PHYSICS REPORTS (Review Section of Physics Letters) 237, No. 5 (1994) 249-324. PHYSICS REPORTS
North-Holland

Melting, freezing and colloidal suspensions

Hartmut Lowen
Sektion Physik der Universitiit Miinchen, Theresienstr. 37, D-80333 Miinchen, Germany

Received September 1993; editor: M.L. Klein

Contents:
Introduction 251 4.4, Simulations of surface melting 290
1. Classical statistical mechanics 252 4.5. Crystallinities in the quasiliquid film 291
1.1. Basics and definitions 252 4.6. Influence of gravity on surface melting 293
1.2. Realizations of classical statistical mechanics 4.7. Equilibrium shapes of crystals near the triple
systems 254 point 294
1.3. Polydispersity in colloidal suspensions 258 5. Dynamics of interfaces 295
1.4. Atomic versus colloidal systems: analogies 5.1. Ginzburg-Landau-type models for interfacial
and differences 259 dynamics 295
1.5. Questions of classical statistical mechanics 261 5.2. Exactly soluble models 297
2. Criteria and theories for freezing and melting 271 5.3. Dynamics of surface melting 298
2.1. Phenomenological criteria for freezing and 5.4. Dynamical mechanism for the formation of
melting 271 a metastable phase 299
2.2. Theories for freezing and melting 273 6. Heat diffusion limited crystal growth 301
3. Density functional theory 274 6.1. Phase field model: introduction 301
3.1. Fundamental aspects 275 6.2. The phase-field model: basic equations 301
3.2. Approximations for the density functional 277 6.3. Phase-field model: review of results 304
3.3. Calculation of bulk phase diagrams 279 7. Kinetic glass transition and colloidal suspensions 307
3.4. Density functional theory of interfaces 281 7.1. Kinetic glass transition for atomic liquids 307
3.5. Other applications of density functional 7.2. Kinetic glass transition for colloidal liquids 309
theory 283 7.3. Some further recent developments 312
4, Surface melting 284 8. Conclusions 313
4.1. Introductory remarks 284 8.1. Summary 313
4.2. Experiments on surface melting 286 8.2. Outlook 314
4.3. Theoretical approaches 287 References 317
Abstract:

Melting and freezing are very common phenomena in everyday life. This review focusses on the statistical mechanics of
these ubiquitous phase transitions and highlights recent work on the bulk and surface melting of solids, crystal growth from
the melt, and the kinetic glass transition of supercooled liquids. Both phenomenological and microscopic density functional
approaches are discussed. Particular emphasis is placed on colloidal suspensions, which are realizations of simple liquids on
a mesoscopic length scale that also exhibit melting and freezing phenomena.

0370-1573/94/$ 26.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI0370-1573(93)E0043-N



MELTING, FREEZING AND COLLOIDAL
SUSPENSIONS

Hartmut LOWEN
Sektion Physik der Universitat Miinchen, Theresienstr. 37, D-80333 Miinchen, Germany

H
FE
[=)

NORTH-HOLLAND



Introduction

One of the best known phase transformations is the melting of a solid or freezing of a liquid into
a crystal or a glass. This important phase transition occurs in quite different situations ranging from
ice formation in clouds and the preparation of rapidly quenched metallic alloys to the production
of window glass. During the last centuries a lot of technical experience in quite different areas has
accumulated where freezing and melting phenomena are exploited in order to facilitate everyday
life. Despite of this rapidly increasing empirical and phenomenological knowledge it is only since
the last decades that molecular aspects were addressed aiming to a microscopic understanding of
the solid-liquid phase transfcrmation. Important recent progress was made using three different
methods:

(i) well-aimed experimental studies, in particular scattering experiments with a resolution on a
microscopic length and time scale,

(ii) computer simulation starting from relatively simple models for the inter-particle interaction,

(iii) microscopic and semi-phenomenological theories capturing the essential physical mechanisms
relevant for the thermodynamics and dynamics of melting and freezing.

It is enormously difficult to construct a general comprehensive picture of three-dimensional
melting and freezing phenomena. There are at least two reasons for that. Firstly, the melting
transition is first order, accompagnied by a density jump, which means that it is highly non-
universal, i.e. the detailed scenario depends on the kind of material considered. Secondly, the
solid-liquid transition typically occurs in concentrated, strongly interacting systems. This implies
that it is a collective phenomenon of a many-particle system.

As regards experiments, bulk phase diagrams of monatomic materials are well-studied and pre-
cisely known. The bulk melting temperature of lead under atmospheric pressure, for instance, is
known with a relative uncertaincy of less than 10~3! What is less clear are effects at the surface
between a coexisting liquid and solid, and also dynamical (time-dependent) processes which happen
on a small and intermediate time scale. Among these questions are crystal growth from the melt,
dynamics of glass formation in the supercooled liquid, surface melting of solids etc.

Computer simulations are designed for a relatively small system size with N = 100-100000
particles in a box with periodic boundary conditions. They are very helpful and a necessary tool
in order to get “exact” results for a well-defined model in the framework of statistical mechanics.
Usually the interactions between particles are specified as an input. By computer simulation
bulk phase diagrams, structural and dynamical quantities and also interfacial problems could be
addressed. The main caveats are limitations due to finite system size and statistical errors.

Microscopic theories for freezing and melting based on statistical mechanics are still very rudi-
mentary. Strictly speaking, there is to date no general theory of melting and freezing. Even a simple
exactly soluble statistical mechanics model with nontrivial interactions is missing where one could
study the melting process as a paradigm. Also there are no rigorous results from mathematical
physics even for relatively simple (e.g. Lennard-Jones) systems. There is no rigorous proof for the
existence of a liquid and solid phase in three spatial dimensions. However, in developing a general
theory, an important step was recently done in viewing freezing as a condensation of liquid density
modes within the framework of classical density functional theory. This theory is quite general but
still a bit ad hoc. Nevertheless it makes some reasonable predictions for certain model systems.
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This review focusses on recent molecular aspects of melting and freezing including experiments,
computer simulations and theory. A particular emphasis is put on the structure and dynamics of
solid-fluid interfaces and the diffusion of the latent heat in solidification examined on the basis of
classical statistical mechanics. In parallel, special attention is paid to colloidal suspensions which are
simple liquids on a mesoscopic length scale. Colloids also exhibit all kinds of melting and freezing
phenomena and represent excellent experimental systems for simple models of classical statistical
mechanics such that sometimes even a quantitative comparison between experiment and theory is
possible.

The article is organized as follows. In chapter 1, we review some of the basic of classical statistical
mechanics and discuss some intrinsic properties of atomic and colloidal systems. In chapters 2 and
3, both phenomenological and microscopic density functional theories of bulk melting are described.
In chapter 4 the melting of a solid from its surface close to the triple point is studied. In contrast
to bulk melting, surface melting can occur at temperatures where the bulk liquid phase is still
metastable. The dynamics and kinetics of interfaces are discussed in chapter 5, with emphasis on
the dynamics of surface melting and a dynamical mechanism for the creation of metastable phases.
Recent results on crystal growth, hindered by thermal diffusion of the latent heat, are then described
within a phenomenological phase-field model in chapter 6. Finally we consider the kinetic glass
transition in supercooled atomic and colloidal liquids and conclude with a summary and an outlook.

1. Classical statistical mechanics

For conceptual and notational clarity let us consider only simple systems interacting via a pair
potential. Realizations of such systems in nature are found both on an atomic and mesoscopic level.
They include rare gases and ions for which a Lennard-Jones respectively a Coulomb pair potential
is an adequate description, and colloidal suspensions. For the latter one has to distinguish between
sterically stabilized colloids with a hard core interaction, and charge-stabilized suspensions, whose
interaction may be described by an effective Yukawa potential. Interesting fundamental questions
which form an area of intense recent research concern the bulk phase diagram, and the structure
and dynamics of a given bulk phase and of interfaces between two bulk phases. A particularly rich
behaviour is expected near the coexistence of three phases.

1.1. Basics and definitions

A classical many-body system consists of N particles, confined to a volume V, and is also
characterized by a temperature 7. The number N is much larger than 1 and typically of the order
of 10?3 for an atomic system. A simple criterion, to decide whether an atomic system can be
considered as classical, is the ratio of the thermal de Broglie wavelength A and a typical nearest
neighbour separation a = p~!/3 where p = N/V is the particle number density. The de Broglie
length A is defined as

A= \/h2/21zkaT (1)

where m is the particle mass, 4 is Planck’s constant and kg Boltzmann’s constant. It turns out that
all of the heavier atoms (except H;, He of course) have a ratio 4/a <« 1 at “moderate” conditions,
which means that quantum corrections are negligible.
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In the following, only simple systems are considered, i.e. one-component systems with particles
interacting via pairwise forces derivable from a spherical symmetric potential ¥V (r), r denoting the
mutual particle distance. The classical Hamiltonian Hy therefore reads

Hy = Hyjn + Het + U (2)
where

N

Hy, = Zp%/Zm, (3)
i=1
N

Hext = Z Vext (ri), 4)
i=1

1 N

Us=5 S v(ri-rD. (5)

Lj=Li#j

Here, p;, r; are the momenta and positions of particle i and Ve (r) denotes an external potential
e.g. gravity or external walls confining the system.

The central quantity in classical statistical mechanics is the equilibrium canonical probability
density wy ({p;},{ri};i = 1,..., N) for N particles at temperature 7" which is defined as

wy ({p;}, {ri}) = Z ' exp(—Hn/ksT) (6)
where the normalization factor Z is the canonical partition function
Z = TI‘NCXp(—HN/kBT). (7)

Here, Try denotes a classical trace

Try () = ﬁ/dm---/d3rN/d3p1-~/d3p~ (o). (8)

Z is related to the canonical free energy F by
F = —kBTan. (9)

It is clear that F depends on the three external quantities 7, V, N. In the thermodynamic limit
N,V — o0, N/V = p = const., F is an extensive quantity for Ve (r) = 0, i.e. the canonical free
energy density f = F/V only depends on T and p. For further purposes it is useful to introduce
a short notation for the statistical configuration average. We write

(A({p} {ri})) = Tealwn (.}, {riH)A{p}, {riD]. (10)

An important and fundamental quantity is the equilibrium density po(r) which is the statistical
average of the particle positions

N
po(r) = <Zs(r—n>>. (11)

i=1
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One can often distinguish different thermodynamic phases by qualitatively different equilibrium
densities, then py(r) plays the role of an order parameter.

For theoretical and practical reasons it is often more convenient to move from the canonical
to the grand canonical ensemble by a Legendre transform with respect to N. One arrives at a
grand canonical partition function £ depending now on 7T, V' and the chemical potential 4 which
can formally be interpreted as the Lagrange multiplier for the constraint of fixed averaged particle

—

number. = is defined as

E =Y Tryexp(—Hy — uN/ksT) (12)
N=1 .

and the corresponding grand canonical free energy 2 reads
Q= —ksTInE. (13)

Its density w = Q/V only depends on 7 and p in the thermodynamic limit. This ensemble
can be shown to be “equivalent” to the canonical description in the thermodynamic limit. The
physical significance of the grand canonical free energy £ is that it represents the key quantity
for a calculation of a phase diagram. It also obeys an important variational principle that we shall
discuss in section 2.1. The definition of (---} for a statistical average, see eq. (10), can be easily
generalized to the grandcanonical case, now with a trace

Tr() = Y Try(-) (14)
N=1

and with an added term —uN in the Hamiltonian. In the thermodynamic limit, the results do not
depend on the kind of ensemble one choses for the average. The definition of py(r) for instance,
see (11), can therefore also be read as in the grandcanonical ensemble including now an additional
sum over N.

Apart from trivial noninteracting cases (V (r) = 0), the trace operation in (8) and (12) cannot
be done explicitly in three spatial dimensions. Analytical results are sparse in classical statistical
mechanics, even for very simple models.

1.2. Realizations of classical statistical mechanics systems

In this section, we discuss systems in nature that are described by a pairwise radial symmetric
potential V (r). There are both realizations on a microscopic and on a mesoscopic length scale,
namely atomic and colloidal systems, although there are some caveats since often the systems
intrinsically contain also higher-than-two-body interactions.

1.2.1. Atomic systems

At very high temperature, atomic or molecular systems do not feel details of the interactions but
only the strong Born repulsion due to overlapping electronic shells of two neighbouring particles.
In such a situation, it is often sufficient to describe the interaction by a repulsive pairwise potential
or — even more approximate — just by a hard sphere interaction

o forr<ao.
— s 15
Vs (r) {0 forr>o. (15)
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The experimental measured structure then can be fitted by just one parameter, the effective diameter
o of the system. The hard-sphere interaction is the simplest nontrivial interaction one can think
about. Due to its scaling behaviour AVys(r) = Vus(r) for any positive 4, it has relatively simple
thermodynamic properties. However, it is clear that this potential remains a caricature for the
interaction of atomic and molecular liquids. At moderate conditions and at relatively high density,
the interaction is certainly more complicated than the hard-sphere model. It normally also includes
more than two-body interactions, due to a mutual polarization of the electronic clouds if three or
more particles are present.

Rare gases have spherical symmetric electronic shells and can, at moderate conditions, be described
by the Lennard-Jones pair potential

V(r) = 4e[(a/r)'? - (a/r)8] (16)

which includes the repulsive as well as the attractive van der Waals interaction. Here, o sets the
microscopic length scale and & the energy scale of the Lennard-Jones potential. (¢ should not be
confused with the hard sphere diameter of the potential (15).) A more refined version of a pairwise
potential for rare gases, the so-called Barker potential [1], is also available. However, at high
concentration and in strongly inhomogeneous situations, triplet forces become important which are
usually incorporated by the Axilrod-Teller three-body potential [2, 3].

The interaction of ions in a homogeneous non-responding electronic background is dominated by
the Coulomb repulsion. The one-component classical plasma (OCP) is defined by the potential

V(r) = Vao/r (17)

where o again sets the length and ¥ the energy scale. Molten salts represent another simple
though two-component system where the Coulomb interaction is dominating. In such a mixture of
oppositely charged ions, a pair potential with a 1/r tail and a repulsive e.g. hard core part is an
appropriate description of the interaction.

The case of monatomic metals is more difficult due to the extended nature of the conduction
electrons. The latter clearly directly induce many-body forces between the ions at least at high
densities. A similar situation occurs for semiconductors. What one can do here is to find an effective
pair potential that depends on the thermodynamic parameters (e.g. temperature 7 and density
p). By now there exist suitable tabulations of effective pair potentials for most of the simple
monatomic materials, giving a structure which is very close to the experimental data (4]. Of course,
this effective pair potential description fails in strongly inhomogeneous situations as for a liquid-gas
or solid—gas interface. At this stage, it is useful to point out that there are recent ab initio theories
combining quantum mechanical density functional theory for the electrons and molecular dynamics
for the ions, by which one can simulate the structure and dynamics of crystalline and disordered
metals and semiconductors. This very attractive and widely applied scheme includes systematically
many-body forces and compares favorably well with the experimental data. It was invented by Car
and Parrinello in 1985 [5].

1.2.2. Colloidal systems

A colloidal suspension consists of mesoscopic particles, with a diameter o typically varying
between 10~ and 10~* m, which are dispersed in a suspending microscopic fluid. There are lots of
examples for such dispersions including gelatin sol, solutions of proteins, soap and microemulsions.
Well-characterized experimental model systems are aqueous suspensions of polystyrene spheres
and polymethylmethacrylate (PMMA) macromolecules. Such a suspension of “macroparticles”
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"entropic"
repulsion

Fig. 1.1. Colloidal particles (big spheres) characterized by a Fig. 1.2. Sterically stabilized colloidal particles with a di-
mesoscopic diameter ¢ and a mass M, which are dispersed ameter ¢ which are coated by polymer brushes. Typically
in a suspending atomic liquid (small spheres). the length of the polymeric chains is much smaller than

the colloidal diameter. If two colloidal particles come very
close to eachother, the polymer brushes overlap and a repul-
sion of entropic origin prevents the particles from sticking
together.

embedded in an atomic liquid is sketched in fig. 1.1. Since the mass M of the colloidal particles
is much bigger than the atomic mass of the solvent, there is a complete separation of time scales
of colloidal and solvent motion. The latter is of the order of 0.1 ps whereas the motion of the
big particles happens on a time scale of about 1-10000 ns. Furthermore, it becomes clear that a
typical trajectory of a particle is Brownian on a time scale relevant for macroion motion, due to
random kicks with the solvent. This is very different to the atomic case where a particle trajectory
is smooth and obeys Newtonian or molecular dynamics. This difference has important implications
on time dependent quantities in atomic and colloidal systems.

Let us now focus on the forces between the colloidal particles. The first contribution naturally
stems from the van der Waals dipole-induced-dipole attraction. This attraction diverges at particle
contact and vanishes as 7~ for intermediate and as r—7 for very large interparticle distances r. Would
this be the only interparticle interaction, a coagulation instability would result where the particles
stick together and form a large cluster. Only the strong Born repulsion of the contacting big particles
would prevent a complete collapse of the system. Therefore, to ensure the stability of a colloidal
suspension with respect to irreversible flocculation, an additional stabilizing force is needed. There
are two different stabilization mechanisms for colloidal systems: (a) steric stabilization and (b)
charge stabilization,

As regards steric stabilization, the colloidal particles are coated with polymer brushes which
leads to an “entropic” repulsion if polymer brushes of two neighbouring particles do overlap. This
is visualized in fig. 1.2. Since the length of a polymer chain typically is much smaller than the
colloidal diameter o, one can describe this repulsive force simply by the pairwise hard sphere
potential (15). The PMMA particles represent a paradigm of sterically stabilized colloidal particles.
By “index-matching” of the colloidal particles and the solvent, one can practically suppress the
van der Waals interaction such that the simple hard-sphere interaction dominates the interparticle
forces. Careful experiments on the structure and the phase diagram reveal that the interaction of
PMMA particles is really very well described by excluded volume effects only. Thus they represent
an excellent experimental system for the hard sphere model which existed until recently only in the
brains of the theoreticians! The characteristic parameter determining the bulk phase diagram and
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Fig. 1.3. A charge-stabilized colloidal suspension consists Fig. 1.4. Size-polydisperse colloidal suspension. The diam-
of macroions with a mesoscopic diameter ¢ and a charge Z eters of each big particle are not equal but distributed
of 100-10000 elementary charges, microscopic counterions around a mean value with a second moment that defines
with a charge of ¢ = 1,2 and the microscopic polar solvent the relative polydispersity.

shown as small dots. Here, the macroions have a negative
and the counterions a positive charge; this can of course
also be reversed. Two macroions repel themselves due to
the Coulomb repulsion of an overlapping electric double
layer.

the structure is the number density p = N/V of the big particles or the packing fraction
n = mnpa’lé. (18)

Due to the scaling property of the hard sphere potential, the temperature 7 only enters in the time
scale of dynamical processes. Interestingly enough, # can be varied experimentally from few percent
to 0.74, the limiting value for a densed packed fcc or hep crystal structure. So one can scan the
whole relevant parameter space experimentally.

On the other hand, a charge-stabilized colloidal suspension results when big particles with surface
radicals are put into a polar solvent like water. Most of the these charged surface groups dissociate
into the solvent and form counterions carrying one or two eclementary charges. Consequently,
the colloidal particles become highly charged and may be called macroions; they carry typically
Z = 100-10000 elementary charges. Essentially, the counterions are located around the charged
colloidal surfaces forming a diffuse electric double layer. Since the counterion distribution is diffuse
due to their finite temperature, screening of the macroions is imperfect and a screened Coulomb
repulsion between the macroions results. In fig. 1.3, such a charge-stabilized colloidal suspension is
shown as a three-component system consisting of macroions, counterions and the solvent. A typical
experimental system which forms a charge-stabilized colloidal suspensions is an aqueous solution of
polystyrene spheres. One fundamental problem in characterizing such a suspension experimentally
concerns the direct determination of the macroion charge Z. One can only get upper bounds on
Z by conductometric titration. If one compares experimental data with theories, one is therefore
forced to treat Z as a fit parameter. Typically, a charge-stabilized suspension is rather dilute,
i.e. the macroion packing fraction 7 is small (0.001-0.4). Nevertheless due to the high macroion
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charge, the interaction is very strong resulting in a marked structure. Such a very dilute system
can even exhibit crystallization. For packing fractions of about # ~ 0.3 the suspension represents
a concentrated strongly interacting system whose theoretical description is of course much more
complex than in the dilute case.

The question after the interaction between macroions has a long history. An explicit expression
for a pairwise potential incorporating corrections due to a finite macroion diameter ¢ was given
by Derjaguin, Landau, Verwey and Overbeck (DLVO) [6]. This DLVO potential was derived by
linear Debye-Hiickel screening theory and consists of an electrostatic and the van der Waals part.
The electrostatic part has the Yukawa or screened Coulomb form:

V(r) = Z*%e* exp(—xr)/er (19)
where ¢ is the dielectric constant of the solvent and
K = \/47zpc(qe)2/skBT (20)

is the inverse Debye-Hiickel screening length, p. denoting the mean counterion number density
and ge their charge. Furthermore the renormalized charge Z* is related to the bare charge Z via

. exp(xo/2)
=7, (21)
If p = N/V is the number density of macroions, global charge neutrality requires
Zp = —qp.. (22)

The celebrated DLVO potential is an effective pair potential between the macroions. The complex
three-component system has been reduced to a one-component system. The discrete nature of
the solvent has been neglected completely. It only enters via its dielectric constant ¢ in the
effective potential. The counterionic degrees of freedom have also been integrated out approximately.
They determine the screening parameter x. In addition, the DLVO potential depends on the
thermodynamic parameters like the temperature T and, via (22), the macroion density p.

