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Jerky active particles are Brownian self-propelled particles which are dominated by “jerk,” the change in
acceleration. They represent a generalization of inertial active particles. In order to describe jerky active particles,
a linear jerk equation of motion which involves a third-order derivative in time, Stokes friction, and a spring force
is combined with activity modeled by an active Ornstein-Uhlenbeck process. This equation of motion is solved
analytically and the associated mean-square displacement (MSD) is extracted as a function of time. For small
damping and small spring constants, the MSD shows an enormous superballistic spreading with different scaling
regimes characterized by anomalous high dynamical exponents 6, 5, 4, or 3 arising from a competition among
jerk, inertia, and activity. When exposed to a harmonic potential, the gigantic spreading tendency induced by
jerk gives rise to an enormous increase of the kinetic temperature and even to a sharp localization-delocalization
transition, i.e., a jerky particle can escape from harmonic confinement. The transition can be either first or
second order as a function of jerkiness. Finally it is shown that self-propelled jerky particles governed by the
basic equation of motion can be realized experimentally both in feedback-controlled macroscopic particles and

in active colloids governed by friction with memory.
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I. INTRODUCTION

One of the immediate consequences of Newton’s postu-
lates [1] in classical mechanics implies that a force field can
only depend on the position and velocity of the particle but
not on its acceleration. Assuming such an acceleration depen-
dence would immediately be in conflict with the superposition
principle [1-3]. Another basic assumption is that the inertial
mass of the particle is positive. Since Newton’s axioms, how-
ever, only hold for the fundamental interactions, in general
this can be challenged in artificial or effective force fields.
Likewise, despite Newton’s third law “actio=reactio,” there
are many current studies on nonreciprocal interactions which
violate Newton’s third laws, such as predator-prey systems.
This is not a fundamental violation but occurs in effective
coarse-grained nonequilibrium situations. Still this requires a
rethinking about the foundations of mechanics and statistical
mechanics in nonequilibrium and many novel effects have
been discovered due to nonreciprocity [4—10].

Here we challenge the two basic assumptions of
acceleration-independent forces and positivity of inertial
mass. These challenges can be addressed using programmable
active robots subjected to a time-delayed feedback force
specifically designed to break the assumption of acceleration-
independent force fields. This is simulating an effective
inertial mass with any sign, i.e., it can even realize an equa-
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tion of motion for a particle which is formally identical
to Newton’s equation of motion but with a negative parti-
cle mass. Such a negative-mass particle is found within the
context of external feedback control. By monitoring the tra-
jectories of the particle externally with a camera, one can
measure its acceleration and compute the corresponding force.
Then the particle is exposed to an external field that is exactly
reflecting the computed force [11-15]. These artificial forces
then formally break the condition that forces are acceleration
independent and that mass is positive. When combined with
a short time delay, these synthetic forces involve the jerk,
which is the time derivative of the acceleration [16,17] result-
ing in equations of motion that include the third-order time
derivative [18-26] rather than the second order as is typical in
Newtonian mechanics. So far, jerky particle dynamics have
been primarily investigated within the framework of chaos
theory in nonlinear dynamical systems [27-30], traffic flow
control [31,32], the Abraham-Lorentz force associated with
radiation emission [31,32], and cosmology [33,34].

Another rapidly growing research field is the physics of
active matter. Active matter consists of active particles that
convert energy from the environment to mechanical motion, as
for reviews see, e.g., Refs. [35—40]. Modelling of active par-
ticles can occur on various levels, maybe the simplest model
is the active Ornstein-Uhlenbeck particle which is based on
memory-dominated noise studied for passive particles already
by Fiirth in 1920 [41] and by Ornstein and Uhlenbeck in
1930 [42]. This model describes a particle that is randomly
exposed to persistent noise providing kicks into the same
direction during a typical timescale, the so-called persistence
time T,, sometimes also called colored noise [43]. The active
Ornstein-Uhlenbeck model has been applied to many situation
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in order to describe activity in a simple way, see, e.g., Refs.
[14,44-52].

Here we combine the two fields of jerky dynamics and
active particles. In this spirit, the term jerky active matter was
coined and introduced by te Vrugt, Jeggle, and Wittkowski
[53]. While they focused more on field theoretical equa-
tions describing active matter with an additional timescale,
our work predominately investigates the individual particles
and their stochastic active motion. We therefore consider a
new model class of active particles which is dominated by jerk
and thus consists of active jerky particles.

In doing so, we study the simplest model conceivable for
activity namely an active Ornstein-Uhlenbeck particle subject
not only to inertia [54-58] but also to jerk. An appropriate
linearized equation of motion [59] with activity is proposed
and solved. One characteristic dynamical quantity to classify
active particle dynamics is their mean-square displacement
(MSD). Typically it involves different scaling exponents as
a function of time ¢. Characteristic for a Brownian active
particle is a crossover from a ballistic regime where the MSD
scales with 2 to a diffusive regime with a scaling linear in
time ¢ [38,60]. With a term linear in the jerk in the equation of
motion, the MSD shows an enormous spreading revealed by a
scaling in time with unusual high exponents 6, 5, or 3 depend-
ing on whether there is pure jerk or a combination of jerk and
inertia. These unusual exponents occur even in the long-time
limit and characterize anomalous diffusion [61-63]. This high
diffusion and corresponding spreading tendency is gigantic as
it can even break the localization of a harmonically bound
particle leading to a localization-delocalization transition for
increasing jerk strength. Several experimental realizations of
jerky active particles described by the dynamics are also
proposed.

The paper is organized as follows. In Sec. II we present
the model and introduce the mean-square displacement, the
mean kinetic energy and the mean-square jerk. Different spe-
cial cases are subsequently discussed and solved in Sec. III.
Section IV treats the general case of a jerky inertial damped
harmonic oscillator and conclusions are given in Sec. V.

