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Phase field crystal (PFC) models constitute central tools for a microscopic understanding of the dynamics of
complex systems in soft-matter physics. They have found widespread application in the modeling of the uniaxial
orientational ordering of liquid crystals. However, only very limited progress has been made in applying them
to the more complex cases of biaxial phases and biaxial particles. Here we discuss the microscopic derivation
of PFC models for biaxial liquid crystals. We illustrate it by presenting two models, one involving four scalar
orientational order parameters relevant for the dynamics of biaxial particles and one involving two scalar order
parameters and all three directors to describe biaxial phases in a three-dimensional molecularly uniaxial nematic
liquid crystal. These models allow for an efficient simulation of spatially inhomogeneous biaxial orientational
ordering dynamics. We also combine our microscopic with a macroscopic approach to extract model coefficients
for a full biaxial model from the microscopic derivation for a simple special case. This universal method also
enables to perform derivations for other low-symmetry particles where, due to the complexity of the more general

cases, this has not been previously attempted.

DOI: 10.1103/nxs2-79pt

I. INTRODUCTION

The study of liquid crystalline ordering phenomena [1] is
one of the central areas of soft-matter physics [2—14]. Interest
in liquid crystals is motivated both by their rich phase behav-
ior [15,16] and by the possibility of exploiting their intriguing
optical properties for a broad range of technological appli-
cations [17,18]. Even in the absence of the positional order
that is characteristic for an ordinary crystal, liquid crystals
can exhibit order-disorder phase transitions due to their ori-
entational degrees of freedom. The most prominent example
is the nematic phase where particles preferably align along a
common axis, which can be easily manipulated by external
fields. The properties of liquid crystals motivating research on
them gain additional significance in liquid crystals where the
phase or the particle interactions are not axially symmetric.
Biaxial liquid crystals [19] can display considerably more
orientational ordered phases [20-31]. Due to experimental
advances in synthesizing colloidal particles of nearly arbitrary
shape [32-34], liquid crystal phases exhibiting biaxial order
have the potential to be translated into further applications.

The dynamics of phase transitions in liquid crystals can be
modeled via field theories, for which dynamical density func-
tional theory (DDFT) is a prime example. DDFT, developed in
Refs. [35-37] and reviewed in Refs. [38,39], is a microscopic
field-theoretical method that allows to model the dynam-
ics of complex fluids by extending results from equilibrium
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density functional theory (DFT) to the nonequilibrium case.
The application of DDFT to orientational dynamics has a long
tradition [40—44]. Usually, these studies assume the state of an
individual particle to be determined by a position vector R and
a single orientation vector m3, which in the three-dimensional
case implies that the particles have an axis of continuous
rotational symmetry (uniaxial particles). The archetypal ex-
ample for this are rodlike particles. In general, specifying the
orientation of a particle without such a symmetry (biaxial par-
ticle) in three dimensions requires three angles (Euler angles)
[45]. A DDFT for this case, describing particles with arbitrary
shapes, was derived in Refs. [46,47]. DDFT is now a widely
used method to model particles with orientational degrees of
freedom, with applications that include nematic and smectic
liquid crystals [48], deposition of hard spherocylinders [49],
protein solvation [50], and active matter [51,52].

Phase field crystal (PFC) models [53,54] offer a simpler,
more phenomenological, description than DDFT and can
be derived from it via a series of approximations [52,55—
57]. PFC models for liquid crystals usually feature one or
several orientational order parameters. Work on this topic
started in Ref. [58] with the development of a PFC model
for nematic liquid crystals in two dimensions. Extensions con-
sidering three-dimensional [59] and then polar liquid crystals
[60,61] paved the way to active PFC models [62], the most
widely used theory of this type which has evolved into one
of the central modeling frameworks in active-matter physics
[52,63-70].