Although the description via the effective DLVO-pair potential is expected to work for very dilute
suspensions, the assumption of linear screening must break down for concentrated suspensions. In
particular, one would expect that effective many-body forces on the macroions, induced by the
counterions, become relevant [7].

In order to reduce the screened Coulomb repulsion between the macroions in a charge-stabilized
colloidal suspensions, one usually adds salt to the solution. If the ions of the salt have the same charge
g as the counterions, the colloidal suspension consists of four components: macroions, counterions,
coions and the solvent. Within DLVO-theory, one can again find an effective pair potential between
the macroions. In the high dilution limit, the effective interaction remains Yukawa-like, see (19),
but the inverse Debye screening length x is enhanced to

k= 1/ 147(qe)2/eks T (Peq?e® + peod?e?) (23)

where p.o = Neo/V is the coion concentration.

1.3. Polydispersity in colloidal suspensions

In a real colloidal suspension, the particles are not identical but differ in size and charge. This
property is called polydispersity. Polydispersity makes a direct comparison of experimental data
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with that of simple liquid models difficult. Therefore one has to introduce more complex models.
Polydisperse fluids can also be viewed as infinite-component mixtures.

1.3.1. Polydispersity in size
For sterically stabilized colloidal suspensions, polydispersity in size is conveniently described by
the hard sphere potential between two particles i and j

Lo, .
V() = {0 forr< bl + o, (24)

where the particle diameters {5;} are now continuously distributed according to a distribution
function P(c) with a mean diameter

o0
E=/®Hﬂa (25)
0
and a relative polydispersity p, as the second moment of the distribution
o 1/2
Do = %/da (6 -7)*P(o) ) . (26)
0

Such a size-polydisperse suspension is sketched in fig. 1.4,

1.3.2. Polydispersity in charge

In a charge-stabilized colloidal suspension, there occurs both, polydispersity in size and charge.
Such a polydisperse suspension is shown in fig. 1.5.

Assuming the DLVO potential (19) for the interaction between macroions, it is the effective charge
which is continuously distributed. Note that within linear screening theory, the Debye screening
parameter k¥ (20) remains unaffected by polydispersity. Hence the corresponding potential is

V,~,~(r) = ZiZ,-erxp(—xr)/r = Z,-Z,-U(r) (27)

where now the effective charges are distributed according to a function P(Z) and one can again
define a mean value Z and a relative charge polydispersity pz as the first and second moment of
the distribution P(Z).

1.4. Atomic versus colloidal systems: analogies and differences

The main analogy between atomic and colloidal systems is that they both represent classical
statistical mechanics systems whose interactions can be described in terms of a pair potential.
Consequently, theories known from statistical mechanics can be applied to both kind of systems.
The first important difference is that the parameters of the pair potential can be funed in the
colloidal case, e.g. by adding salt or by sample preparation, whereas they are fixed for atomic
systems. This permits an flexible exploration of the relevant parameter space.

As already emphasized earlier, _the inherent length scale (called ¢ in tohe previous section) is
different: it is microscopic (1-10 A) for atomic and mesoscopic (100-10% A) for colloidal systems.
Thus, the structure and the phase diagram is expected to be similar in the two cases, but it occurs
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Fig. 1.5. Charge-stabilized colloidal suspension which is Fig. 1.6. Shape of the different pair potentials used to
polydisperse in size and charge. This leads to a polydisper- model various simple systems of classical statistical me-
sity in the effective charge within the DLVO-picture where chanics: hard-sphere potential (dot-dashed line), Lennard-
the interaction between the macroions is described by a Jones potential ¥ (r) = 4¥,[(a/r)'?—(a/r)6] (solid line),
Yukawa potential. OCP potential ¥V (r) = Vyo/r (dashed line), and Yukawa

potential V (r) = Vy(a/r)exp(—«k(r —o)/g) with k = 2.
Here, o denotes a length scale and V; an energy scale.

on a different length scale. Experimentally, the mesoscopic length scale implies that diffraction
experiments of visible light rather than X-rays are necessary in order to explore the structure. There
are also real space techniques like direct image processing which are only possible in the colloidal
case.

The time scale relevant for dynamical processes of the atomic or colloidal particles is different,
too. For an atomic system, one typically has a relaxation time of 0.1 ps whereas this time is
shifted to 1-10000 ns for a colloidal suspension. This implies that dynamical phenomena like
crystal growth etc. may occur on a time scale more convenient for experimental resolution, which
constitutes another advantage of colloidal suspensions. The dynamics themselves, however, are
different: they are Newtonian (Molecular Dynamics (MD)) for atomic systems and Brownian
(BD) for colloidal suspensions. This has an important influence on time-dependent processes and
will be extensively discussed in section 1.5.3. For a concentrated colloidal suspension, the solvent
mediates hydrodynamic interactions, such that the actual dynamics of a colloidal system are much
more complicated than for atomic systems. Only in the dilute limit, the dynamics are simple
Brownian without any hydrodynamic forces. These hydrodynamic effects, however, fortunately do
not affect static structural quantities.

One disadvantage of colloidal suspensions is their intrinsic polydispersity in size and charge. By a
careful sample preparation, the polydispersity can be kept small, but cannot be always completely
neglected. In this case the much more complicated models discussed in section 1.3 have to be used.

Summarizing, we have discussed different realizations for classical statistical mechanical systems
in atomic and colloidal context. We found that the possible pair potentials are of hard-sphere,
Coulomb, Lennard-Jones and Yukawa form. The shape of these different potentials is plotted in
fig. 1.6 which clearly shows that they are qualitatively different. The phase diagrams and the static
and dynamical behaviour depends crucially on the detailed form of the interaction.
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1.5. Questions of classical statistical mechanics

1.5.1. Bulk phase diagrams

The first fundamental question concerns the nature of the different thermodynamic phases.
Henceforth let us set Ve (r) = 0; then the question is: How many and what kind of phases do occur
for a given interaction potential ¥ (r) as a function of the thermodynamical parameters temperature
T and density p (or chemical potential u)?

For a classical many body system, this is a nontrivial difficult question, in general. During the
last decade progress was made using the following methods:

(1) Computer simulation methods, mainly Monte Carlo and Molecular Dynamics codes.

(2) Experiments on well-characterized model systems (e.g. sterically stabilized colloidal suspen-
sions).

(3) Ab initio theories starting from first principles, i.e. with the pair potential V' (r) as the
only input. Up to now, there is no such generally applicable theory but there is some remarkable
progress during the last decade with so-called density functional theory that starts from the phase
with homogeneous density and then predicts a freezing transition into a solid.

The liquid to solid phase transition takes place along a coexistence line in the (7,u)-plane and
is first order, in general. It is also called melting or freezing transition depending on whether one
goes from the solid to the liquid state or vice versa.

As for example for the freezing transition, let us first consider purely repulsive potentials ¥ (r)
that are governed by one length scale o. Typical examples are inverse power potentials

V(r) = Vola/r)’, v>0. (28)

In this case, there are two phases: a crystal for low temperatures and a liquid for high temperatures.
For a liquid, the equilibrium density is a constant, pg(r) = p whereas in the solid the density
exhibits peaks on a regular lattice. The structure of the lattice at freezing depends on the “softness”
of the repulsion: it is face centered cubic (fcc) for hard repulsions, i.e. for v>6, and body centered
cubic (bcc) for soft cores (v<6). Thus a hard sphere system, formally obtained from (28) by
setting v = oo, freezes into an fcc solid. The transition is strongly first order with n, = 0.49 and
ns = 0.54 for the packing fractions of the coexisting fluid and solid phases [8]. On the other
hand, a one-component plasma (v = 1) freezes isochorically into a bcc crystal if the dimensionless
coupling parameter I' = (4np/3)/3aV,/ksT equals 180 [9]. The lattice spacing and the width of
the solid density peaks clearly depend on T and .

The softness of the Yukawa potential ~ exp(—k (r — a))/r depends on the screening parameter
k. For k = 0, one recovers the OCP case whereas for large x the repulsion becomes harder.
Correspondingly, as a function of x, the bulk phase diagram of the Yukawa system shows liquid,
bee and fec solid phases. This result was confirmed by extensive computer simulations [10, 11].

The Lennard-Jones potential (16) has also an attractive tail, In this case, there are three phases,
two of them with homogeneous density, namely the solid, liquid and gas phase. Most conveniently,
the phase diagram is shown in the (P, T)-plane, where P denotes the pressure. There are three
coexistence lines which meet at a triple point. Furthermore the liquid—gas coexistence line terminates
at the critical point. This is schematically illustrated in fig. 1.7.

1.5.2. The structure of a given phase
The second question addresses the detailed structural properties of a given thermodynamic bulk
phase. A basic static quantity is the two particle probability density p‘® (r,r’') that gives the joint
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Fig. 1.7. Schematic phase diagram of a Lennard-Jones po- Fig. 1.8. Qualitative shape of the pair distribution function
tential in the P — T plane. There are three phases solid, g(r) for a dense liquid (solid line), a gas (dot-dashed
liquid, gas meeting at the triple point (Pr,77). The gas— line) and an fcc solid (dashed line). In the latter case,
liquid coexistence line ends at the critical point. the spherical averaged pair distribution function is plotted.

The peaks correspond to next and further nearest neighbour
shells in the solid.

probability density to find a particle at position r and another particle at position r’. It is naturally
defined in the canonical ensemble as

N
pP(r,r) = < Z 5(r—r,-)5(r’—rj)> ) (29)

Lj=Lik]
By normalization, the pair distribution function g(r,r') is defined as
gr,r')y = p@ (r,r')/po(r)po(r'). (30)

For a homogeneous phase with density po(r) = p, g(r,r’) is a function only of the separation
jr —r'| and (30) can be rewritten as

e =L S s—t-r (31)
- (% =)

Lj=Li#&]
The pair distribution function plays a central role in the physics of liquids and solids. There are two
main reasons for that. Firstly, the Fourier transform of the pair distribution function is measurable
by scattering experiments. Secondly, for a homogeneous phase, thermodynamic properties of a fluid
can be written as integrals over g(r); so one can recover the free energies that determine the bulk
phase diagram. A famous example is the virial expression for the pressure P

_ _2mp Ty adV
P=IkaTp 13hT/mrmgm : (32)
0
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Whereas g(r,r’) shows long-ranged positional order in the solid phase, g(r) decays to 1 for large r
in a homogeneous phase. In a gas, g(r) ~ exp(—V (r)/(kgT)) does not exhibit marked oscillations,
but in a dense liquid it is strongly peaked around r =~ p~1/3, There are also less pronounced second
and higher order peaks at higher r which correspond to next and further nearest neighbour ordering
in the liquid. In fig. 1.8, the qualitative different shape of g(r) is shown for the gas, liquid and
solid phase.

Another important quantity is the direct correlation function c¢® (r,r') that is implicitly defined
by the Ornstein~-Zernike equation

hir,r'y = @ (r,r) +/d3r” po (P h(r,r"y @ (" r') (33)
with
hir,r') = g(r,r') - 1. (34)

For a homogeneous system ¢ (r,r’) and A (r,r') only depend on |r — r’| and the Ornstein-Zernike
relation reduces to

h(r) =c®r) + p/d3r' h()eP (Jr—r)). (35)
This can be solved by Fourier transformation
¢ (k) = /d3rexp(—ik -r)c® (r) (36)

to express ¢ (k) by A(k):
E@ (k) = h(k)/(1 + phik)) (37)

¢ (r) is typically negative for small r and approaches —~V (r)/kgT for large r.
Finally, one can also define the static structure factor S (k) by

S(k) =1 + ph(k) (38)

that is directly measured in scattering experiments. In a dense liquid, S(k) has its main peak at
k ~ 2np'/3 and is then oscillating and approaches 1 as k — co. An example of S(k) is shown in
fig. 1.9.

So our second question is: How can one obtain structural properties embodied in the functions
g(r), ¢ (r), S(k)? Firstly, of course, there are experimental scattering techniques. Another
possibility is provided by computer simulation. Thirdly, there are now well-established theories
(mainly integral equations in the liquid state) to calculate S (k) (or equivalently ¢‘?) (r), g(r)) for
a given pair potential V' (r). As an example, a very successfull theory for the structure of the hard
sphere system is the Percus-Yevick closure [12,13]. Combining the exact relation g(r) = 0 for
r < o and the approximation ¢ (r) = 0 for r > o, one gets an explicit expression for the direct
correlation function

@,y _ JO forr > o,
cpy () = {—A, + 6ndyr/o — ind(r/o)? else (39)



264 H. Léwen, Melting, freezing and colloidal suspensions

3
1
hard spheres hard spheres
7=0.48 0 =
. n=0.3 0.1
MR p=oa o m=r
T e
0p) s 201 n=0.3
Q
] n=0.48
-40
1
0.0 5 1.0 )
ko r/o
Fig. 1.9. Structure factor S (k) versus ko within the Percus— Fig. 1.10. Direct correlation function cg{) (r) versus r/o
Yevick approximation for a hard-sphere system. The results within the Percus-Yevick approximation for a hard-sphere
for three different packing fractions # = 0.1, 0.3,0.48 are system. The results for three different packing fractions
given. The main peak increases for increasing packing frac- n = 0.1, (upper curve) 0.3, and 0.48 (lowest curve) are
tion. given.

with 4y = (14 2#)2/(1 —n)*and 4, = (1 + 1n)%/(1 —n)* Here, 7 is the packing fraction of the
hard spheres, see (18), and ¢ is the hard-sphere diameter. This expression compares fairly well with
computer simulations up to packing fractions #<0.3. It is displayed in fig. 1.10 for three different

packing fractions. An improved version for ¢'?) (r) was given in refs. [14,15]. Also, the structure
factor S (k) of a hard sphere system was plotted within the Percus—Yevick approximation for three
different packing fractions in fig. 1.9. One advantage of the Percus-Yevick approximation is that
it can be solved also for a polydisperse hard-sphere fluid (24) [16,17]). As expected, it turns out
that the structure is smoothened out by polydispersity. This means, for instance, that the height of
the main peak of the liquid structure factor decreases for increasing relative polydispersity. On the
other hand, for a charge-polydisperse liquid, described by the Yukawa potential (27), much less is
known compared to the size-polydisperse case. The so-called mean-sperical approximation can be
handled analytically [18]. Recent attempts have focused on the applicability of more sophisticated
liquid integral equations [19,20)] and on a mapping to a size-polydisperse reference system [21].

1.5.3. Dynamics; time-dependent correlation functions

Until now we have only considered static quantities, i.e. time-independent correlations. Obviously,
one can also correlate quantities at different times provided the dynamics of the system are specified.
In a classical atomic system the dynamics are just simply Newtonian and are called Molecular
Dynamics (MD) which means that the particle trajectories in phase space obey Newton’s coupled
differential equations

dr;/dt = m™'p,, (40)
dp;/dt = F,, (41)
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Fig. 1.11. Typical trajectory of a particle in a dense liquid
for Molecular Dynamics. For a smooth pair potential, the
trajectory is smooth and an analytical function of the time
z.

with the force
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Fig. 1.12. Force autocorrelation function versus reduced
time ¢/t where 7 is a characteristic relaxation time, for a
Yukawa system. The solid curve is for Newtonian Dynam-
ics and the dashed curve for Brownian Dynamics. Note that
the shapes are completely different, although the same ther-
modynamic parameters and the same potential was used
for both curves.

S VAri=ri]) + Veulr) | . (42)

A finite difference version of Newton’s equations for the particle displacement is

ri(t + At = r;(t) + %pi(t)At + =A% + O(AF). (43)

F (1)
2m

A typical particle trajectory in a dense liquid is sketched in fig. 1.11. In particular, it is a smooth,
analytical function of time ¢ if the interparticle potential and the external potential are smooth. The
time-development of a general dynamical variable A(¢) depending on positions and momenta

A(t) = A{r:i (O}, {p; (D)})

is governed by the Liouville operator

N

dl'j 0 dpj 0
‘-Z(d—z'a—rﬁﬁ'm)
and explicitly given by

A(t) = exp(Lt)A(0).

(44)

(45)

(46)
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We can construct an autocorrelation function associated to the dynamical variable A4 that correlates
A(t) with A(0) by

Ca(t) = (4(0)A(1)) = (4(0) exp(L1)4(0)) (47)

where the average is now over the initial conditions {r;(0)}, {p;(0)}. Due to the time inversion
symmetry of Newton’s equations, we get the short time expansion

Ca(t) = C4(0) + O(£%). (48)

Among physical interesting examples is the velocity autocorrelation function

1 1 &
Z() = m<7v“§"f(°) -pj<z>>. (49)

The value of Z (¢) at t = 0 is 1 which can be derived immediately from the equipartition theorem.
In a solid, Z(¢) has long-lived oscillations associated with phonons. In a dense liquid, on the
other hand, Z (¢) decays to zero for large times, but has an oscillatory behaviour on a time scale
1 = y/mo?/kgT, where ¢ is a typical microscopic length scale. A second example is the force
autocorrelation function that is just the second time derivative of Z (¢):

N 2
Cr(1) = <%EF,~ (0) -Fj(t)>= _3ksTm (%Ezu). (50)
j=1

An example of the force autocorrelation in a dense liquid is plotted in fig. 1.12 (solid line).
According to (50), it exhibits oscillations on the same time scale as the velocity autocorrelation
function does.

Another important representative is the density autocorrelation in real space as well as in Fourier
space. If we take 4(¢) to be the density operator

N
A(t) = > 6(r—ri (1)) (51)

J=1

we can define the general density autocorrelation function

N
Co(t) = Cpr,r',t) = <Z 6(r—r;(0))o(r - r,~(t))> . (52)
ij=1
This can be splitted into a self (s) and distinct (d) part

Colr,r',t) = C2 (r,r', 1) + CV (r,7, 1), (53)
N

C,Es) (r,r',t) = <Z o(r—ri(0))o(r' —r; (t))> , (54)
j=1

N

O (rr, 1) = < S dr-v (0))6<r'—r,-(t>)> : (55)

Li=Li#)
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C,ﬁ” (r,r',t) (respectively C,fd) (r,r’, 1)) give the joint probability density to find a particle at position
¥ after a time ¢ and the same (respectively another) particle at position r for zero time. Obviously,
for ¢t = 0, the distinct part reduces to the static two particle distribution function p@ (r,r’) as
defined in the previous section.

By normalization, we obtain the van Hove correlation function

G(r,r',t) = Cy(r,r',t)/po(r)po(r') (56)
which also naturally splits into a self and distinct part
G(r,r',t) = Gs(r,r',t) + Gy (r,r',1). (57)

For a homogeneous phase, the distinct part of the van Hove correlation function is the time-
dependent generalization of the pair distribution function g(r)

1 N
Gd(r,z)=p—ﬁ< ) a(r—r,-(o>+rj(z>)>. (58)

Li=Li#]

Of course, G4(r,0) = g(r) and lim,_,,, G4(r,t) = 1 in a liquid, whereas the van Hove function
has frozen-in components for large times in a solid. The self part simplifies for a homogeneous
system correspondingly:

| /X
Gs(r, 1) = N <j=15(r—rj(0) + rj(t))>- (59)

For ¢t = 0, we get Gs(r,0) = d(r)/p and the long time limit is given by the hydrodynamic behaviour
Gs(r,t) = p~ ' (4nDpt)*? exp(—r?/4Drt) (60)

where

(1 /&
DL = tl-l-glo (E <j§l N(r,-(t) —r; (0))2>) (61)

is the long time diffusion coefficient. Again, for a solid, Dy is extremely small, and there is a frozen
structure for large times. The van Hove functions G,(r,¢) and G4(r,¢t) play an important role as
dynamical diagnostics of the kinetic glass transition in supercooled liquids.

Furthermore, one can take the Fourier transforms of Gs(r,t) and G4(r,t) with respect to r to
obtain the corresponding k-dependent structure factors Fy(k,t), Fy(k,t) which are defined as

1 & :

Fi(k.1) = ﬁj;(exp[lk - (7 (1) =7 (0))]), (62)
1 N

Fatkt) = % 3 (explik - (r; (1) = ri(0))). (63)

Li=tl#j
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Fig. 1.13. Typical particle trajectory in a dense colloidal liquid with Brownian Dynamics. The solvent kicks the colloidal
particle randomly on a time scale relevant for the big particles. Consequently, the trajectory is not smooth; there are no
particle velocities. This is completely different to the Molecular Dynamics case (fig. 1.11).

It is clear that Fy(k,0) = S(k), i.e. Fy(k,t) equals the static structure factor for ¢+ = 0. Further
Fourier transformation with respect to time ¢ then leads to the dynamical structure factors Ss(k, w),
Sq(k,w). The latter quantity is directly accessible in dynamical scattering experiments.

