
typical configuration (schematic).The crystal on the left betweenthe solid and the gas which is characterizedby
side haslong-rangedorder whereasthe gason the right a thickness1. The upper plot shows the positionsof the
hasa homogeneousdensity. Also, the parallel-integrated particlesfor a typical configuration,oneseesthatdisorder
density~(z) is shown, setsin at the solid surface.

which is obtainedfrom the full densityp (r) via

~(z) = ~fdxdyP(r) (112)

The typicalshapeof the parallel-integrateddensityfor a solid—gasinterfacefar away from thetriple
point is shownin fig. 4.2. In the solid phase~ ( z) consistsof sharppeaks reflecting the periodic
crystal latticewhile it equalsthe gasbulk densityin the gasphase.Betweenthetwo phasesthereis
asharpinterfacetypically involving only few crystallinelayers.

As one approachesthe triple point, two different situations can occur. In the first case, the
non-meltingcase,thereis no drastic changein the structureof the solid gas interfaceat T = Ti’,
i.e. the solid remainsnonwetat its surface,even at TT, and there is a sharpsolid—gas interface.
Apart from abroadeningof the solid peaksdueto the higher temperature,the parallel-integrated
densityacrossthe solid—gasinterfacethen is very similar to the onefar from the triple point, see
again fig. 4.2. In the secondcase,nearTi’, a quasiliquidlayer intervenesbetweenthe solid and
the gasexhibiting a certain width I and a residualcrystallinity at the quasiliquid—gasinterface.
This is visualizedin fig. 4.3. One speaksaboutcompletesurfacemelting, if / diverges as ‘r \ 0;
correspondinglythe residualcrystallinity doesvanish as r \ 0. One may expressthis also within
the surfacetensionsat the triple pointbetweensolid—gas,a55, solid—liquid, a~,andliquid—gas, a~5:
completesurfacemelting occursif at T = TT

asg = as~+ a’�g. (113)

A peculiarcaseis blockedsurfacemelting Here, a quasiliquidlayerstartsto developfor T < T1,
growsand thenstaysand remainsfinite at TT.
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Of course, the behaviour depends on the orientation of the crystalline plane. One can surmise
that melting is more likely in looser packed planes, whereas in denser packed planes the atoms are
bound more tightly and disorder cannot get in easily. Generalizations to nonplanar geometries are
studied in section 4.7 and surface melting away from equilibrium is considered in section 5.3.

Motivated by these considerations, the following questions are interesting: (1) Does the crystal
melt from its surface or not? Equivalently: does the crystal exhibit non-melting or complete surface
melting (or perhaps blocked surface melting)? (2) If there is complete melting, what is the
divergence law for 1(r) and the decay law for the residual crystallinity as a function of the reduced
temperature r (as -r \ 0)? What is the detailed structure of the solid—quasiliquid-gas interface?

4.1.2. Historical remarks
The problem of surface melting is as old as 1842 when Faraday [166, 167] started investigations

on melting and freezing of pieces of ice, see ref. [168], for more details. Of course, this is not the
idealized equilibrium situation, just discussed in 4.1.1, since there is a temperature gradient. In 1910,
Tammann [169] pointed out that the surface has a decisive role to initiate bulk crystal melting.
Later in 1942, this idea was supplied with macroscopic, qualitative considerations, including the
dependence on the orientation of the solid plane by Stranski [170]. Then, in the last decade,
microscopic aspects of surface melting were studied: new powerful surface-sensitive experimental
methods were developed and thereby the problem of surface melting was revitalized. Theories and
extensive computer simulations were then also performed. We shall review this recent work in the
next three chapters.

4.2. Experimentson surfacemelting

Experimentally, surface melting was mainly studied for simple metals (most notably lead) and
rare gases (argon and neon). In fact, lead represents the material for which the most detailed studies
were made and is thus the “paradigm” for surface melting. Starting in 1985, van der Veen, Frenken
and later Pluis and collaborators used ion scattering [171—175]and X-ray reflectivity ([1761, see
also refs. [177—179])to prove that the (110)-plane does and the denser packed (111)-plane of
the lead fcc-crystal does not melt. The (100)-surface was later found to show incomplete melting
[1801.The onset of disorder in the first layer of the loosely packed (110)-plane is at a temperature
T ~ 450 K whereas the triple point is about 600.7 K. The first layer is practically molten at T 580
K which means that surface melting effects set in already well below the triple temperature. High
precision data for the divergence of the width 1(r) were obtained, such that one could even
exclude adiscontinuouslayer-by-layersurfacemelting processfor the (110)-planeas T is raised.
In particular, 1(r) was found to diverge logarithmically as — ln r and to cross over to a power law
r with exponent ii = 0.3 15 ±0.015 very near Tr. Lead was also examined by Bonzel, Breuer and
coworkers [181, 182] (see also ref. [183]) using low energy electron diffraction (LEED). These
observations confirm the ion scattering data and give also information on the anisotropic residual
crystalline order in the quasiliquid film. Also spin-polarized LEED was applied to study surface
melting of lead [184]. Note that the experiments are performed in ultrahigh vacuum, i.e. not exactly
at coexistence but below the true sublimation line (see again fig. 43.1). In section 4.3, however, we
shall estimate that the corrections with respect to an equilibrium situation are negligibly small.

Second, there are specific heat measurements for argon [185] and neon [186] films on graphite
by Zhu and Dash and also by Brushi et a!. [187]. Also a divergence law of the liquid film thickness
1(r) ‘—s —ln-r with a crossover to a -r113 law was detected.
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Let us also mention the early, pioneering optical measurements on copper and gold surfaces by
Stock and Menzel [188, 189] and Stock and Grosser [190]. Likewise, experimental evidence for
surface melting has been obtained for oxygen films on graphite [191, 192], methane films on MgO
[193,194], for aluminium [195—198],for the (Ill) surface of germanium [199], for the (001)
and (11!) surfaces of gold [200—202]and for the (110)-surface of nickel [203]. Also the surface
melting behaviour of an anisotropiccrystal (caprolactan) was recently studied by Chandavarkar et
al. [204].

Last but not least surface melting of ice was controversial for a long time. Ice is probably the
material where surface melting has most pronounced applications ranging from charge transfer
between ice crystallites in thunderstorm clouds and frost heaves to ice-skating. Recent careful
and reproducible X-ray scattering experiments by Lied et al. [205] strongly indicate that ice
exhibits complete surface melting for every high-symmetry surface orientation. In addition, non-
basal orientations show a temperature-dependent facetting.

Occurrence of surface melting for quite a number of different materials proves that it is, in this
sense, universal, although details depend on the kind of the material.

4.3. Theoreticalapproaches

A necessary condition for a microscopic theory of surfacemelting is a good description of the
bulk phase diagram of the material studied which forms the starting point of an interface calculation
and defines the sublimation line and the triple point temperature Ti-. It then should describe well
the solid-gas interface up to T’r.

4.3.1. Phenomenologicaltheories
A simple phenomenological theory of surface melting starts from the free energy difference

between the solid—quasiliquid-gas interface and the solid bulk phase [206—2081.This difference per
unit area is called interfacial potential V’~(1). As a function of the thickness I of the quasiliquid
layer, the interfacial potentialreads

V*(l) = a~+ 01g + Lrl + aoexp(—l/aL) + W/l2. (114)

The term Lrl results from the bulk free energy difference between the solid and the metastable
liquid; L denotes a latent heat. The exponential term describes interfacial repulsion due to short
range interparticle forces where aL denotes a liquid correlation length while the W/12 term stems
from the van der Waals attraction, W being the Hamaker constant.

The expression (114) for the interfacial potential can be derived either by calculating the
free energy difference of a sharp-kinkdensity profile with density functional theory [26] or by
consideringaLandau-model(seeeq. (72)) for an orderparameterm(z) [209,210,129,130]). In
the Landau model, the bulk free energy density f (rn) has three minima corresponding to the gas,
liquid and solid state, two of them (gas, solid) of equal depth zero. Around the liquid phase, f (m)
has the expansion

f(m) = Li- + ~g(m — mL)2/a~ (115)

where mL is the dimensionlessorder parameterfor the liquid phaseandg is the prefactorof the
squaregradientterm in the Landaufunctional (72).

All these approaches are phenomenological in the sense that one cannot decide whether there
is completesurfacemelting or not for a given material, since the surfacetensions (113) cannot
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be calculatedmicroscopically.However,onecan makedefinitive predictionsfor the width of the
quasi-liquidlayer1(r) providedthe material exhibitssurfacemelting. Minimization of V* (1) with
respectto / immediatelyyields the following results:for short-rangedinterparticleforces (W = 0),
thereis a logarithmic growth law for the width of the quasiliquidfilm I —aL in (r). With a long
rangevan der Waals tail, 1(r) divergesalgebraicallyas I ~ (2W/Li-)’ /3~For a weak long range
tail, 1(r) crossesover from logarithmicto algebraicdivergence.More general,for an algebraiclong
rangetail r_~,d � 3, in the interparticlepair potential, 1(r) divergesalgebraicallyas r~ with
ii = I /(d — 3). Finally, if the solid densityis smallerthantheliquid densityat the triple point, the
Hamakerconstantbecomesnegativeand thereis blockedmelting.

Since the interaction in rare gasesis pairwise with a van der Waals tail, this explains the
experimentalgrowth law cx r~113describedin the previoussection.For largeparticle separations,
Van der Waals interactionsare dominantfor any polarizablematerial, also for metals like lead.
For very long distances,however,the interactionbecomesretarded r7 suchthat the exponent
v crossesfinally over to ii = 1/4. For lead, this meansthat the observedcrossoverfrom a
logarithmicto an algebraicgrowth law is in agreementwith the theory and also the experimental
value ii = 0.315±0.015consistentlyfits into the considerationsabove.

4.3.2. Densityfunctionaltheories
In principle, adirect minimizationof adensityfunctionalwhich hasagoodbulk phasediagram

would be an ideal way to get quantitativeresultsfor the solid—gasinterfacefor agiven interaction
potential (seethe discussionin section2.4.1).Attentionwasrestrictedto the Lennard-Jonessystem
whichrepresentsamodel systemfor raregases.Chereponovaet a!. [211, 212] followed this strategy
and obtainedsurfacemelting . However, they useda density functional whosephasediagram is
not in good agreementwith the simulationsand their minimization was in a strongly restricted
densityspace.Recently,Ohnesorgeet a!. [37], usedthe better WDA functional andperformeda
free minimizationof the densityfunctional. Surfacemelting was foundto occurfor the (110) and
(100) directions.This calculationis very promisingfor furtherdetailsof the solid—quasi-liquid—gas
interface.

4.3.3.A densityfunctional vander Waalsapproach
In this approach,the approximatebut microscopicallywell-foundedfunctional (104) for the sur-

face tensionis minimized.The modelwith two orderparametersandneglectionof longrangeforces
yieldsan odd numberof solutions [129, 130]; the one with minimal surfacetensioncorrespondsto
the physically realizedsolution. Here the classicalanalogy,discussedin section2.4, of a fictitious
“particle” moving in a three-hill “potential” helps a lot to classify andunderstandthe qualita-
tive behaviour.Different solutions may correspondto non-melting,melting andblocked-melting
situations,see fig. 4.4. If there are three solutions, the intermediateblocked-meltingsolution is
dynamicallyunstable[2131.

Ohnesorgeet a!. [78], discussedthe van der Waals approachfor a Lennard-Jonessystemand
used the MWDA with the hard-spherenonoverlappingmodification to calculate the necessary
microscopicinput data.Thiswas donewith andwithoutlongrangetail in the interparticlepotential.
The densitywas parameterizedby two order parameters,the local meandensity m

1(z) P0(z)
andacrystallinity m2(z) x (z). Explicitly, onetakesfor the parameterization

p(m(z),r) = ~ (116)
R5
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Fig. 4.4. illustrationof threetypesof solutionsin atwo-dimensionalorderparameterspacespannedby themeandensity m1
andacrystallinity orderparameterm2: (i) melting (dashedline), (ii) blocked-melting(dot-dashedline), (iii) non-melting
(dottedline). The units arearbitrary. The “potential” —f(m) hasa three-peakstructurewhich is indicatedby the three
ellipsesaroundthegas, liquid andsolid phases.