Most of these PFC studies, however, were limited to parti-
cles with uniaxial symmetry and did not consider orientational

©2025 American Physical Society
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order parameters other than polarization and nematic order.
An exception for the two-dimensional case is the recent work
by Weigel and Schmiedeberg [71], who derived a PFC model
for particles that have an n-fold rotational symmetry. This
derivation exploited the fact that one can, in two dimensions,
specify the orientation of a particle of an arbitrary shape using
just one angle. The very few existing field-theoretical models
for the three-dimensional case [46,72], while being very gen-
eral, are also quite complicated and did therefore not allow for
an efficient numerical treatment. Therefore, the study of bi-
axial liquid crystals in three spatial dimensions would benefit
significantly from the development of field-theoretical models
that allow to study them in a PFC-type framework.

In this work, we discuss how such models can be de-
rived by combining the derivation strategy employed in
Refs. [52,58-61] with the orientational order parameter ap-
proach employed in Refs. [31,73]. As specific examples,
we then present two models covering important scenarios.
First, we obtain a PFC model for liquid crystals consist-
ing of biaxial particles that describes the dynamics of the
orientation-averaged density v, together with the four scalar
orientational order parameters S, U, P, and F, as used in
earlier treatments of biaxial particles [31,73]. Second, also
accounting for the director field dynamics, we obtain a PFC
model for phase biaxiality, which generalizes the result of
Ref. [59]. This model is obtained with an implicit derivation,
as explained in Sec. IVF. Our results can be used for effi-
cient analytical and numerical investigations of orientational
ordering dynamics in biaxial liquid crystals. We also develop
an efficient method that allows us to arrive at the general full
biaxial free energy by combining the restricted microscopic
derivation of the first model with a macroscopic approach.
This method is also applicable for other symmetry groups
and might allow to greatly simplify derivations of the free
energy of particles with even lower symmetry (such as chiral
particles or bent-core molecules in chiral phases). Thereby,
the technique presented here allows us to perform further
derivations that have previously not been attempted.

A. Density functional theory

The Hohenberg-Kohn theorem [35,74] states, in the classi-
cal case, that there is a unique functional mapping between
the one-particle density p and the many-body phase-space
distribution. This implies the existence of a grand-canonical
potential €2, which is a functional of p and which is minimized
by the equilibrium density:

52

SpR.0) " W

Here O denotes the orientation and R the center-of-mass posi-
tion of the particles. Via the transformation

Q= F1 / dR f 40 p(R, O Vet — 1), (2)

Equation (1) can be translated into the equation

sF

——— =i — Vext, 3
5p(R.0) “ t 3)

for the free-energy functional F with external potential Ve
and chemical potential x. Since there exists an analytic repre-
sentation of the free-energy functional for an ideal gas, given
by

Fa = kT / dR / 40 (p(R. 0)(In(*p(R. 0)) — 1)), (4)

we can split the free-energy functional
F = -Ed + F exc (5)

into an ideal gas contribution Fiq and an unknown excess
functional F. accounting for further interactions not present
in an ideal gas.

External potentials are ignored in this study but can be
easily added using the methods presented later. In Eq. (4), A*
denotes the thermal de Broglie wavelength (which is required
here only for dimensional reasons), kg is the Boltzmann con-
stant, and T is the temperature. For the excess functional,
there are multiple commonly used approximations such as
fundamental measure theory (FMT) [75], the Ramakrishnan-
Yussouff functional [76], or the Onsager functional [77] for
liquid crystals.

B. Dynamical density functional theory

A widely used generalization of DFT is called dynamical
density functional theory (DDFT) and is used to describe
the dynamics of many-particle systems as a field theory of
the one-particle density. An extensive review can be found
in Ref. [38]. DDFT is, unlike DFT, not even in principle an
exact theory, since it relies on the so-called adiabatic approx-
imation, which assumes that a certain equilibrium relation,
the Yvon-Born-Green relation (YBG-relation) [78], is valid
in nonequilibrium [79], which is not the case. However, such
arelation is approximately true for many systems not far from
equilibrium. Again, more details on the derivation are given
in Ref. [38].