Mesoscopic colloidal systems, on the other hand, are embedded in a microscopic solvent and obey
irreversible Brownian Dynamics (BD) on a time scale relevant for the mesoscopic particles, due
to solvent friction. Consequently the velocities are not defined and do not occur as independent
statistical variables; just the positions occur in the partition function integral. For given interparticle
forces, the static properties are exactly the same for BD and MD, but the time dependence of the
correlation functions is different.

The irreversible coupled equations of motion read

dr;

édt

(1) = Fi(t) + R(z) (64)
where R denotes a Langevin random force and & the solvent friction coefficient.

In concentrated colloidal systems, hydrodynamic forces induced by the solvent are relevant. In
principle, they could be approximately included by replacing & by a 3N x 3N matrix depending
parametrically on the positions {r;} although the explicit form of this matrix is not known exactly.
Hence, also for simplicity, we shall take £ to be diagonal and constant in the following, which is a
reasonable assumption for dilute suspensions.

Finite difference integration of equations (64) leads to the BD algorithm [22,23]:

ri(t + At) = ri(t) + E'F ()AL + (Ar)r + O(AF) (65)

where the random displacement (Ar)gr is sampled from a Gaussian distribution of zero mean,
(Ar)r = 0, and variance (Ar)} = 6kaTAt/£. This should be contrasted with (43). A typical
trajectory of a colloidal particle is visualized in fig. 1.13. Hence, also on a short time scale (“short”
with respect to a typical time for the movement of the big colloidal particles) the motion is diffusive
with the short-time diffusion constant:

Do = ksT /¢ (66)

Dy provides a natural scale to measure the long-time diffusion coefficient Dy, defined by (61).
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The time development of any dynamical variable
A@) = A{r:(1)}) (67)

is now governed by the adjoint Smoluchowski operator

N
O =) &' [~0(Heu + U)/0r; + knT 8/0r;]1-8/dr; (68)

j=1

and given by
A(t) = exp(O1)A(0). (69)

The short time expansion of an autocorrelation function

Ca(t) = (4(0)4(2)) = (4(0) exp(O1)A4(0)) (70)
has now a linear term due to the irreversibility of solvent friction:

Ca(t) = C4(0) + O(2) (71)

which should be contrasted to the MD expansion (48). In fig. 1.12 the force auro-correlation
function is shown for Newtonian and Brownian dynamics. Clearly their shape is completely different
although the thermodynamic parameters are the same.

So our third question concerns the time dependence of correlation functions in a given bulk
phase. This is of course more difficult than the corresponding question for the static structure since
the dynamical quantities depend more sensitive on the microscopic interaction potential V' (r) and
since the dynamics itself also depend on the physical nature of the system (atomic or colloidal).

Again information on the dynamics can be gained by three different methods: computer simula-
tions with molecular dynamics or Brownian dynamics codes, dynamical scattering experiments, and
theories. In theoretical approaches, one often starts from the Mori~-Zwanzig projector formalism
and constructs so-called mode coupling theories by which one arrives at a closed set of equations
for the correlation functions. Here the static quantities serve as an input.

1.5.4. Interfaces between two coexisting bulk phases

Our fourth class of questions concerns interfacial problems. If the thermodynamic variables (e.g.
temperature 7" and chemical potential #) are such that two phases coexist, an equilibrium situation
with an interface between these two phases is conceivable. The surface tension, the density profile,
the structure and the role of fluctuations at such interfaces are the key quantities that are of interest
here. The simplest example is the liquid~gas interface that was studied already in the last century
by van der Waals [24], see ref. [25] for an extensive review. Solid-liquid or solid-gas interfaces
are more complicated since their structure depends on the orientation of the solid phase.

Another interesting question concerns interfaces near the triple point where three phases (solid,
liquid, gas, for a simple material) are in coexistence. If two phases A and B coexist and one
moves along their coexistence line towards the triple point where the phase C also becomes
thermodynamically stable as a bulk phase, one may think about wetting: the third phase may
intervene between phases A and B, even when the triple point is not yet reached. The thickness /
of the layer with phase C will be finite, depending on the distance to the triple point. Complete
wetting is defined by a divergence of / as one moves to the triple point. For an extensive review of
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wetting phenomena, see ref. [26]. An important example that will be pursued further in chapter 3
is surface melting where one moves on the sublimation line towards the triple point. The question
here is whether there is a quasiliquid layer formation at the solid-gas interface.

A very much related situation is a phase in contact with an external wall, where one may examine
interfacial phenomena at the wall like wetting, drying or wall-induced melting transitions.

Fluctuations are important in particular near the critical point; they also drive roughening transi-
tions of interfaces. Here we shall consider exclusively first order phase transitions where fluctuations
may be neglected. For a review on the role of interfacial fluctuations, we refer e.g. to ref. [27].

Again, computer simulations have given much insight into interfacial problems, but also powerful
experimental techniques like X-ray and ion scattering, low energy electron diffraction (LEED)
and other methods have been successfully applied to study interfaces, see ref. [28] for a recent
review. Last but not least microscopic theories, mainly density functional theories, can be used to
calculate the interfacial structure. An example will be given in the context of surface melting in
chapter 4. One can also reduce these microscopic theories to a Ginzburg-Landau description that
can then be considered as a phenomenological approach with few parameters that are determined
microscopically. These simple square-gradient models have frequently been used to study qualitative
features of interfaces with and without fluctuations. We shall give an example in chapter 4. A great
advantage is that the qualitative features should be universal and therefore also be applicable to more
complex systems. In the simplest setting, one considers a functional for the surface tension X' [m]
of a dimensioniess order parameter field m(z), only depending on a surface normal coordinate z,
where m = 0 in the A and m = 1 in the B phase:

Sim) = /dz [L/6028°m(2)/02% + f (m(2))]. (72)

Here {y is a microscopic bulk correlation length, fy an energy density scale, and f (m) denotes
the bulk free energy density for a spatially constant order parameter. At AB coexistence, f (m) has
two minima at m = 0,1 of equal depth. The mean field solution of a planar interfacial profile in
z direction, is then obtained by the minimization

6X/dm =0 (73)
with the boundary conditions

lim m(z) =0, ZEr_n@m(z) = 1. (74)

Z—00

1.5.5. Dynamics of interfaces

Suppose that a phase A is present and the thermodynamic parameters are changed (e.g. by cooling)
so that phase B is now thermodynamically stable as a bulk phase. A description of the temporal
evolution of the conversion from phase A into phase B represents a formidable challenge to theory
and experiments. Of course, this situation is at least one order of magnitude more complicated
than the equilibrium case of the last section, since we are dealing now with a nonequilibrium
situation. Normally one can distinguish between two stages: nucleation of phase B, taking place at
inhomogeneities and forming small germs of phase B, and the subsequent growth of phase B. For
long times, one frequently arrives at a steady state situation, i.e. the interface grows with a constant
velocity v. Evidently the description of a steady state situation is easier than the nucleation process.
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It is important whether the phases themselves are described by a conserved or non-conserved
order parameter. Their dynamics clearly are different: a conserved order parameter has to obey
a generalized continuity equation whereas a nonconserved order parameter can be created and
annihilated arbitrarily. Consequently, growth is slower if a conserved order parameter is involved.

Physically important examples are crystal growth from the undercooled liquid, dynamics of wetting
transitions and a dynamical creation of metastable phases. A full microscopic theory for all such
phenomena is still missing, although there are some first attempts in dynamical extensions of density
functional theories. One therefore restricts oneself to phenomenological Ginzburg-Landau models
and studies simple model dynamics for conserved and nonconserved order parameters (Cahn-
Hilliard respectively Ginzburg-Landau dynamics), see ref. [29] for a review. Explicitly, with the
notation of the previous section, the dynamical evolution of a nonconserved order parameter profile
m(z,t) is governed by the equation

omjot = ~I,6X/6m (75)
whereas the Cahn-Hilliard picture of a conserved order parameter is
om/ot = I, (8%/02%)6X [dm. (76)

Here, I, and I; are phenomenological kinetic coefficients that set the microscopic time scale and
the functional 2 is taken from (72).

The growing and kinetics of an A-B interface provided phase B has been nucleated may be more
complicated and non-steady-state if latent heat is produced as A is converted into B. This heat also
has to diffuse away and can hinder the growth of the B phase. This is examined in more detail in
chapter 6.

There are also lots of growth experiments in different setups and for different physical systems.
Recently also detailed investigations of crystal growth in colloidal suspensions were performed,
see e.g. refs. [30,31]. Since here also powerful direct image technique are applicable, one can be
optimistic that much more details of growth effects are experimentally accessible in near future.
Computer simulations for nonequilibrium situations are much harder than equilibrium simulations
but, in the last decade, interesting results on nucleation and growth have been obtained.

2. Criteria and theories for freezing and melting
2.1. Phenomenological criteria for freezing and melting

Although in general the melting and freezing transition is non-universal, there are some useful
phenomenological criteria which are usually based on the properties of only one of the two coexisting
phases. The advantages of these empirical rules is that they permit an estimation of the solid-liquid
coexistence line avoiding any free energy calculation. Typically they predict quasi-universal values
of certain static or dynamical quantities. By quasi-universal we mean that a quantity is not exactly
constant but is close to a fixed number within ~ 10%.

One has to distiguish between two kinds of universalities. First, one can vary the temperature for a
given system with a fixed pair potential and study properties along the melting line of this material.
By scaling properties of inverse power potentials, for instance, it becomes immediately clear that
any dimensionless suitable scaled quantity is universal along the melting and freezing line. This
first universality is thus trivial for inverse power potentials but less trivial for more complicated
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(e.g. Lennard-Jones) potentials. The second more general universality holds if a property has the
same value for freezing/melting even for different systems (with different pair potentials).

2.1.1. The Lindemann criterion of melting

A first phenomenological melting rule was put forward as early as 1910 by Lindemann [32,33]. It
states that the ratio L of the root-mean-square displacement and the average interparticle distance
at the melting line of the solid has a universal value in the sense of the first weaker universality.
More interesting is the question whether L is quasi-universal with respect to different potentials.
This was a question of intense research during the last decade. In fact, by computer simulation,
it turned out that the actual value of L depends a bit on the detailed form of the microscopic
interaction. However, it always has the same order of magnitude of ~ 0.15. For the extremely soft
interaction of the classical OCP one gets L = 0.185 [34] at melting of the OCP bcc crystal. For a
Yukawa potential, L was calculated by Meijer and Frenkel [11] and subsequently by Stephens and
Robbins [35]. As a result, L is also close to 0.17. On the other hand, for the hard sphere fcc solid,
L equals 0.129 at melting [36, 37]. Intuitively one can understand the Lindemann criterion as a
breakdown of the ordered cage formed by neighbouring solid particles if the particle displacement
exceeds a critical value which is one order of magnitude smaller than the mean distance to the
neighbours. A generalization of the Lindemann rule was discussed by Ross [38].

2.1.2. The Hansen-Verlet freezing rule

A second criterion was formulated by Hansen and Verlet in 1969 [39]. For a Lennard-Jones
liquid they found by computer simulation that the first maximum of the liquid structure factor
S (k) has a constant amplitude of ~ 2.85 along the freezing line. It is thus universal with respect to
the first kind of universality. Indeed it was confirmed by scattering experiments and by computer
simulation of other than Lennard-Jones systems that the maximum of S(k) is always close to 3
at freezing and that thus the Hansen-Verlet criterion is also universal in the more general sense.
It shows that freezing sets in if the order in the liquid system, measured by the first maximum of
S(k), exceeds a certain quasi-universal value. Another criterion, working with the bridge function,
was discussed by Rosenfeld [40].

2.1.3. Dynamical criterion for freezing in colloidal suspensions

It is tempting to look for quasi-universal dynamical quantities at the freezing and melting line.
Since dynamical quantities depend much more sensitive on details of the microscopic interaction, it
is clear that such quantities are much harder to obtain. Recently, a dynamical criterion was found
by Lowen, Palberg and Simon [41] for Brownian dynamics: the ratio of the long-time self-diffusion
coefficient, Dy, and the short-time self-diffusion constant, Dy, is very close to 0.1 along the freezing
line of a colloidal liquid. This was confirmed both by Brownian dynamics computer simulations
along the freezing line of a Yukawa liquid (including the OCP and the hard sphere case) and also
by forced Rayleigh scattering experiments on charge-stabilized colloidal suspensions. The criterion
is thus universal in the more general sense since it is valid for different pair potentials. It should
be emphasized that this criterion is only valid for Brownian dynamics. In contrast, for Newtonian
dynamics, a simple scale for the long-time self-diffusion is missing and consequently a dynamical
criterion is only valid in the weak universality sense.

A theoretical justification of the dynamical freezing criterion is still missing and its relation to
the static Hansen—Verlet criterion is not yet fully understood. Some simple theories for Dy./Dy only
involve k-integrals over a function of S (k) [42-44]. Due to the universality of S (k) at freezing [45]
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the results for Dy /Dy are practical the same for soft and hard spheres. Thus universality of Dy /Dy at
freezing follows in such theories but they typically strongly overestimate Dy /Dy. Another theoretical
approach to Dy /Dy is an Enskog theory which was discussed by Leegwater and Szamel [46]. This
theory is superior to the simple ones from a theoretical point of view, since it incorporates the
two-particle dynamics exactly and weightes the solution with the pair correlation function g (r). The
theories discussed before only sum up a part of the complete two-particle dynamics corresponding
to two particles going apart and coming back only once. The Enskog theory gets reasonable values
for Dr/D, for hard spheres, but underestimates Dy /D, strongly for soft repulsive potentials. This
was shown recently in the context of Yukawa potentials by Lowen and Szamel [47]. Finally a
modified Enskog approach, originally introduced by Cichocki [48], was investigated [47]. It yields
good results for soft spheres but overestimates Dy /Dy for hard spheres. Since the expressions for
Dy /Dy of both Enskog theories also involve the potential itself, they fail in predicting universality
of Dy /Dy. Nonetheless their absolute results are closer to the results of computer simulation than
that of the simple approaches.

At present the approximations involved in the dynamical theories remain somewhat uncontrolled
for long times and have to be checked carefully by simulations. In conclusion, a theory which
predicts a value of Dy /Dy close to 0.1 at freezing and universality is still missing.

2.2. Theories for freezing and melting

There are two different theoretical approaches to bulk melting and freezing. The first starts from
the liquid phase and the second from the solid phase. Still there are some difficulties in constructing
a more general theory which includes properties from both, liquid and solid, phases although quite
recently some first steps were made in this direction, see e.g. refs. [49, 50].

2.2.1. Liquid-based theory

In this kind of approach one uses the density functional formulation of classical statistical
mechanics which is discussed in detail in the following chapter. Basically one uses properties of the
uniform liquid phase, as the equation of state, static pair and triplet correlations, at any uniform
density. With these inputs, one then constructs an approximate free energy density functional. The
physically realized density minimizes the functional. Here the solid is parameterized by a periodic
density ansatz on a regular lattice. Hence the long-ranged positional order of the solid is assumed
and not an output of the theory. The key point is that the short range order in the solid is not
very much different than that in the liquid at a suitable density. Consequently freezing is viewed
as a condensation of liquid density modes. The first important output of the theory is the bulk
phase diagram. For hard sphere and Lennard-Jones potentials the resulting phase diagrams are in
good agreement with the simulational data. For soft potentials there are at the moment still some
difficulties with the density functional approach. Also the structure of the solid, like its density
distribution or its pair correlations are a further nontrivial output. Details of these properties,
however, are not reproduced exactly [37].

Although the denisty functional approach has shed much more light on the microscopic points of
the freezing process, the disadvantage of the approach is that the construction of the approximative
functional is ad hoc and only the results justify the approximation. There is no unique recipe to
construct a functional and thus the construction is arbitrary. Despite this criticism, the density
functional approach is the best theory of freezing to date.
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2.2.2. Crystal-based theory

The second approach is a crystal based theory where one starts from a crystal with defects. Melting
is viewed as an accumulation and unbinding of defects. The melting point is identified with the
situation where the free energy of dislocations cores assumes negative values. When this happens,
dislocation cores are spontaneously created to fill the crystal to capacity, the crystal absorbs latent
heat and loses its resistance against shear forces.

In two spatial dimensions, this concept was used by Kosterlitz and Thouless in 1973 [51]
and further developed by Nelson and Halperin in 1980 (see e.g. ref. [52]). Thermally excited
dislocation dipoles do indeed drive a phase transition from a dilute gas of dipole pairs to a
plasma of unbound dislocations in which translational order is lost. This two-dimensional melting
transition is continuous and predicts the existence of an intermediate hexatic phase with long-ranged
orientational order, between the solid and liquid. In the absence of firm experimental evidence of
this phase, however, there appears to be an unsolved issue with computer simulations that favor
a first order transition, see ref. [53] for a review. Strictly speaking there is no solid phase with a
long-ranged positional order in two dimensions, see the proof of Frohlich and Pfister [54], which
applies to any relevant pair potential except for hard-discs.

In three dimensions, there are some attempts to construct a dislocation theory of melting, see
refs. [55,56] and the textbook of Kleinert [57]. The topology of defects is more complicated
in 3D than in 2D [58], and thus the theory is more difficult in 3D. Also computer simulations
of defect generation in superheated solids were performed to support the picture of dislocation
generation [59]. Recently, Lund [60] re-examined the instability driven by dislocation loops in
three dimensions and found that the solid shear modulus vanishes as a power law of the temperature
distance to the instability with exponent ~ 0.5. In his analysis, the 3D dislocation-mediated melting
is achieved without a sudden proliferation of unbound dislocation loops in contrast to the simpler
earlier calculations.

The main critique for these kind of approach is that the melting transition in three dimensions is
first order. At the melting point, the shear modulus is finite and the defect concentration small. It
becomes thus clear that the defect generation cannot be the physical mechanism for bulk melting. In
contrast, experimental observations as well as theoretical studies show that melting is not initiated
by dislocations but by the crystalline surface. It is via the surface which is a natural defect in
the solid order that disorder sets in. This important mechanism which is extensively discussed in
chapter 4 already shows up well below the bulk melting temperature. Despite this fact a solid can,
under suitable conditions e.g. by coating it with another material, be overheated and finally loses
its stability due to spontaneous defect generation. All theories based on dislocation generation thus
do not decribe the bulk melting transition but may be applicable to an superheated crystal.

3. Density functional theory

The fundamental microscopic tool for calculating melting and freezing is the classical density
functional theory. We discuss concrete approximations of the functional and explain how phase
diagrams are obtained for hard spheres and other given pair potentials. We also mention applications
of density functional theory to interfaces and related topics.
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3.1. Fundamental aspects

__Adopting the notation of section 1.1, we consider a grandcanonical free energy functional
Q(T,u, [w]) of distribution functions w depending on the number N of particles and on the
positions and momenta of those particles:

Q(T,pu, [w]) = Tr{w(Hy — uN + ksTlnw)}. (77)

Q(T,u, [w]) also depends parametrically on the grandcanonical thermodynamic parameters, tem-
perature 7 and chemical potential u. All distribution functions are subject to the normalization
constraint

Tr{w} = 1. (78)
The equilibrium distribution function wy of the grandcanonical ensemble is given by
wy = E ' exp(—(Hy — uN)/kpT) (79)

which is the grandcanonical extension of wy, see eq. (6). If one evaluates the functional © at wy,
one finds that it equals the real equilibrium grandcanonical free energy

Q(T,u, [wo]) = (T, ). (80)

If it is evaluated at some other distribution function w % wg, one gets via the Gibbs-inequality
[61] (or the convexity of the logarithmic function)

Q(T,u, (w]) —Q(T, 1, [wo]) = kT{Tr(winw) ~ Tr(wInwp)} > 0. (81)

For a fixed interaction potential V (r), the distribution function w, is determined entirely by the
external potential Ve (r). One can show [62] that Ve, (r) is uniquely determined by the equilibrium
density po(r). This then implies the important result that wy is a functional of py (r) which we call
wop[po]. Chayes and Chayes [63] have proved that any positive density p(r) can be viewed as an
equilibrium density for a system in a suitable external potential Ve (r). Consequently,

F(T,[p]) = Tr{wolp](Hgn + U + ksTInwo[p])} (82)

is a well-defined functional of p(r). We can construct one further functional by the extension

Q(T,u,1p]) = (T, [p]) + /d3rp(r)Vm(r) —u/d3r o (r). (83)

If one takes this functional at the equilibrium density, one gets the equilibrium grandcanonical free
energy

Q(T,u, [po(r)]) = (T, p). (84)

Next, one can show that £ is minimized at p(r) = py(r), which follows directly from the fact that
€ is minimal at w = wp. Thus the equilibrium density minimizes the functional Q (7, 4, [p]) and
it follows

QT 1, [P1)/6Plpmpiry = 0. (85)
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Equations (84) and (85) constitute the basic variational principle: there exists a unique functional
(T, u,pl) which becomes minimal for the equilibrium density py(r) and then equals the real
grandcanonical free energy.

Let us now discuss the implications of this variational principle: first, consider an external
potential Ve, (r) which breaks any symmetry and is strong enough to avoid any two phase region.
In this case, there is a unique minimum of the functional which corresponds to the one-particle
density realized experimentally. In particular, all fluctuations from the thermodynamic average are
taken into account exactly provided one knows the exact functional.