The crystallinity x (z) is relatedto a(z) by

X(z) = po(z)exp[—G~/4a(z)]. (117)

This densityparameterizationdescribesGaussianpeakson afixedunderlyingsolid fcc latticewith

4 4

(a) (b)

~•_ 15., 0 ~

Fig. 4.5. Thelaterally integrateddensity~(z) in unitsofa~in (110) directionat thereducedtemperatures(a) -r = 0.343,
(b) -r = 0.015, (c) r = 1.2 x iO~,for aLennard-Jonessystem.From ref. [78].
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lattice constanta0 which coincideswith the lattice of the bulk solid phase.Furthermore,in eq.
(117), G? = 3ir

2/ag is the squareof the first reciprocallattice vector. According to eqn. (103)
and (105), the basicinput quantitiesf (m) andgjj(m) were calculatedfor differenttemperatures
along the sublimationline and the surfacetension functional was minimized numerically. The
correspondingparallel-integrateddensity~ ( z) is shownfor differentreducedtemperaturesr in fig.
4.5 for aLennard-Jonessystemwithout long rangetail. It clearlyexhibitssurfacemelting nearPr,
i.e. a quasiliquidlayeremergesas r N. 0.

One disadvantageof thetwo-order-parameterparameterizationis that it is not suitedto describe
anisotropies,i.e. the resulting surface tension is the same for any surface orientation in this
approximation.For a systemdescribedby pairwise Lennard-Jonesforces, this anisotropyof the
surfacetensionis expectedto be small [214].

4.3.4. Other approaches
Classicalphonon theory was appliedto surfacemelting [215—2171).In this approachone finds

a lattice instability which startsat the surfaceandpropagatesinto the bulk as the temperatureis
raised.Here, the descriptionof the liquid is poor; the pressuredependenceof the melting line is
not in agreementwith measurements[381.

Last, a lattice theory hasbeendevelopedand successfullyapplied to a Lennard-Jonessystem
by Trayanov andTosatti [218,219]. In this approachthe Lennard-Jonessystemexhibits surface
melting but theunderlyingbulk phasediagramis not in good agreementwith the simulationdata.

4.4. Simulationsofsurfacemelting

In the last ten years, the problem of surfacemelting was also attackedby direct numerical
Molecular Dynamicssimulation.Here one canin principle also gaininformationon the dynamics
in the solid—quasi-liquid—gasinterface.Motivatedby the experiments,mainly two types of materials
werestudied,namelyLennard-Jonessystemsandmetals.

Extensivesimulationsfor theLennard-Jonessystemwerecarriedout by BroughtonandWoodcock
[2201 andBroughtonandGilmer [214]. They obtain surfacemelting for any surfaceorientation
andonly aslight orientationaldependenceof the interfacial tension.On the other hand,Rosatoet
al. [221,222], refusethe possibilityof surfacemeltingfor the (110) plane,so the situationremains
a bit inconclusive.For a critical review of the different simulationsfor a Lennard-Jonessystem,
the readeris referredto Pontikis and Sindzingre[223]. In recentsimulationsof van der Eerden
et al. [224], the (111) and (100) orientationsof a Lennard-Jonescrystal exhibit surfacemelting.
The authorsalso proposethe vanishing of the shearmodulusat the solid surfaceas a criterion
for surfacemelting. Schommerset a!. [225,226], usedmore realisticpair potentialsfor raregases
and includedtriplet forces.They obtainsurfacemelting for the (100) orientation.Valkealahtiand
Nieminen [2271simulatedthe (ill) planeof a Lennard-Jonessystem and get surfacemelting
via a layer-by-layerprocess.Also a long-rangepotential tail 1 /r4 was extensivelystudied in a
simulationby Chen [228].

Next, simple metals were simulated.The basic difficulty is that many-bodyforces are present.
Carnevalliet a!. [229] haveappliedan empiricalpotentialwhich includesmany-bodyinteractions
to the melting of the (111) surface of gold. They found that there is a reconstructionof the
surface;the reconstructedsurfacedid not show surfacemelting. Sto!tze, Nørskovand Landman
[230,231] usedan ab initio effective medium interactionpotentialfor aluminiumwhich includes
many-bodyaspectsof the interactionbut is still simple enoughsuch that it can be employedin
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simulations.They foundsurfacemelting for the (110) planewhereasthe moreclose-packed(111)
surfacehadamuchweakerdisordering.The strongorientationaldependenceseemsthusto be due
to the many-body interactionswhich are highly relevantin a strongly inhomogeneoussituation
like a solid—gas interface. This is in accordancewith experimentswhere for lead, a metal for
which many-bodyeffects are important, different surfacemelting behaviouris seenfor different
orientations,whereasfor rare gasesthereis no such well-pronounceddependence.Also nickel was
studiedaround 1989 by Chen,Barnett and Landman [232,2331. A further extensivesimulation
for aluminium was donein 1990 by Stoltze [234], andadirect comparisonof the resultsof the
simulation with experimentaldatawas doneby Denier van der Gon et a!. [2351. The surface
diffusion behaviourfor the aluminium (110) surfacecan be explainedby Molecular Dynamics
simulations[236]. Recentlythe sameeffectivemediumtheorywas appliedto simulatethe copper
(110) surface,wheresurfacemeltingwas foundto occurtoo [237,238]. Finally sulfur hexafluoride
was investigatedby MD simulationwherealsosurfacemelting was found [2391.

4.5. Crystallinities in the quasiliquidfilm

In this section we focus on scaling decay-lawsfor the crystallinities in the quasiliquid layer.
First of all, we have to give a precisedefinition of what we meanwith crystallinity. A concrete
multicomponentorderparameterparameterizationof the local densityfor planarsurfacemelting is

p(r)~p({m6(z)},r) =>mG(z)exp(iG.r) (118)

where {mG(z)} is a specialset of complex orderparameterswith m~(z)= m_G(z),andG =

(G11, Gj) = (G~,G~,G~)denotesa reciprocallattice vector of the bulk crystal. As the sum in
(118) is over all reciprocallattice vectors, the representation(118) is very general.For G 0,
mG(z) representsthe local meandensityof the system.On the other hand, for G ~ 0, mG(z) is
called a crystallinity orderparameter.Of course,in a homogeneousphaselike a liquid or a gas, a
crystallinity orderparametervanishes,whereasit is nonzeroin the solid phase.

For a solid coveredwith a quasiliquid film, the crystallinities becomesmaller as one moves
through the solid—quasi-liquidinterface. Thenjust before the quasi-liquid—gasinterface, thereis
still a nonzerocrystallinity value on the quasiliquid side of this interface. This value is called
residual crysta/linity m~.Then, as onemovesfurther through the quasi-liquid—gasinterface, the
crystallinities decayrapidly to zero.Of course,as the thicknessof the quasimoltenlayerincreases,
the residualcrystallinity decreases.The residualcrystallinity is also accessibleexperimentallye.g.
by LEED scatteringtechniques.

In order to constructa simplemicroscopictheory for the crystallinitieswe considera solid—liquid
interfaceat thetriple point. Assumingthat the quasi-liquid—gasinterfaceis sharpandthat it does
not disturb the solid—quasi-liquidinterface, the residualcrystailinities on a quasi-liquid film of
thickness£ approximatelyequalthe crystallinitiesin the solid—liquid interfaceatadistanceI from
the interfacial position. One can prove that the asymptoticbehaviourfor large I (or small r) is
really the same.Of course,if only one layer is liquid like, the actual residualcrystallinity may
considerablydeviatefrom this asymptoticexpressionsince it may be strongly influencedby the
solid andgasphases.

Mikheev et al. [240] as well as Löwen et al. [241,242] haveperformedan asymptoticanalysis
aroundthe liquid bulk phasein order to calculatethe behaviourof the crystallinitiesvery deepin
theliquid phase.The analysisinvolves all termsbilinearin the orderparametersandis thus more
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genera!thanthe squaregradientexpansionusedin section4.3. If the liquid phaseis approachedas
z —* oo, one finds that asymptotically

mG(z)-~exp(ikGz)exp(—z/aG). (119)

(G ~ 0) with an oscillationmismatchkG andadecaylength aG both for short rangeand for long
range interactions.A microscopicexpressionfor kG and aG can be obtainedby consideringthe
poles of the liquid structurefactor ST (k) at the triple point in the complexk-plane.For agiven
G = (G11, G1) considerthe complexsolutions{q, } of the equation

1/ST(iJG~+ (G~— q1)
2) = 0. (120)

Then, the decaylengthsaregiven by

a~’= rnin[{Im(q,)}] (121)

wherethe minimum extendsover anycomplexsolution q whosereal part lies in the projectionof
the first Bri!!ouin zoneof the latticeonto the z-axis. Let q

0 be the solutionwith minimal imaginary
part. Then, the oscillationmismatchis given by kG = Re(q0).

If one has obtainedthe set of a6’s by this procedure,onecan predict scaling decay laws for
the residualcrystallinities m~(r) as a function of reducedtemperatureas r \ 0. For short range
potentialsthe resultis a power law

m~(r) ~ (122)

with a nonuniversa!andG-dependentexponentzi~given by

= max[2a0,{aG}1/2aG. (123)

For long-rangepotentials(e.g. with avan der Waa!s tail r
6), one getsastretched-exponential

behaviour

m~(r)“~ exp[—(2W)”3r”3/a~]. (124)

This result is obtainedby plugging the algebraicdivergencelaw into the exponentialdecay (119)
(seealsoref. [243]). W is the Hamakerconstant.The stretchedexponentialform was alsoobtained
numericallyby TrayanovandTosatti [219].

Forsurfacescatteringexperimentsonly the G
11 dependenceis relevantandonecandefineadecay

lengthof thelateral crysta!!inity as

a(G11) := rnax[a(G11,G~)]. (125)

Using experimentaldatafor the structurefactorST (k) andcontinuatingit into the complexplane,
the resultsof the presenttheoryareshownin fig. 4.6 for the lead (110)surface.They arecompared
with the experimentaldataandwith asimplealgebraicexpressionderivedby Lipowsky et a!. [208]
within a phenomenologoca!ansatz.The resultsfrom the microscopictheory describedaboveand
the experimentaldataare in reasonableagreement.However, there is a caveat sincethe LEED
experimentshavenot yet reachedthe true asymptoticregime andthere is also somecurve fitting
involved in extractingadecaylength from theexperimentaloutput.
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11) plottedversus1G11 (0) for Fig. 4.7. Width of theliquid film versusreducedtempera-

a lead (110)-planeat the triple point (T = 600.7 K). ture for lead. The solid line correspondsto g = 0 andis
Units are in A’ andA. Eachpoint is labelled by thepair the usual _h/3 divergencelaw for completesurfacemelt-
of integers (nm) resultingfrom the decompositionG11 = ing. Thedot-dashedanddottedline arefor g = lo

8in/s2,
nG

1p1 + mG112 with ‘.~ (l,—l,0) andG112 (0,0,1). 10
9m/s2 respectively.For T = TT, £ is finite and the

The stars (*) denoteexperimentalvalues. For the (00) crystalis overheatable.Fromref. [244].
beam,theyarefromref.[174],forthe (01)and(10) beam
results are taken from LEED data from ref. [178]. The
dotted-dashedline is thephenomenological_expressionfrom
ref. [208J a(G~

1)= a(0)/i/l + (Gjja(0))
2, where a(0)

is a fit parameter.For any choiceof a (0) this expression
is boundedby 1/G

11 (solid line) andunderestimatesthe
decaylengths.From ref. [241].