II. ACTIVE JERKY PARTICLE DYNAMICS

A. Equations of motion

We consider a particle in one spatial dimension with a time-
dependent position coordinate z(¢). Suppose an acceleration-
dependent force is programed externally by a feedback device
which measures the instantaneous particle acceleration Z(t)
by monitoring the change in the particle translational veloc-
ity z(¢). This artificial force violates the traditional view of
classical Newton’s mechanics where the force field does not
depend on acceleration. Within a small time delay §t > O the
device transforms this input into a force F (Z(t — t)) that is
acting on the particle. For small deviations around a reference
acceleration Zp we can double Taylor-expand this function in
acceleration and time to obtain the linear expression

FE(t —81) ~ F (%) + F'(Z0)(E(t) — 8t Z(t) — Zo), (D)

where (...)" denotes a derivative with respect to acceleration.
Now we superimpose this force with a Stokes friction force
—yz(t), where y is an appropriate friction coefficient and

a harmonic spring force —kz(t) with k denoting the spring
constant. The full stochastic equation of motion is obtained as
a force balance

AX (@) +mi@) + yx@) + kx(t) = yu(t) 2)

with a new shifted position coordinate x(¢) = z(t) — (F (Zo) —
F'(Z0)Z0)/k, a renormalized inertial mass,

m=m, —F'(), 3)
where m,, is the real mass and the jerk coefficient
L =F'(Z)ét. 4)

Two remarks are in order: First, the presence of the term
Ax(t) involves the “jerk,” i.e., the change in acceleration
and therefore defines the novel class of jerky particles. Thus
the equation of motion goes beyond that of the well-known
noisy harmonic oscillator [64,65]. A similar jerk dynamics
with more generalized noise but nonlocal friction was studied
recently in Ref. [59]. Second, Eq. (3) implies that the effective
inertial mass can be negative provided F'(¥y) exceeds the
bare inertial mass. This is atypical for Newtonian dynamics. In
principle both signs of m and A can be steered independently
at wish by the feedback function. In particular, for very small
delay times &¢ the inertial term can even dominate the jerk
term such that quick acceleration feedback can be used to steer
a pure negative inertial particle mass without any jerk which
is interesting in itself.

The right-hand side yu(#) of (2) is an activity force (some-
times called swim force) which brings the particle to a
self-propulsion velocity u(z). The stochastic self-propulsion
velocity u(t) is described by an active Ornstein-Uhlenbeck
process [41,42,54,55] as

Tpu(r) = —u(t) + £ (1). &)

Here 1, is the intrinsic persistence time and ¢(¢) is a Gaus-
sian white noise with zero mean and variance ¢(¢){(t') =
2v§rp8(t —1t")=2D5(t —t’), where the overbar denotes a
stochastic average over the noise and D = v%rp is an effective
diffusion coefficient. The parameter vy denotes a typical self-
propulsion velocity of the active particle. Alternatively, one
can say that u(¢) represents colored noise [43] since [55]

u(yu(’) = vy exp(—|t —t'|/zp). (©6)
We denote a noise memory kernel of the activity by
M(1) = y>vg exp(=r]/7p). )

If the persistence time is very large, then much larger than any
other timescale of the system, we call the particle “persistent.”
In this limit of persistent noise the activity force memory
kernel is constant

M,(t) = M(0) = y*v;. (8)

In the opposite limit of a very small persistence time 7, taken
such that D = US 7, stays constant, we obtain (Markovian)
white noise characterized by the force memory kernel

M, (1) = 2y*Ds(t). )

We refer to this noise as passive noise and correspondingly the
particle will be called “passive.” This special case was treated

045412-2



GIGANTIC DYNAMICAL SPREADING AND ANOMALOUS ...

PHYSICAL REVIEW E 112, 045412 (2025)

acceleration ()

camera

N

feedback control
with delay time 0t

Stokes friction

FIG. 1. Schematic setup to realize a jerky active particle in one
dimension: The particle (black sphere) with bare mass m,, is moving
on a tilted plane and the tilt angle ¢ is steered externally by delayed
feedback resulting in a force m,gsin(¢) that is an odd function of
X(t — 8t) with g denoting the gravitational acceleration and §t > 0
the time delay. In general, the particle is subject as well to a spring
with spring constant £ and Stokes friction with a friction coeffi-
cient y. Activity enters via active Ornstein-Uhlenbeck noise (shown
in red) which makes the motion stochastic and can be programed
as well.

previously with jerklike dynamics in Refs. [66,67]. Moreover
the action of deterministic forces in jerklike equations were
considered earlier, see, e.g., Ref. [68].

Note that far from equilibrium there is no fluctuation-
dissipation relation. In general, the noise strength y vy is not
related to any friction coefficient and can even be steered
artificially by external fields (see Refs. [69-71] for example
for such an experimental realization) or by external vibrations
[72,73]. This makes our work different to previous modelings
[59]. But the case of (thermal) white noise, e.g., given in
inertial active dusty plasma particles [74] will be included as
a special case.

B. Experimental realizations
1. Macroscopic feedback experiment

A macroscopic realization of an active jerky particle is
shown in Fig. 1. This demonstrates that “active jerks” can
conveniently be implemeted in experiments. Consider the
one-dimensional motion of an inertial particle on a tilted
plane where the tilt angle is controlled by external feedback:
A camera measures the velocity change and translates this
information into a change in the tilt angle. Typically this is
done with a time delay 8¢ [75]. The particle can be exposed
to a spring force, to Stokes friction (e.g., by the surrounding
air), and to active noise. Hence, this setup represents exactly
the basic model (2).

2. Colloids with memory-dominated friction

Here it is shown that the basic equation (2) is also realized
in overdamped active colloids exposed to friction that includes

memory, i.e., all the past particle velocities contribute to its
total friction. Such effects do occur for active colloidal par-
ticles in non-Newtonian, viscoelastic solvents. For an active
colloid in a harmonic trap of stiffness k, the equation of
motion reads [76-79]

oo
/ L@ —1)0@ —tHa@ ) dt' +kx(t) = (), (10)
—00

where I'(#)©(¢) is the memory kernel in the friction and f(t)
is a generalized noise term and ®(#) denotes the Heaviside
step function. In Fourier space, the memory term factorizes
and if we expand the Fourier transform of the memory kernel
in Fourier space [80] as

o0
r
/ exp(iot)T(t)dt = Ty + iwl| — 72602 +0(®) (11)
0

with @ denoting the frequency and the moments I', =
fooo dtt"I'(t), then we obtain the same equation of motion
in Fourier space as in our basic model by identifying A with
I',/2,m =T, and y = I'y. This demonstrates that our model
is applicable also to active soft matter systems in viscoelastic
environments and that the sign and magnitude of the effective
mass and jerky coefficient can in principle be steered at wish
for colloids in different responding backgrounds.