If the external potential is zero, the minimizing equilibrium density defined via (11) is homoge-
neous but it is not necessarily a “laboratory” density since it can be an average over a set of possible
densities which are experimentally realizable. To see this, consider a point in the phase diagram
where the solid is stable. Then the equilibrium density pg(r), as defined in (11), is homogeneous.
It can be thought of as a superposition of solid density realizations with peaks on a periodic crystal
lattice. Different realizations just differ by a translation in real space. A fundamental problem
is how to decompose the homogeneous equilibrium density uniquely into experimentally realized
densities and how to do a reduced thermodynamical average around a “laboratory” density. Closely
connected to this problem is the proper incorporation of all experimentally realized fluctuations.
One possible strategy to get a “’laboratory” density for Ve, (r) = 0 is to switch on a small symmetry
breaking potential Ve (r), calculate the equilibrium density and then take the limit Ve (r) — 0. But
even here, it remains obscure which fluctuations are properly accounted for. For example, one can
get a realization of a solid density by this procedure, but one does not know whether all fluctuations
in the solid state like defects, dislocations etc. are incorporated properly into the density.

For a practical calculation, the usual procedure is as follows: first, the functional is not known
exactly, so one is forced to make an approximation for the functional. Next, one makes a density
ansatz which corresponds to an experimentally realizable density (for example: peaks on a fixed
crystalline lattice to characterize the solid). Third, one normally does not perform a calculation
explicitly with a symmetry-breaking external potential. If, for a given T and u, there are two
solutions with equal grand canonical free energy, one interprets this as the coexistence of the two
realizable densities. Using this strategy, it is unclear which fluctuations are accounted for; one
ends up with a picture which is a mean-field-like description of a statistical mechanics system.
Nevertheless, on this mean-field level, density functional theory remains a useful tool to study
phase transitions, in particular the freezing transition: One gets an approximation of the free energy
for the solid and the liquid which can be used to calculate the bulk phase diagram.

Before we describe concrete approximation schemes for the functional in the next section, let us
introduce some further useful relations.

(a) For the noninteracting case (the ideal gas), V' () = 0 and one knows F (T, [p]) exactly

F(T,[p]) = Fia(T, [p]) = kBT/d3rp(r)[1n(A3p(r)) - 1] (86)

where A is the thermal wavelength, see (1). Minimization of (T, 4, [p]) then immediately leads
to the generalized barometric expression for the equilibrium density of an ideal gas in an external
potential:

po(r) = A3 expl— (Ve (r) — p)/ ks T]. (87)
(b) For the general interacting case, it is convenient to introduce the separation

F(T, [pD) = Fa(T, [P]) + Fexcess (T [2]) (88)



H. Lowen, Melting, freezing and colloidal suspensions 277

which is just a definition of Fexcess (T, [p]). In general, Fexcess(7T, [#]) is not known. One can,
however, prove that the direct correlation function, introduced in section 1.3.2, can be obtained
from Fexcess (7, [p]) by

1 32 Fexcess
kT p(r)dptr')

For an arbitrary density, this relation can directly be generalized by taking the derivative at this
arbitrary density to define a functional ¢® (r,r’, [p]). Integrating this twice in density space leads
to the exact relation [25]

B (r,r)=cB(rr, [po(r)]) = (89)

p=po(r)

1
Fexooss(T, [p]) = kpT / da (a—1) / &r / &7 @ (r, ¥, [ap]Dp(r)p(r') (90)
0

which forms the basis for different approximations.
3.2. Approximations for the density functional

The simplest approximation is the local density approximation (LDA)

Fercess (T, [p]) = / B foncess (T, p(r)) 1)

where fexcess(7, p) 1s the excess free energy density of a homogeneous system with density p at
temperature 7. Henceforth we assume that this homogeneous state exists and is thermodynamically
stable. In the LDA, the direct correlation function is just approximated (see (89)) by a d-peak

1 azféxcess(T:p(r))

D (r rp]) = —
o nrlpl) = —% 9,7

o(r—r). (92)

So, LDA can only be used for weak inhomogeneities.
The local density approximation can be improved by adding a nonlocal mean-ficld energy,
quadratic in the density, as follows:

Fercess(T, [9]) = / &7 [foxcoss (T, p(r)) = L¥302 (1)

+3 [@r [er var=ripwpe (93)
with ¥, being the zeroth moment of the interparticle potential V (r)
Vp = /d3r v(r) (94)

which we have assumed to exist. The approximation (93) can be called LDA plus mean-field
approximation. In this approach, the corresponding direct correlation function is approximated by

1 l-(azféxcess(fgp(’)) _ E

@ (p =
¢ rlp]) = T L 5 )

)5(r—r’) + V(lr—r'l)} . (95)
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The LDA plus mean-field approximation is generally applicable to inhomogeneous liquids, but
not to very inhomogeneous situations like packing effects in a dense liquid at an external wall or
freezing.

In 1979, Ramakrishnan and Yussouff [64] proposed the first functional that describes freezing,
This was also reformulated in familiar density functional language in 1981 by Haymet and Oxtoby
[65]. Tt consists of a Taylor expansion up to second order around a homogeneous system with a
fixed liquid reference density p(r) = p:

afexcess (T’ [p ] ) —_
excess s = K 3 -
FonT,[p)) = Fo + [ & STy =71
Vs [ g3 O Fexcess (T, [p]) [
vy [ [ar S PRVCE IR D

Constants like Fy are irrelevant for the minimizing density and the term linear in p(r) only
renormalizes the chemical potential u4. So the relevant term is the quadratic one whose kernel is
essentially the direct correlation function ¢‘® (|r — r’|, p) for a homogeneous system, see eq. (89).
Thus the corresponding direct correlation function is incorporated exactly, but only for one single
liquid reference state, and higher-than-second-order direct correlations do vanish in this approach.
The Ramakrishnan-Yussouff functional can be systematically improved by extending the expansion
in (96) to the third term and using liquid state theory [66] for the triplet direct correlation
function, see e.g. ref. [67].

A better but more complicated functional is constructed in such a way that it reproduces the direct
correlation function for any density in the homogeneous limit. In particular, a so-called weighted
density approximation (WDA) has been proposed by Tarazona [68] and Curtin and Ashcroft [69].
Here one chooses

Fexcoss (T, [p]) = /d3rp(r)'1’(T,/3(r)) (97)

where ¥ (T, p) is the excess free energy per particle in the homogeneous case (used as an input),
and the weighted density is given implicitly by

p(r) = /d3r1D(|r—r’|,ﬁ(r))p(r’). (98)

The weight function w (7, p) is normalized and chosen in such a way that the second functional
derivative equals the direct correlation function for any homogeneous density. In this approach,
one systematically includes all informations from the liquid state, i.e. fexcess(T, p) = p¥ (T, p)
and ¢® (Jr — r'|, p). Also this density functional yields freezing, so we have developed a theory of
freezing based on the liquid state. The higher-than-second-order direct correlations are non-zero in
general and, for certain geometries, agree in principle with computer simulation data [66,70-73].
Although it has several inconsistencies and shortcomings, the WDA functional seems to be the best
generally applicable functional that is known so far, at least for hard sphere systems.

Another functional, called modified weighted density approximation (MWDA) was introduced by
Denton and Ashcroft {74]. It is computationally much simpler than the original WDA but has the
same underlying philosophy. However, it is not written in a local form and therefore not directly
applicable to interfacial situations. Here, one approximates

Fercess (T, [p]) = N¥(T, p) (99)
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with a scalar density p given by the implicit relation
b= %/d3r/d3r’ p () p(F )i (Jr - ¥, ). (100)

The weight function w (r, p) is normalized and ¢’ (7, p) is reproduced for any homogeneous density.
There is also an attempt to combine both approaches, MWDA and WDA, and construct a hybrid
weighted density approximation (HWDA ) by Leidl and Wagner [75]. In the context of hard-sphere
systems, the MWDA and WDA are inconsistent since they admit densities with overlapping hard
spheres [76,77]. A modification of the MWDA that produces a consistent functional was proposed
by Ohnesorge et al. [78].

There have been many other approximations discussed in the literature, often constructed for
special applications and special systems (like hard spheres or OCP-freezing), for a review see refs.
[79, 80]. Simpler variants of the WDA with an explicit form for the weight function were examined
by Tarazona [81]. We also mention different kinds of effective liquid approximations by Baus and
coworkers [82-85] and Lutsko [86], the variants of Meister and Kroll [87], Igloi and Hafner [88],
Groot and van der Eerden [89], and other related forms [90-99].

There are also some fundamentally different approaches using only thermodynamic properties of
the solid as an input for the functional [49,50]. Then the liquid structure is predicted from the
solid side, i.e. one has a solid-based theory of melting.

3.3. Calculation of bulk phase diagrams

If the concrete form of the functional £ (T, u, [p]) has been chosen the next step is to find a
suitable parameterization for the density p(r) with some variational parameters. The energy of
the homogeneous phase is easily obtained by plugging a constant p(r) = p into the functional
Q(T,u,[p]) and minimize with respect to p. For a solid, the parameterization most frequently
employed are Gaussian peaks with a variable width o on a fixed solid lattice. The solid lattice is
described by the lattice vectors {R,}, with one particle per lattice site:

o1 = (2)" T exvl-atr - R)1. (101)
R,

The lattice structure is an input (normally the lattice constant is varied, too), but in principle one
can try with different lattice types and take that with the lowest free energy; also one can vary with
respect to the form of the [100]. Parameterizations going beyond the Gaussian parameterization
(101) [101,76,102,37] indeed reveal that the corrections are very small. The parameter a plays
the role of an crystalline order parameter. It is zero in the liquid phase and nonzero in the solid
phase indicating long-range crystalline order.

In order to get the bulk phase, one looks at which 7 and u the functional Q (T, u, [p]) has two
equal minima. This means that two phases with same temperature 7, chemical potential x4 and
pressure P = —Q/V do coexist.

In the following, we shall discuss the success of density functional theory in describing freezing
for different potentials, namely for hard and soft spheres, Yukawa and Lennard-Jones interactions.

3.3.1. Hard spheres
The hard-sphere system represents the simplest nontrivial liquid with a freezing transition, and is
thus the prototyp of a model where theories and simulations of freezing can directly be compared. In
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fact, it is for this system that density functional theory has had its most notable success. The liquid
correlations, used as an input for density functional theory, are well known, see €.g. the Percus—
Yevick expression (39). The Ramakrishnan-Yussouff as well as WDA, MWDA-type functionals
all yield a freezing transition with coexisting densities that are in pretty good agreement with the
simulation data, for a review see refs. [103,79]. This success motivates a hard-sphere perturbation
theory for other potentials. However, details of the solid phase deviate from simulational data; for
example the Lindemann-parameter of the solid at coexistence turns out to be too small, and the
direct correlation function in the solid is inconsistent within the MWDA [78].

3.3.2. Soft cores

Much effort was put into the challenge to find a functional that describes freezing of the OCP
into a bee crystal [104-106,67,107-109]. An MWDA-type approximation was proposed recently
by Likos et al, 1992 [110]. It turns out that higher-than-second-order direct correlations, at least
liquid triplet correlations, should be incorporated into the functional. Furthermore, the free energy
difference between a bcec lattice and a fcc or hep lattice is tiny; so this difference will sensitively
depend on details of the approximations used.

Freezing of soft cores, described by a general inverse power law in r, see (28), was examined by
Barrat and coworkers [111,112], see also refs. [113,114]. The usual schemes (like the WDA or
the MWDA) do fail for soft cores. A hard sphere perturbation theory, performed by Lutsko and
Baus [115], on the other hand, gives good results compared to the simulation data.

3.3.3. Yukawa systems

Kesavamoorthy et al. [116] applied the Ramakrishnan-Yussouff theory of freezing to Yukawa
systems, described by the potential (19). Also, the MWDA was applied to Yukawa systems by Laird
and Kroll [114]. For high screening, i.e. large x, the potential is pretty hard and good agreement of
the density functional and simulational data was obtained. For small x, of course, one gets the same
failure as for soft core potentials, discussed in the previous paragraph. The bee—fec coexistence was
studied with the Ramakrishnan-Yussouff density functional by Sengupta and Sood [117]. There
was also a study for a Yukawa plus hard core potential by Kloczkowski and Samborski [118].

3.3.4. Lennard-Jones potentials

The Lennard-Jones potential (16) exhibits three different phases and density functional theory
has been successfully applied using both Ramakrishnan-Yussouff [120, 102] and other schemes
[112]. A quantitative agreement with the simulational phase diagram was also obtained by using a
hard sphere reference system and hard sphere perturbation theory. This was both performed for the
WDA by Curtin and Ashcroft, 1986 [121], and for the MWDA with its consistent formulation by
Ohnesorge et al [78]. The latter result is shown as a 7—p diagram in fig. 3.1. In fact, in this figure,
a short-ranged fit for the Lennard-Jones potential is used and compared with the simulation data
of a short ranged cutoff Lennard-Jones potential. The quantitative agreement of the microscopic
density functional theory is really convincing. Thus this theory can be used as a starting point for
an interfacial study near the triple point.
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Fig. 3.1. Bulk phase diagram for a Lennard Jones system without long ranged potential tail. Squares denote simulation data
from refs. [119,39], for a truncated Lennard-Jones potential. From ref. [78].

3.4. Density functional theory of interfaces

3.4.1. Direct minimization

The ideal procedure for a calculation of a density profile and the surface tension for a planar
interface would be a free minimization of the density functional Q (T, u, [p]) where one of the
coexisting phase (A) is on the left and the other (B) is on the right side. Of course for complicated
e.g. WDA-type functionals this is a very hard numerical problem. The first promising attempts of a
free minimization were made using the simulated annealing method in order to find the minimum
in a very high-dimensional (of the order one million) parameter space by Ohnesorge et al. [37]. A
concrete calculation for the solid-liquid interface was done by Curtin within the original WDA both
for hard sphere systems [122], and a Lennard-Jones potential [123]. But here only two variational
parameters were taken to determine the interfacial profile. Another successful calculation of the
hard-sphere and Lennard-Jones solid-liquid interface was recently performed by Marr and Gast
[124]. They used a laterally averaged density and a planar weigthed density approximation for the
density functional.

We add a final remark concerning interfacial fluctuations. As we discussed in section 3.1, it is not
clear how they are contained in the density functional solution. In this aspect, density functional
theory remains a “mean-field-type” description.

3.4.2. Gradient expansion, Landau and van der Waals theories

Let us consider a multicomponent order parameter m = (m, m,,..., my) parameterizing the
density
p(r) = p(m,r). (102)

A concrete choice is the mean density for m; and for m;, i > 1, the Fourier coefficients of the

density on a fixed solid lattice. Then one can define a bulk grandcanonical free energy density
f{m) by

S(m)=Q(T,u,[p(m,r)])/V. (103)
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At coexistence of two phases A and B, f(m) has two equal minima at m , and m g, the order
parameters describing the two bulk phases. If the perpendicular coordinate of a planar interface
between A and B is denoted by z, we can parameterize the density by a z-dependent set of
order parameters p(r) = p(m(z),r). As long as the order parameters vary slowly with respect
to a microscopic length scale, a gradient expansion up to second order in the order parameters is
justified. This approximation has frequently been employed in the literature for various applications,
see e.g. refs. [65,125-128]. The most general and systematic derivation was given by Lowen et
al. [129,130]. The final result for the interfacial grandcanonical free energy per area A, alias the
surface tension X = Q/A4, is

oo 1 N ’
= lml = /dz (E 2 gu('"(z)>a—m—gﬂ+f(m(z))) (104)
—o0 ij=1
with the matrix
gij(m) = /d3 /d3r’ (z = 22D (r,r, [p(m, r)])ap(m ,r)0p(m,r')

oy om; (105)

where ¢@® (r,r',[p]) is given by (89). This expansion is valid for short ranged interparticle
potentials ¥V (r); if ¥ (r) is long ranged, g;;(m) does not exist since ¢?)(r,r’, [p]) ~ V (|r—r/|) for
large |r — r'|) in the liquid phase. In this case, one separates

Vir) = V(r) + Ve(r) (106)

where V;(r) is short ranged and ¥V, (r) is a slowly varying long ranged tail. Then, one treats V;(r)
in mean-field fashion and does the square gradient expansion only for the short-ranged part. One
arrives at (104) where one has to add a long ranged term F; to X' [m]. If m; is the mean density
and m; for i > 1 are crystallinity order parameters that vanish in the liquid phase, F, only depends
on m,

1

.7:3 [m1 = Z

8\,3

dz/dz’w(lz—z’l)[ml(z)—ml(z’)]z (107)

where

w(z) = /d2 MV (\ r'? 4 z2) (108)

is the parallel-integrated long-range tail. Furthermore, in (104), ¢?) has to be replaced by the direct
correlation function for the system described by V;(r).

If one starts from the reduced functional (104) one deals with a (generalized) Landau theory,
whereas an added long range term leads to a van der Waals type theory (since van der Waals was
the first to write down a long range expression like (107) for the liquid-gas interface [24]).

The physical realized solution is obtained by solving

52/67}1,‘ =0 (109)
with the boundary conditions

im m(z) = myu, }im m(z) = msg. (110)

Z——0C
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If there are multiple solutions, one has to take that with minimal surface tension 2 in order to get
the physical realized one.

At this stage, let us note an interesting analogy to classical mechanics. The functional (104) looks
like a classical Lagrangian of a fictitious “particle” in order parameter space; z plays the role of
“time”; g;;(m) is a position dependent anisotropic but positive definite ‘mass’ tensor, and ~ f (m)
defines a “potential” in which the particle moves. At coexistence, —f (m) has two equal maxima
(“hills”), the boundary condition (110) means that we are looking for connecting trajectories of
the fictitious classical “particle” starting from “hill” A and ending at “hill” B. This classical analogy
helps in understanding the qualitative behaviour of the solutions. For long range forces, however,
there is also a “memory-term”, associated with the kernel w (z) in (107) which resembles a “polaron
action” [131].

In the context of the liquid—vapour interface where the density itself is the order parameter,
the corresponding square gradient expansion has a long history, see ref. [25] for a review. It was
also transferred to solid-liquid interfaces but often the mass tensor is approximated by a diagonal
constant matrix and f(m) is taken to have an ad hoc form with two equal minima. Then one
recovers the functional 2 discussed in the first chapter, see eqs. (72)-(74). The microscopic inter-
actions only enter via few numbers and one can also use these kind of theories as phenomenological
approaches to more complex systems. If one takes the full expressions (103), (105), on the other
hand, the solution of (109) still represents a full though approximate reduced theory, since details
of the interaction and the 7', u-dependence enter in a set of functions g;;(m) and f (m). If one
wants to calculate numbers, the m-dependence of g;; and the full function f (m), containing all
informations on the bulk phase diagram, is essential. We shall examine surface melting (i.e. solid-
vapour interfaces near the triple point) within this van der Waals approach in the next chapter. In
addition, (104) establishes a microscopic foundation and justification of purely phenomenological
Landau theories.

3.5. Other applications of density functional theory

Until now we have discussed the application of density functional theory to calculate bulk phase
diagrams, interfacial structures and noncrystalline solids for simple systems. There is a huge variety
of other related applications for simple three-dimensional liquids.

First some details of the crystalline phase were studied within the liquid-based density functional
theory: successfull density functional studies for the elastic constants of the an fcc hard sphere
crystal were done by Velasco and Tarazona [132] and Xu and Baus [133]. Also vacancies in the
crystal [134,135], dislocations [136] and non-Gaussian and anisotropic behaviour of the solid peak
density [102,37] were investigated. Recently, also phonon frequencies in the solid were studied
[137,1381). With density functional theory one can also calculate the free energy of a metastable
phase. Such applications in the context of hard-sphere systems were done for quasicrystals (e.g. ref.
[139)) and glasses [140-142].

Other situations which were attacked by density functional theory include adsorption at interfaces
[143,144]), and the crystallization of a liquid in an external periodic potential [145].

Density functional theory was also applied to others than classical liquids: liquid metals [146]
where the quantum character of the electrons is relevant, freezing of different gquantum fluids
[147-154], and such “exotic” systems like vortex liquids in high-T, superconductors [155].

Finally, we mention dynamical (though still phenomenological) extensions of density functional
theories [156,157].
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4. Surface melting

The decisive mechanism initiating bulk melting of a crystal is via the solid surface. We describe
recent experiments, theories and simulational studies of surface melting. In addition, for complete
surface melting, scaling laws for the crystallinities in the quasiliquid film are given and the influence
of gravity and finite crystal size is examined.

4.1. Introductory remarks

4.1.1. What is surface melting?

In chapter 2 we discussed already that solid bulk melting is not accompagnied by a sudden
proliferation of dislocations. How does melting manifest itself microscopically? One may conjecture
that bulk melting may be initiated at point defects, vacancies [158, 159], grain-boundaries [160~
163] or at the crystal surface which is a natural and omnipresent defect in the crystalline order.
This is based on the common experience that liquids may easily be undercooled due to kinetic
obstacles of nucleation but crystals can hardly be overheated. That the crystal surface plays a
decisive role to initiate melting gains further support from the experimental observation that silver
crystals (melting temperature 1234 K) coated by a thin film of gold (melting temperature 1337
K) can be substantially overheated [164]. This was also recently confirmed by a simulation of
Broughton [165]. Let us first focus on an idealized planar and equilibrium situation of surface
melting. A semi-infinite three-dimensional crystal being in coexistence with its gas is heated up
along the sublimation line until the temperature approaches the triple point temperature 7t where
the liquid phase becomes thermodynamically stable. The corresponding path in the P-7 diagram
is visualized in fig. 4.1.