4.6. Influenceofgravity on surfacemelting

In the caseof completeplanarsurfacemelting, the width of the quasi-liquid layerin principle
diverges as the triple point is approached.Of coursethere are a couple of different mechanisms
that finally limit thegrowing liquid layersuch that its width remainsfinite at the triple point. Some
of thesemechanismsareexternalfields and walls as well as the finite size of the crystallites.We
shall consideragravitationalfield in this sectionand finite size effects in the next one. Consider
planarsurfacemelting where the normalof the solid surfacehasthe samedirection as a constant
gravitationalaccelerationg. The correspondinginterfacial potentialwas studiedby Läwen and
Beierin 1990 [244]. The main resultwas that gravity inducesafinite width 1* of the liquid layer
at the triple pointand the solid canbe overheated.1* is given by

/5 = </2Wps/mgpL(ps—p~j. (126)

Here, m denotesthe massof aparticleand W is the Hamakerconstantof the material (we have
assumeda long-rangevan der Waalsattractivetail in the interparticleinteraction).Furthermore,
p~and PL (Ps > PL) are the bulk solid and liquid densitiesat the triple point. The triple gas
density is assumedto be small. For lead, the width of the liquid film is plotted versus reduced
temperaturer for differentgravitationalaccelerationsin fig. 4.7. Notabledeviationsfrom the usual
completemelting law do occuronly for very high accelerations.It was arguedin ref. [244] that in
acentrifugewith very high centripetalaccelerationthe effect is in principle visible.

Anotherquite interestingrealizationto detectgravitationalcorrectionsto completesurfacemelting
would be a colloidal suspension.Victor andHansen[2451 haveshownthat there is also a triple
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point for a chargedcolloidal systemcharacterizedby a repulsiveelectrostaticandan attractivevan
der Waalspotential.For colloidal particles,retardationeffects which leadto an attraction r7 are
relevant.This would reducethe valueof 1*. An estimationshowsthat, for normal gravity, l~is of
orderof few interparticlespacings.Anothervery attractivepossibility is a colloid—polymermixtures
where excludedvolume effectsmay leadto an effective attractionbetweencolloidal particles. The
resultingphasediagramhasa triple point andacritical point [246] but interfacial featureshave
not yet beenexaminedin detail. Also for such asystem,surfacemelting is expectedandeffectsof a
gravitationalfield shouldbe much pronounced.Therefore,whereaseffectsof gravity arenormally
negligible for atomic systems,theymaybe well observablefor mesoscopiccolloidal suspensions.

4.7. Equilibrium shapesofcrystalsnear the triple point

Farawayfrom thetriple point, it is the orientationaldependenceof the solid—gassurfacetension,
asg(ñ), that determinesthe equilibrium shapeof a crystal. Here, ñ denotesthe surfacenormal.
Within Wu!ff’s construction[247] onecan find the crystal shapefor agiven a~

5(h) geometrically
by a Legendretransformationof a~5(h). Very nearthe triple point wherethe liquid becomesalso
stableasabulk phase,the situationis more complicatedsincefor someorientationsthe solid may
cover itself with a liquid film in order to reducethe free energy.This is in particular expected
if a solid exhibits planarsurfacemelting for theseorientations.Such interestingphenomenawere
investigatedexperimentally,theoreticallyand recentlyalsoby computersimulation.

As regards experiments,extensiveequilibrium shape measurementsof lead crystallites were
performedby Métois andcoworkers[248—2501andby Pavlovskaeta!. [251]. A technicalproblem
is that oneis not alwayssureto be at equilibrium sincethe equilibrationtime is pretty large. As a
result,the equilibrium shapeof leadcrystallitesconsistsof facetsandroundedparts.The (11!) facet
lengthincreaseswith increasingtemperature.The matchingbetweenthe facetandthe roundedpart
becomesangularabout20 K belowthe triple temperature;the discontinuityin orientationbetween
thesetwo parts also increaseswith temperature.Lead is insofar interestingas someorientations
(like (ill)) do and others (like (110)) do not melt, which results in a competitionbetween
nonmo!tenfacetsandmolten roundedparts.

Recently,alsofirst simulationswerestartedby Stoltze [2521.Thesimulatedsystemis prettylarge
(comparedto usualbulk simulations)althoughthe resultingcrystallite is still small comparedto
experimentalsizes.Onecanhope that, for a realisticinterparticleinteractionincluding many-body
forces,the orientationaldependenceof surfacemelting andthe correspondingchangein the shape
of the crystallite canbe seendirectly. Another recentrelatedstudywas done for orientationsnear
the nonmelting(111) surfaceof a lead crystalby Bilalbegovicet a!. [2531.An orientationalphase
separationwas thenobtainedthat should be universal for vicinals of nonmelting crystalsurfaces.
Such surface-meltinginducedfaceting was also confirmed experimentallyby van Pinxteren and
Frenkel [254].

Also phenomenologica!theorieswere proposedby Nozières [255] and Löwen [256]. In these
references,the generalizationof Wulff’s constructionwith three temperature-dependentsurface
tensions,solid—gas asg(h, T), solid—liquid a~(h, T) and liquid—gas cJ~~(T) is discussed.Strictly
speaking,thesethreesurfacetensionsare not alwayswell-defined for all orientations,but one can
extrapolatethe orientationalas well as the temperaturedependence.Near the triple point, the
equilibrium crystal shapethenminimizesthe total surfacetensionunder the constraintof fixed
massPsV~of the crystallite, Vs beingthe volume of the crystallite. In general,one hasto consider
simplesolid—gasconfigurationsaswell as morecomplexconfigurationsincluding e.g.asolid covered
with liquid lensesof different densityP1. In this situation,one hasto addalsoa free energyterm
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I iq~ens

Fig. 4.8. Crystalline surfacenearthetriple point (schematic).At certainorientationsaliquid lens mayoccur. This implies
in a drasticalchangeof the equilibrium shapenear the triple point dueto surfacemelting.

Li- V1 whereL is a latentheatand V1 is the liquid volume.Themain resultofthe phenomenological
theoriesis that the crystalline surfaceexhibits liquid lensesroughly at those orientationswhere
planarsurfacemelting doesoccur. This is visualizedin fig. 4.8. The crystal is thenoverheatab!e,
since it shows a first-order transition to a liquid drop. In ref. [256], also the three-dimensional
casefor leadwas discussedusingexperimentaldatafor the temperature-dependentsurfacetensions
asan input. In the resultingcrystalshape,the (111)-facetlength increaseswith temperature;there
are liquid lenseswith an orientationjump whosemagnitudealso increaseswith temperature.This
is consistentwith experimentalfacts. Stewart [257] explainsthe increasingfacet lengthby vacancy
melting in the (111) facet. In his approach,he also needsthe three surfacetensionscrsg(h,T),
~ (ñ, T) and ajg(T) as input. Since they haverelative largeexperimentaluncertainties,all such
phenomenologicalapproachesshould still be consideredas preliminary.

5. Dynamicsof interfaces

In this chaptersomebasicmodelsfor interfacialdynamicsaway from critical pointsarediscussed
including exactly soluble cases.Also interfacial dynamics near the coexistenceof three (stable
or metastable)phasesis considered,particularly dynamicsof surfacemelting and the dynamical
creation of metastablephases.The dynamics of the models employed is phenomenologicaland
not ab initio in the senseof microscopicclassical statisticalmechanics.Therefore the universal
qualitativefeaturesshouldbe applicableto a largenumberof concretesystems.

5.1. Ginzburg—Landau-typemodelsfor interfacial dynamics

An interfacialprofile is describedby aspaceandtime dependentscalarorderparameterm(z,t),
z being the coordinateperpendicularto the surfaceplane. The order parameteris takento be
dimensionslessandnormalizedso that it is zero in the first (A) and I in the second(B) phase.
We considerGinzburg—Landau-typegrandcanonicalsurfacefree energyfunctionalsof m(z,t), as
discussedin section3.4.2:

~[m] =fdz {~g(m(z,t))[am(z,t)/Oz]
2 + f(m(z,t))}. (127)
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At coexistenceof A and B, f (m) hastwo equal minima at m = 0, 1. If onephase(A) grows at
the expenseof the other (B) , we have

f(1)—f(0)Ee>0 (128)

Long rangedinteractionsof m(z,t) canbe incorporatedby adding

= ~fdzf dz’ w(~z— z’~)[m(z,t)— m(z’,t)]2 (129)

to the original functionalI’ (comparewith (107)).
We define relaxational dynamics or dynamics for a nonconservedorder parameteras follows

[258]:

~9m/0t = —F~(m)ô~’[m]/ôm. (130)

Here, the free energygradient is just the driving force for the order parameter,f~is a kinetic
coefficient which setsthe microscopictime scaleandgenerallydependson the orderparameterm,
i.e. it is different in the different thermodynamicphasesdescribedby m. On the otherhand, the
dynamics for a locally conservedorder parameterfollows from a generalizedcontinuity equation
[2581and is given by

Om/Ot= I’~(m)(02/0z2)ôE[in]/ôm (131)

whereagain17 is ageneralizeddiffusion coefficient (with anotherdimensionthanF~).Theboundary
conditionsfor m(z,t) are

lirnm(z,t) = mA = 0, limm(z,t) = mB = 1. (132)

Furthermore,in (130) and (131), we haveneglectedrandomforces;they serveonly to describe
thermodynamicfluctuationsand are importantfor phenomenanear critical points, but not for
phasesseparatedby first orderphasetransitions.

Often onelooksfor steadystatesolutions

m(z,t) = m(z—vt)~m(x) (133)

with avelocity v whichis thenspecifiedas afunctionof the free energydifference~. Sucha solution
obviouslyexistsonly for non-conservedorderparameterdynamics.If onesubstitutesin (130) 0/0t

by —vO/0z andneglects.F
1 one arrivesatan ordinarydifferentialequation.As discussedin section

3.4 in the contextof the equilibrium situation (v = = 0), the problemis equivalentto the
classicaldynamicsof a fictitious “particle” in order parameterspace,where z plays the role of
“time”. This “particle” hasa “mass” g andmovesin aclassicpotential—f(m) from the “hill” of
phaseA to the other“hill” of phaseB which is lower than the first “hill” (for e > 0). In contrast
to the equilibrium case,however,the particlesuffersalsolinear “friction” with a friction constant
vf’,~.For agiven e,the friction mustbe chosensuchthatthe particlestopsexactlyathill B. This
requirementthenyields the desiredrelationv(e).
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5.2. Exactlysolublemodels

Let us first restrict attentionto a singleorderparameter.We furtherassumethat g and1, I’,~do
not dependon m. A simpleexactly solublemodel, well-known from its static kink-solution, is the
Ginzburg—Landau model definedby aquartic free energyfunctionf (m)

df(m)/dm = Am(m—mo)(m—1) (134)

where m0 is an additional parametergoverningthe free energydifferencec = A(~— m0) /6. The

steadystatesolution canbe expressedas [259,260]

m(x) = 1 (135)
1 + exp(~/~7~x)

wherex z — Vt if the relation

V = 6F/~7~ie (136)

is satisfied.
Anotherexactlysolublemodelthathasbeenwidely usedandappliedis the parabolicmodel

f(m) =min[~Am
2,~A(m—l)2-~-&J (137)

If oneneglects~ the steady stateequationof motion is piecewiselinear leading to exponential
solutionswhich canbe matchedto give m(x) andthe desiredrelationv (r). Although the quartic
potential (134) is undoubtedlysmootherandthereforemorerealistic thanthe intersectingparabola
model, both are evidently ad hoc. Qualitativefeaturesshould be the samein both models.The
smoothGinzburg—Landaumodel is more attractivefor direct numericalsimulation whereasthe
parabolicmodel is moreappropriateto derive analytical results.

The analyticaltreatmentwithin theparabolicmodelcanalsobe done,whenw (z), the longranged
interactionkernel, is not ignored.As realizedby Läwen andOxtoby [26!], the steadystatesolution
canbe foundfor arbitrary kernelsw(z). Long-rangedinteractionkernelswere studiedpreviously,
but analyticalresultsweremainly limited to the Sullivan model in equilibrium situations[262—264]
wherea specialYukawa typeof interactionkernel is required.In the parabolicmodel, the steady
statesolution is explicitly given by

x

) — -~- I’ d 1 dk exp(—iky) (138

m x — 2,rJ Yj gk2—ikV/I’~+A + W(k)
with

W(k) = V’~[ti~(k)—z~(0)] (139)

whereñ~denotesthe Fouriertransform.The relationbetweenV ande is governedby the expansion

a = A
1v + A3v

3+ 0(V5) (140)

with

A
1 = A

2Io/2irI’~, A
3 = A1I2/I0r~

2, (141)

00

Im =f dk [gk2 + A ±W(k)]m+2~ (142)
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Finally, the full time-dependentanalyticalsolutionswere found for the equilibrium casea = 0 in
ref. [26!].