The DDFT equation for biaxial particles has, as shown in
Ref. [46], the general form

) SFp(R, 1)]
3p(R,1) = pVg - (D<R> ' (P(R’ ”VRW»'

(6)

Here R denotes the vector (R, Q)7 consisting of the spatial
coordinate R and the angular orientation given by the three
Euler angles O = (¢, 6, x)T. The diffusion tensor D is given

by
D11 (0
D(O):( 1(0) o

Dgr(0)

Drr(0)
Dgr(0))

where Dy is the translational diffusion tensor, Dgrg the rota-
tional diffusion tensor, and Dry and Dty are tensors coupling
translational and rotational diffusion. The spatial dependency
the diffusion coefficients might have in more complex cases
is here ignored. Each of those matrices has three rows
and columns (for three spatial coordinates and three Euler
angles). The differential operator Vg = (V, Vo) is a six-
dimensional operator which contains in addition to the spatial
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derivative V the angular derivative operator Vo with compo-
nents

(Vo)1 = —cos(¢p) cot(8)dy — sin(¢h)dg — cos(¢h) csc(0)0,,
(Vp)2 = —sin(¢) cot(0)dy + cos(¢)dg + sin(¢p) csc(6)9,,
(Vo)s = 9. 3

C. Phase field crystal models

Equation (6) is, while being very general, also very
complicated—it describes the dynamics of a density p de-
fined on a six-dimensional configuration space, involves a
6x6 diffusion tensor leading to couplings between spatial
and orientational derivatives, and is (due to the sometimes
complicated form of DFT free-energy functionals) in gen-
eral nonlocal. Therefore, practical applications require the
development of a simpler model. Such a simplification is
commonly achieved using phase-field crystal models (PFC
models) [53,54], which can be derived via a series of approxi-
mations from (D)DFT [38,57] (and which alternatively can be
obtained from macroscopic symmetry arguments).

II. BIAXTAL ORDER PARAMETERS

A. Scalar biaxial order parameters

As a common first step in the derivation of PFC models, we
need to find an approximate expression for the density based
on the symmetries of the system. The systematic method for
doing this is to take an appropriate biaxial expansion of the
density and truncate it after the second order. Higher orders
of the expansion are not taken into account. The expansion
coefficients will be related to a set of biaxial order parame-
ters defined later; however, the exact relationship depends, of
course, on the expansion we choose. This relationship arises
from the fact that the order parameters are mathematically
simply the projection of the density on some angular function,
which might be part of a complete orthogonal basis. Common
expansions are the expansion in Wigner D matrices as defined
in (23), which is the biaxial generalization of spherical har-
monics and the Cartesian expansion whose second order is an
expansion in the elements R;; of the rotation matrix for three
Euler angles [as defined in (14)] and its coefficients are the
elements of the Saupé matrix (at least almost, see Ref. [80]).

However, this raises a question: How do we know which
expansion coefficients of a general expansion can be relevant
for biaxial phases or particles? The short answer is that our
expansion relies on certain symmetry arguments, as a con-
sequence of which some order parameters are automatically
zero. This is not unlike the uniaxial nematic phase, where
a transformation I3 — —I5 of the director I3 needs to leave
the system unchanged and thus does not allow polar order
parameters of the first order of an angular expansion. The
details on the required conditions for the order parameters
S,U, P, F employed here to be the only relevant ones are
discussed below; however, a derivation is found in Ref. [73].

We first consider the case of constant directors, in which
we can restrict ourselves to scalar order parameters. In addi-
tion to the orientation-averaged density v; and the uniaxial
nematic order parameter S familiar from previous work [59],
we employ the additional order parameters U, P, and F that

we have already used in Ref. [31] to study the equilibrium
case. These order parameters are defined as

5
y = /aumaR»wmﬁwx ©)

872 o

¥ /dO (0(0.R) — po), (10)
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withY € S, U, P, F and the functions

_ 3 a1
f5(0) = S cos*(®) — 5,
.Mm=%iwwwmm

mmz%iw@wmm

fr(0) = %(1 + cos?(6)) cos(2¢) cos(2x )
— cos(6) sin(2¢) sin(2x ). (11)