The distance to the triple point is conveniently measured by the reduced temperature distance

1= (Tr-T)/Tr > 0. (111)

The crystal is cut along a fixed plane with an area A4, the position perpendicular to this plane is
z. A key quantity in characterizing the solid—gas interface is the parallel-integrated density 7(z)

P ?
solid liquid

]
§ gas

| .
—

T, T

Fig. 4.1. Schematic (P, T) bulk phase diagram. 77 and Py are the temperature and pressure at which the solid, liquid and
vapour phases are at coexistence. The path along the solid~vapour coexistence curve, indicated by the arrow, corresponds
to the trajectory studied in the context of surface melting.
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Fig. 4.2. Crystal-gas interface away from the triple point. Fig. 4.3. Same as fig. 4.2 but now near the triple point. In
The upper plot shows the positions of the particles for a the case of surface melting, a quasiliquid layer intervenes
typical configuration (schematic). The crystal on the left between the solid and the gas which is characterized by
side has long-ranged order whereas the gas on the right a thickness /. The upper plot shows the positions of the
has a homogeneous density. Also, the parallel-integrated particles for a typical configuration, one sees that disorder
density p(z) is shown. sets in at the solid surface.
which is obtained from the full density p(r) via

— 1

pz) =5 [axdy pim) (112)

A

The typical shape of the parallel-integrated density for a solid—gas interface far away from the triple
point is shown in fig. 4.2. In the solid phase p(z) consists of sharp peaks reflecting the periodic
crystal lattice while it equals the gas bulk density in the gas phase. Between the two phases there is
a sharp interface typically involving only few crystalline layers.

As one approaches the triple point, two different situations can occur. In the first case, the
non-melting case, there is no drastic change in the structure of the solid gas interface at 7 = T,
i.e. the solid remains nonwet at its surface, even at 7T, and there is a sharp solid—gas interface.
Apart from a broadening of the solid peaks due to the higher temperature, the parallel-integrated
density across the solid-gas interface then is very similar to the one far from the triple point, see
again fig. 4.2. In the second case, near Tr, a quasiliquid layer intervenes between the solid and
the gas exhibiting a certain width | and a residual crystallinity at the quasiliquid—gas interface.
This is visualized in fig. 4.3. One speaks about complete surface melting, if | diverges as 7 \, 0;
correspondingly the residual crystallinity does vanish as 7\, 0. One may express this also within
the surface tensions at the triple point between solid—gas, gy, solid-liquid, gy, and liquid-gas, gy
complete surface melting occurs if at T = Ty

Osg = Ogt + Oy (113)

A peculiar case is blocked surface melting: Here, a quasiliquid layer starts to develop for T < Tr,
grows and then stays and remains finite at T7.
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Of course, the behaviour depends on the orientation of the crystalline plane. One can surmise
that melting is more likely in looser packed planes, whereas in denser packed planes the atoms are
bound more tightly and disorder cannot get in easily. Generalizations to nonplanar geometries are
studied in section 4.7 and surface melting away from equilibrium is considered in section 5.3.

Motivated by these considerations, the following questions are interesting: (1) Does the crystal
melt from its surface or not? Equivalently: does the crystal exhibit non-melting or complete surface
melting (or perhaps blocked surface melting)? (2) If there is complete melting, what is the
divergence law for /(1) and the decay law for the residual crystallinity as a function of the reduced
temperature T (as T\, 0)? What is the detailed structure of the solid—quasiliquid-gas interface?

4.1.2. Historical remarks

The problem of surface melting is as old as 1842 when Faraday [166, 167] started investigations
on melting and freezing of pieces of ice, see ref. [168], for more details. Of course, this is not the
idealized equilibrium situation, just discussed in 4.1.1, since there is a temperature gradient. In 1910,
Tammann [169] pointed out that the surface has a decisive role to initiate bulk crystal melting.
Later in 1942, this idea was supplied with macroscopic, qualitative considerations, including the
dependence on the orientation of the solid plane by Stranski [170]. Then, in the last decade,
microscopic aspects of surface melting were studied: new powerful surface-sensitive experimental
methods were developed and thereby the problem of surface melting was revitalized. Theories and
extensive computer simulations were then also performed. We shall review this recent work in the
next three chapters.

4.2. Experiments on surface melting

Experimentally, surface melting was mainly studied for simple metals (most notably lead) and
rare gases (argon and neon). In fact, lead represents the material for which the most detailed studies
were made and is thus the “paradigm” for surface melting. Starting in 1985, van der Veen, Frenken
and later Pluis and collaborators used ion scattering [171-175] and X-ray reflectivity ([176], see
also refs. {177-179]) to prove that the (110)-plane does and the denser packed (111)-plane of
the lead fcc-crystal does not melt. The (100)-surface was later found to show incomplete melting
[180]. The onset of disorder in the first layer of the loosely packed (110)-plane is at a temperature
T =~ 450 K whereas the triple point is about 600.7 K. The first layer is practically molten at 7" =~ 580
K which means that surface melting effects set in already well below the triple temperature. High
precision data for the divergence of the width /(r) were obtained, such that one could even
exclude a discontinuous layer-by-layer surface melting process for the (110)-plane as T is raised.
In particular, /(1) was found to diverge logarithmically as —In7 and to cross over to a power law
1% with exponent v = 0.3154+0.015 very near Tt. Lead was also examined by Bonzel, Breuer and
coworkers [181,182] (see also ref. [183]) using low energy electron diffraction (LEED). These
observations confirm the ion scattering data and give also information on the anisotropic residual
crystalline order in the quasiliquid film. Also spin-polarized LEED was applied to study surface
melting of lead [184]. Note that the experiments are performed in ultrahigh vacuum, i.e. not exactly
at coexistence but below the true sublimation line (see again fig. 43.1). In section 4.3, however, we
shall estimate that the corrections with respect to an equilibrium situation are negligibly small.

Second, there are specific heat measurements for argon [185] and neon [186] films on graphite
by Zhu and Dash and also by Brushi et al. [187]. Also a divergence law of the liquid film thickness
[(1t) ~ —Int with a crossover to a 7—!/3 law was detected.
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Let us also mention the early, pioneering optical measurements on copper and gold surfaces by
Stock and Menzel [188,189] and Stock and Grosser [190]. Likewise, experimental evidence for
surface melting has been obtained for oxygen films on graphite [191,192], methane films on MgO
[193,194], for aluminium [195-198], for the (111) surface of germanium [199], for the (001)
and (111) surfaces of gold [200-202] and for the (110)-surface of nickel [203]. Also the surface
melting behaviour of an anisotropic crystal (caprolactan) was recently studied by Chandavarkar et
al. [204].

Last but not least surface melting of ice was controversial for a long time. Ice is probably the
material where surface melting has most pronounced applications ranging from charge transfer
between ice crystallites in thunderstorm clouds and frost heaves to ice-skating. Recent careful
and reproducible X-ray scattering experiments by Lied et al. [205] strongly indicate that ice
exhibits complete surface melting for every high-symmetry surface orientation. In addition, non-
basal orientations show a temperature-dependent facetting.

Occurrence of surface melting for quite a number of different materials proves that it is, in this
sense, universal, although details depend on the kind of the material.

4.3. Theoretical approaches

A necessary condition for a microscopic theory of surface melting is a good description of the
bulk phase diagram of the material studied which forms the starting point of an interface calculation
and defines the sublimation line and the triple point temperature Tt. It then should describe well
the solid-gas interface up to Tr.

4.3.1. Phenomenological theories

A simple phenomenological theory of surface melting starts from the free energy difference
between the solid—quasiliquid-gas interface and the solid bulk phase [206-208]. This difference per
unit area is called interfacial potential V*(l). As a function of the thickness / of the quasiliquid
layer, the interfacial potential reads

V*(l) = oy + geg + L1l + gpexp(—I/aL) + Wi, (114)

The term Lt/ results from the bulk free energy difference between the solid and the metastable
liquid; L denotes a latent heat. The exponential term describes interfacial repulsion due to short
range interparticle forces where i, denotes a liquid correlation length while the W //? term stems
from the van der Waals attraction, ¥ being the Hamaker constant.

The expression (114) for the interfacial potential can be derived either by calculating the
free energy difference of a sharp-kink density profile with density functional theory [26] or by
considering a Landau-model (see eq. (72)) for an order parameter m(z) [209,210,129,130]). In
the Landau model, the bulk free energy density f (m) has three minima corresponding to the gas,
liquid and solid state, two of them (gas, solid) of equal depth zero. Around the liquid phase, f (m)
has the expansion

f(m) = Lt + g(m—my)?/a} (115)

where my is the dimensionless order parameter for the liquid phase and g is the prefactor of the
square gradient term in the Landau functional (72).

All these approaches are phenomenological in the sense that one cannot decide whether there
is complete surface melting or not for a given material, since the surface tensions (113) cannot
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be calculated microscopically. However, one can make definitive predictions for the width of the
quasi-liquid layer /(t) provided the material exhibits surface melting. Minimization of V* (/) with
respect to / immediately yields the following results: for short-ranged interparticle forces (W = 0),
there is a logarithmic growth law for the width of the quasiliquid film / ~ —gy In(7). With a long
range van der Waals tail, /(t) diverges algebraically as / ~ (2W/Lt)~!/3, For a weak long range
tail, /(t) crosses over from logarithmic to algebraic divergence. More general, for an algebraic long
range tail ~ r~9, d > 3, in the interparticle pair potential, /(7) diverges algebraically as 7=* with
v = 1/(d — 3). Finally, if the solid density is smaller than the liquid density at the triple point, the
Hamaker constant becomes negative and there is blocked melting.

Since the interaction in rare gases is pairwise with a van der Waals tail, this explains the
experimental growth law « 7-1/3 described in the previous section. For large particle separations,
Van der Waals interactions are dominant for any polarizable material, also for metals like lead.
For very long distances, however, the interaction becomes retarded ~ r~7 such that the exponent
v crosses finally over to v = 1/4. For lead, this means that the observed crossover from a
logarithmic to an algebraic growth law is in agreement with the theory and also the experimental
value v = 0.315 £ 0.015 consistently fits into the considerations above.

4.3.2. Density functional theories

In principle, a direct minimization of a density functional which has a good bulk phase diagram
would be an ideal way to get quantitative results for the solid—gas interface for a given interaction
potential (see the discussion in section 2.4.1). Attention was restricted to the Lennard-Jones system
which represents a model system for rare gases. Chereponova et al. [211,212] followed this strategy
and obtained surface melting . However, they used a density functional whose phase diagram is
not in good agreement with the simulations and their minimization was in a strongly restricted
density space. Recently, Ohnesorge et al. [37], used the better WDA functional and performed a
free minimization of the density functional. Surface melting was found to occur for the (110) and
(100) directions. This calculation is very promising for further details of the solid—quasi-liquid—-gas
interface.

4.3.3. A density functional van der Waals approach

In this approach, the approximate but microscopically well-founded functional (104) for the sur-
face tension is minimized. The model with two order parameters and neglection of long range forces
yields an odd number of solutions [129,130]; the one with minimal surface tension corresponds to
the physically realized solution. Here the classical analogy, discussed in section 2.4, of a fictitious
“particle” moving in a three-hill “potential” helps a lot to classify and understand the qualita-
tive behaviour. Different solutions may correspond to non-melting, melting and blocked-melting
situations, see fig. 4.4. If there are three solutions, the intermediate blocked-melting solution is
dynamically unstable [213].

Ohnesorge et al. [78], discussed the van der Waals approach for a Lennard-Jones system and
used the MWDA with the hard-sphere nonoverlapping modification to calculate the necessary
microscopic input data. This was done with and without long range tail in the interparticle potential.
The density was parameterized by two order parameters, the local mean density m;(z) = po(z)
and a crystallinity m,(z) = x (z). Explicitly, one takes for the parameterization

p(m(z),r) = 2a3po(2)[a(2)/n)** expl-a(z)(r - Rn)*]. (116)
R,
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Fig. 4.4. Illustration of three types of solutions in a two-dimensional order parameter space spanned by the mean density m;
and a crystallinity order parameter m;: (i) melting (dashed line), (ii) blocked-melting (dot-dashed line), (iii) non-melting
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ellipses around the gas, liquid and solid phases.

The crystallinity y (z) is related to a(z) by
x(2) = po(z) exp[-Gi/4a(z)]. (117)

This density parameterization describes Gaussian peaks on a fixed underlying solid fcc lattice with

4 4
5 | () s | ()
1 IS8
> >
- -~
= ‘m 2 i
g £ l
[} [V
< <
. HAHRRO00 . '
0 5 10 TS U 5 TO 15
z z
4
~ (e)
la
>
e )
=,
=]
[}
©
0
0 5 10 15

Z

Fig. 4.5. The laterally integrated density 7(z) in units of =3 in (110) direction at the reduced temperatures (a) 7 = 0.343,
(b) T = 0.015, (¢) T = 1.2 x 10~4, for a Lennard-Jones system. From ref. [78].
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lattice constant gy which coincides with the lattice of the bulk solid phase. Furthermore, in eq.
(117), G? = 3n%/a} is the square of the first reciprocal lattice vector. According to eqn. (103)
and (105), the basic input quantities f (m) and g;;(m) were calculated for different temperatures
along the sublimation line and the surface tension functional was minimized numerically. The
corresponding parallel-integrated density 7(z) is shown for different reduced temperatures 7 in fig.
4.5 for a Lennard-Jones system without long range tail. It clearly exhibits surface melting near T,
i.e. a quasiliquid layer emerges as 7\, 0.

One disadvantage of the two-order-parameter parameterization is that it is not suited to describe
anisotropies, i.e. the resulting surface tension is the same for any surface orientation in this
approximation. For a system described by pairwise Lennard-Jones forces, this anisotropy of the
surface tension is expected to be small [214].

4.3.4. Other approaches

Classical phonon theory was applied to surface melting [215-217]). In this approach one finds
a lattice instability which starts at the surface and propagates into the bulk as the temperature is
raised. Here, the description of the liquid is poor; the pressure dependence of the melting line is
not in agreement with measurements [38].

Last, a lattice theory has been developed and successfully applied to a Lennard-Jones system
by Trayanov and Tosatti {218,219]. In this approach the Lennard-Jones system exhibits surface
melting but the underlying bulk phase diagram is not in good agreement with the simulation data.

4.4. Simulations of surface melting

In the last ten years, the problem of surface melting was also attacked by direct numerical
Molecular Dynamics simulation. Here one can in principle also gain information on the dynamics
in the solid-quasi-liquid-gas interface. Motivated by the experiments, mainly two types of materials
were studied, namely Lennard-Jones systems and metals.

Extensive simulations for the Lennard-Jones system were carried out by Broughton and Woodcock
[220] and Broughton and Gilmer [214]. They obtain surface melting for any surface orientation
and only a slight orientational dependence of the interfacial tension. On the other hand, Rosato et
al. [221,222], refuse the possibility of surface melting for the (110) plane, so the situation remains
a bit inconclusive. For a critical review of the different simulations for a Lennard-Jones system,
the reader is referred to Pontikis and Sindzingre [223]. In recent simulations of van der Eerden
et al. [2241], the (111) and (100) orientations of a Lennard-Jones crystal exhibit surface melting.
The authors also propose the vanishing of the shear modulus at the solid surface as a criterion
for surface melting. Schommers et al. [225,226], used more realistic pair potentials for rare gases
and included triplet forces. They obtain surface melting for the (100) orientation. Valkealahti and
Nieminen [227] simulated the (111) plane of a Lennard-Jones system and get surface melting
via a layer-by-layer process. Also a long-range potential tail ~ 1/r* was extensively studied in a
simulation by Chen [228].

Next, simple metals were simulated. The basic difficulty is that many-body forces are present.
Carnevalli et al. [229] have applied an empirical potential which includes many-body interactions
to the melting of the (111) surface of gold. They found that there is a reconstruction of the
surface; the reconstructed surface did not show surface melting. Stoltze, Nerskov and Landman
[230,231] used an ab initio effective medium interaction potential for aluminium which includes
many-body aspects of the interaction but is still simple enough such that it can be employed in
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simulations. They found surface melting for the (110) plane whereas the more close-packed (111)
surface had a much weaker disordering. The strong orientational dependence seems thus to be due
to the many-body interactions which are highly relevant in a strongly inhomogeneous situation
like a solid—gas interface. This is in accordance with experiments where for lead, a metal for
which many-body effects are important, different surface melting behaviour is seen for different
orientations, whereas for rare gases there is no such well-pronounced dependence. Also nickel was
studied around 1989 by Chen, Barnett and Landman [232,233]. A further extensive simulation
for aluminium was done in 1990 by Stoltze [234], and a direct comparison of the results of the
simulation with experimental data was done by Denier van der Gon et al. [235]. The surface
diffusion behaviour for the aluminium (110) surface can be explained by Molecular Dynamics
simulations [236]. Recently the same effective medium theory was applied to simulate the copper
(110) surface, where surface melting was found to occur too [237,238]. Finally sulfur hexafluoride
was investigated by MD simulation where also surface melting was found [239].

4.5. Crystallinities in the quasiliquid film

In this section we focus on scaling decay-laws for the crystallinities in the quasiliquid layer.
First of all, we have to give a precise definition of what we mean with crystallinity. A concrete
multicomponent order parameter parameterization of the local density for planar surface melting is

p(r) = p({mg(z)},r) =Y mg(z)exp(iG - r) (118)
G

where {mg(z)} is a special set of complex order parameters with mg(z) = m_g(z), and G =
(Gy,GL) = (Gx,G,,GL) denotes a reciprocal lattice vector of the bulk crystal. As the sum in
(118) is over all reciprocal lattice vectors, the representation (118) is very general. For & = 0,
mg(z) represents the local mean density of the system. On the other hand, for G # 0, mg(z) is
called a crystallinity order parameter. Of course, in a homogeneous phase like a liquid or a gas, a
crystallinity order parameter vanishes, whereas it is nonzero in the solid phase.

For a solid covered with a quasiliquid film, the crystallinities become smaller as one moves
through the solid—quasi-liquid interface. Then just before the quasi-liquid-gas interface, there is
still a nonzero crystallinity value on the quasiliquid side of this interface. This value is called
residual crystallinity mé. Then, as one moves further through the quasi-liquid-gas interface, the
crystallinities decay rapidly to zero. Of course, as the thickness of the quasimolten layer increases,
the residual crystallinity decreases. The residual crystallinity is also accessible experimentally e.g.
by LEED scattering techniques.

In order to construct a simple microscopic theory for the crystallinities we consider a solid-liquid
interface at the triple point. Assuming that the quasi-liquid-gas interface is sharp and that it does
not disturb the solid—quasi-liquid interface, the residual crystallinities on a quasi-liquid film of
thickness ¢ approximately equal the crystallinities in the solid-liquid interface at a distance / from
the interfacial position. One can prove that the asymptotic behaviour for large / (or small 1) is
really the same. Of course, if only one layer is liquid like, the actual residual crystallinity may
considerably deviate from this asymptotic expression since it may be strongly influenced by the
solid and gas phases.

Mikheev et al. [240] as well as Lowen et al. [241,242] have performed an asymptotic analysis
around the liquid bulk phase in order to calculate the behaviour of the crystallinities very deep in
the liquid phase. The analysis involves all terms bilinear in the order parameters and is thus more
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general than the square gradient expansion used in section 4.3. If the liquid phase is approached as
z — oo, one finds that asymptotically

meg(z) ~ exp(ikgz) exp(—z/ag). (119)

(G # 0) with an oscillation mismatch k¢ and a decay length ag both for short range and for long
range interactions. A microscopic expression for kg and ag can be obtained by considering the
poles of the liquid structure factor St(k) at the triple point in the complex k-plane. For a given
G = (Gy, G.) consider the complex solutions {g;} of the equation

1/St(y/G} + (GL—a)?) = 0. (120)
Then, the decay lengths are given by
ag' = rr}lin[{lm(qi)}] (121)

where the minimum extends over any complex solution g; whose real part lies in the projection of
the first Brillouin zone of the lattice onto the z-axis. Let gy be the solution with minimal imaginary
part. Then, the oscillation mismatch is given by kg = Re(qp).

If one has obtained the set of ag’s by this procedure, one can predict scaling decay laws for
the residual crystallinities m&(7) as a function of reduced temperature as 7 \, 0. For short range
potentials the result is a power law

m&(t) ~ 1% (122)
with a nonuniversal and G-dependent exponent v given by
Vg = max[2a0,{aa}]/2ag. (123)

For long-range potentials (e.g. with a van der Waals tail ~ r~%), one gets a stretched-exponential
behaviour

m& (1) ~ exp[— 2W) 317 13/44). (124)

This result is obtained by plugging the algebraic divergence law into the exponential decay (119)
(see also ref. [243]). W is the Hamaker constant. The stretched exponential form was also obtained
numerically by Trayanov and Tosatti [219].