5.3. Dynamicsof surfacemelting

In this sectionand the following one, we study the interfacial dynamics,particularly the steady
statesolutions, for a situationwhere three phasesare (meta)stab!e.Then, f (m) has threelocal
minimaand theexistenceof a steadystatesolutiondependssensitivelyon the depthof thesethree
minima. We shall illustrate the physical effects that may occur using two different applications:
surfacemeltingaway from equilibrium and,second,adynamicalmechanismfor the creationof a
metastablephase.

In chapter4, equilibrium aspectsof surfacemelting were discussed.However, scatteringexperi-
mentson surfacemeltingaretypically performedin ultrahighvacuum,i.e., atlargeundersaturation,
in order to reducethe scatteringfrom the vapor phase.In theseexperiments,the crystal slowly
evaporates.Therefore, the crystal studied is no longer in chemical equilibrium with the vapor.
The two situationsof surfacemeltingwith andwithout chemicalequilibrium canbe visualizedas
differentpathsin a P—T diagram.Whereasin equilibrium one movesexactly on the sublimation
line towardsthe triple point, in the nonequi!ibriumcasethe pathis shiftedby apressuredifference
~P from the sublimationline, seefig. 5.!.

Löwen andLipowsky [265] proposedasimpleLandaumode! in whichthe crystal—vaporinterface
movesat constantvelocity v towardsthe bulk of the crystal. Following their ideas,we considera
single orderparameterm like the particlemeandensity (eventuallycombinedwith acrystallinity
orderparameter).

We use the familiar Ginzburg—Landaufunctional (127) where f (m) now hasthree minima
at my < mL < ms correspondingto the vapor, liquid and solid phase.The gas phaseis globally
stable,the solid respectivelyliquid grandcanonicalfree energydensity is about~P > 0 respectively
~PL> 0 higher.As in (115), onecandefine a liquid correlationlengthaL by the curvaturearound
the liquid peakwheref (m) hasthe expansion

f(m) ~ L~~Pi.+ ~g(mL)(m—mL)2/a~i. (143)

For a situationawayfrom thesublimationline, we areinterestedin a systemin which onehasa

P.

solid liquid

T~

Fig. 5.1. P—T diagramandpossiblepathsof surfacemelting. In theidealizedequilibrium case,the pathis identicalwith
the sublimationline (solid curve). In the experimentalsituationwithout chemicalequilibrium,the path (dashedline along
the arrow) is shiftedby a pressuredifferenceE~Pfrom thesublimationline.
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flux of particlesaway from thesolid—vaporinterface.This correspondsto the experimentalsituation
wherethe evaporatedparticlesare pumpedaway in orderto sustainultrahighvacuumconditions.
The correspondingundersaturationis governedby pressurewhich is a “fast” propagatingmode:on
the timescalesrelevantfor the interfacialmotion, thepressurewithin the vapourphasecanbe taken
to be constant.In sucha situation,the depositionrate of particlesfrom the vapourphaseshould
be proportional to this pressurewhile the evaporationrate should be determinedby the binding
energiesof the moleculeswithin the liquid vapour interface [2661. In any case,masstransport
throughthe interfacewill not be limited by diffusion. In termsof theparticledensity,onemaythen
study the relaxational dynamics, defined by (130). A steady state analysisfor the profile m(x)
with the boundaryconditions1im~~_00m(x) = my and 1im~00m(x) = ms then leadsto the
following predictions[265]:

In the dynamicalsituation with L~tP~ 0 there is a characteristictemperatureT5 which, in
general,is different from the triple point temperatureTi’. If completesurfacemelting occursfor the
equilibrium casei~P= 0 at T = TT with alogarithmicgrowth law for the width ofthe quasi-liquid
film, 1, thereis also a logarithmic growth law at T = T5 for E~P>0. In particular

1 = l0(v)~ln[(T5— T)/T5]l (144)

for T / T5 wherethe prefactordependson the steadystatevelocity V

lo(v) = aL[l + vaL/2g(mL)rfl(mL) + 0(v
2)]. (145)

This meansthatthe nonequi!ibriumcondition enhancesthe thicknessof a wetting layer.
Another interestingquantity is the residual crystallinity m~of the order parameterm

3 at the
quasi-liquid—vapourinterface.For the equilibrium situation, it is well-known from section4.5 that

vanishesasapowerlaw in TT — T with nonuniversalexponentsfly. In the generalizationto the
nonequilibriumsituation,the exponentsturn out to becomeV-dependent.

Finally, let us considera long rangedalgebraictail V1 (r) r’
6 in the interparticle potential

V(r). As in the caseof short rangeforces, surfacemelting occursat acharacteristictemperature
T

5, which differs in generalfrom the triple point temperatureT1. TheHamakerconstantW, on the
otherhand, is not renormalizedby the dynamics,i.e. it doesnot dependon the interfacevelocityv
[265]. The thickness1 of the disorderedlayerdivergesas I [2W/A(T5 — T)]’/

3 for small T
5 — T

whereA is a latentheat.The residualcrystallinity vanishesas astretchedexponentiallaw in T5 — T.
Estimatingtypical velocity corrections,onefinds that they arevery small in generalsuchthat the

interfacial structureobservedin scatteringexperimentsresemblesvery much the structurein full
chemicalequilibrium.

5.4. Dynamicalmechanismfor theformation ofa metastablephase

One canalsostudythree-phaseGinzburg-Landaumodelswhereoneof the phasesis a inetastable
phase.Although sucha metastablephasecannotbe thermodynamicallystableas a bulk phase,one
cancreateit dynamically.Bechhoeferet al. [267] haveshownthat frontsseparatingthe stablehigh-
and low-temperaturephasescan split apartinto two independentlymoving fronts. The first front
separatesthe phasethatis stableat high temperatures(phase0) from the metastablephase(phase
1). The secondseparatesthe metastablephasefrom the stableone at low temperatures(phase2).
Becausethe 01 front movesfasterthanthe 12 front, a macroscopically largeregion of the metastable
phase1 is created.The mechanismexplainshow metastablephasesmaygrowat the interfacegiven
that the stablephasehasalreadybeennucleated.
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Fig. 5.2. Freeenergydensity —f(m) as a functionof the Fig. 5.3. Calculatedvelocitiesof the01, 12, and02 fronts
orderparameterm for different control parametersb ~ asa function of b. From ref. [2671.
(To

2 — T). Thecurvesareshiftedby an arbitraryconstant.
From top to bottom the valuesof b areas follows: (a)
b = 0.5, liquid spinodal line, (b) b = b0 = 0.15419,
critical value for interfacesplitting, (C) b = 0, coexistence
betweenphase0 and2, (d) b = —0.25, regionwherephase
0 is stable.

In ref. [2671,apolynomial of sixth orderwas chosenfor the bulk free energydensityf (m),

df/dm=Am[m—(0.5—b)}(m—l)(m—l.5)(m—2). (146)

f (m) is sketchedin fig. 5.2 for different b exhibitingthreelocal minimaat m 0, 1, and 2. The
minimum at m = 0 representsadisorderedphase(e.g. a liquid), that at m = 2 a stablephase
(e.g. the equilibrium low-temperaturesolid phase),andthat at m = 1 a metastab!ephase1 (e.g.
asolid phasewith a different crystal structure,amartensite[268], or aquasicrystal[269]). The
control parameteris b x (T02 — T), whereT02 is the coexistencetemperaturebetweenphases0 and
2. Thus, b = 0 correspondsto the usual melting temperature.When 0 < b <0.5, the stablesolid
phase(m = 2) hasa lower free energythanphase0 and 1.

In fig. 5.3 also the threefront velocities are plotted versus the control parameterb. v01 means
the velocity of the steadystate interfacial profile betweenphase0 and 1, to which the phase2 is
irrelevant.Accordingly, v12 is the velocity of the steadystateprofile betweenthe phasesI and2
andv02 meansthe velocity of the completeprofile. The moststriking featureis the intersectionof
v01 (b), V12 (b), and v02(b) all at the samevalue of a critical control parameterb = b~ 0.154.
Although steady-state01 and 12 frontsexist for a!! valuesof b, the steady-state02 front ceasesto
existwhenb > b~.

For b > b~,solutionsconnectingphases0 and 2 are time dependentin all uniformly translating
referenceframes.When b < b~,the width w02 (t) convergesto aconstantas t —~ oc. When b > b~,
it divergeslinearly for large times. The asymptoticrate of divergencesatisfies

dw02/dt= v01(b) —v12(b). (147)

This, then,is themechanismfor the formationof metastablestates:in the presenceofthe metastable
phase,the 02 front canbe thoughtof as acombined01 and 12 front. As long as the rearpart (12)
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movesfaster thanthe leadingpart (01), the 02 front moveswith a velocity intermediatebetween
v01 and v12. Whenthe rear is unableto keepup with the leadingedge,the 02 statesplits into two
quasi-independent01 and 12 fronts: a macroscopicquantity of phase1 is created.

The splitting instability is possible even when there are multiple order parameters.This was
discussedin detail by TuckermanandBechhoefer[213]. Finally the presenceof an externalfield
blocksmetastablephaseformationwhich was discussedby BocquetandLöwen [270]. In this case
the width of the metastablephaselayer first grows to mesoscopicvalues and then shrinksback
againto microscopicvalues.

6. Heatdiffusion limited crystalgrowth

In orderto describecrystalgrowth wherethe productionandsubsequentreleaseof latentheat is
explicitly takeninto account,asimplemodel that couplesanon-conservedorderparameterto the
temperaturefield is studied.After giving the basicequationsfor this “phase-fieldmodel”, recent
results are reviewed including two qualitative different (diffusion-limited and kinetics-limited)
regimesof crystalgrowth andcritical behaviourat the boundarybetweenthesetwo regimes.

6.1. Phasefield model: introduction

In the simple order-parametermodelof chapter5, the temperaturefield is assumedto be uniform
andconstant,meaningthat temperaturevariations due to the releaseof latent heat producedby
freezingareignored.Models with a non-conservedorder-parameteraccountfor variousmicroscopic
propertiesof the solidification process,suchas the finite width of the solid—liquid interfaceandthe
deviationsfrom thermodynamicequilibrium thatdrive the interfaceforward.They typically predict
thatplanarfrontswill propagateataconstantvelocity v that is proportionalto the undercooling.

By contrast,in diffusion models,the basicvariableis the temperaturefield [271,272]. Although
the releaseand subsequentdiffusion of latent heat are both properly accountedfor, the various
microscopicfeaturesof the order-parametermodelsare ignored: the interface is assumedto be
sharpand in local equilibrium. In contrastwith the first kind of model, steady-statemotion is in
generalimpossible,but the typical asymptoticstate hasa front velocity decayingwith time t as
t—

1/2.
The ingredientsof thesetwo models can be combinedby coupling an order parameterto the

temperaturefield. This phase-fieldmodelwas studied in the context of crystalgrowth by Collins
et a!. [273,274] and [275], and later also by UmantsevandRoitburd [276,277], Schofield and
Oxtoby [278], as well as Löwen et a!. [279—281],Kupfermannet al. [282], and Charachand
Zaltzman [283]. The interestin this more detailedmodel is that it describesbothdiffusion- and
kinetics-limited front motion in a single set of coupledequations.In addition, thereare also new
effects,not predictedby eitherof the simpler models.