Here pg denotes the constant bulk density (which could also
be interpreted as a spatial and orientational average over
Pp(R, 0)). A more detailed discussion of the physical meaning
of the order parameters will be provided in Sec. IIID. In
the literature, there are different conventions for defining the
order parameters. We here use a similar convention to the one
employed in Ref. [61]; other works [31,73] omit the prefactor
5 in Eq. (10). [For the difference regarding Ref. [61], see the
discussion under (36).] Of course, the definitions are equiv-
alent, if used consistently. Note that we implicitly assume
that there are no polar phases, as we would otherwise need
to incorporate polar order parameters.

B. Tensorial biaxial order parameters

A further important aspect to take into account is the spatial
dependence of the nematic directors, which would be relevant
for instance when describing a nematic twist-bend phase. We
therefore will now introduce general order parameters for a
system with spatially varying nematic directors.

We begin by introducing the orthonormal tripods
my, m,, m3, constituting the basis of the molecular frame,
ey, e, e3, constituting the basis of the fixed laboratory frame,
and Iy, I, I3, consisting of the three nematic directors, which
we here explicitly allow to change over time and in space.
Note that in uniaxial phases the nematic directors /, and I, are
irrelevant, as there is ordering around only one axis, in which
case the other nematic directors can be chosen arbitrarily.
Finally, the molecular frame is particle fixed in the sense that
the orientation of a particle is constant in this frame. It can be
written through the projection on the laboratory frame:

my = (m -e))e; + (m - ex)ex + (m - e3)es,
m, = (m; - e1)e; + (my - e2)ex + (my - €3)es, (12)
m3 = (m3 - e;)e; + (m3 - ex)e; + (m3 - €3)es.

The projection of m; on e; is related to a rotation by

m;-e; =Rji, (13)
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while the elements Rj; of the corresponding rotation matrix
are given by

Ry = cos(¢) cos(0) cos(x ) — sin(¢) sin(x ),

Ri» = —cos(x)sin(¢) — cos(¢) cos(¥) sin(x),

Ry3 = cos(¢) sin(H),

Ry1 = cos(¢) sin(x ) + cos(8) cos(x) sin(¢),

Ryy = cos(¢) cos(x) — cos(@) sin(¢p) sin(y ), (14)
Ry; = sin(¢) sin(9),

R31 = —cos(x)sin(9),
Rz, = sin(0) sin(x),
R33 = cos(9).

Now we will move on by constructing the tensors

o= S(mem
0= 2m3 ms3 3t )

1
M, = ,lz(ml ®@m —my @ my), (15)
and

3 1

Ly=./=|1 l;— -1,

0 \/2<3®3 3>
1

L1=,15(11®11—lz®l2)~ (16)

Here I denotes the identity matrix in three dimensions and
® denotes the Kronecker product (also known as the tensor
product). The molecular tensors My and M| are later averaged
to become our tensor order parameters (M) and (M) and the
tensors Ly and L; will serve as a basis for an expansion of
the tensor order parameters. Note that the relations presented
here are not valid for any kind of biaxial particle (or biaxial
phase). The assumption made here is that the particle (or
more accurately, its pair interaction potential) needs to possess
a Dy, symmetry. Informally, this corresponds to a “vertical
flip-over” symmetry. It can be argued, as done in Ref. [31],
that the results extend to certain other particles with differ-
ent symmetry groups as well, since certain order parameters
might be theoretically allowed but not necessarily physically
relevant. However, generally speaking, other order parameters
could arise via other symmetry groups. One example would be
a particle shape like a prism or a pyramid that would destroy
the I3 — —I3 symmetry. In this case, (first-order) polar order
parameters would arise and potentially be physically relevant.
As another example, it might be of interest to study chiral
particles or phases, which lack mirror symmetry. With this
weaker symmetry assumption, there would be other second-
order order parameters relevant. More discussion on this is
given in Ref. [73].