For surface scattering experiments only the G, dependence is relevant and one can define a decay
length of the lateral crystallinity as

a(G”) = néix[a(G",G_L)]‘ (125)

Using experimental data for the structure factor St(k) and continuating it into the complex plane,
the results of the present theory are shown in fig. 4.6 for the lead (110) surface. They are compared
with the experimental data and with a simple algebraic expression derived by Lipowsky et al. [208]
within a phenomenologocal ansatz. The results from the microscopic theory described above and
the experimental data are in reasonable agreement. However, there is a caveat since the LEED
experiments have not yet reached the true asymptotic regime and there is also some curve fitting
involved in extracting a decay length from the experimental output.
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ref. [208] a(G)) = a(0)/4/1 + (G“a(O))Z, where a(0)
is a fit parameter. For any choice of a(0) this expression
is bounded by 1/G) (solid line) and underestimates the
decay lengths. From ref. [241].

crystal is overheatable. From ref. [244].

4.6. Influence of gravity on surface melting

In the case of complete planar surface melting, the width of the quasi-liquid layer in principle
diverges as the triple point is approached. Of course there are a couple of different mechanisms
that finally limit the growing liquid layer such that its width remains finite at the triple point. Some
of these mechanisms are external fields and walls as well as the finite size of the crystallites. We
shall consider a gravitational field in this section and finite size effects in the next one. Consider
planar surface melting where the normal of the solid surface has the same direction as a constant
gravitational acceleration g. The corresponding interfacial potential was studied by Lowen and
Beier in 1990 [244]. The main result was that gravity induces a finite width /* of the liquid layer
at the triple point and the solid can be overheated. /* is given by

I* = /2Wps/mgpL(ps — pL). (126)

Here, m denotes the mass of a particle and W is the Hamaker constant of the material (we have
assumed a long-range van der Waals attractive tail in the interparticle interaction). Furthermore,
ps and pr (ps > pL) are the bulk solid and liquid densities at the triple point. The triple gas
density is assumed to be small. For lead, the width of the liquid film is plotted versus reduced
temperature 7 for different gravitational accelerations in fig. 4.7. Notable deviations from the usual
complete melting law do occur only for very high accelerations. It was argued in ref. [244] that in
a centrifuge with very high centripetal acceleration the effect is in principle visible.

Another quite interesting realization to detect gravitational corrections to complete surface melting
would be a collvidal suspension. Victor and Hansen [245] have shown that there is also a triple
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point for a charged colioidal system characterized by a repulsive electrostatic and an attractive van
der Waals potential. For colloidal particles, retardation effects which lead to an attraction ~ r~7 are
relevant. This would reduce the value of /*. An estimation shows that, for normal gravity, /* is of
order of few interparticle spacings. Another very attractive possibility is a colloid—polymer mixtures
where excluded volume effects may lead to an effective attraction between colloidal particles. The
resulting phase diagram has a triple point and a critical point [246] but interfacial features have
not yet been examined in detail. Also for such a system, surface melting is expected and effects of a
gravitational field should be much pronounced. Therefore, whereas effects of gravity are normally
negligible for atomic systems, they may be well observable for mesoscopic colloidal suspensions.

4.7. Equilibrium shapes of crystals near the triple point

Far away from the triple point, it is the orientational dependence of the solid-gas surface tension,
osg (1), that determines the equilibrium shape of a crystal. Here, n denotes the surface normal.
Within Wulff’s construction [247] one can find the crystal shape for a given oy (7) geometrically
by a Legendre transformation of o5 (7). Very near the triple point where the liquid becomes also
stable as a bulk phase, the situation is more complicated since for some orientations the solid may
cover itself with a liquid film in order to reduce the free energy. This is in particular expected
if a solid exhibits planar surface melting for these orientations. Such interesting phenomena were
investigated experimentally, theoretically and recently also by computer simulation.

As regards experiments, extensive equilibrium shape measurements of lead crystallites were
performed by Métois and coworkers [248-250] and by Pavlovska et al. [251]. A technical problem
is that one is not always sure to be at equilibrium since the equilibration time is pretty large. As a
result, the equilibrium shape of lead crystallites consists of facets and rounded parts. The (111) facet
length increases with increasing temperature. The matching between the facet and the rounded part
becomes angular about 20 K below the triple temperature; the discontinuity in orientation between
these two parts also increases with temperature. Lead is insofar interesting as some orientations
(like (111)) do and others (like (110)) do not melt, which results in a competition between
nonmolten facets and molten rounded parts.

Recently, also first simulations were started by Stoltze [252]. The simulated system is pretty large
(compared to usual bulk simulations) although the resulting crystallite is still small compared to
experimental sizes. One can hope that, for a realistic interparticle interaction including many-body
forces, the orientational dependence of surface melting and the corresponding change in the shape
of the crystallite can be seen directly. Another recent related study was done for orientations near
the nonmelting (111) surface of a lead crystal by Bilalbegovic et al. [253]. An orientational phase
separation was then obtained that should be universal for vicinals of nonmelting crystal surfaces.
Such surface-melting induced faceting was also confirmed experimentally by van Pinxteren and
Frenkel [254].

Also phenomenological theories were proposed by Noziéres [255] and Lowen [256]. In these
references, the generalization of Wulff’s construction with three temperature-dependent surface
tensions, solid-gas a5 (7, T'), solid-liquid oy (7, T) and liquid-gas o,z (T) is discussed. Strictly
speaking, these three surface tensions are not always well-defined for all orientations, but one can
extrapolate the orientational as well as the temperature dependence. Near the triple point, the
equilibrium crystal shape then minimizes the total surface tension under the constraint of fixed
mass psVs of the crystallite, V5 being the volume of the crystallite. In general, one has to consider
simple solid—gas configurations as well as more complex configurations including e.g. a solid covered
with liquid lenses of different density p;. In this situation, one has to add also a free energy term
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liquid lens

Fig. 4.8. Crystalline surface near the triple point (schematic). At certain orientations a liquid lens may occur. This implies
in a drastical change of the equilibrium shape near the triple point due to surface melting.

LzV, where L is a latent heat and ¥} is the liquid volume. The main result of the phenomenological
theories is that the crystalline surface exhibits liquid lenses roughly at those orientations where
planar surface melting does occur. This is visualized in fig. 4.8. The crystal is then overheatable,
since it shows a first-order transition to a liquid drop. In ref. [256], also the three-dimensional
case for lead was discussed using experimental data for the temperature-dependent surface tensions
as an input. In the resulting crystal shape, the (111)-facet length increases with temperature; there
are liquid lenses with an orientation jump whose magnitude also increases with temperature. This
is consistent with experimental facts. Stewart [257] explains the increasing facet length by vacancy
melting in the (111) facet. In his approach, he also needs the three surface tensions oy (7, T),
o (n,T) and a,(7T) as input. Since they have relative large experimental uncertainties, all such
phenomenological approaches should still be considered as preliminary.

5. Dynamics of interfaces

In this chapter some basic models for interfacial dynamics away from critical points are discussed
including exactly soluble cases. Also interfacial dynamics near the coexistence of three (stable
or metastable) phases is considered, particularly dynamics of surface melting and the dynamical
creation of metastable phases. The dynamics of the models employed is phenomenological and
not ab initio in the sense of microscopic classical statistical mechanics. Therefore the universal
qualitative features should be applicable to a large number of concrete systems.

5.1. Ginzburg-Landau-type models for interfacial dynamics

An interfacial profile is described by a space and time dependent scalar order parameter m(z, t),
z being the coordinate perpendicular to the surface plane. The order parameter is taken to be
dimensionsless and normalized so that it is zero in the first (A) and 1 in the second (B) phase.
We consider Ginzburg-Landau-type grandcanonical surface free energy functionals of m(z,t), as
discussed in section 3.4.2:

Sim] = /dz{%g(m(z,t))[am(z,t)/az]z + f(m(z,0)). (127)
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At coexistence of A and B, f(m) has two equal minima at m = 0, 1. If one phase (A) grows at
the expense of the other (B) , we have

S -f0)=¢e>0 (128)

Long ranged interactions of m(z,) can be incorporated by adding

o0 (s 9}

Film] = %/dz/dz"w(lz——z’l)[m(z,t)—m(z’,t)]2 (129)

to the original functional X (compare with (107)).
We define relaxational dynamics or dynamics for a nonconserved order parameter as follows
[258]:

omjot = —I,(m)déX[m]/dm. (130)

Here, the free energy gradient is just the driving force for the order parameter, I, is a kinetic
coefficient which sets the microscopic time scale and generally depends on the order parameter m,
1.e. it is different in the different thermodynamic phases described by m. On the other hand, the
dynamics for a locally conserved order parameter follows from a generalized continuity equation
[258] and is given by

dm/jdt = [L(m)(8%/8z*)06Z [m]/dm (131)

where again I; is a generalized diffusion coefficient (with another dimension than I7,). The boundary
conditions for m(z,t) are

lim m(z,t) = my =0, zlim m(z,t) = mp = 1. (132)

Z——00

Furthermore, in (130) and (131), we have neglected random forces; they serve only to describe
thermodynamic fluctuations and are important for phenomena near critical points, but not for
phases separated by first order phase transitions.

Often one looks for steady state solutions

m(z,t)y =m(z—-vt) =m(x) (133)

with a velocity v which is then specified as a function of the free energy difference &. Such a solution
obviously exists only for non-conserved order parameter dynamics. If one substitutes in (130) 8/9¢
by —v@/8z and neglects F; one arrives at an ordinary differential equation. As discussed in section
3.4 in the context of the equilibrium situation (v = ¢ = 0), the problem is equivalent to the
classical dynamics of a fictitious “particle” in order parameter space, where z plays the role of
“time”. This “particle” has a “mass” g and moves in a classic potential —f (1) from the “hill” of
phase A to the other “hill” of phase B which is lower than the first “hill” (for ¢ > 0). In contrast
to the equilibrium case, however, the particle suffers also linear “friction” with a friction constant
vI, 1. For a given ¢, the friction must be chosen such that the particle stops exactly at hill B. This
requirement then yields the desired relation v (¢).
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5.2. Exactly soluble models

Let us first restrict attention to a single order parameter. We further assume that g and I, I; do
not depend on m. A simple exactly soluble model, well-known from its static kink-solution, is the
Ginzburg-Landau model defined by a quartic free energy function f (m)

df (m)/dm = Am(m —my)(m —1) (134)

where my is an additional parameter governing the free energy difference ¢ = A(% — myg)/6. The
steady state solution can be expressed as [259,260]

1
= 1
m(x) 1 + exp(y/4/2gx) (135)

where x = z — vt if the relation

v =6I\g/d¢e (136)

is satisfied.
Another exactly soluble model that has been widely used and applied is the parabolic model

f(m) = min[$4m? S4(m - 1)? + ¢] (137)

If one neglects F,, the steady state equation of motion is piecewise linear leading to exponential
solutions which can be matched to give m(x) and the desired relation v (¢). Although the quartic
potential (134) is undoubtedly smoother and therefore more realistic than the intersecting parabola
model, both are evidently ad hoc. Qualitative features should be the same in both models. The
smooth Ginzburg-Landau model is more attractive for direct numerical simulation whereas the
parabolic model is more appropriate to derive analytical results.

The analytical treatment within the parabolic model can also be done, when w{(z), the long ranged
interaction kernel, is not ignored. As realized by Lowen and Oxtoby [261], the steady state solution
can be found for arbitrary kernels w(z). Long-ranged interaction kernels were studied previously,
but analytical results were mainly limited to the Sullivan model in equilibrium situations [262-264]
where a special Yukawa type of interaction kernel is required. In the parabolic model, the steady
state solution is explicitly given by

X

m(x) = z/l—n/dy/dk % exp(~iky) (138)

T kv]Ty + A4 + W (k)

with

W (k) = V2r [ (k) —@(0)] (139)
where w denotes the Fourier transform. The relation between v and ¢ is governed by the expansion

e = Av + 4303 + O(v°) (140)
with

Ay = A%Ly/2nT;,, Ay = A\ L/I,T7, (141)

I, = /dk AT TR | (142)
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Finally, the full time-dependent analytical solutions were found for the equilibrium case ¢ = 0 in
ref. [261].

5.3. Dynamics of surface melting

In this section and the following one, we study the interfacial dynamics, particularly the steady
state solutions, for a situation where three phases are (meta)stable. Then, f (m) has three local
minima and the existence of a steady state solution depends sensitively on the depth of these three
minima. We shall illustrate the physical effects that may occur using two different applications:
surface melting away from equilibrium and, second, a dynamical mechanism for the creation of a
metastable phase.

In chapter 4, equilibrium aspects of surface melting were discussed. However, scattering experi-
ments on surface melting are typically performed in ultrahigh vacuum, i.e., at large undersaturation,
in order to reduce the scattering from the vapor phase. In these experiments, the crystal slowly
evaporates. Therefore, the crystal studied is no longer in chemical equilibrium with the vapor.
The two situations of surface melting with and without chemical equilibrium can be visualized as
different paths in a P-T diagram. Whereas in equilibrium one moves exactly on the sublimation
line towards the triple point, in the nonequilibrium case the path is shifted by a pressure difference
AP from the sublimation line, see fig. 5.1.

Lowen and Lipowsky [265] proposed a simple Landau model in which the crystal-vapor interface
moves at constant velocity v towards the bulk of the crystal. Following their ideas, we consider a
single order parameter m like the particle mean density (eventually combined with a crystallinity
order parameter).

We use the familiar Ginzburg-Landau functional (127) where f(m) now has three minima
at my < mp < mg corresponding to the vapor, liquid and solid phase. The gas phase is globally
stable, the solid respectively liquid grandcanonical free energy density is about AP > 0 respectively
AP > 0 higher. As in (115), one can define a liquid correlation length gy by the curvature around
the liquid peak where f () has the expansion

fm) = AR + g(mL) (m —my)?/af. (143)

For a situation away from the sublimation line, we are interested in a system in which one has a

Pﬂu

U

T, T

Fig. 5.1. P-T diagram and possible paths of surface melting. In the idealized equilibrium case, the path is identical with
the sublimation line (solid curve). In the experimental situation without chemical equilibrium, the path (dashed line along
the arrow) is shifted by a pressure difference AP from the sublimation line.
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flux of particles away from the solid-vapor interface. This corresponds to the experimental situation
where the evaporated particles are pumped away in order to sustain ultrahigh vacuum conditions.
The corresponding undersaturation is governed by pressure which is a “fast” propagating mode: on
the timescales relevant for the interfacial motion, the pressure within the vapour phase can be taken
to be constant. In such a situation, the deposition rate of particles from the vapour phase should
be proportional to this pressure while the evaporation rate should be determined by the binding
energies of the molecules within the liquid vapour interface [266]. In any case, mass transport
through the interface will not be limited by diffusion. In terms of the particle density, one may then
study the relaxational dynamics, defined by (130). A steady state analysis for the profile m(x)
with the boundary conditions lim,_,_ ., m(x) = my and lim,.,m(x) = ms then leads to the
following predictions [265]:

In the dynamical situation with AP # O there is a characteristic temperature 7. which, in
general, is different from the triple point temperature 7. If complete surface melting occurs for the
equilibrium case AP = 0 at T = Tt with a logarithmic growth law for the width of the quasi-liquid
film, [, there is also a logarithmic growth law at T = T, for AP > 0. In particular

= ly()|In[(T, - T)/T.]| (144)
for T /' T, where the prefactor depends on the steady state velocity v
Io(v) = aL[l + var/2g (mL)I; (mL) + O(v?)]. (145)

This means that the nonequilibrium condition enhances the thickness of a wetting layer.

Another interesting quantity is the residual crystallinity m}‘ of the order parameter m; at the
quasi-liquid—vapour interface. For the equilibrium situation, it is well-known from section 4.5 that
mﬁ-‘ vanishes as a power law in 7t — 7 with nonuniversal exponents ;. In the generalization to the
nonequilibrium situation, the exponents turn out to become v-dependent.

Finally, let us consider a long ranged algebraic tail ¥;(r) ~ r~¢ in the interparticle potential
V (r). As in the case of short range forces, surface melting occurs at a characteristic temperature
T, which differs in general from the triple point temperature 77. The Hamaker constant W, on the
other hand, is not renormalized by the dynamics, i.e. it does not depend on the interface velocity v
[265]. The thickness / of the disordered layer diverges as [ ~ [2W/A(T. - T)]'/3 for small T, - T
where A is a latent heat. The residual crystallinity vanishes as a stretched exponential law in 7, — T

Estimating typical velocity corrections, one finds that they are very small in general such that the
interfacial structure observed in scattering experiments resembles very much the structure in full
chemical equilibrium.

5.4. Dynamical mechanism for the formation of a metastable phase

One can also study three-phase Ginzburg-Landau models where one of the phases is a metastable
phase. Although such a metastable phase cannot be thermodynamically stable as a bulk phase, one
can create it dynamically. Bechhoefer et al. [267] have shown that fronts separating the stable high-
and low-temperature phases can split apart into two independently moving fronts. The first front
separates the phase that is stable at high temperatures (phase 0) from the metastable phase (phase
1). The second separates the metastable phase from the stable one at low temperatures (phase 2).
Because the 01 front moves faster than the 12 front, a macroscopically large region of the metastable
phase 1 is created. The mechanism explains how metastable phases may grow at the interface given
that the stable phase has already been nucleated.
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Fig. 5.2. Free energy density —f (m) as a function of the Fig. 5.3. Calculated velocities of the 01, 12, and 02 fronts
order parameter m for different control parameters b as a function of b. From ref. [267].

(Tp2 — T'). The curves are shifted by an arbitrary constant.
From top to bottom the values of b are as follows: (a)
b = 0.5, liquid spinodal line, (b) b = b, = 0.15419,
critical value for interface splitting, (¢) & = 0, coexistence
between phase 0 and 2, (d) b = —0.25, region where phase
0 is stable.

In ref. [267], a polynomial of sixth order was chosen for the bulk free energy density f (m),
df /dm = Am[m — (0.5-b)](m - 1)(m — 1.5)(m - 2). (146)

f (m) is sketched in fig. 5.2 for different b exhibiting three local minima at m = 0, 1, and 2. The
minimum at m = 0 represents a disordered phase (e.g. a liquid), that at m = 2 a stable phase
(e.g. the equilibrium low-temperature solid phase), and that at m = 1 a metastable phase 1 (e.g.
a solid phase with a different crystal structure, a martensite [268], or a quasicrystal [269]). The
control parameter is b < (Ty; — T'), where Ty, is the coexistence temperature between phases 0 and
2. Thus, & = 0 corresponds to the usual melting temperature. When 0 < b < 0.5, the stable solid
phase (m = 2) has a lower free energy than phase 0 and 1.

In fig. 5.3 also the three front velocities are plotted versus the control parameter b. vy, means
the velocity of the steady state interfacial profile between phase 0 and 1, to which the phase 2 is
irrelevant. Accordingly, v, is the velocity of the steady state profile between the phases 1 and 2
and vg; means the velocity of the complete profile. The most striking feature is the intersection of
vo1 (b)), v12(b), and vy, (b) all at the same value of a critical control parameter b = b, ~ 0.154.
Although steady-state 01 and 12 fronts exist for all values of b, the steady-state 02 front ceases to
exist when b > b..

For b > b, solutions connecting phases 0 and 2 are time dependent in all uniformly translating
reference frames. When b < b, the width wq, (¢) converges to a constant as ¢t — oo, When b > b,
it diverges linearly for large times. The asymptotic rate of divergence satisfies

d’UJoz/dl = Vo1 (b) —’Ulz(b). (147)

This, then, is the mechanism for the formation of metastable states: in the presence of the metastable
phase, the 02 front can be thought of as a combined 01 and 12 front. As long as the rear part (12)
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moves faster than the leading part (01), the 02 front moves with a velocity intermediate between
vo1 and vy;. When the rear is unable to keep up with the leading edge, the 02 state splits into two
quasi-independent 01 and 12 fronts: a macroscopic quantity of phase 1 is created.

The splitting instability is possible even when there are multiple order parameters. This was
discussed in detail by Tuckerman and Bechhoefer [213]. Finally the presence of an external field
blocks metastable phase formation which was discussed by Bocquet and Lowen [270]. In this case
the width of the metastable phase layer first grows to mesoscopic values and then shrinks back
again to microscopic values.

6. Heat diffusion limited crystal growth

In order to describe crystal growth where the production and subsequent release of latent heat is
explicitly taken into account, a simple model that couples a non-conserved order parameter to the
temperature field is studied. After giving the basic equations for this “phase-field model”, recent
results are reviewed including two qualitative different (diffusion-limited and kinetics-limited)
regimes of crystal growth and critical behaviour at the boundary between these two regimes.

6.1. Phase field model: introduction

In the simple order-parameter model of chapter 5, the temperature field is assumed to be uniform
and constant, meaning that temperature variations due to the release of latent heat produced by
freezing are ignored. Models with a non-conserved order-parameter account for various microscopic
properties of the solidification process, such as the finite width of the solid-liquid interface and the
deviations from thermodynamic equilibrium that drive the interface forward. They typically predict
that planar fronts will propagate at a constant velocity v that is proportional to the undercooling.

By contrast, in diffusion models, the basic variable is the temperature field [271,272]. Although
the release and subsequent diffusion of latent heat are both properly accounted for, the various
microscopic features of the order-parameter models are ignored: the interface is assumed to be
sharp and in local equilibrium. In contrast with the first kind of model, steady-state motion is in
general impossible, but the typical asymptotic state has a front velocity decaying with time ¢ as
=172,

The ingredients of these two models can be combined by coupling an order parameter to the
temperature field. This phase-field model was studied in the context of crystal growth by Collins
et al. [273,274] and [275], and later also by Umantsev and Roitburd [276,277], Schofield and
Oxtoby [278], as well as Lowen et al. [279-281], Kupfermann et al. [282], and Charach and
Zaltzman [283]. The interest in this more detailed model is that it describes both diffusion- and
kinetics-limited front motion in a single set of coupled equations. In addition, there are also new
effects, not predicted by either of the simpler models.