6.2. Thephase-fieldmodel:basicequations

Adopting the samenotationas in the previouschapter,the order-parameterfield, m(z, t), is zero
in the liquid andonein the solid at the solid—liquid coexistencetemperatureT

0. The temperature
field T ( z, t) can alsobe scaledto be dimensionlessby L/c~,whereL is the latentheat of fusion
per mole and cp is the specific heat for constantpressureat coexistencewhich for simplicity is
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assumedto be equalin the two phases.The dimensionless-undercoolingfield, then, is

u(z,t) = c~(T(z,t)— T0)/L. (148)

If oneconsidersasolid front advancinginto a liquid heldat a temperatureu = —A, the latentheat
releasedis just enoughto transformthe undercooledliquid into solidat the coexistencetemperature
whenA = 1. If A < 1, thenexcessheatmustbe transportedawayfrom the interface.If A> 1, the
growing solid will be cooler thanit would be at coexistencewith the liquid.

In the phase-fieldmodel, the equationof motion for the dimensionlesstemperaturefield u(z,t)
is

Ou/Ot = DTO
2u/8z2+ Om/Ot. (149)

Here, DT is the thermaldiffusivity, assumedto be identical in both phasesand independentof
temperature.Equation (149) describesthe diffusion of heat, with the 8m/8t term actingas a
sourcefor the heatfield dueto the latentheatof crystallization.

On the otherhand, the equationof motion for the non-conservedorder-parameterfield m(z,t)
is

= —I~5E[m,u]/ôm. (150)

The surfacetension functional I[m, u] is scaledby AkBTO/A, where A is the cross-sectionalarea

of the interface,andA is an energy(in unitsof kBT
0) and is thus givenby

I[m,u] =fdz {~[8m(z,t)/5z]
2 + f[m(z,t),u(z,t)]} (151)

where~m is amicroscopicbulk correlationlength. The local free-energydensityf (m,u) is

f(m,u) = fo(m) + ~öum (152)

where fo (m) is the local free energydensity at coexistenceand ~öum is the first term in a
temperatureexpansionaround T = T

0. The coefficient ö canbe shown to be relatedto the latent
heat L as

= (2/)L)(L/kBTO)(L/cPTo). (153)

The local free energydensityfo (m) musthaveequalquadraticminimaat m = 0 andm = 1. As in
section5.2, onemayconsidertwo differentforms for fo (m) which havethisproperty,the Ginzburg—
Landaumodel, f0(m) = m

2(m— 1)2, andthe parabolic model, f
0(m) = ~min[m

2, (m — 1)2].

Defining the length scaleis Zm ‘/~m. andthe time scale i-rn l/T~,which leadsto avelocity
scale,Vrn = Zm/i-m, the rescaledequations(149) and (150) read

u
1 = (l/2p)u~~+ mt, (154)

mt = ~ — dfo/dm — ~öu. (155)

Material propertiesarenow describedsolelyby two dimensionlessparameters,t~andp, where

~~rn/tm (156)
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Note that a/i-rn canbe interpretedas an order-parameterdiffusion constant,denotedby Dm, 50
thatp equalsaratio of diffusion constantsp = Drn/Dr.

To fix the boundaryconditions,we needto knowfour values:m± m(±oc,t) andu± u(±oc,t).
We first requirelocal equilibrium at z = ±oo,which gives two equationsrelatingm±andu±:

dfo/dmlrn±= ~ (157)

We could obtain the othertwo equationsby fixing the temperatureat z = ±oo,so thatu±= —A.

Onewouldthenstudythe growthof asolid germthathasnucleatedatz = 0 andone wouldobtain
m~by solving the algebraicequation(157).

For numericalconvenience,onecan also consider “steady-state”boundaryconditions,where a
semi-infiniteamountof solid hasalreadybeencreated.We retain u+ = —A but adoptconditionsat
z = —oc which specifythe stateof the solid. Onecan showthat for constant-velocityfronts [278]

u.k. — m+ = u_ — m.. (158)

Along with (157), (158) sufficesto fix u~and rn~.
One can also consider“coexistence” boundaryconditions [281], whereone takes, in place of

(158)

u = 0, rn_ = 1. (159)

In this case,the solid is createdat equilibrium. For a uniqueundercoolingA~,both the steady-state
andcoexistenceboundaryconditionsare identical. For ô —~ 0, onehasA~= 1. In the phase-field
model, the ôu term implies that the rn-valueof the minimum of the liquid dependsslightly on
the undercoolingvia (157). In particular,m will be positive in the metastableliquid phaseif the
liquid is undercooled.This meansthat A~is slightly smaller than I and is a function of ö. Since
for A = A~,the amountof heatgeneratedby freezingis just enoughto heatthe liquid backup to
the coexistencetemperature,we refer to this as unit undercooling.

Explicitly, combining eqs. (157) and (159), one finds for the Ginzburg—Landaumodel that
= 1 — (1 — i/l — 2ô)/4 whereasin the parabolicmodelA~= l/(l + ö/2).
Physicallyonecan now understandwhy one expectsto seedifferent kindsof freezingbehaviour

for small undercoolings(A < A~)and for large undercoolings(A > Ac). In the former case, let
onestartwith an entirely liquid sample.Then imagine that it is all convertedto solid without
the latent heatdiffusing anywhere.The releaseof latent heat raises the temperatureby A~.This
temperaturerise, however,exceedsthe original undercoolingof the liquid. Were the heat truly to
stay put and not diffuse, then the solid createdwould be superheated.The true equilibrium, in
fact, requiresthat someof the heatbe transportedaway to infinity and that the solid be at the
coexistencetemperature.Since the transportof heat to infinity is via diffusion, the front slows
down via v(t) cx

By contrast,if A > A~,the heat is not sufficient to raisethe temperatureof the solid back up
to coexistence.The solid is thenbelow its coexistencetemperature,a thermodynamicallystable
situation.Since no heatneedsto be transportedout to infinity, solidification is limited only by the
kineticsof transformingliquid to solid, andfronts travel at constantvelocity.

The caseA = A,, wherethe latentheat is just enoughto reheatthe solid back to T0 is a special
point that divides the diffusion-limited from the kinetics-limited regimes.In this case,the phase-
field model predictstwo typesofbehaviouratA~,dependingon p: for p > Pc, thereis asteadystate
solution, while for p <Pc the velocity decayswith an —1/3 power law v (t) cx t

1/3. Here,Pc is a
critical valueof p which dependson the coupling t~5.
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A final remarkconcernstheapplicability of the phasefield modelto alloys. Thiswas extensively
discussedby Löwen et a!. [281] and also by Wheeleret a!. [284]. In this case,the temperature
field has to be replacedby the concentrationfield of impurities. The equationsformally are the
same,but the parametersp, (5 and A haveanothermeaningandwill be significantly different for
inpurity-driven systems.There is alsothe attractivepossibilityof tuning(5 by varyingthe impurity
concentration.

6.3. Phase-fieldmodel: reviewof results

The original interestin thephase-fieldmodelfor crystallizationcamemainly from an inadequacy
of the purely diffusive model, with its sharpinterfaceheldat local equilibrium u = 0. This model
implies thatfor A < 1, fronts slowdown via a t’12 powerlaw [285]. For A > 1, the mode! hasno
solution.The latentheatwill increasethe temperatureof the solidby 1 at most; this is inconsistent
with the requirementthat u = 0 at the interface.At A = 1, the front will travel at aconstantbut
indeterminatevelocity [272]. Although therearethreequalitativelydifferent regimesin this mode!,
themodel breaksdown whenA > A~= 1 ForA <<Ac, however,it is perfectlysatisfactory.

The diffusive mode! may be improved by adding a phenomenologica!descriptionof kinetics.
Insteadof assumingthat the solid—liquid interfaceis at T

1 = T0, onesetsthe interfacetemperature
to T~= T0 — /3_iV, where v is the interfacevelocity and ,fJ is known as a kinetic coefficient
[286,287]. In this model, frontswith A < 1 slow down via a t

1/2 powerlaw, as before.For A > 1,
frontstravel at constantvelocity v cx (A — 1) The mode! thusgivessensibleresultsfor both A <A~

andfor A > A~.
The phase-modelprovided anothersolution to the velocity-degeneracyproblem of the pure

diffusion mode!. Both Langer [275] and Collins andLevine [273] showedthat the phase-field
modelhasaunique,constant-velocitysolutionat unit undercoolingwhich is selectedby microscopic
order-parameterkinetics.The lack of such microscopiclength and time information leadsto the
velocity degeneracyin the diffusive model. The phase-fieldmodel reducesto the diffusive model
with linear kineticswhen(5 —~ 0 andP/Pc —~ 0, wherethe orderparameterprofile becomesessentially
astepfunction andthe heator impurity field obeysthe standard(uncoupled)diffusion equation.
The mostthoroughdiscussionis by Caginalp [288].

Schofield andOxtoby [2781 thenfoundthat the A = A~steady-statesolutionsto the phase-field
modeldiscoveredby Langer [275] andCollins andLevine [273] existonly for certainvaluesof the
materialparametersp and(5. In particular,for p <Pc ((5), thereare no steady-statesolutions.They
evaluatedPc perturbativelyfor small (5 in the Ginzburg—Landaumodel and found Pc = 2/(3(5).
Löwenetal. [279] then repeatedthe calculationsof SchofieldandOxtoby for the parabolicmode!
andfound similar results.The advantageis that, in the parabolicmode!,the velocities andsteady-
stateprofiles can be calculatedanalytically. For example,Pc ((5) is exactly 2/ (3(5). Subsequently,
Löwen andBechhoefer[280] exploredthe effect of different valuesof i~in the parabolicmode!.
The steadystatetheorycanbe doneanalytically. If thereis a steadystatevelocity v, it mustsatisfy
the equation

1 —M = 4 ~ (x~+ 2pv) (xj.fl(xj —xt)~ , (160)
Re x~<O \ i~j J

where{x
3,j = 1,2,3} arethe complexrootsof the cubic equation

x
3-~-2v(p+1)x2—2(l—2pv2)x—2pv(2+ö)=0. (161)
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decaying steady state
velocity

V
0

undercooling ~
Fig. 6.1. Summaryof the asymptoticbehaviourof the phase-fieldmodel: velocity versusundercooling.For undercoolings
4 <4~,frontsslow downwith anasymptoticbehaviourv (1) o~t _1/2, whereasfor 4 >

4c, the frontsapproachasteady-state
velocity v. In the steady-stateregime, thereare threecases:(1) Ifp <Pc, nearunit undercooling,the steady-statevelocity
is given by v oc (4 — Ac). (2) Ifp = Pc, then v oc (4 — 4~)112.(3) For p > Pc, the steady-statevelocity is finite at 4c. At
Ac andp � Pc, the velocitydecayfollows a t’I~ powerlaw. Finally, for p > Pc, thereare stablesteady-statesolutionseven
for 4 <Ac, which areshownas aheavydashedline.

The main resultof an analysisof (161) is a transitionfrom asteadystateto adiffusive regimeat
A = A~with thefollowing scalingproperties:

(i) Abovethe borderline,A> A~,thereis anonzerosteadystatevelocity v. Frontsapproachtheir
steadystatevalue exponentially,i.e. v (1) = v + Aexp(—t/i-) whereA andz dependon A, p and
(5. Neartheborderline,A >Ac, therearedifferent scalinglaws for v in A —

— Forp>pc(ö), v remainsnonzeroat Ac.
— Forp =pc(~), v scalesas (A—A~)’I2.
— Forp <pc(ö), v scalesas (A —Ac).
— At one specialpoint (~o,po,A

0) (~,~,~) in (ö,p,A) parameterspace,called critical point, v
scalesas (A —A~)’I

3.
(ii) Below the borderline,A <Ac, therearetwo cases.

— Forp � Pc(5), thereis a decayingvelocity v (t) cx t1/2.

— Forp > Pc(5), and for small A~— A, thereare dynamically stable steady-statesolutionswhich
lead to the creation of a metastablesolid. At someundercooling4c < Ac thesesolutionshavea
finite velocity v and thenceaseto exist. Thereis a crossoverwith a velocityjump from a steady
statesolutionto a solutionwith decayingvelocity v(t) cx t112.

(iii) On the borderline,A A~,therearethreecases:
— Forp > p,~(5), thereis a steadystatesolutionwith finite velocity.
— ForP = Pc(t5), v is decayingcx t113 as longas (5 <ö~while for (5 > ö~v is finite.
— Forp <pc(ö), v is decayingcx t1/3. This 1/3-exponentwas provedby Marder [289] (for the
derivationof this exponentin the diffusive model with linear kinetics,see alsoref. [290]).