C. Green’s function and correlations

Henceforth we assume that the particle is at complete rest
at initial time r = 0 such that x(t = 0) =x(t = 0) = x(t =
0) = 0 and is then exposed to the stochastic and systematic
forces for t > 0. In the absence of activity (vy = 0), the gen-
eral solution of the homogenous equation [81,82] has been
discussed before [17]. It is given by a superposition of expo-
nentials x(t) = Z?:l Ajexp(—iw;t)), where w, ws, and w;3
are the zeros of the cubic polynomial,
> Y k

——w—i-=(w—o)(w—wv)o—ows).
A A

(12)
These three zeros can be determined by Cardano’s formula
[83], see Appendix A and further discussed in Sec. IV. The
amplitudes A; (j = 1,2, 3) are complex and need to match
the initial conditions at + = 0. The dynamics of the solution
of the homogeneous equation depends crucially on the imag-
inary parts of the three zeros w;, w;, and ws3. Should at least
one of these imaginary parts be positive, the general solution
is exponentially growing in time and becomes unbounded. In
the following we consider the opposite case where all three
imaginary parts of @, w,, and ws are not positive, the require-
ments on the parameters A, m, y, and k to fulfill that condition
are given in (A2) in Appendix A. This leads to exponentially
damped solutions for times ¢ > 0. For k > 0, effects from the
initial conditions at ¢ = 0 vanish for long times and the system
runs into a steady state. The solution of the equation of motion
(2) is then expressed by Fourier transform as

1 /‘Oo da)fo dt'yu(t')exp(—iw(t —t )).

1= —
x(®) 21 J_o irw? — mw? —iyw +k

a)3+ima)
A

(13)

A characteristic quantity to discuss and classify active
matter is the MSD of the particle [38,60] which governs its
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FIG. 2. Green’s function of a jerky particle in units of t?/A as
a function of reduced time ¢/7; for the following cases: pure jerky
(solid green) in arbitrary units, undamped inertial jerky (dashed
red), overdamped inertial jerky (dot-dashed violet, for 7,/7; = 1/4)
and underdamped inertial jerky (dotted orange, for z,/7; =4),
jerky overmassive damped oscillator (solid blue for 7;/7; = 5.4 and
7/t = 4.7. Only cases are shown where G(¢) does not increase
exponentially in time. For small positive times ¢, G(t) scales with
t? and for ¢ < 0, G(¢) vanishes.

dynamical spreading. Since the initial position of the particle
is vanishing, the MSD can be expressed as

MSD(t) = (x(¢)?) = 2/ dv /v dwM(v — w)G()G(w),
0 0

(14)
where G(t) is the Green’s function of (2) defined as
1 [ exp(—iwt)
G(t) = — d . 15
® 2w /_oo wi)»aﬁ—ma)z—iyw—i—k (15)

The latter can be analytically computed with the residue theo-
rem such that the convolution with the noise kernel in Eq. (14)
leads to the MSD. Clearly the Green’s function is completely
decoupled from the noise, it is rather the response of the
system to a é-kick &(¢) in time governed by the equation

AG@) +mG(t) + yG(t) + kG(t) = 8(1). (16)

Examples for the Green’s function are summarized in Fig. 2
and will be discussed later in detail. Explicit results will be
given for different special cases in the next section.

In the cases of large persistence, (14) simplifies to

t 2
MSD(r) = y2v§</ dvG(v)) , (17)
0
while for white “passive” noise
t
MSD(t) = 2;/20/ dv (G(v))>. (18)
0

Before proceeding further, it is useful to scale space and time
with appropriate units. For A/m > 0, »/y > 0, and A/k > 0,

the equation of motion (2) can be written as

X(t)+3)/u + 2@/t +x)/7 = yu@)/r - (19)

with four timescales: the persistence time t,, the inertial
time 7; = A/m, the friction time 7y = 4/A/y, and the spring
time 1, =« /A/k. Henceforth we take if possible the
inertial time 7; as the natural time unit and yvot;/A as
the natural length unit. Then a natural unit for the Green’s
function is t7/A. Finally, we remark that a negative inertial
mass m is formally possible within our analysis if all three
conditions A <0, y <0, and k < 0 are fulfilled. One can
also directly access the time-dependent mean kinetic energy
Wiin (¢) defined as

Wia(1) = S0P = m / dv / " dwM (o — w)G)GW).
0 0 0

We finally introduce a further correlation function, the time-
dependent mean-square jerk MSI(t) as

MSJ(t) = (X(t))? = 2f dv /v dwM© — w)G()G(w),
0 0
2n

where the passive, persistent, and active cases can be distin-
guished by different kernels given by Egs. (7), (8), and (9).

III. SPECIAL CASES OF ACTIVE JERKS

In the sequel different special cases are discussed step
by step. While the case A =0 has been explored before
[43,64,84], we describe here the solution for the MSD for
A # 0. In principle, the sign of the jerky coefficient A can
be both positive and negative. Table I summarizes the results
of the following subsections in terms of the short-time and
long-time scaling exponents for the MSD. Table II gives the
crossover between different dynamical regimes for different
separated timescales and Table III provides corresponding
scaling exponents for the mean kinetic energy.

A. Pure jerky particle

Let us consider a pure jerky active particle, with zero mass

m = 0 and vanishing damping friction freely moving in space
such that k = 0. A similar situation has been studied for tele-
graphic noise by Dean et al. [89]. The Green’s function for a
pure jerky particle is given by the scale-free expression
G(t) = O@t)?/2x (22)

shown in Fig. 2. Hence the MSD for an active jerky particle is

yzvgfg[(;/f,,)s _ Wt @)y

MSD() = —3 10 4 3

+exp(—(t/Tp))((1/7,)° +2(1/7,) + 2)] (23)

which is plotted on a double logarithmic scale in Fig. 3. The
MSD behaves asymptocially as y2v§t6 /36A2 for short times
and as y*v3t,t° /104 for large times, i.e., it involves a huge
dynamical scaling exponent 6 for short times corresponding
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TABLE I. Summary of the different dynamical exponents governing the MSD for short and long times for various special cases and active,
persistent and passive noise. A “—" symbol denotes that the MSD increases exponentially in time such that there is no such finite exponent.
The harmonic oscillator with colored noise [64] and the overdamped harmonic oscillator (used in many applications see, e.g., Refs. [85-88])

are given as a reference for comparison.