6.2. The phase-field model: basic equations

Adopting the same notation as in the previous chapter, the order-parameter field, m(z,¢), is zero
in the liquid and one in the solid at the solid-liquid coexistence temperature 7. The temperature
field T(z,¢) can also be scaled to be dimensionless by L/c,, where L is the latent heat of fusion
per mole and ¢, is the specific heat for constant pressure at coexistence which for simplicity is
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assumed to be equal in the two phases. The dimensionless-undercooling field, then, is
u(z,t) = ¢, (T(z,t) — Ty)/ L. (148)

If one considers a solid front advancing into a liquid held at a temperature ¥ = —A4, the latent heat
released is just enough to transform the undercooled liquid into solid at the coexistence temperature
when 4 = 1. If 4 < 1, then excess heat must be transported away from the interface. If 4 > 1, the
growing solid will be cooler than it would be at coexistence with the liquid.
In the phase-field model, the equation of motion for the dimensionless temperature field u(z,t)
is
du/dt = Dy d%u/dz> + am/ot. (149)

Here, D1 is the thermal diffusivity, assumed to be identical in both phases and independent of
temperature. Equation (149) describes the diffusion of heat, with the dm/dt term acting as a
source for the heat field due to the latent heat of crystallization.
On the other hand, the equation of motion for the non-conserved order-parameter field m(z,¢)
is
omjot = -1, 86X [m,ul/dm. (150)

The surface tension functional X [m, u] is scaled by AkgTy/A, where A is the cross-sectional area
of the interface, and 4 is an energy (in units of kg7y) and is thus given by

Zimyul = / dz {3&410m(z,1)/021% + fIm(z,1),u(z,t)]} (151)

where &, is a microscopic bulk correlation length. The local free-energy density f (m,u) is
fimu) = fo(m) + 36um (152)

where fo(m) is the local free energy density at coexistence and %Jum is the first term in a
temperature expansion around T = Tj. The coefficient J can be shown to be related to the latent
heat L as

§ = (2/A)(L/ksTo) (L/c, Tp). (153)

The local free energy density fo () must have equal quadratic minima at m = Qand m = 1. Asin
section 5.2, one may consider two different forms for f(m) which have this property, the Ginzburg-
Landau model, fo(m) = m?(m — 1)2, and the parabolic model, fo(m) = 3 min[m?, (m — 1)?].

Defining the length scale is z,, = V2. and the time scale 7, = 1/I;, which leads to a velocity
scale, vy = 2,,/Tm, the rescaled equations (149) and (150) read

u = (1/2p)uz; + my, (154)
my = ym;; —dfo/dm — Lou. (155)

Material properties are now described solely by two dimensionless parameters, § and p, where

pEé'zﬂD/—_:L"—. (156)
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Note that ¢2,/t,, can be interpreted as an order-parameter diffusion constant, denoted by D,y, so
that p equals a ratio of diffusion constants p = Dp,/Dr.

To fix the boundary conditions, we need to know four values: my = m(%oo,?) and uy = u(+oo,t).
We first require local equilibrium at z = +oc, which gives two equations relating m+ and u.y:

dfo/dm|m, = —Lous. (157)

We could obtain the other two equations by fixing the temperature at z = oo, so that uy = —4.
One would then study the growth of a solid germ that has nucleated at z = 0 and one would obtain
my by solving the algebraic equation (157).

For numerical convenience, one can also consider “steady-state” boundary conditions, where a

semi-infinite amount of solid has already been created. We retain #,. = —4 but adopt conditions at
z = —oo which specify the state of the solid. One can show that for constant-velocity fronts [278]
Uy —My =U_—M_. (158)

Along with (157), (158) suffices to fix u4+ and m...
One can also consider “coexistence” boundary conditions [281], where one takes, in place of
(158)

u_ =0, m_=1. (159)

In this case, the solid is created at equilibrium. For a unique undercooling 4., both the steady-state
and coexistence boundary conditions are identical. For 6 — 0, one has 4. = 1. In the phase-field
model, the du term implies that the m-value of the minimum of the liquid depends slightly on
the undercooling via (157). In particular, m will be positive in the metastable liquid phase if the
liquid is undercooled. This means that 4. is slightly smaller than 1 and is a function of J. Since
for 4 = 4., the amount of heat generated by freezing is just enough to heat the liquid back up to
the coexistence temperature, we refer to this as unit undercooling.

Explicitly, combining eqgs. (157) and (159), one finds for the Ginzburg-Landau model that
4. = 1— (1 —+/1-20)/4 whereas in the parabolic model 4. = 1/(1 + §/2).

Physically one can now understand why one expects to see different kinds of freezing behaviour
for small undercoolings (4 < A4;) and for large undercoolings (4 > 4;). In the former case, let
one start with an entirely liquid sample. Then imagine that it is all converted to solid without
the latent heat diffusing anywhere. The release of latent heat raises the temperature by 4.. This
temperature rise, however, exceeds the original undercooling of the liquid. Were the heat truly to
stay put and not diffuse, then the solid created would be superheated. The true equilibrium, in
fact, requires that some of the heat be transported away to infinity and that the solid be at the
coexistence temperature. Since the transport of heat to infinity is via diffusion, the front slows
down via v (¢) x t~1/2,

By contrast, if 4 > 4., the heat is not sufficient to raise the temperature of the solid back up
to coexistence. The solid is then below its coexistence temperature, a thermodynamically stable
situation. Since no heat needs to be transported out to infinity, solidification is limited only by the
kinetics of transforming liquid to solid, and fronts travel at constant velocity.

The case 4 = 4., where the latent heat is just enough to reheat the solid back to T} is a special
point that divides the diffusion-limited from the kinetics-limited regimes. In this case, the phase-
field model predicts two types of behaviour at 4., depending on p: for p > p., there is a steady state
solution, while for p < p. the velocity decays with an —1/3 power law v (¢) o t~'/3, Here, p. is a
critical value of p which depends on the coupling J.
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A final remark concerns the applicability of the phase field model to alloys. This was extensively
discussed by Lowen et al. [281] and also by Wheeler et al. [284]. In this case, the temperature
field has to be replaced by the concentration field of impurities. The equations formally are the
same, but the parameters p,  and 4 have another meaning and will be significantly different for
inpurity-driven systems. There is also the attractive possibility of tuning J by varying the impurity
concentration.

6.3. Phase-field model: review of results

The original interest in the phase-field model for crystallization came mainly from an inadequacy
of the purely diffusive model, with its sharp interface held at local equilibrium % = 0. This model
implies that for 4 < 1, fronts slow down via a t~!/2 power law [285]. For 4 > 1, the model has no
solution. The latent heat will increase the temperature of the solid by 1 at most; this is inconsistent
with the requirement that ¥ = O at the interface. At 4 = 1, the front will travel at a constant but
indeterminate velocity [272]. Although there are three qualitatively different regimes in this model,
the model breaks down when 4 > 4. = 1 For 4 <« 4., however, it is perfectly satisfactory.

The diffusive model may be improved by adding a phenomenological description of kinetics.
Instead of assuming that the solid-liquid interface is at 7; = T, one sets the interface temperature
to T; = Ty — Bp~'v, where v is the interface velocity and 8 is known as a kinetic coefficient
[286,287]. In this model, fronts with 4 < 1 slow down via a ¢~!/2 power law, as before. For 4 > 1,
fronts travel at constant velocity v « (4 — 1) The model thus gives sensible results for both 4 < 4
and for 4 > A4..

The phase-model provided another solution to the velocity-degeneracy problem of the pure
diffusion model. Both Langer [275] and Collins and Levine [273] showed that the phase-field
model has a unique, constant-velocity solution at unit undercooling which is selected by microscopic
order-parameter kinetics. The lack of such microscopic length and time information leads to the
velocity degeneracy in the diffusive model. The phase-field model reduces to the diffusive model
with linear kinetics when 6 — 0 and p/p. — 0, where the order parameter profile becomes essentially
a step function and the heat or impurity field obeys the standard (uncoupled) diffusion equation.
The most thorough discussion is by Caginalp [288].

Schofield and Oxtoby [278] then found that the 4 = A, steady-state solutions to the phase-field
model discovered by Langer [275] and Collins and Levine [273] exist only for certain values of the
material parameters p and J. In particular, for p < p.(J), there are no steady-state solutions. They
evaluated p. perturbatively for small § in the Ginzburg-Landau model and found p. = 2/(34).
Lowen et al. [279] then repeated the calculations of Schofield and Oxtoby for the parabolic model
and found similar results. The advantage is that, in the parabolic model, the velocities and steady-
state profiles can be calculated analytically. For example, p.(J) is exactly 2/(35). Subsequently,
Lowen and Bechhoefer [280] explored the effect of different values of A in the parabolic model.
The steady state theory can be done analytically. If there is a steady state velocity v, it must satisfy
the equation

-1
1-Ad =4 Z (xj + 2pv) (x,-H(x,-—x,-)) , (160)

Re x;<0 i#j
where {x;,j = 1,2,3} are the complex roots of the cubic equation

X+ 20+ Dx2=2(01 -2pv¥)x - 2pv (2 +6) = 0. (161)
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decaying steady state
velocity

de¢

undercooling A
Fig. 6.1. Summary of the asymptotic behaviour of the phase-field model: velocity versus undercooling. For undercoolings
A < 4, fronts slow down with an asymptotic behaviour v (t) o ¢~!/2, whereas for 4 > 4., the fronts approach a steady-state
velocity v. In the steady-state regime, there are three cases: (1) If p < pc, near unit undercooling, the steady-state velocity
is given by v o< (4 — 4¢). (2) If p = p¢, then v o« (4 ~ 4:)12. (3) For p > pe, the steady-state velocity is finite at Jo. At
4c and p < pe, the velocity decay follows a t—!/3 power law. Finally, for p > pe, there are stable steady-state solutions even
for 4 < Ac, which are shown as a heavy dashed line.

The main result of an analysis of (161) is a transition from a steady state to a diffusive regime at
A4 = A, with the following scaling properties:

(i) Above the borderline, A > A, there is a nonzero steady state velocity v. Fronts approach their
steady state value exponentially, i.e. v(¢) = v + Aexp(—¢/7) where 4 and 7 depend on 4, p and
8. Near the borderline, 4> 4., there are different scaling laws for v in 4 ~ 4
- For p > p. (), v remains nonzero at 4.

- For p = p.(8), v scales as (4 — 4;)1/2,

- For p < p.(8), v scales as (4 — 4;).

—~ At one special point (dg, pg, do) = (%, %, %) in (8,p,A) parameter space, called critical point, v
scales as (4 — 4,)'/3.

(ii) Below the borderline, 4 < 4., there are two cases.

~ For p < p.(d), there is a decaying velocity v (¢) o< t~1/2,
-~ For p > p.(d), and for small 4. — 4, there are dynamically stable steady-state solutions which
lead to the creation of a metastable solid. At some undercooling A, < 4. these solutions have a
finite velocity v and then cease to exist. There is a crossover with a velocity jump from a steady
state solution to a solution with decaying velocity v (¢) o t~1/2.

(iii) On the borderline, 4 = 4., there are three cases:
~ For p > p.(6), there is a steady state solution with finite velocity.
~ For p = p.(6), v is decaying x t~1/3 as long as § < & while for § > & v is finite.

- For p < pe(8), v is decaying o t~!/3. This 1/3-exponent was proved by Marder [289] (for the
derivation of this exponent in the diffusive model with linear kinetics, see also ref. [290]).

The asymptotic behaviour of the crystal growth velocity in the phase-field model is summarized
in fig. 6.1, which shows the velocity versus undercooling, a plot that is typically encountered in
experiments where one varies the undercooling [291,292].

Complementary to these analytical results, numerical simulations of the Ginzburg-Landau form
of the phase-field model equations were performed by Lowen et al. [281]. Typical profiles of
m(z,t) and u(z,t) for different times ¢ are shown in fig. 6.2. The interface starts to move but the
produced latent heat diffuses more and more away, thus hindering crystal growth.
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Fig. 6.2. Evolution of the order parameter m(z,¢) and heat field u(z,¢). The material parameters are p/pc = 0.1 and
é = 0.1. The undercooling is 4 = 4.. In both (a) and (b), the upper curves denote m and the lower ones 1. The horizontal
positions of the different curves show the overall displacement of the front at times ¢/t = 0, 100, and 1000 in (a) and
t/tm = 104, 105, and 106 in (b). The z-axis is scaled by zm, the microscopic order-parameter length scale and the time by
Tm, the microscopic order-parameter time scale. From ref. [281].

A sensitive quantity to detect different power laws in the velocity decay is the time-dependent
decay exponent v (t), defined by

v(t) = dloggv(¢)/dlogigt = ta(t)/u(t) (162)

where a(t) = dv(t)/dt denotes the interface acceleration. v (¢) is shown for different undercoolings
4 in fig. 6.3. Note the logarithmic axis in time. For 4 > 4., a(t) becomes zero, since there is a
steady state solution. At A = A. , there is a plateau at v = 0.30 with a very long-lived transient
which prevents rapid appearance of the asymptotic state where v = 1/3. Finally, in the diffusive
regime 4 < A, v(t) saturates at 1/2.

To summarize, there are three qualitatively new features inherent in the phase-field model:
the 1/3 power-law decay at 4 = 4., the jump from a non-zero velocity steady-state solution to

exponent v

time t /7,

Fig. 6.3. The evolution of the velocity decay exponent v for different undercoolings. From top to bottom, the undercoolings
are A/4; = 0.9240, 0.9753, 0.9959, 0.9994, 1.000, 1.027. The heavy dashed line is the 4 = 4. curve. The material
parameters are p/pc = 0.9 and § = 0.1. From ref. [281].
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a diffusive solution when p > p., and the critical point. All these features have not yet been
detected in growth experiments. An estimation of material parameters, however, shows [281] that
the boundary between the kinetics-dominated and the diffusive regime should be accessible for
impurity-driven systems. Thus there are good reasons to believe that some of the new predictions
of the phase-field model are verified experimentally in near future.

7. Kinetic glass transition and colloidal suspensions

As a common experience, liquids can be easily undercooled until to a certain temperature where
they freeze into a glass where the particles are practically trapped into the cages formed by their
nearest neighbours. This kinetic glass transition is not connected with a true thermodynamic phase
transition but manifests itself as a sharp crossover with qualitative different dynamical relaxation of
density perturbations. Since dynamics are different for atomic and colloidal systems, the relaxational
scenario is — at least a priori — different, too. In this chapter we discuss similarities and differences
of the kinetic glass transition in atomic and colloidal liquids.

7.1. Kinetic glass transition for atomic liquids

7.1.1. General
The relaxation time of a density perturbation in a supercooled liquid was studied as early as 1863
by Maxwell who defined a relaxation time 7 as

™ =1/Gx (163)

where 7 is the shear viscosity and G, the high frequency shear modulus of the liquid. The latter
barely varies with temperature and is of the order of 10! Pa. One can roughly define a glass
transition by fixing Ty to be a long experimental time, say 10%s. This then corresponds to a
viscosity of 1012 Pa s = 10!3 poise which is the usual definition of the glass transition point.
Evidently, this definition is arbitrary. Experimentally, due to the finite time window of observation,
it is often connected to an almost discontinuous behaviour of the measured specific heat since some
degrees of freedom seem to be frozen. The scenario for this glass transition also depends on the
cooling history and so there is no reproducible underlying sharp glass transition. In this section, we
shall restrict ourselves to a dynamical phenomenon well above the “calorimetric” glass transition
temperature which occurs at about # ~ 10% poise where fragile glass formers show a significant
deviation from the Arrhenius behaviour n ~ exp(—A4/T), see the classification of Angell [293].
This behaviour is intrinsic, i.e. it does not depend on the cooling history, and may be called kinetic
glass transition. However, one should bear in mind that it is not a sharp transition. One can also
call it a change in the dynamical behaviour of a supercooled liquid well above the calorimetric
glass transition. The important question concerns the microscopic origin of the deviation from the
Arrhenius law. On the other hand, strong glass formers (like window glass) have already strong
bondings in the supercooled liquid and their viscosity follows an Arrhenius law over several decades
[293]. Consequently, there is no “kinetic glass transition” for strong glass formers.

These observations indicate that the kinetic glass transition has dynamical origin. There are also
some changes in the statics of higher-order correlation functions, see e.g. ref. [294], but the pair
structure is very much similar to that of an ordinary supercooled liquid. Thus, from studying the
structure factor S'(k) alone, one cannot decide whether a given material is liquid- or glassy-like.
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7.1.2. Experiments

In principle, dielectric relaxation methods, nuclear magnetic resonance, quasi-elastic light and
inelastic neutron scattering experiments provide data for the time-dependent density autocorrelation
function Fy(k,t) respectively its spectrum Sq(k,w) (see eq. (63)), which are the dynamical key
quantities in studying the density relaxation near the kinetic glass transition. The technical problem
is that simple atomic materials do crystallize on the experimental time-scale, they can hardly
be undercooled sufficiently. Therefore, experiments have usually been performed at much more
complex multi-component liquids. One relatively simple ionic fragile glass former is represented by
a molten salt like Cag 4K (NO3 ) 4 that was studied in detail by Mezei and collaborators [295,296]
and for which there are also simple expressions for the pair potential {297]. These measurements
give excellent data over a broad time window. Two important features of the dynamical correlation
functions are scaling and stretching near the kinetic glass transition. Scaling means that a set of
correlation functions measured at different temperatures fall on a universal Master curve after a
suitable scaling of the time. Stretching implies that the correlations function decays as a stretched
exponential for large times ~ exp{(—(t/#y)"), with an exponent v < 1 (Kohlrausch-law)

7.1.3. Mode coupling theory

The mode coupling approach is extensively reviewed by Gotze [298] and Gotze and Sjogren
[299], also in connection with experiments. The starting point is the exact generalized Langevin
equation for the normalized density autocorrelation function ®(k, ) = Fy(k,t)/S(k), see eq. (63),
which can be cast in the form of the equation of motion for a damped harmonic oscillator

t
bk, t) + y(k)D(k,t) + QKD (k,1) + /dt’ Mkt =t (k,t') = 0. (164)
0

Here, y(k) is an instantaneous friction coefficient and Q2% (k) = (ksTk)?/S (k)m?. The last term
in (164) describes the retarded friction characterized by a memory kernel M (k, ¢t). In MCT, this
kernel is approximated by a form quadratic in @ (k,¢) providing a closed set of equations with a
nonlinear feedback mechanism.

By varying a control parameter, €.g. the density or the temperature, the nonlinear feedback
leads to a bifurcation from a solution @ (k,¢) that decays to zero at long times to a solution that
tends asymptotically to a constant @ (k,t — o) = &, referred to as the Edwards—Anderson order
parameter [300]. In other words, there is a transition from an ergodic to nonergodic behaviour at
a certain sharp temperature Ty. This is called ideal glass transition which is directly connected with
ergodicity breaking. Close to Ty, MCT predicts a two-step relaxation of @ (k,¢): a f-relaxation at
“intermediate” times and a final a-relaxation, which obey scaling laws in T — T with nonuniversal
exponents.

However, MCT in its simplest form ignores thermal activated hopping processes that finally
restore ergodicity. Strictly speaking an ideal glass transition does not exist. In a more extended
version of MCT, Das {301] included this mechanism approximately and found a smeared transition.
The resulting continuous behaviour unfortunately suppresses any clearcut diagnostics of the kinetic
glass transition as in its ideal counterpart.

7.1.4. Molecular Dynamics (MD) simulations
The time-dependent correlation functions discussed in section 1.5.3 provide a dynamical diag-
nostics of the kinetic glass transition and are also accessible by Molecular Dynamics simulations.
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However, for present day computers, one is still limited in the time window. The maximum time
one can span is typically about 1000-10000 times a typical microscopic time. Nevertheless in this
time window MD simulations have provided “exact” data for simple supercooled atomic liquids,
necessary for a detailed discussion of the decay scenario of density fluctuations. For a summary
and extensive discussion of MD computer simulations at the kinetic glass transition, we refer to
the review article of Barrat and Klein [302].

MD simulations have revealed that the kinetic glass transition is connected with a crossover
between two different microscopic dynamical relaxations: hydrodynamic relaxation by collective
diffusion as in usual liquids and relaxation by thermal activated jump processes. Then, as the
temperature is lowered further, there is a separation of time scales between short time relaxation
(phonons) and the so-called a-relaxation. The former can be thought of as a particle rattling in the
cage formed by its nearest neighbours, the latter is related to thermal activated jumps and gives rise
to a stretched exponential Kohlrausch decay. Between these two processes there may be a further
relaxation, called S-relaxation, which can be attributed to the relaxation of the particle cages, but
its definition and microscopic manifestation is much less clear, although it seems to be accepted
now that it is a localized relaxation phenomenon. At this stage it may be useful to point out that
simulations of Ernst et al. [303] and Dasgupta et al. [304] indicate that there is no diverging
correlation length near the kinetic glass transition.