The asymptoticbehaviourof the crystalgrowth velocity in the phase-fieldmodelis summarized
in fig. 6.1, which shows the velocity versus undercooling,a plot that is typically encounteredin
experimentswhereonevariesthe undercooling[291,292].

Complementaryto theseanalytical results,numericalsimulationsof the Ginzburg—Landauform
of the phase-fieldmode! equationswere performedby Löwen et al. [281]. Typical profiles of
m(z, t) andu(z, t) for different times t are shownin fig. 6.2. The interfacestartsto movebut the
producedlatent heatdiffusesmoreandmoreaway,thushinderingcrystalgrowth.
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(a)1.O (b)i.o — __________________________
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otl/ootnhl=000 __________

~ ______________________ ~ : ______________________

-40 -20 0 20 40 60 80 100 0 2000 4000 6000
position z I Zm position z I z~,

Fig. 6.2. Evolution of the orderparameterm(z, t) and heatfield u(z, t). The material parametersareP/Pc = 0.1 and
ö = 0.1. Theundercoolingis 4 = A,~.In both (a) and (b), theuppercurvesdenotem andthelower onesu. Thehorizontal
positionsof thedifferent curvesshowthe overall displacementof the front at times t/rm = 0, 100,and 1000 in (a) and

= lOg, iO~,and106 in (b). The z-axisis scaledby Zm, themicroscopicorder-parameterlength scaleandthe time by
Tm, the microscopicorder-parametertime scale, Fromref. [281].

A sensitivequantity to detect different power laws in the velocity decay is the time-dependent

decayexponentv(t), definedby

z’(t) = dlog10v(t)/dlog10t= ta(t)/v(t) (162)

wherea(t) dV(t )/dt denotesthe interfaceacceleration.ii (t) is shownfor different undercoolings
A in fig. 6.3. Note the logarithmic axis in time. For A > A~,a(t) becomeszero, sincethereis a
steadystate solution. At A = A~, thereis aplateauat u = 0.30 with a very long-lived transient
which preventsrapid appearanceof the asymptoticstatewhere ii = 1/ 3. Finally, in the diffusive
regimeA <Ac, zi(t) saturatesat 1/2.

To summarize,there are three qualitatively new featuresinherent in the phase-fieldmode!:
the I /3 power-law decay at A = Ac, thejump from a non-zerovelocity steady-statesolution to

101 102 io
3 ~ 10~ 106

time

Fig. 6.3. Theevolutionof thevelocitydecayexponentii for different undercoolings.From top to bottom,the undercoolings
areA/AC = 0.9240, 0.9753, 0.9959, 0.9994, 1.000, 1.027. The heavy dashedline is the A = A~curve. The material
parametersarep/pc = 0.9 andö = 0.1. Fromref. [281].
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a diffusive solution whenp > Pc, and the critical point. All thesefeatureshave not yet been
detectedin growth experiments.An estimationof materialparameters,however,shows [2811 that
the boundarybetweenthe kinetics-dominatedand the diffusive regime should be accessiblefor
impurity-drivensystems.Thus thereare goodreasonsto believethat someof the new predictions
of the phase-fieldmodelareverified experimentallyin nearfuture.

7. Kinetic glasstransitionandcolloidal suspensions

As acommonexperience,liquids canbe easilyundercooleduntil to a certaintemperaturewhere
theyfreezeinto a glass wherethe particles are practically trappedinto the cagesformed by their
nearestneighbours.This kinetic glasstransitionis not connectedwith a truethermodynamicphase
transitionbut manifestsitselfasa sharpcrossoverwith qualitativedifferentdynamicalrelaxationof
densityperturbations.Sincedynamicsaredifferentfor atomicandcolloidal systems,the relaxational
scenariois — at leastapriori — different, too. In this chapterwe discusssimilaritiesanddifferences
of the kinetic glass transitionin atomic andcolloidal liquids.

7.1. Kineticglasstransitionfor atomicliquids

7.1.1. General
The relaxationtimeof adensityperturbationin a supercooledliquid was studiedas earlyas 1863

by Maxwell who defineda relaxationtime i-M as

= ~1/G~ (163)

where ij is the shearviscosityandG~the high frequencyshearmodulusof the liquid. The latter
barely varieswith temperatureand is of the order of 1010 Pa. One can roughly define a glass
transition by fixing TM to be a long experimentaltime, say 1 0

2s. This then correspondsto a
viscosity of 1012 Pa s = 1013 poise which is the usual definition of the glass transition point.
Evidently, this definition is arbitrary. Experimentally,dueto the finite timewindow of observation,
it is oftenconnectedto an almostdiscontinuousbehaviourof themeasuredspecificheat sincesome
degreesof freedomseemto be frozen. The scenariofor this glass transitionalso dependson the
cooling historyandso thereis no reproducibleunderlyingsharpglasstransition. In thissection,we
shall restrict ourselvesto a dynamicalphenomenonwell abovethe “calorimetric” glass transition
temperaturewhich occursat about~ 102 poise wherefragile glass formers show a significant
deviationfrom the Arrheniusbehaviour,i -~ exp( —A/T), see the classification of Angel! [293].
Thisbehaviouris intrinsic, i.e. it doesnot dependon the coolinghistory, andmaybe called kinetic
glass transition. However, one shouldbearin mind that it is not a sharptransition. One can also
call it a changein the dynamicalbehaviourof a supercooledliquid well abovethe calorimetric
glasstransition.The importantquestionconcernsthe microscopicorigin of the deviationfrom the
Arrheniuslaw. On the other hand, strong glass formers (like window glass) havealready strong
bondingsin thesupercooledliquid andtheir viscosity follows an Arrheniuslaw over severaldecades
[2931.Consequently,thereis no “kinetic glasstransition” for strongglass formers.

Theseobservationsindicatethat the kinetic glasstransitionhasdynamicalorigin. Therearealso
somechangesin the staticsof higher-ordercorrelation functions, see e.g. ref. [2941,but the pair
structureis very much similar to that of an ordinary supercooledliquid. Thus, from studyingthe
structurefactorS(k) alone,onecannotdecidewhetheragiven materialis liquid- or glassy-like.
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7.1.2. Experiments
In principle, dielectric relaxationmethods,nuclearmagneticresonance,quasi-elasticlight and

inelasticneutronscatteringexperimentsprovidedatafor the time-dependentdensityautocorrelation
function Fd(k,t) respectivelyits spectrumSd(k,w) (seeeq. (63)), which are the dynamicalkey
quantitiesin studyingthe densityrelaxationnearthe kinetic glasstransition.The technicalproblem
is that simple atomic materials do crystallize on the experimentaltime-scale,they can hardly
be undercooledsufficiently. Therefore,experimentshave usually beenperformedat much more
complexmulti-componentliquids. Onerelatively simple ionic fragile glassformer is representedby
amoltensaltlike Ca04K06 i~thatwas studiedin detail by Mezei andcollaborators[295,296]
andfor which thereare also simpleexpressionsfor the pair potential [297]. Thesemeasurements
give excellentdataoverabroadtime window. Two importantfeaturesof the dynamicalcorrelation
functionsare scaling andstretchingnearthe kinetic glass transition. Scaling meansthat a set of
correlation functions measuredat different temperaturesfall on a universalMastercurve after a
suitablescaling of the time. Stretchingimplies that the correlationsfunction decaysas a stretched
exponentialfor large times -~ exp(— (t/ to) “), with an exponentii < 1 (Kohlrausch-law)

7.1.3. Mode coupling theory
The modecoupling approachis extensively reviewedby Götze [2981 andGötze and Sjögren

[2991, also in connectionwith experiments.The starting point is the exact generalizedLangevin
equationfor the normalizeddensityautocorrelationfunction c1 (k, t) Ed(k, t ) /S(k), seeeq. (63),
which canbe castin the form of the equationof motion for adampedharmonicoscillator

~(k,t) + y(k)~(k,t)+ Q
2(k)~(k,t)+ fdt’ M(k,t — t’)~(k,t’) = 0. (164)

Here, ~v(k) is an instantaneousfriction coefficient and Q2 (k) = (kBTk) 2/S(k ) m2. The last term
in (164) describesthe retardedfriction characterizedby a memorykernelM (k, t). In MCT, this
kernel is approximatedby a form quadraticin CP (k, t) providing a closed setof equationswith a
nonlinearfeedbackmechanism.

By varying a control parameter,e.g. the density or the temperature,the nonlinear feedback
leadsto abifurcationfrom asolution k (k, t) that decaysto zeroat long times to a solution that
tendsasymptoticallyto aconstantcP(k, t —+ cc) = çC~, referredto as the Edwards—Andersonorder
parameter[300]. In otherwords, thereis a transitionfrom an ergodicto nonergodicbehaviourat
a certainsharptemperatureT

0. This is called ideal glass transition which is directly connectedwith
ergodicity breaking.Closeto T0, MCT predictsa two-steprelaxationof ~ (k, t): a fl-relaxation at
“intermediate”timesandafinal a-relaxation,which obeyscalinglaws in T — T0 with nonuniversal
exponents.

However, MCT in its simplestform ignores thermal activatedhopping processesthat finally
restoreergodicity. Strictly speakingan ideal glass transition doesnot exist. In a more extended
versionof MCT, Das [301] includedthis mechanismapproximatelyandfoundasmearedtransition.
The resultingcontinuousbehaviourunfortunatelysuppressesany clearcutdiagnosticsof the kinetic
glasstransitionas in its ideal counterpart.

7.1.4. MolecularDynamics(MD) simulations
The time-dependentcorrelationfunctions discussedin section 1.5.3 provide a dynamicaldiag-

nosticsof the kinetic glass transitionandare also accessibleby Molecular Dynamicssimulations.
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However, for presentday computers,one is still limited in the time window. The maximumtime
onecan spanis typically about 1000—10000 times a typical microscopictime. Neverthelessin this
time window MD simulationshaveprovided “exact” data for simple supercooledatomic liquids,
necessaryfor a detaileddiscussionof the decayscenarioof densityfluctuations.For a summary
and extensivediscussionof MD computersimulationsat the kinetic glass transition, we refer to
the reviewarticle of Barrat andKlein [302].

MD simulationshave revealedthat the kinetic glass transition is connectedwith a crossover
betweentwo different microscopicdynamicalrelaxations:hydrodynamicrelaxationby collective
diffusion as in usual liquids and relaxationby thermal activatedjump processes.Then, as the
temperatureis lowered further, thereis a separationof time scalesbetweenshort time relaxation
(phonons)andthe so-calleda-relaxation.The formercanbe thoughtof as a particlerattling in the
cageformedby its nearestneighbours,the latter is relatedto thermalactivatedjumpsandgivesrise
to astretchedexponentialKohlrauschdecay. Betweenthesetwo processestheremaybe a further
relaxation,called fl-relaxation, which can be attributedto the relaxationof the particlecages,but
its definition andmicroscopicmanifestationis much less clear, althoughit seemsto be accepted
now that it is a localized relaxationphenomenon.At this stage it maybe useful to point out that
simulationsof Ernst et al. [303] andDasguptaet al. [304] indicatethat there is no diverging
correlationlength nearthe kinetic glasstransition.

7.2. Kinetic glass transition for colloidal liquids

7.2.1. Experiments
Using dynamical light scattering,van Megen and coworkers [305—309]measuredthe time-

dependentdensity autocorrelationfunction over a broad time window for a sterically stabilized
colloidal suspensionas a function of the packingfraction of the particles. Despitethe enormous
differencesin timescalesbetweenatomic and mesoscopicglass formers,the supercooledcolloidal
liquid exhibits qualitative featuresvery similar to that of an atomic liquid at the kinetic glass
transition. The advantagefor interpretationis that the experimentalsystemis a rathersimple: it
representsahard-sphere-likesystemwith asmallpolydispersity.