As we will note soon, the density can be fully expressed us-
ing only the biaxial tensors presented above. First, we obtain
the following expression for the averaged molecular tensors
(M) and (M) by projecting them onto L, and L:

(My) = SLy + PL,,
M) =ULy+ FL,, (17)

where we defined the S, U, P, F' scalar order parameters as

S = (M, : L),
U= (M,:Lo),
P=(M,:L),
F=(M,:L), (18)

and (---) = &Tizf dO (p(R, 0) — pp)/po - (-- ). A discussion
of their physical significance is given in Sec. III D. The inner
product : between two tensors A and B

A:B=Tr(AB") (19)

and the averaged molecular tensors (M) and (M) are

5 3 1
(Mo) = 8720 dO (p(R,0) — ,00)\/;(’”3 Qms3 — 31),
(M) = 8—/d0(p(R 0) — po)
n?
f(mZ ®@my —m; @m). (20)

Apart from the microscopic definitions of (M) and (M)
presented above, we note that, as commonly done in liter-
ature, the directors /; and the scalar order parameters can
be gained from the molecular tensors as their eigenvectors
and eigenvalues, respectively. It is now easy to see that for
a constant nematic director I3 = (0, 0, 1)7 this more general
approach coincides with the previous definition in (11). Now,
generalizing some of the ideas outlined in Refs. [73] and [81],
we express the biaxial density through the order parameters
presented here by using orientational expansions. Although
similar expressions appear in the earlier literature [81], pre-
vious work usually considered the case of constant directors
(i.e., I; coincides with e;), while we will later introduce a
model for which we drop this requirement to find novel ex-
pressions for the description of biaxial phases.

II1. DENSITY EXPANSIONS
A. Fixed directors

Now, having outlined the general theory for biaxial or-
der, we want to apply this to our specific goal, namely the
microscopic derivation of a field theory for biaxial liquid
crystals. In order to do so, we first need to find an expansion
of the one-particle density in terms of the order parameters
introduced earlier. This will later, as outlined in Sec. IV B,
allow us to gain closed-form expressions for the free energy
in dependence of these order parameters.

One possibility for an orientational expansion of the one-
particle density is to perform an expansion in elements of the
rotation matrix R;;, also known as the Cartesian expansion.
The R;; are given in Eq. (14). We give the explicit form for a
generic function f up to second order here, and more details
can be found in Refs. [80,82]:

3 3
YR+ Y PyRR;+ Y QiuRijRu.

i,j=1 i,j.k.I=1

f(R,0) =

21
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with the orientation-averaged density v, the polarization F;;,
and the generalized nematic tensor Q; i, which here (unlike
in the uniaxial case) are a second- and a fourth-rank tensors,
respectively. They are given by

1
V=os / 40 f (R, 0),

Pj = = do f(R, O)R;;, (22)
5 2
Qijki = 62 dO f(R,O)| R;jR + RyRy; — §5ik5jz .

This expansion is closely related to the Saupé matrix [80],
which is widely used in experiments [83].

Another widely used approach for a biaxial expansion of
the density is the expansion in Wigner D matrices, also known
as the angular multipole expansion, since it is the biaxial
generalization of an expansion in spherical harmonics [82].
The Wigner D matrices D', are defined as [84]

D, =e "™ "™d, (6), (23)

where d!, is defined as

d' ()= A +mI—m(+m)(I —m)!
(_ l)k Sin21+m—n—2k (%) COS2k7m+n (%))

x kz; (U+m—IN—n—k)k\k—m~+n)

11111

(24)

Here I, is the set of all integers for which the arguments of
the factorials appearing inside the sum in (24) are greater or
equal to zero. This special case of an expansion in spherical
harmonics has been used multiple times in the literature be-
fore, such as in Refs. [59,85].

Expressing the scalar order parameters S,U, P, F, dis-
cussed in Sec. II, in terms of Wigner D matrices results in

S = (D),
U= <D52 +D(2)2>
NI
p_ <D§0 +D20>
V2ol
o <D§2 +D*),+ D3, + D222>’ 25)
2
where (---) denotes the orientation average 82—2 f do (p —

00)/ po. These expressions can be derived from the definitions
of fs, fr, fp, and fr provided in Ref. [86]. These relations
will prove to be helpful in the expansion of the direct correla-
tion function later.