Parameters noise Active Persistent Passive

Time Short Long Short Long Short Long
Pure jerky 6 5 6 6 5 5
Inertial jerky (A/m > 0) 6 3 6 4 5 3
Inertial jerky (A/m < 0) - - - - -
Damped inertial jerky 6 1 6 2 5 1
A/m=>0,Aly >0, k=0)

Jerky noninertial damped oscillator - - - - - -
(m =0)

Jerky inertial undamped oscillator - - - - - -
Jerky inertial damped oscillator 6 0 6 0 5 0
Damped inertial oscillator 4 0 4 0 3 0
*=0)

Overdamped Brownian oscillator 2 0 2 0 1 0
A=m=0)

to a constant jerk (i.e., a constant time-derivative of an ac- derivative of the MSD

celeration) and 5 for long times. The crossover between the d In (MSD(z))

two dynamical regimes happens at a time of order 7, which at) = ——= (24)

is the only timescale involved here. The long-time exponent
5 is quite unusual in active matter [90-94] and describes an
anomalous diffusion that is even faster than a constant accel-
eration. These huge exponents signify an gigantic dynamical
spread very different from ordinary diffusion where this ex-
ponent is 1 or ballistic motion where the exponent is 2. In the
limit of large persistence, the MSD reduces to y?v31°/361>
which is the short-time behavior introduced above while in
the opposite limit of white noise, MSD(z) = y>Dt> /1012 re-
flecting the long-time behavior from above. These results are
included in Fig. 3(a) for comparison. In Fig. 3(b), we have
included the dynamical exponent « () defined as a logarithmic

TABLE II. Possible crossovers for the active damped inertial
jerky particle. For short times the scaling is always with ° and for
long times it is diffusive with z. Six different complete timescale
separations of 7,, 7;, Ty are shown and the four different scaling
exponents ¢ are listed. The interpretation of table is as follows. For
example, for the first line where 7; <« 77 < 1, there are four scaling
exponents 6 — 4 — 2 — 1 with three crossover times. In detail,
there is a first crossover from t° to ¢* scaling at t = 7;, a second
crossover from #* to ? scaling at t = 7, and a third crossover from
12 to t scaling at ¢ = 7,,. If subsequent exponents are identical, then
only the prefactors of the scaling laws differ.

Timescale separation Sequence of dynamical scaling exponents

6—>4—>2-—>1
6—>2—>2—>1
6—>5—->1—>1
6—>5—>3->1
6>2—>1—>1
6—>4—>3->1

UKLy KTy
Ly KT,
L, Ly L7y
LKLy L1y
LT, K1Yy
LT, L1y

d In(z)

The crossover in «(t) from 6 to 5 at the persistence time is
clearly visible.

The dynamical exponents for the time-dependent mean
kinetic energy Wi, (¢) are summarized in Table III. For the
pure jerky particle they are 4 for short and 3 for long times.
To access the mean-square jerk MSJ(¢) via Eq. (21) we have
é(t) = §(t)/A. Therefore the mean-square jerk is constant for
t>0

MSI(t) = 2y*v30(t)/2* (25)

for both active and persistent cases while this constant is
diverging in the passive case.

B. Inertial jerky particle

Next we compute the MSD for an undamped inertial jerky
particle where k = 0. We consider the case m/A > 0, then the
dynamics is such that an increase in acceleration is weakened
by a jerk and vice versa stabilizing somehow the dynamics
fulfilling the condition of bounded solutions in the homoge-
neous case, see also Sec. IV. Now two different timescales are
entering, namely the persistence time 7, and the jerky inertial

TABLE III. Summary of the different dynamical exponents gov-
erning the mean kinetic energy Wi, (¢) for short (left) and long (right)
times for various special cases and active, persistent, and passive
noise.

Active Persistent Passive
Pure jerky 4 3 4 4 3
Inertial jerky 4 1 4 2 3 1
Full model 4 0 4 0 3
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FIG. 3. (a) Mean-square displacement MSD(#) (in units of
y*v5ts/A%) and (b) dynamical exponent ee(r ) for a pure jerky particle
as a function of 7 /7, for active (solid), persistent (dotted), and passive
(dashed) noise.

time t;. The Green’s function is given by
2
Gt = "0/t — 1 +exp(—t/uD]  (26)

(see Fig. 2) and the MSD shown in Fig. 4(a) is

MSD(t)
_ 2y 2vdte
A2
+ (& + &) /1 +BL(t/u. 1/§) — Blo(t/71,1/€)
§

+ Bly(t/t1, 1+ 1/8) + (: +E>11(t/t1, 1)

- (s N L)Mr/r,, D+

[ Et/u) — —(2s+s )t/T)?

§
1_;;: 1_é]()(l‘/l’[,2)i|.

27)

Here we have introduced the integrals Iy(x, B) =
Jo dy exp(—=By) = [1 —exp(—=px)I/B  and  L(x,p) =
Jo dyy exp(—By) = [1 — exp(—px)(Bx + DI/B> as well
as the constant B = £2 + & —£/(1 — &) and the time ratio
& =1,/7;. For short times, the MSD reduces again to
]/21)21‘6/36)\.2 and for large times to 2y? vor,,r 2t3 /332 with
exponents 6 and 3, respectively, which are unusual, in
particular in the long-time limit. For 1; >~ 7, a crossover

T
(a
40r
~
<lex 20
Spe
a
0 [ or
= >~
£
—20F e active: T, =10007, |
m— active: T, = T,/1000
= persistent
-40 = passive
L L L L
=5 0 5 10
In t/Ty