Also the relaxationof sphericalpolystyrenemicronetworkparticlesof mesoscopicsize,swollen in a
good solvent,wasrecentlymeasuredoveraverybroadtime-windowby Bartschandcoworkers[310—
312], representinganothertype of colloidal suspension.The samplesare a bit more polydisperse
(p~= 0.16)thanthatusedby vanMegenandcoworkers.Again the long-timerelaxationwas found
to be very much similar to that of simple atomic liquids. Charge-stabilizedcolloidal suspensions
also form glasses;experimentalstudiesat theglass transitionweredoneby Sirotaet al. [313] and
Meller andStavans[3141. In the latterreferences,however,only staticpropertieswere investigated.

7.2.2. Modecouplingtheory
The experimentalresults of van Megen andPusey [306] were comparedwith predictionsof

mode couplingtheory for ahard spheresystemby Götze andSjögren [315] and by Fuchset al.
[316]; goodagreementwas found betweenmode coupling theory and the experimentaldata. In
the comparison,however,somefitting parameterswere involved as e.g. the packingfraction of
the (ideal) glass transition, i.e. the glass transition point is not an output but an input in the
comparison.The fitted time-dependentdensityautocorrelationfunction is simply monotonically
decayingandhasno particularstructure.However,oneshouldnot forget thatthe fits extendsover
severaldecadesin time suchthatthe agreementsupportsmodecouplingtheory.
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The MCT was originally derivedfor MolecularDynamics.It was shownexplicitly by Szameland
Löwen [46] that theasymptoticpredictionsof MCT do not changefor BrownianDynamics.Hence,
within MCT, the asymptoticsof the densityrelaxationare universalwith respectto the short-time
dynamics.For example,the ideal glass transitionoccursatthe sametemperaturefor MD andBD.

7.2.3. BrownianDynamics(BD) simulations
Löwenetal. [317] performedanextensivesimulationfora charge-stabilizedpolydispersecolloidal

suspensionnearthe kinetic glass transitionfor both BD andMD. So, a direct comparisonof the
densityrelaxationfor bothkind of dynamicscould be made.To date thisis the only simulationfor
thekinetic glass transitionwhich takessolvent friction into account.

In ref. [317], a charge-polydispersecolloidal fluid, describedby the potential

V1~(r)= Uo~~Iexp[_,c*(r~-a)/a)] (165)

is chosenas a model system.U0 setsthe energyand a the length scale. c~ 7 andp a
3 are

fixed. The systemis thencooledfrom atemperatureT* kBT/Uo = 0.45 down to T* = 0.10. The
charge-distributionP(Z) is takento be a Schultz distribution with relative charge-polydispersity
Pz = 0.5. The characteristictime scalesfor BD andMD are TB = ~a2/Uoand TN = .,/ma2/Uoin
theBD/MD case.

As dynamicaldiagnosticsfor thekinetic glasstransitionthe relaxationof the selfpart of the van
Hovefunction, G~(r, t), canbe used.As discussedin section1.5.3 (seeeq. (59)), G

6(r, t) gives the
probability distribution to find a particleaftera time t atadistancer from the origin provided it
was at the origin at time t = 0. In anormal liquid, G5 (r, t) approachesrapidly (i.e. after few TN

or rB) an exponential~ (4lrDLt)
3/2exp(—r2/4DLt) whereDL is the long timediffusion constant.

As the systemis gently cooleddown further, thereis a suddendrasticchangein the relaxation.The
function r2 G

5 (r, t) showsnow thebuildup of asecondarypeakroughly atameanparticledistance
a whereasthe position of the first peakremainsfrozen over “long” (i.e. 1 OOTB, TN) times. For
NewtonianDynamics,this function is shownfor two differenttemperaturesin fig. 7.1.

This gives a first indication that hoppingprocessesdo occur. Of coursethis qualitativechange
occursgradually in a smoothmannerbut still in a relatively narrow temperatureinterval and it
canbe usedto determinean estimatefor the kinetic glasstransitionwhich is now microscopically
connectedwith achangein the relaxationbehaviourfrom hydrodynamicrelaxationto relaxationby
thermalactivatedjumps. Remarkably,the temperatureinterval in which this dynamicalcrossover
occursis the samefor BD and MD. Also, the buildup of the secondarypeakis presentin BD,
indicating that thereis the samecrossoverto thermal activatedjumps in the Brownian case.By
this diagnosticsonemayestimatethetemperaturefor thekinetic glasstransitionfor both MD and
BD to be within

0.ll5<T~ass<0.12. (166)

The long time diffusion constantdrops to very small values near T~assand a power law with a
small residualcontributionAD dueto jumps fits well the dataof the supercooledliquid

D1(T) =AD+A(T~Tg’~ass)~ (167)

with y ~ 1.4 for both BD andMD.
Another interestingquantity is the distinct part of the van Hove function, Gd (r, t), definedin

eq. (58), giving the probability distributionto find aparticleatadistancer from theorigin after a
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(a) (I.::~) -
1.5 - Newtonian T=0.13 -

1./TN 109, 218, 327 . Newtonian T*=0.11

384, 640

r/a r/a

Fig. 7.1. Self part of the van Hove function, G,(r, t), multiplied by 4irr
2a versusreduceddistancer/a calculatedwith

Newtoniandynamics;the curvesfrom left to right (or top to bottom) are for increasingtime arguments.(a) Resultsfor
= 0.13 andt~= t/TN = 109, 218, 327. (b) Resultsfor T* = 0.11 andt~= 128, 384,640. From ref. [317].

time t providedanother particlewas at the origin at t = 0. At the kinetic glass transition, it turns
out, againboth for BD andMD, that apeakat r = 0 is built up giving againstrongevidencefor
particleexchangehopping processes.In a densesupercooledliquid, however,theseprocessesare
more complicatedthansimple pair exchanges.In general,morethan two particles (small clusters
of particles)participateto a real position exchangeprocess,see e.g. ref. [318].

Other interesting quantitiesare the spatial and time Fourier transformationsof G
5 (r, t) and

Gd(r,t), denotedby F5(k,t), Fd(k,t) respectivelyS5(k,w),Sd(k,w), seeeqs. (62) and (63). In
fig. 7.2, F~(k, t) is plotted as a function of time t an a logarithmic scalefor a fixed wave vector

(a) 1 _F1~TTrrTVTIflTrfT1FTflh1fr1~1TTTrfr~~Ffl1! (1)1 ~

EI~E:E~ ~e:tonian~

0 Jflrujr! I ji,iiril I iiriii I 0 I~t~W~ I 111111 lIllY

.01 .1 1 10 100 1000 .01 .1 1 10 100 1000

t/T8 1./i-N

Fig. 7.2. Selfpart of the density autocorrelationfunction F~(k, t) versusreducedtime t~= t/TN, t/TB (ona logarithmic
scale) for k = Ic0 = 7.4/a and (from bottom to top) T = 0.13, 0.12, 0.11 and0.10 (a) Brownian Dynamics; (b)
MolecularDynamics.Fromref. [3171.
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k nearthe first peakof the static structurefactorS(k). From this figure it becomesevidentthat
thereare qualitativedifferentrelaxationsfor BD andMD. Ofcourse,for short times1/tN, t/r~, the
decayof the densityautocorrelationfunction is different.As explainedin section1.5.3,it startswith
1—0(t2) in the MD andwith 1—0(t) in theBD case.Forvery long times,F~(k,t)andFd(k,t)
can be fitted by a stretchedexponentiallaw exp( — (t/t

0 )i’), where to is strongly temperature
dependentand,as ii, alsodependson k. The exponentu is foundto be practicallythe samefor BD
thanfor MD. So the a-relaxationscenariois quite similar. From fig. V7.2 it becomesclear that, for
times small comparedto a-relaxationbut still larger than VB, rN, thereare qualitativedifferences,
i.e. the differentshort-timebehaviouralsoinducesadifferentcrossoverto the long-timebehaviour.
The decayis smootherin the BD-caseand thereis no clear indication for a buildup of aplateau
nearTg~ass.(Of course,for smaller temperaturestheremustbe aquasi-plateau.)If one looksat the
time Fouriertransformsof Fd(k, t) or F~(k, t) (ka = 7), one finds that thereis ashoulderat the
correspondingfrequencyfor MD which is missingfor BD. It is temptingto call this a fl-relaxation
and one main conclusionis that the dynamicalonsetof fl-relaxation is qualitatively different for
BD andMD. In mode coupling theory, fl-relaxation is definedin a different way, namely by an
additional scaling law near T~asswhose asymptoticbehaviourcan be studiedanalytically. Again,
modecouplingtheorypredictsno differencefor MD andBD in the asymptoticcase.Thedifference
obtainedin the simulation,however,occursfor smaller times that are not yet in the asymptotic
regime.

In ref. [317] the simulationwas carriedout for apolydispersesystemin orderto avoid sponta-
neouscrystallization. Although the chargepolydispersityis high (Pz = 0.5), a mappingprocedure
to an effective size-polydispersereferencesystem[21] showsthat the effective size polydispersity
is p~= 0.13 which is a valuetypically encounteredin experiments.

Summarizing, the kinetic glass transition manifests itself microscopicallyas a crossoverfrom
hydrodynamicrelaxationto relaxationby thermalactivatedjumps.This crossoveris not completely
sharpbut occurson avery narrowtemperatureintervalupon cooling.The transitiontemperatureis
the samefor BD andMD. The dynamicalonsetof fl-relaxation, however,is different. A shoulder
in the dynamical structurefactor at intermediatefrequenciesis presentfor MD but missing for
BD. On the otherhand,a-relaxationis similar, supportingthe predictionof simplemodecoupling
theory.

7.3. Somefurther recentdevelopments

7.3.1. Densityfunctionaltheory of theglasstransition
It is temptingto considersimply the phenomenological(e.g.Ginzburg—Landauor Cahn—Hilliard)

equationsfor the relaxationof the densityfield nearthe kinetic glass transitioninsteadof starting
from microscopicdynamics.For the freeenergydensityfunctionalwhich entersinto thesedynamical
equationsone can use an approximationwhich describesfreezing, see section 3.2. A necessary
condition for aglass transitionis the existenceof secondarylocal minima in the functionalwith a
glassystructure.For hard spheres,this was recently investigatedby Dasgupta[319] andDasgupta
andRamaswamy[320] using the Ramakrishnan—Yussouffapproximation.As minima in the free
energyfunctionaltheyfoundfrozeninhomogeneousstructureddensitydistributions.Theassociated
free energyof theseglassystatesis in generalhigher than that of the solid statebut smaller than
thatof a homogeneousdensitydistribution characterizinga liquid.

Recently,Lust et at. [3211consideredaphenomenologicaldensitydynamicsbasedon nonlinear
fluctuatinghydrodynamicswith Langevinrandomforcesin orderto addressdynamicalproperties
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of the liquid-to-glasstransition. In the framework of Ramakrishnan—Yussouffdensityfunctional
theory they found two-stagerelaxationand stretchedexponentialdecayof density correlations.
Hencethis approachcanbe consideredas beingcomplementaryto modecouplingtheorywhereone
startsfrom microscopicdynamics.Still, however,the numericallyaccessibletime-windowis rather
limited and thusthe resultshaveto be consideredas preliminary.

7.3.2. Simulationof “complex” models
We haveextensivelydescribedaBrownian Dynamics studyfor apolydispersechargedcolloidal

liquid. This is onestepfrom usualMD designedfor simpleatomicliquids towardsamore realistic
descriptionof the interactionsand dynamics for real complex glass formers.Along theselines,
Dzugutov [3221 gives strongevidenceof icosahedralordering nearthe glass transitionin a one-
componentsystemwith amore complicatedpair potential.Therearealso recentsimulationswith
a realistic interactionsfor methanolby Sindzingreand Klein [323], and for ortho-terphenylby
WahnströmandLewis [324].