For the density we pursue another approach, as the relation
between the order parameters and the resulting expansion
coefficients is still quite complicated for Wigner D matrices
(which is similarly true for an expansion in rotation matrix

elements). We proceed by making the ansatz

PR, 0) = po(1 + Y1 + Sf5(0) + U fy (0)
+Pfp(0) + F fr(0)) (26)

for the density as a function of the scalar order parameters.
We now give the explicit justification of this approximation
for the density by doing an expansion to the second order in a
set of matrices introduced by Mulder [86], which we will refer
to as “Mulder matrices.” The expansion is not done directly in
p but rather in (o — po)/ po.

The Mulder matrices are an orthogonal function system
and thus an orthogonal basis for a function f (which in our
case is given by (o — pg)/po), defined by the relation

1 2+8m0+8n0
o _ !
Amn - <\/§> ZDamazn’

where the sum is such that o, 0, = —1, 1; further, 0 < m
n < [, and [, n, m are even [86]. They obey the orthogonality
relations

27

dOAl AR = SLZS Smims S (28)
503) ming Smony 20 + 1 111 Omymy Ol 1 -

Here the D!, are the Wigner D matrices defined above.
The resulting expansion of an arbitrary function f into
Mulder matrices is then given by

f(R1,R5,04,0,)

QL+ DL+ 1)
= Z Z fllmlnllzmznz 64774 Af?lllnl Aiflznz’

j=1,21j,m,1n1

(29)

with

Sommboman, = f do, f dOy Ap A% £(01, 05, R Ry).
(30)

[The orientational expansion of the density depends only on
a single orientation O, yet other expansions later will use a
modified version of the general form in (29).]

After truncating the expansion in (29) at order [ = 2, we
need to define our order parameters as averages of the Mulder
matrices. Since we know that only the averages of the fy and
the orientational average of 1 (leading to the i, parameter)
are relevant for the biaxial nematic phase, we need to find a
way to express these averages through Mulder matrices. This
can be achieved using the relations

= o) = (o),

5= gz 3 e00) = 3 ) = (0%
U= %<%§ sin (9)005(2x)> 822<A(2)2)’
P %<§ sin (9>cos<2¢>>= (8
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5 /1 2
F = @<§(1 + cos“(0)) cos(2¢) cos(2x)

5
_2<A%2>* 31

- cos(@)sin(2¢)sin(2X)> =&

which, paired with (28), implies

AO 2 A2
P”ﬂo(l‘*‘gog(Aoo) g 02> Ay + gnoz)Agz
5 A2 2
+ g 220) A+ Sta 22)A22> (32)

Alternatively, we can explicitly convert back to the
S, U, P, F, yr; parameters and arrive back at (26). [Note that
(31) clarifies how we can formally define fy, := 1. The ab-
sence of a factor of 5 comes from the fact that the order
parameters S, U, P, F appear in the second order of the ori-
entational expansion, while i; comes from the zeroth order
of the orientational expansion.]

B. Spatially varying directors

We now generalize the expansion Eq. (26) for spatially
varying directors. In order to do so, we expand in the ele-
ments of the two tensors M, and M, as their averages fully
characterize the system. The case for constant directors is
presented in Ref. [81], and thus it is easy to see how the more
general method presented here reduces to the previous known

J

3
M()Z 9

NIUJ l\)lw

3

where L, is the second Legendre polynomial. This agrees with
the result by Wittkowski et al. [59] (their &y corresponds to our
I3 and our mj3 corresponds to their #):

o = po(l + Yy + SLy(ms - I3)). (36)