FIG. 4. (a) Mean-square displacement MSD(z) (in units of
y2v2tf/2?) and (b) dynamical exponent «(t) for an inertial jerky
particle as a function of 7/t; for active (solid), persistent (dot-
ted), and passive (dashed-dotted) noise: 7, = 7;/1000 (red) with
crossovers t* — 3 — 13 and 7, = 10007; (brown) with crossovers
10— 1+ — 13,

from the short-time ¢® to the long-time ¢* scaling occurs
roughly at this time. However, for 7, < 77, there are two
crossovers: The first crossover occurs at time 7, from 7° to #°
scaling, and then the second occurs at 7; from ¢ to ¢ scaling.
Conversely, for 7, 3> 14, there are again two crossovers but
now the first occurs at time 7; from ¢® to t* scaling and
the second happens at 7, from * to #3 scaling revealing an
exponent 4 for intermediate times. This is demonstrated in
Fig. 4(b).
In the persistent case we get
T

MSD(1) =~

2
B(r/mz —t/y+1— exp(—t/r,)i|
(28)

which again behaves as y?v3t°/36A% for short but as
y2v3tft*/4)? for large times. For white noise, on the other
hand, the MSD for an inertial active jerky particle is given by

y*Dj

11
MSD(1) = —3 [g(t/nf —(t/u’ +1/7

4+ Io(t/tr, 2) = 2Ip(t /7, 1) + 21 (¢ /74, l)i|.

(29)

Here, for short times, the MSD scales as y2v37,t° /101> with
the exponent 5 and for long times we have 2y2Dt/t? /322
with the exponent 3 such that the crossover happens at a time
proportional to ;.

We refer to Table III for the dynamical exponents gov-
ermng the time-dependent mean kinetic energy Wii,(¢). With
G(t) =48(t)/» — O(t)exp(—t/t;)/ Aty one obtains for the
mean-square jerk

2.2

MSI(r) = 2 R

@(r)[l - 2;_ 51— exp(~2¢/1)

1

This is shown in Fig. 5. For short times, MSJ(0) = 2%,

which is the constant (25) obtained in the pure jerky case. For
long times, the MSJ approaches another constant

yv0$+2
AE+L

For & — 0, MSJ(t — 00) = 2y*v3/A*. In the opposite limit
of high persistency, £ — 0o, the MSJ approaches y2vg/A”.
The constant MSJ(t — oo) is approached from below for
large times except for 7,/7; = 0, 1, 0o and there is a minimum
in MSJ(z) which occurs at a time 7o = 7,(In§)/(§ — 1).

Jlim MSJ(1) = €19

C. Damped inertial jerky particle

Third, we explore the case of a damped inertial jerky
active particle where k =0 but A, m, and y are kept as
general as possible. For stability reasons, we restrict the
treatment to t; = A/m > 0 and A/y > 0. There are two sit-
uations: (i) the “underdamped” inertial jerky particle where
7y > 277 > 0 and (ii) the “overdamped” inertial jerky particle
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2.0

1.8

16
>
N

1.4

MSJ(t) A2

1.2

1.0

t/ T

FIG. 5. (a) Mean-square jerk MSJ(¢) (in units of y?v3/A?) as a
function of ¢ /7; for an inertial active particle for 7, = 7;/10 (dotted
orange), T, = 1; (dash-dotted brown), 7, = 27; (dashed green), 7, =
107; (dotted black), and the two limits 7, < 7; (blue) and 7, > 7
(violet).

where 0 < 7y < 27;. The general solution for G(¢) can be
written as

exp(—iw;t)
G(t) = —O(t> ) Z( #, (32)
w1 wj
where the two eigenfrequencies are
! + ! + ! (33)
w [ — —_ J—
2= 21, T 41’1 ;

Again the short-time part is unaffected by the damping, but
for long times G(¢) now tends to a constant. Note that the role
of damping for a jerky inertial particle is reversed relative to
that of the traditional inertial harmonic oscillator: While small
damping (underdamping) leads to oscillatory behavior of G(t)
in the latter case, large damping (overdamping) is needed to
obtain oscillatory behavior in the former case.

The MSD is computed as
2 E,0,0 —1)/ME®, iw;, i
MSD(¢) = Y2y (2 d ) (=1) (t,iwj, iwg)
e wiw; (01 — w2) o0

=1

2 . . 1
b3 CVEC i, 0+ Ee.0 w)j)))' (34)

(0 — W))W W]

Here we have introduced the function
t v
E, B,v) :/ dv/ dw exp(—v/t, +w/t, — yw — Bv)
0 0

_ 1 <1 —exp(—(y + wp)t)
B—wp Yy top
1—exp(—(r + ﬁ)t))

y+8

with the persistence rate w, = 1/1, and the arguments B

and y being arbitrary complex numbers. The short-time

scaling is unaffected but for long times the asymptotic scal-

ing is now diffusive like MSD(r) ~ 2v2t,t. For persistent
noise, the long-time dynamics gives a ballistic scaling with

(35)

MSD(¢t) ~ v 2 while for white noise the long-time scaling is
diffusive Wlth MSD(t) ~ 2Dt, see Table 1.

Let us then discuss possible crossovers in the dynam-
ical scaling. Here, for A > 0, we have three independent
timescales: the persistence time 7,, the jerky inertial time
77, and the frictional time 7. There are six different cases
for two complete separations between two out of these three
timescales. The corresponding cases and computed crossover
scalings are summarized in Table II. They all start with ¢® for
very small times and end with ¢ for very long times but for
intermediate time windows various other scalings emerge.

The mean-squared jerk is

l( 1)/+e

(wl —w)?

2E . X .
MSJI(1) = 0@( ) Z B fej, i)

Jjt=1

(36)

and oscillates in the overdamped case exponentially approach-
ing a constant for large times. In the underdamped case the
approach is purely exponential in time as for the inertial jerky
case shown in Fig. 5.

A final remark is in order: The distributions for X, X, and X’
in the steady state are Gaussian and can directly be obtained
from that of the colored harmonic oscillator [45,64] by re-
placing (respectively, transforming) positions and velocities
of the colored harmonic oscillator with x" and % accordingly.
The same transformation applies to any other dynamical cor-
relations of x, X, and x. Therefore the function MSJ(¢) is
basically the time-dependent mean-squared acceleration of a
colored harmonic oscillator with vanishing initial position and
velocities. The latter function has only rarely been considered
and studied, see, e.g., Ref. [95].