Baschnagelet al. [325] performedMonte Carlo simulationsof a lattice model for a polymer
melt. In this model oneelementarystep consistsof moving one polymer segmentabout a lattice
constantandconsequentlyamuchlargertime-windowandsmaller statisticalerror is availablefor
the long-timedynamicsthanfor usualMD or BD simulationswhereoneneedsmuchmoretsepsfor
suchamovement.Oneshouldkeepin mind that the Monte-Carloshort-timedynamicsis fictitious.
The conclusionof section7.2, however,indicatesthat the explicit form chosenfor the short-time
dynamicsis irrelevant if one is only interestedin qualitative featuresof the long-time dynamics.
This motivatesthe usageof simplified dynamicalmodels in order to speedup the calculation
of the long-time dynamics.This idea was also usedby Kob andAnderson [326] who studieda
non-deterministickinetic lattice-gasmodelto simulatelong-timerelaxation.Their resultsessentially
supportpredictionsof modecouplingtheory.Finally wementionsimulationalstudieswhich directly
focuson ergodicityof supercooledliquids by Thirumalaiet al. [327,328].

8. Conclusions

8.1. Summary

For meltingand freezing phenomenain atomicandcolloidal systems,various aspectsof theory,
computersimulationandexperimentshavebeendiscussed.Both static anddynamicalphenomena
havebeenconsideredof bulk phasesand interfacesbetweentwo phases.Particularemphasiswas
put on the following points:
— Colloidal suspensionsrepresentexcellent realizationsof classical Statistical Mechanicssystems
with many advantagesover atomic systems.A direct comparisonof the experimentalmeasured
structurewith predictionsfrom theoriesandsimulationsof classicalStatisticalMechanicsis possible.
— Within the density functional approach,onecan constructa theory offreezingwhich is based
on the liquid state.Although it is somewhatad hoc, it works well for strong repulsivepotentials
and is suitable to calculate bulk phasediagramsas well as the structureof interfacesand other
inhomogeneoussystemsfrom first principles.
— Melting of asolid canbe initiatedat its surface.Surfacemeltingoccursfor quite alargenumber
of differentmaterials.Details of this cooperativephenomenondependsensitivelyon the natureof
the interparticleforcesandon the surfaceorientation.
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— Interfacial kinetics nearthree-phasecoexistencecan exhibit some interestingdynamicaleffects
includingasplitting instability by whicha macroscopicportionof a metastable phase canbe created.
— Crystal growth from its melt is hinderedby diffusion of the emerginglatent heatwhich leadsto
differentscalinglaws for the growth velocity.
— A supercooledliquid undergoesa kinetic glass transition which manifestsitself microscopically
as a dynamical crossoverfrom hydrodynamic relaxation to a relaxationby thermal activated
particlehopping.For longtimesthe relaxationseemsto beratherindependentof thecorresponding
short-timedynamicsimplying that it is quite similar for colloidal andatomicliquids.

8.2. Outlook

In the following some interestingnovel trendsas well as some open problemsin the areaof
melting and freezing are listed up. Both, simple liquids andmore complex liquids (which were
beyondthe scopeof this review) are briefly addressed.

8.2.1. Simpleliquids
In agravitational field, colloidal suspensionsexhibitasedimentationdensityprofile. By inversion

of this profile one can extractthe completeisothermalequationof state [329,330]. For charged
colloids and high salt concentrationthe experimentaldensity profiles are very similar to that
expectedfor hard spheresalthoughthereare still someproblemsin interpretingthe dilute wing of
the densityprofile [331]. Until now there is no theory for the sedimentationdynamicswhich is
alsodirectly accessiblein experiment.Also crystallizationeffectsat the bottomof thesedimentation
tubearepresentlyinvestigated.

It is difficult to preparestrict two-dimensionalsystemsin nature. Typical examplesare rare
gasfilms on graphite.Another promisingsystemresultsby confining chargedcolloidal particles
betweentwo parallel chargedplates. This yields a very good realizationof a quasi-2dliquid on
a mesoscopiclength scale.The greatadvantageis that real-spacemethodsare applicable,i.e. one
can obtain typical particle configurationsin real spaceby direct image processing,see e.g. ref.
[332]. Structural and dynamical quantitiesare well-describedby an effective two-dimensional
Yukawapotentialand two-dimensionalBrownian Dynamics [333] and in principle a quantitative
comparisonwith the experimentalresultsis possible.The melting processis fundamentallydifferent
in two dimensionssinceit maybe mediatedby ahexaticphasewith orientationallong-rangeorder.
With thesecolloidal model systems,onecan hope that the (non-)existenceof ahexaticphaseis
clarified in nearfuture. Also the phasediagramfor hard disks is still controversial:the rigorous
proof for the non-existenceof long-rangepositional order in 2D-systems[54] doesnot apply to
hard disks. Computersimulationalstudiesfor large systemsizesarestill not conclusive [334,335]
and the validity of densityfunctionaltheories[64, 81,336,337, 108] is apriori unclear.

The two-dimensionalana!ogonto surfacemeltingof a 3d crystal is line-melting of a 2D crystal.
The existenceof this effect seemsnow to be establishedin experimentson e.g. low-coveragerare
gas layers on graphite [338,339].

Anotherquestionconcernsatheory for the dynamics of a concentrated colloidal suspension treating
properlysolvent-mediatedhydrodynamicinteractions.At present,thereis a lot of researchfocussing
on a consistenttheoreticalexplanationfor suchdynamicaleffectsincluding theexperimentalfacts.

The validity of the Yukawapair potentialasamodelfor concentratedcharge-stabilizedcolloidal
suspensionwas recently checkedby “ab initio” simulationsthat combineMolecular Dynamics
for the macroionsand classical density functional theory for the counterions[7, 340,34!]. In
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Fig. 8.1. From simple liquids to supramolecularaggregates:differentkindsof fluid with increasingcomplexity (schematic).
Sincethereis no exactmeasurefor complexity, the arrowonly gives a generaltrend.

this adiabaticapproacheffectivecounterion-inducedmany-bodyforcesbetweenthe macroionsare
included.It was found that an effective Yukawa-modelreproducesthe pair-correlations[342]. In
general, however,the Yukawa parametersdiffer from that of the classicDLVO theory.Much less
understoodis the influence of a discretesolvent on the effective pair interaction which may be
relevantfor micellar particles.

Details of the meltingprocessat solid surfacesare still unclear.An interestingquestionis that
of edge-melting.a two-dimensionalsolid surfacenecessarilyhasone-dimensionaledgesandsteps.
Thequestionis whetherthe surfacemelting processis initiated first at this one-dimensionalline or
whetherthe solid surfacemelts as a whole.

8.2.2. Complexliquids
One main focus for future developmentswill be the extension of theories, simulations and

experimentsfrom simple to more and more complexsystemswhich have a richerphasediagram
with new bulk phasesand a correspondinglymore complexinterfacial behaviour.In this review,
we haveconsideredrigid spherical colloidal particles. In the direction of increasingcomplexity,
futurework shouldput emphasison mixturesof colloidal spheres,rod-like particlesforming liquid
crystals,polymers,etc.The increasingcomplexityis visualizedin fig. 8.1. In particular,as regards
theory,densityfunctionaltheory will be usedto studythe structureandphasediagramof several
kindsofliquids with increasingcomplexity.As the complexity increases,lessinformationsfrom the
liquid stateareknown, and the constructedfunctionalsbecomelessaccurate.

One canpreparebinary mixturesof sterically stabilizedcolloidal suspensionswhich representa
two-componenthard spheremixture characterizedby the ratio a of their two diametersand their
volumefractions~A and~1B.The phasediagramof suchmixturesdependson thesethreeparameters
andis thusmuchmorecomplicatedthanthat of a simplehard-spheresystem.The investigationof
the different phasesin hard-spheremixturesis an excellentexampleof how recentresearch,makes
progressinvolving experiments,computersimulationand densityfunctional theory at the same
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time! Detailedexperimentaldata for the phasediagramwere obtainedfor a = 0.58 by Bartlett et
a!. [343], including an AB2 phaseand evenan AB13 super!attice.The latterphaseis familiar in
metallic alloys (e.g. NaZn13)and consistsof a simple cubic lattice of A particles. In the middle
of eachA-cube, aB-particle surroundedby an icosahedralcluster of other B’s is found. The full
unit cell consistsof eight suchsub-cellswith neighbouringicosehedraalternatingin orientationby
90°.Extensivecomputersimulationsby Eldridge et al. [344,345] confirm the existenceof this
AB13 superlatticeas astablebulk phasein the phasediagramevenin a region wherepureexcluded
volume considerationswould predict a phaseseparationinto a close packedA and B crystal. In
parallel, a densityfunctional theory was proposedwhich reproducedAB13 superlatticeformation
[346].

A strongly asymmetrichard-spheremixture (a —~ 0 for fixed flA and ~B) is amodelfor sterically-
stabilizedcolloidal particlesin asolvent,wherethe solventis modelledas smallspheres.Computer
simulationsare extremelydifficult for such highly asymmetricmodels.A liquid integral equation
studywith the Rogers—Youngclosurepredictsphaseseparation[3471which is apriori unexpected
for a systemwhich is governedby purely repulsive forces. The physical picture is that due to
excludedvolume effects the smallspheresinduce an effectiveattractionbetweenthe largespheres.
Now experimentalresearchis alsolooking for this phaseseparation.

The glass transition in a hard spheremixture is also non-trivial as a function of a. For a
oneexpectsthe same scenarioas for a simple one-componentsystem. On the other hand, for
smalla, only thebig spheresshouldfreezeinto a glassymatrix whereasthe smallerspheresremain
liquid. Consequentlytheremustbe a transitionat intermediateabetweenthesetwo extremecases.
Although thereare somemodecouplingtheory studies[348], it is still an openquestionwhether
this transitionis continuousandconnectedto a tunnelingprobability of the smallspheresbetween
the matrix of the largespheresor not.

Finally we mentionlessrecentdensityfunctionalstudiesfor two-componentfluids including hard
spheres[349—354],ionic [355—357] andLennard-Jonesmixtures [358].

The next level of complexity consistsof mu!ticomponentor po!ydisperseliquids which was
alreadybriefly discussedin section 1.3. Density functional theoriesfor polydispersehard spheres
[359,360] havebeenconstructedin order to studythe influenceof polydispersityon the freezing
transition.

In liquid crystalsanadditionalorientationa!degreeof freedomis present.Onehasmainly focussed
on simplemodelslike hard-rodsor hard ellipsoids.We mentione.g.the densityfunctionalworksof
Holyst andPoniewierski[361—365],andothers[366—370],as well as the computersimulationsof
VeermanandFrenkel [371] providing thecompletephasediagramof sphero-cylinders.Again, the
bestcharacterizedexperimentalsystemsarecolloidsrangingfrom concentratedaqueoussuspensions
of tobacco-mosaicviruses (TMV) [372] or bacteria! fd viruses [373] to cylindrical micellar
aggregatesandellipsoidal polystyrenelatex particles. Recentexperiments,mainly for TMV, have
revealeda complexphasediagramwith many different liquid-crystalline phases.Theoreticallythe
interactionbetweenchargedcolloidal rods like TMV has to be describedby a Yukawa-segment
model [374—376]which is more complicatedthanthatof hard sphero-cylinders.Until now, there
areno theoreticalandsimulationalresultsfor the phasediagramof aYukawa-segmentmodel.

In molecular liquids, the moleculescan be assumedto be rigid or to exhibit certaininternal
degreesof freedom. There are extensiveMolecular Dynamics simulationsand experimentsfor
manydifferentmaterials.For adensityfunctional studysee e.g.ref. [377].

Finally, flexible supramolecularaggregates,like micellesor polymers, in genera!have an even
higherdegreeof complexityif onedescribesthem on amicroscopicbasis.Usually,one assumesthat
the lengthof apolymerchainsis muchbiggerthanits diameterwhich reducesagainthe complexity.
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Polymerdynamics was recently successfullystudiedby computersimulation, see e.g. ref. [378],
andalsodensityfunctionaltheory was appliedto polymer chains[379].

Summarizing,the applicationof classical statisticalmechanicsto complex systemswill remain
an interestingandimportantareaof future researchin order to contactmore andmore complex
molecularandcolloidal systemssuchas paint, milk andink. Onecanexpectthatnewstructuraland
dynamicalphenomenain complex systemsarediscoveredwhich thenmayevenlead to important
industrialapplications.
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