7.2. Kinetic glass transition for colloidal liquids

7.2.1. Experiments

Using dynamical light scattering, van Megen and coworkers [305-309] measured the time-
dependent density autocorrelation function over a broad time window for a sterically stabilized
colloidal suspension as a function of the packing fraction of the particles. Despite the enormous
differences in timescales between atomic and mesoscopic glass formers, the supercooled colloidal
liquid exhibits qualitative features very similar to that of an atomic liquid at the kinetic glass
transition. The advantage for interpretation is that the experimental system is a rather simple: it
represents a hard-sphere-like system with a small polydispersity.

Also the relaxation of spherical polystyrene micronetwork particles of mesoscopic size, swollen in a
good solvent, was recently measured over a very broad time-window by Bartsch and coworkers [310-
312], representing another type of colloidal suspension. The samples are a bit more polydisperse
(ps = 0.16) than that used by van Megen and coworkers. Again the long-time relaxation was found
to be very much similar to that of simple atomic liquids. Charge-stabilized colloidal suspensions
also form glasses; experimental studies at the glass transition were done by Sirota et al. [313] and
Meller and Stavans [314]. In the latter references, however, only static properties were investigated.

7.2.2. Mode coupling theory

The experimental results of van Megen and Pusey [306] were compared with predictions of
mode coupling theory for a hard sphere system by Gotze and Sjogren [315] and by Fuchs et al.
[316]; good agreement was found between mode coupling theory and the experimental data. In
the comparison, however, some fitting parameters were involved as e.g. the packing fraction of
the (ideal) glass transition, i.e. the glass transition point is not an output but an input in the
comparison. The fitted time-dependent density autocorrelation function is simply monotonically
decaying and has no particular structure. However, one should not forget that the fits extends over
several decades in time such that the agreement supports mode coupling theory.
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The MCT was originally derived for Molecular Dynamics. It was shown explicitly by Szamel and
Léwen [46] that the asymptotic predictions of MCT do not change for Brownian Dynamics. Hence,
within MCT, the asymptotics of the density relaxation are universal with respect to the short-time
dynamics. For example, the ideal glass transition occurs at the same temperature for MD and BD.

7.2.3. Brownian Dynamics (BD) simulations

Lowen et al. [317] performed an extensive simulation for a charge-stabilized polydisperse colloidal
suspension near the kinetic glass transition for both BD and MD. So, a direct comparison of the
density relaxation for both kind of dynamics could be made. To date this is the only simulation for
the kinetic glass transition which takes solvent friction into account.

In ref. [317], a charge-polydisperse colloidal fluid, described by the potential

EZ,'Z}'
r 22

is chosen as a model system. Uy sets the energy and a the length scale. k* = 7 and p = a3 are
fixed. The system is then cooled from a temperature 7* = kgT /U, = 0.45 down to T* = 0.10. The
charge-distribution P(Z) is taken to be a Schultz distribution with relative charge-polydispersity
pz = 0.5. The characteristic time scales for BD and MD are 75 = ¢a?/U and 1y = v/ma?/Uj in
the BD/MD case.

As dynamical diagnostics for the kinetic glass transition the relaxation of the self part of the van
Hove function, Gs(7,¢), can be used. As discussed in section 1.5.3 (see €q. (59)), Gs(r,¢) gives the
probability distribution to find a particle after a time ¢ at a distance r from the origin provided it
was at the origin at time ¢ = 0. In a normal liquid, G;(r,¢) approaches rapidly (i.e. after few Ty
or 7g) an exponential & (4nDyt) 32 exp(~r?/4Drt) where Dy is the long time diffusion constant.
As the system is gently cooled down further, there is a sudden drastic change in the relaxation. The
function r2G;(r,t) shows now the buildup of a secondary peak roughly at a mean particle distance
a whereas the position of the first peak remains frozen over “long” (i.e. 1007tg, Tn) times. For
Newtonian Dynamics, this function is shown for two different temperatures in fig. 7.1.

This gives a first indication that hopping processes do occur. Of course this qualitative change
occurs gradually in a smooth manner but still in a relatively narrow temperature interval and it
can be used to determine an estimate for the kinetic glass transition which is now microscopically
connected with a change in the relaxation behaviour from hydrodynamic relaxation to relaxation by
thermal activated jumps. Remarkably, the temperature interval in which this dynamical crossover
occurs is the same for BD and MD. Also, the buildup of the secondary peak is present in BD,
indicating that there is the same crossover to thermal activated jumps in the Brownian case. By
this diagnostics one may estimate the temperature for the kinetic glass transition for both MD and
BD to be within

Vij(r)y = Uy exp[—k*(r—a)/a)] (165)

0.115 < Ty, < 0.12. (166)

The long time diffusion constant drops to very small values near Tg“lass and a power law with a
small residual contribution AD due to jumps fits well the data of the supercooled liquid

Du(T) = AD + A(T — Tjhps) (167)

with y = 1.4 for both BD and MD.
Another interesting quantity is the distinct part of the van Hove function, G4(r,¢), defined in
eq. (58), giving the probability distribution to find a particle at a distance r from the origin after a
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Fig. 7.1. Self part of the van Hove function, Gs(r,t), multiplied by 4ar2a versus reduced distance r/a calculated with
Newtonian dynamics; the curves from left to right (or top to bottom) are for increasing time arguments. (a) Results for
T* = 0.13 and t* = t/txy = 109, 218, 327. (b) Results for 7* = 0.11 and r* = 128, 384, 640. From ref. [317].

time ¢ provided another particle was at the origin at 1 = 0. At the kinetic glass transition, it turns
out, again both for BD and MD, that a peak at » = 0 is built up giving again strong evidence for
particle exchange hopping processes. In a dense supercooled liquid, however, these processes are
more complicated than simple pair exchanges. In general, more than two particles (small clusters
of particles) participate to a real position exchange process, see e.g. ref. [318].

Other interesting quantities are the spatial and time Fourier transformations of G;(r,t) and
Gy4(r,t), denoted by F;(k,t), F4(k,t) respectively Ss(k, w), Sq(k,w), see eqs. (62) and (63). In
fig. 7.2, F;(k,t) is plotted as a function of time ¢ an a logarithmic scale for a fixed wave vector
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Fig. 7.2. Self part of the density autocorrelation function Fg(k,t) versus reduced time t* = t/ty,t/tp (on a logarithmic

scale) for k = kp = 7.4/a and (from bottom to top) T* = 0.13, 0.12, 0.11 and 0.10 (a) Brownian Dynamics; (b)
Molecular Dynamics. From ref. [317].
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k near the first peak of the static structure factor S (k). From this figure it becomes evident that
there are qualitative different relaxations for BD and MD. Of course, for short times ¢/, t/7p, the
decay of the density autocorrelation function is different. As explained in section 1.5.3, it starts with
1 — O(#?) in the MD and with 1 — O(¢) in the BD case. For very long times, F;(k,t) and Fy(k,t)
can be fitted by a stretched exponential law ~ exp(—(¢/¢;)”), where {; is strongly temperature
dependent and, as v, also depends on k. The exponent v is found to be practically the same for BD
than for MD. So the a-relaxation scenario is quite similar. From fig. V7.2 it becomes clear that, for
times small compared to a-relaxation but still larger than tg, 7w, there are qualitative differences,
i.e. the different short-time behaviour also induces a different crossover to the long-time behaviour.
The decay is smoother in the BD-case and there is no clear indication for a buildup of a plateau
near T, glass- (Of course, for smaller temperatures there must be a quasi-plateau.) If one looks at the
time Fourier transforms of Fy(k,t) or F,(k,t) (ka = 7), one finds that there is a shoulder at the
corresponding frequency for MD which is missing for BD. It is tempting to call this a S-relaxation
and one main conclusion is that the dynamical onset of f-relaxation is qualitatively different for
BD and MD. In mode coupling theory, S-relaxation is defined in a different way, namely by an
additional scaling law near T, glass Whose asymptotic behaviour can be studied analytically. Again,
mode coupling theory predicts no difference for MD and BD in the asymptotic case. The difference
obtained in the simulation, however, occurs for smaller times that are not yet in the asymptotic
regime.

In ref. [317) the simulation was carried out for a polydisperse system in order to avoid sponta-
neous crystallization. Although the charge polydispersity is high (pz = 0.5), a mapping procedure
to an effective size-polydisperse reference system [21] shows that the effective size polydispersity
is p; = 0.13 which is a value typically encountered in experiments.

Summarizing, the kinetic glass transition manifests itself microscopically as a crossover from
hydrodynamic relaxation to relaxation by thermal activated jumps. This crossover is not completely
sharp but occurs on a very narrow temperature interval upon cooling. The transition temperature is
the same for BD and MD. The dynamical onset of B-relaxation, however, is different. A shoulder
in the dynamical structure factor at intermediate frequencies is present for MD but missing for
BD. On the other hand, a-relaxation is similar, supporting the prediction of simple mode coupling
theory.

7.3. Some further recent developments

7.3.1. Density functional theory of the glass transition

It is tempting to consider simply the phenomenological (e.g. Ginzburg-Landau or Cahn~Hilliard)
equations for the relaxation of the density field near the kinetic glass transition instead of starting
from microscopic dynamics. For the free energy density functional which enters into these dynamical
equations one can use an approximation which describes freezing, see section 3.2. A necessary
condition for a glass transition is the existence of secondary local minima in the functional with a
glassy structure. For hard spheres, this was recently investigated by Dasgupta [319] and Dasgupta
and Ramaswamy [320] using the Ramakrishnan-Yussouff approximation. As minima in the free
energy functional they found frozen inhomogeneous structured density distributions. The associated
free energy of these glassy states is in general higher than that of the solid state but smaller than
that of a homogeneous density distribution characterizing a liquid.

Recently, Lust et al. {321] considered a phenomenological density dynamics based on nonlinear
fluctuating hydrodynamics with Langevin random forces in order to address dynamical properties
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of the liquid-to-glass transition. In the framework of Ramakrishnan-Yussouff density functional
theory they found two-stage relaxation and stretched exponential decay of density correlations.
Hence this approach can be considered as being complementary to mode coupling theory where one
starts from microscopic dynamics. Still, however, the numerically accessible time-window is rather
limited and thus the results have to be considered as preliminary.

7.3.2. Simulation of “complex” models

We have extensively described a Brownian Dynamics study for a polydisperse charged colloidal
liquid. This is one step from usual MD designed for simple atomic liquids towards a more realistic
description of the interactions and dynamics for real complex glass formers. Along these lines,
Dzugutov [322] gives strong evidence of icosahedral ordering near the glass transition in a one-
component system with a more complicated pair potential. There are also recent simulations with
a realistic interactions for methanol by Sindzingre and Klein {323], and for ortho-terphenyl by
Wahnstrom and Lewis [324].

Baschnagel et al. [325] performed Monte Carlo simulations of a lattice model for a polymer
melt. In this model one elementary step consists of moving one polymer segment about a lattice
constant and consequently a much larger time-window and smaller statistical error is available for
the long-time dynamics than for usual MD or BD simulations where one needs much more tseps for
such a movement. One should keep in mind that the Monte-Carlo short-time dynamics is fictitious.
The conclusion of section 7.2, however, indicates that the explicit form chosen for the short-time
dynamics is irrelevant if one is only interested in qualitative features of the long-time dynamics.
This motivates the usage of simplified dynamical models in order to speed up the calculation
of the long-time dynamics. This idea was also used by Kob and Anderson [326] who studied a
non-deterministic kinetic lattice-gas model to simulate long-time relaxation. Their results essentially
support predictions of mode coupling theory. Finally we mention simulational studies which directly
focus on ergodicity of supercooled liquids by Thirumalai et al. [327, 328].

8. Conclusions
8.1. Summary

For melting and freezing phenomena in atomic and colloidal systems, various aspects of theory,
computer simulation and experiments have been discussed. Both static and dynamical phenomena
have been considered of bulk phases and interfaces between two phases. Particular emphasis was
put on the following points:

- Colloidal suspensions represent excellent realizations of classical Statistical Mechanics systems
with many advantages over atomic systems. A direct comparison of the experimental measured
structure with predictions from theories and simulations of classical Statistical Mechanics is possible.
- Within the density functional approach, one can construct a theory of freezing which is based
on the liquid state. Although it is somewhat ad hoc, it works well for strong repulsive potentials
and is suitable to calculate bulk phase diagrams as well as the structure of interfaces and other
inhomogeneous systems from first principles.

- Melting of a solid can be initiated at its surface. Surface melting occurs for quite a large number
of different materials. Details of this cooperative phenomenon depend sensitively on the nature of
the interparticle forces and on the surface orientation.
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- Interfacial kinetics near three-phase coexistence can exhibit some interesting dynamical effects
including a splitting instability by which a macroscopic portion of a metastable phase can be created.
- Crystal growth from its melt is hindered by diffusion of the emerging latent heat which leads to
different scaling laws for the growth velocity.

- A supercooled liquid undergoes a kinetic glass transition which manifests itself microscopically
as a dynamical crossover from hydrodynamic relaxation to a relaxation by thermal activated
particle hopping. For long times the relaxation seems to be rather independent of the corresponding
short-time dynamics implying that it is quite similar for colloidal and atomic liquids.

8.2. Outlook

In the following some interesting novel trends as well as some open problems in the area of
melting and freezing are listed up. Both, simple liquids and more complex liquids (which were
beyond the scope of this review) are briefly addressed.

8.2.1. Simple liquids

In a gravitational field, colloidal suspensions exhibit a sedimentation density profile. By inversion
of this profile one can extract the complete isothermal equation of state [329,330]. For charged
colloids and high salt concentration the experimental density profiles are very similar to that
expected for hard spheres although there are still some problems in interpreting the dilute wing of
the density profile [331]. Until now there is no theory for the sedimentation dynamics which is
also directly accessible in experiment. Also crystallization effects at the bottom of the sedimentation
tube are presently investigated.

It is difficult to prepare strict two-dimensional systems in nature. Typical examples are rare
gas films on graphite. Another promising system results by confining charged colloidal particles
between two parallel charged plates. This yields a very good realization of a quasi-2d liquid on
a mesoscopic length scale. The great advantage is that real-space methods are applicable, i.e. one
can obtain typical particle configurations in real space by direct image processing, see e.g. ref.
[332]. Structural and dynamical quantities are well-described by an effective two-dimensional
Yukawa potential and two-dimensional Brownian Dynamics [333] and in principle a quantitative
comparison with the experimental results is possible. The melting process is fundamentally different
in two dimensions since it may be mediated by a hexatic phase with orientational long-range order.
With these colloidal model systems, one can hope that the (non-)existence of a hexatic phase is
clarified in near future. Also the phase diagram for hard disks is still controversial: the rigorous
proof for the non-existence of long-range positional order in 2D-systems [54] does not apply to
hard disks. Computer simulational studies for large system sizes are still not conclusive [334, 335]
and the validity of density functional theories [64,81,336,337,108] is a priori unclear.

The two-dimensional analogon to surface melting of a 3d crystal is line-melting of a 2D crystal.
The existence of this effect seems now to be established in experiments on e.g. low-coverage rare
gas layers on graphite [338,339].

Another question concerns a theory for the dynamics of a concentrated colloidal suspension treating
properly solvent-mediated hydrodynamic interactions. At present, there is a lot of research focussing
on a consistent theoretical explanation for such dynamical effects including the experimental facts.

The validity of the Yukawa pair potential as a model for concentrated charge-stabilized colloidal
suspension was recently checked by “ab initio” simulations that combine Molecular Dynamics
for the macroions and classical density functional theory for the counterions [7,340,341]. In
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Fig. 8.1. From simple liquids to supramolecular aggregates: different kinds of fluid with increasing complexity (schematic).
Since there is no exact measure for complexity, the arrow only gives a general trend.

this adiabatic approach effective counterion-induced many-body forces between the macroions are
included. It was found that an effective Yukawa-model reproduces the pair-correlations [342]. In
general, however, the Yukawa parameters differ from that of the classic DLVO theory. Much less
understood is the influence of a discrete solvent on the effective pair interaction which may be
relevant for micellar particles.

Details of the melting process at solid surfaces are still unclear. An interesting question is that
of edge-melting. a two-dimensional solid surface necessarily has one-dimensional edges and steps.
The question is whether the surface melting process is initiated first at this one-dimensional line or
whether the solid surface melts as a whole.

8.2.2. Complex liquids

One main focus for future developments will be the extension of theories, simulations and
experiments from simple to more and more complex systems which have a richer phase diagram
with new bulk phases and a correspondingly more complex interfacial behaviour. In this review,
we have considered rigid spherical colloidal particles. In the direction of increasing complexity,
future work should put emphasis on mixtures of colloidal spheres, rod-like particles forming liquid
crystals, polymers, etc. The increasing complexity is visualized in fig. 8.1. In particular, as regards
theory, density functional theory will be used to study the structure and phase diagram of several
kinds of liquids with increasing complexity. As the complexity increases, less informations from the
liquid state are known, and the constructed functionals become less accurate.

One can prepare binary mixtures of sterically stabilized colloidal suspensions which represent a
two-component hard sphere mixture characterized by the ratio o of their two diameters and their
volume fractions 57, and #p. The phase diagram of such mixtures depends on these three parameters
and is thus much more complicated than that of a simple hard-sphere system. The investigation of
the different phases in hard-sphere mixtures is an excellent example of how recent research makes
progress involving experiments, computer simulation and density functional theory at the same
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time! Detailed experimental data for the phase diagram were obtained for a = 0.58 by Bartlett et
al. [343], including an AB, phase and even an AB,; superlattice. The latter phase is familiar in
metallic alloys (e.g. NaZn;3) and consists of a simple cubic lattice of A particles. In the middle
of each A-cube, a B-particle surrounded by an icosahedral cluster of other B’s is found. The full
unit cell consists of eight such sub-cells with neighbouring icosehedra alternating in orientation by
90°. Extensive computer simulations by Eldridge et al. [344,345] confirm the existence of this
AB,3 superlattice as a stable bulk phase in the phase diagram even in a region where pure excluded
volume considerations would predict a phase separation into a close packed A and B crystal. In
parallel, a density functional theory was proposed which reproduced AB,; superlattice formation
[346].

A strongly asymmetric hard-sphere mixture (a — O for fixed 74 and #p) is a model for sterically-
stabilized colloidal particles in a solvent, where the solvent is modelled as small spheres. Computer
simulations are extremely difficult for such highly asymmetric models. A liquid integral equation
study with the Rogers—Young closure predicts phase separation [347] which is a priori unexpected
for a system which is governed by purely repulsive forces. The physical picture is that due to
excluded volume effects the small spheres induce an effective attraction between the large spheres.
Now experimental research is also looking for this phase separation.

The glass transition in a hard sphere mixture is also non-trivial as a function of a. For a ~ 1
one expects the same scenario as for a simple one-component system. On the other hand, for
small o, only the big spheres should freeze into a glassy matrix whereas the smaller spheres remain
liquid. Consequently there must be a transition at intermediate « between these two extreme cases.
Although there are some mode coupling theory studies [348], it is still an open question whether
this transition is continuous and connected to a tunneling probability of the small spheres between
the matrix of the large spheres or not.

Finally we mention less recent density functional studies for two-component fluids including hard
spheres [349-354], ionic [355-357] and Lennard-Jones mixtures [358].

The next level of complexity consists of multicomponent or polydisperse liquids which was
already briefly discussed in section 1.3. Density functional theories for polydisperse hard spheres
[359,360] have been constructed in order to study the influence of polydispersity on the freezing
transition.

In liquid crystals an additional orientational degree of freedom is present. One has mainly focussed
on simple models like hard-rods or hard ellipsoids. We mention e.g. the density functional works of
Holyst and Poniewierski [361-3651, and others [366-370], as well as the computer simulations of
Veerman and Frenkel [371] providing the complete phase diagram of sphero-cylinders. Again, the
best characterized experimental systems are colloids ranging from concentrated aqueous suspensions
of tobacco-mosaic viruses (TMV') [372] or bacterial fd viruses [373] to cylindrical micellar
aggregates and ellipsoidal polystyrene latex particles. Recent experiments, mainly for TMV, have
revealed a complex phase diagram with many different liquid-crystalline phases. Theoretically the
interaction between charged colloidal rods like TMV has to be described by a Yukawa-segment
model [374-376] which is more complicated than that of hard sphero-cylinders. Until now, there
are no theoretical and simulational results for the phase diagram of a Yukawa-segment model.

In molecular liquids, the molecules can be assumed to be rigid or to exhibit certain internal
degrees of freedom. There are extensive Molecular Dynamics simulations and experiments for
many different materials. For a density functional study see e.g. ref. [377].

Finally, flexible supramolecular aggregates, like micelles or polymers, in general have an even
higher degree of complexity if one describes them on a microscopic basis. Usually, one assumes that
the length of a polymer chains is much bigger than its diameter which reduces again the complexity.
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Polymer dynamics was recently successfully studied by computer simulation, see e.g. ref. [378],
and also density functional theory was applied to polymer chains [379].

Summarizing, the application of classical statistical mechanics to complex systems will remain
an interesting and important area of future research in order to contact more and more complex
molecular and colloidal systems such as paint, milk and ink. One can expect that new structural and
dynamical phenomena in complex systems are discovered which then may even lead to important
industrial applications.
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