D. Jerky noninertial damped harmonic oscillator

In order to get insight into the action of jerky dynamics it
is instructive to consider the jerky harmonic oscillator under
damping (k > 0, y > 0) but in the complete absence of inertia
such that m = 0. For this noninertial damped jerky harmonic
oscillator it can be easily shown (see Appendix A) that for any
A # 0 there is always a zero of the cubic equation (12) with a
positive imaginary part, which gives an exponential growing
solution. Therefore the MSD and MSJ are diverging for long
times, such that there are no finite dynamical exponents, see
Table 1. It is remarkable that a particle with jerky dynamics
can always escape from a harmonic potential, i.e., a harmonic
potential is never strong enough to keep the particle localized.
This is in marked contrast to A = 0 with m = 0 representing
the classical textbook example of an overdamped oscillator
which leads to a finite MSD and MSJ for long times such that
the particle is always localized. This counterintuitive result
illustrates the disastrous action of jerk: Jerky dynamics tends
to spread particles enormously. As we shall show in Sec. IV,
a finite mass m, however, helps to keep the particle localized
in a harmonic potential provided the jerk coefficient A is small
enough.

E. Jerky inertial undamped harmonic oscillator

There is another limit where jerk leads to delocalize a par-
ticle from a harmonic trap, this is the jerky inertial undamped
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FIG. 6. State diagram and relaxational dynamics of a jerky harmonic oscillator as a function of the dimensionless jerk A and the
dimensionless mass 7. As a function of A there are both first-order and second-order localization-delocalization transitions in the steady
state. The first-order transition line A(#2) is shown as a solid curve [at A(7) = O for /i > 0], the second-order transition line A.(7/1) as a
dashed curve. The separation lines 4. (i) between the undermassive and overmassive regions are shown as dotted curves. Together with
the localization region they define four different relaxational processes: exponential approach to the steady state (red region), exponentially
damped but oscillatory approach to the steady state (yellow region), giant breathing which is exponentially growing and oscillatory in time
(blue region) and an explosion which is a pure exponential divergence (violet region).

harmonic oscillator characterized now by y = 0. For van-
ishing jerk A = O this is the traditional undamped harmonic
oscillator which possesses pure oscillatory solutions for van-
ishing noise. As shown in Appendix A, any small but finite
jerk induces a solution which grows exponentially in time
leading to a complete delocalization of the particle, i.e., the
particle leaves the confining harmonic cage just by jerk. Again
this demonstrates that the role of jerk enormously enhances
the spreading dynamics.

IV. ACTIVE JERKY INERTIAL DAMPED
HARMONIC OSCILLATOR

A. Jerky inertial damped harmonic oscillator

Before we consider the case of active noise, let us
study the noise-free limit (vy = 0) assuming throughout this
section positive y and positive k. Then according to the Ostro-
gradski theorem [96], a strong reduction of stable solutions is
expected [97]. In detail, the three different complex eigenfre-
quencies w;, w;, w3 of the homogeneous equation of motion
can be analytically obtained as zeros of the characteristic
cubic polynomial (12) by Cardano’s formula, see Appendix A.
Either all three w;’s have no real part (i.e., all eigensolutions
are exponentially decaying in time), then we call the system
undermassive. Or two frequencies have the same real part,
then their eigensolutions have an oscillatory component and
we call it overmassive. In this overmassive case, the imag-
inary part of the oscillating solutions is always larger than
that of the pure exponential solution such that for long times
the oscillation is dominating. The transition line separating

the undermassive and overmassive regions can be computed
analytically. By rescaling position and time appropriately one
finds that there are only two independent dimensionless pa-
rameters which characterize the qualitative behavior of the
w;’s which are the dimensionless jerk % = Ly>/k* and the
dimensionless mass in = my?/k such that the full behavior
can be shown in the /A plane, see Fig. 6. There are two
branches of lines A (m) dividing the undermassive and the
overmassive region which are given by

_ 3/2
Xi(m)zg—iiie—m) . (37)

Another characteristic mass is that associated with the transi-
tion from overdamped to underdamped case of the traditional
harmonic oscillator (at A = 0) which happens at 7z = 1/4. For
i < 1/4, A, (m) is positive, except at /i1 = 0 where i (m) =
in?/4 + O@?) is vanishing quadratically in 7. For 1/4 <
i < 1/3 there are two positive solutions A_ = %(nﬁ —1/4)+
O — 1/4)») and iy = & — (7 — 1/4) + O((m — 1/4)?)
and beyond the threshold 7 = 1/3 real solutions for A (sit)
do not exist. Hence for large /i we are always in the oscil-
lating overmassive regime. At 7z = 1/3 and A = 1/27, there
is a cusplike singularity, see again Fig. 6. The undermassive
region continues and opens up for negative masses i < 0,
scaling asymptotically as A = +2[im|>/?/+/27 for in — —oo.
It is worth to note that there is a double reentrance effect
as visualized in the cusplike singularity of the undermassive
region: For fixed small and positive X, as m is increased,
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one obtains the sequence undermassive — overmassive —
undermassive — overmassive.

If all three eigenfrequencies w;, w,, w3 are distinct and pos-
sess a nonpositive imaginary part, then the Green’s function is
given by

exp(—iwyt)

(w2 — w1 )(wr — w3)

1 |: exp(—iwt)

O == G =o)er — o)

exp(—iwst)
(03 — w1)(@3 — @)

g exp(—iwjt)

_—X Z |6jKZ|(a)'—a)K)(a)j—a)[)’

Jok l=lk<l J

(38)

where €, denotes the Levi-Civita tensor. Again G(t) scales
quadratically in time for small times and tends to zero for
large times. In the overmassive region it always decays in
an oscillatory fashion as a function of time, since the decay
time of the oscillatory solutions is always smaller than that of
the pure exponential solution what can be deduced from an
analysis of the three w;’s.

If at least one imaginary part of the three eigenfre-
quencies is positive, then the Green’s function will grow
exponentially in time proportional to exp(ut) with u = Max
(Im(w; ), Im(w,), Im(w3)) where Im denotes the imaginary
part of a complex number. The conditions to avoid any
exponential growth in time are given in Appendix A. If
the conditions are not fulfilled, then the quantities MSD(?),
Wiin(?), and MSJ(¢) will diverge exponentially in time pro-
portional to exp(2ut). Depending on the real parts of the
three eigenfrequencies wj, this is either an envelope with an

J

(exp(—iw;t) — 1)(1 — exp(—iwyt))

oscillatory behavior called giant breathing [87] or a pure
exponential growth, i.e., an explosion. Let us remark that
giant breathing does not occur for the traditional damped
oscillator (A = 0) which shows even for negative mass m and
positive y and k only explosions for unstable solutions. We
shall discuss the consequences for an underlying localization-
delocalization transition in the sequel.

B. Relaxation towards the steady state

Let us first discuss the time-dependent relaxation of the
MSD(t), Wiin(?), and MSJ(z) towards the steady state. In the
following we use the compact notation

, 2y2v3 3 3
da=Tmr Y Yo leweenpol(.o).

Jk=lik<l v,Bo=l;B<0

(39)

This double sum involves nine nonvanishing terms. Then the
MSD(#) can be expressed using (14) and (15) as

E(t,iw,, iw;))

(wj — o)) — )Wy, — o)y — ©)

(40)

MSD(H) =

The short-time scaling is unaffected proportional to ¢ Now
four crossovers between different regimes of the MSD are
possible in 24 different situations. For example, for 7, <«
77 <K 175 < T, the sequence of the scaling exponents in the
spirit of Table I1is6 - 5 — 3 — 1 — 0, etc.

For the sake of completeness we also give the results for
the MSD in the persistent and passive limits. For persistent
noise

MSD(H) =)

while in the passive case we obtain

wjoy(®; — o)W — v, — wg)(w, — wy)’

exp(—i(w; + w,)t) — 1

(41)

iD—
MSD(#) = —
=22

: (42)

(wj — w) (@ — o) w; — o) (@, — o), — ©y)

The dynamical scaling exponents of the mean kinetic energy are given in Table III. The analytical expression for Wi, (?) is

given by

—a)ja)vE(t, iw,, l(,()j)

W) =53

For the mean-squared jerk we find

(0j — w)(wj — w)(wy, — wp)w, — )

—w?a)iE(t, iy, iw;)

(43)

MSI) =3

Depending on the three eigenfrequencies w; and on 7, the
approach of the MSD(z), Wiin(¢), and MSJ(¢) to their steady-
state limits is either purely exponential or oscillatory with an
exponential envelope in time ¢. Oscillating MSD’s are some-
times called breathing particles [87]. The breathing property
is independent of the self-propulsion velocity vy and the per-
sistence time T, but the breathing frequency itself depends on
7, as can be deduced from (35).

(a)j — a)k)(a)j — we)(w, — wy)(w, — a)a).

(44)

[
C. Localization-delocalization transition

For long times, correlations reflect those in the steady
state. In this limit, the MSD saturates at a constant
a’> = MSD(t — o), indicating a finite smearing of the par-
ticle in the harmonic potential with a spatial extent a. For
an active particle without jerk, the spread a is an important
parameter to characterize the strength of the activity, see,
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e.g., Refs. [44,98,99]. Formally the dynamical exponent ¢« vanishes for long times. The spatial extent @ > 0 can be computed as
1

=3 (45)

(@ — o) @) — w)(wy, — wg)(wy — @, )iwy, — w;)(w; + )

and its inverse is plotted in Fig. 7(a). Here it can be concluded that jerk favors spreading and that the impact of jerk is enormous.
There can be even a jerk-induced transition from localization (a < 00) to delocalization where a diverges exponentially in time
to infinity. The transition point does not depend on the activity but solely on the two dimensionless parameters A and 7. Figure 6
shows the localization-delocalization transition in the /A plane. The transition line is determined by the conditions (A2). A
characteristic order parameter ¢ for the localization-delocalization transition is the inverse localization length ¢ = 1/a?. In the
spirit of this order parameter the localization-delocalization transition is first order if the order parameter jumps as the parameters
are varied or second order if it is continuous but if the first derivative of the order parameter with respect to the system parameters
is discontinuous. In fact both transition types do occur, a first-order transition line as well as a second-order transition line. For
i > 0, the first-order transition is given by

(i) =0 (46)
while a line of second-order transitions occurs at i (7). For small positive mass 77, we obtain the linear relation
Ke(i) = i+ OGR?). (47)
For large 71, on the other hand, the critical line is given by
2%

ey = 4 37—’;1 + O/, 48)

V3T

which scales with dimensionles mass 72/~ involving a nontrivial scaling exponent 3/2. The stability region is plotted in Fig. 6.

For negative mass 77 there is always delocalization. Interestingly, while typically increasing the spring constant k (for fixed y, m

and A) leads to localization, under the action of jerk the effect is reversed: Increasing the spring constant k favors delocalization.
For long times, in the steady state, the mean kinetic energy Wi, (f — 00) saturates at the following constant:

m ’
72

and the averaged jerk turns to the following finite constant as t — oo:

32

—W; Wy

(wj - wK)(wj — wp)(w, — wﬂ)(a)v - wtr)(iwp - wj)(wj + w,)

(49)

3.3

Z/ —(,!)j w;, (50)

(a)j - wK)(a)j — wg)(w, — wﬁ)(a)v - wa)(iwp - wj)(wj + wv)'

(

clearly Ty and Ty, diverge at the localization-delocalization
transition. For the parameters chosen in Fig. 7(b) active noise
has a lower temperature than that for passive noise which is

D. Effective temperatures

In nonequilibrium there are various ways to define a tem-
perature which all coincide in equilibrium [44,100]. For white
noise, the fluctuation-dissipation theorem gives T = yD/kg,
where kg is Boltzmann’s constant. For active noise this can be
generalized to | . | | | . . T

_(b) white, To/T
T = yvit,/ks. (51) /

e White, Tyin /T
L e ctive, Ts/T -
w— wactive, Tyin/T I

N

Moreover, for white noise the Gaussian Boltzmann equilib-
rium distribution in the harmonic potential implies a spreading
temperature 7; which can be generalized in a nonequilibrium
steady state as

Ts/T, Tkl T

T, = ka®/kg. (52)

—
Or, , . , 1
0.00 0.05 0.10 015 0.20
A

Third a kinetic temperature can be defined in the steady
state via

FIG. 7. (a) Order parameter ¢ of the localization-delocalization
transition: Inverse mean-squared position 1/a* (in units of k?/y2v?)

Tiin = 2Wiin(t — 00)/kp. (53)

In Fig. 7(b) we compare these three temperatures 7', 7, and
Txin for white and persistent noise as a function of A. For white
noise and vanishing A we are in equilibrium and the three
temperatures coincide. Moreover, they remain practically
identical for increasing A. However, for active noise (when
T = yvit,/kg) and for finite jerk, they differ in general and

in the steady state as a function of A for 7, = 7; and three differ-
ent values for /m: m = 1/5 (solid line), /i = 1/4 (dashed line), and
m = 1/3 (dotted line). (b) Effective temperature ratios 7;/7T (solid
line) and Ti,/T (dashed line) for /i = 1/5 as a function of the
dimensionless jerk parameter 2 for white noise (red) and active noise
(blue) with 7, = 7.
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reflecting the same trend found for a completely overdamped
oscillator.

We finally remark that the distribution of X, x, x, and u in
the steady state is a multivariate Gaussian with zero mean as
the full stochastic process is a superposition of Gaussians.

V. CONCLUSIONS

A new kind of active particles was proposed which are
influenced by and susceptible to jerk. This implies a sensitive
reaction on acceleration changes which speeds up the dy-
namical spreading considerably. The jerk dependence breaks
the basic second Newtonian law as the force now depends
on acceleration and therefore also the effective inertial mass
can become negative. A simple but basic model to describe a
jerky active particle was put forward and solved analytically
for the particle mean-square displacement. It is dominated by
high dynamical exponents characterizing an extremely high
dynamical spreading which is anomalous and superballistic,
typically not known from active matter. Such active jerks can
be realized in experiments (both in macroscopic and colloidal
setups) and belong to the large class of feedback controlled
active particles [12,101] that have some kind of “intelli-
gence” [102-104], “delay” [105-112], “memory” [113-117],
or use “information” to decide about their future [118-120].
These smart active particles are more complex than stan-
dard active particle that just self-propel with a constant
speed [35].

We have only discussed the most elementary active particle
model, governed by the active Ornstein-Uhlenbeck process.
There are many options for future research. Subsequent work
should address more general structural and dynamical correla-
tions beyond the MSD and MSJ within the same model based
on the full Gaussian distribution functions of u, x, x, and X.

It would also be interesting to generalize jerky dynam-
ics to two and three dimensions and to more general active
Brownian particle models [121] . Although it is in principal
straight-forward from the present work how to proceed along
this direction, analytical solutions for a single particle will be
more difficult or even lacking. New effects could arise from
chirality which can be defined in spatial dimensions higher
than one. As first step in this direction a jerky chiral parti-
cle was modelled within an active Brownian particle picture
where the noise-averaged meandisplacement was computed
analytically [122]. When realizing a jerky active robotlike
particle in a macroscopic experiment, Coulomb friction will
play a considerable role [92,123—127] and one should gener-
alize the basic model to include this kind of nonlinear friction.
Moreover even higher-order time derivatives and and different
nonlinear feedback-couplings can be considered where our
analysis should be applicable in principle as well.

Finally also many interacting jerky active particles can be
explored to search for jerk-induced collective effects. One
example is motility-induced phase separation [128] where jerk
is expected to be destructive, i.e., it reduces the tendency
towards phase separation. Moreover, the effect of jerk on
flocking [129,130] and active turbulence [131] is still open.
It would further be interesting to explore effects of quenched
disorder and how this would affect the stability diagram in
Fig. 6. Another example where jerk becomes relevant could

be trapped active systems that build up force over time and
overcome friction or have stick-slip motion and active bursts
which seems possible in certain social systems or granular
networks. Further future systems could be particles with jerk
in epidemic or panic spreading situations. Such systems could
have explosive percolation, as described in [132] and it would
be interesting to examine active matter systems with jerky or
acceleration effects during panic or epidemic spreading, see,
e.g., Refs. [133,134].

ACKNOWLEDGMENTS

I thank Maxim Root, Remi Goerlich, Lorenzo Caprini,
Kiristian S. Olsen, Stephy Jose, and Margaret Rosenberg for
help and discussions. Funding within the German Research
Foundation (DFG) within Project No. LO 418/29-1 is grate-
fully acknowledged.

DATA AVAILABILITY

The data that support the findings of this article are not
publicly available upon publication because it is not techni-
cally feasible and/or the cost of preparing, depositing, and
hosting the data would be prohibitive within the terms of this
research project. The data are available from the authors upon
reasonable request.

APPENDIX: COMPUTATION OF THE CHARACTERISTIC
EIGENFREQUENCIES

Here we give the explicit solution of the zeros w;, w»,
w3 for the characteristic cubic polynomial (12) »* + i%w* —
Yy k

To—is according to Cardano’s formula [83]:

wj =iy, —im/3% (j=1,2,3). (A1)

Here y =u+v,
with ey = —1/2+iy/3/2,
v=+/—q/2 - /D, q =2(m/r)* )27 — my J3)2 + k/A,
and the discriminant D = (p/3)’ + (¢/2)*, where
p=(y/A) — (m/r)?/3. Here the notation /—|p|3 = —|p]
for any real p is taken. If the discriminant D is positive, then
there are nonvanishing real parts in two of the three w;’s. For
D < 0 all three w;’s have vanishing real parts. The condition
for all three imaginary parts of the w;’s to be negative then
translates into the following three conditions which have to
be fulfilled simultaneously:

Vo = €4 U+ €V, Y3 =€_UT €LV

U=~ —g/2++D  and

Re(y;) —m/3A <0 (A2)

for j =1, 2,3 where Re denotes the real part of a complex
number.

For the special case of vanishing friction y =0, it can
directly been concluded by inspection of the explicit solutions
for the three w;’s that at least one of those has a positive imag-
inary part. Complementarily, for m =0 and » # 0, y > 0,
again at least one of the three w;’s has a positive imaginary
part. This can be quickly verified by the following: Con-
sider the equation w? + i%w2 —fo— i% =(w—w)(w—
®,)(w — w3). In order to produce a vanishing quadratic term

in w we immediately get the condition w; + wy + w3 =0
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which implies Im(w; 4+ w; + w3) = 0. Excluding three purely
oscillating solutions, at least one of these imaginary parts of
the w;’s is nonzero. To fulfill the latter condition at least one

other imaginary part has to have opposite sign. Consequently,
at least one of the three w;’s must have a positive imaginary
part.
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