(Somewhat more subtle, our density still has a y dependence,
as seen by the remaining normalization factor proportional
to 1/(87?), since we still integrate over all three Euler an-
gles. However, the density distribution for x is uniform, as
we assumed U = P = F = 0, and thus absorbed in the dif-
ferent prefactors for the order parameters as compared to
Refs. [59] and [61], where the x dependence was neglected
entirely.) Our method thus generalizes the results of Ref. [59]
to both biaxial particles and biaxial phases. In the literature
one can find many more applications than derivation of PFC
models with such expansions; they have, for example re-
cently also found application in machine learning for liquid
crystals [88].

case. Explicitly, the density can be written as
p = po(l + 1+ (Mo) : Mo+ (M) : My)
= po(1 + Y1 + (Mo : Lo)Lo + (Mo : L1)Ly) : My

+ (M : Lo)Lo + (M, : Li)Ly) : My)
= po(l + Y1 + (Mo : Lo)Mo : Lo + (Mo : L1)My : Ly
+ My Lo)M, : Lo+ (M, : L\)M, : L)
=po(l+y1+SMy:Lo+UM, :Ly+ PM, : L,
+FM, : L)), (33)

which generalizes Eq. (32). Here (M) is (up to a conven-
tional prefactor /3/2) the well-known nematic tensor Q also
appearing, for instance, in the phenomenological Landau—de
Gennes expansion of the free energy [87]. (M) is a simi-
lar tensor relevant for particles that are biaxial. (Notice that
there can also be biaxial phases in a system of uniaxial
particles, these correspond to a nonzero value of the order
parameter P.)

C. Relation to expansions for uniaxial particles

Next, we show that our biaxial expansion reduces to the
uniaxial one employed in previous work [59]. The first step is
to neglect the order parameters U, P, and F. Then, assuming
P =U = F =0, the density from Eq. (33) has the form:

(("h ej)ms-e)(l3-e;)l3-€)— - —

2 3 1
((m3 I3 — =+ = (6’1 e)e; - eﬂ) = 5(('"3 13— 3) = Ly(ms3 - 13),

p = po(1+ ¥1 + SMy : Lo). (34)
The expression appearing in the last term reads
(m3-e;)(ms -e;)(e;-e;)+ (I5-e;)15-e)e; -e;)
3
(35)

(
D. Meaning of the scalar order parameters

Analogously to (35), we recover the definitions in terms of
m; and [; for S, P, U, and F as given in Ref. [73]:

=)

U = ((m) - 13)* — (my - 13)?),

P=—=(m;-1))* — (m3-1,)*),

SSRGS

1
= 5 ((m) ) = (my L) = (my - 1)+ (my - 1)),
(37)

where the directors are now, in contrast to Ref. [73], explicitly
space and time dependent. This notation also helps us to
develop some intuition for the physical meaning of the order
parameters introduced here:
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(1) S:order parameter for uniaxiality: This order parameter
measures the alignment of the molecular axis m3 with the the
director 15 (often referred to as the nematic director). It is 0 in
an isotropic phase and 1 in the perfectly nematic phase.

(i) U: order parameter for molecular biaxiality: This or-
der parameter is nonzero only if the particle shape is biaxial.
However, U can be nonzero even in a phase which is not
biaxial. This can be understood by recognizing that the uniax-
ial (molecular) symmetry transformation m; — —m,, m; —
—m; does not leave the order parameter invariant, but the uni-
axial (phase) symmetry transformation |, — —I,1, — —I,
does leave the order parameter invariant, as expected.

(iii) P: order parameter for phase biaxiality: Here the uni-
axial phase symmetry transformation I} — —I,1, — —I;
does not leave P invariant; however, assuming uniaxial sym-
metry in the shape through m; — —m;, m, — —m; leaves
the order parameter invariant. As a result, this order parameter
accounts for biaxiality in the phase. This means, this order
parameter can be nonzero for both uniaxial and biaxial particle
shapes, but it can only be nonzero in a biaxial phase.

(iv) F: order parameter for full biaxiality: This order
parameter is only nonzero if both the particle shape and
the phase are biaxial. Uniaxial symmetry transformations of
the molecular axes or the director axes both do not leave the
order parameter invariant. Thus, it can only be nonzero for full
biaxiality.

Note that there is, as noted earlier already, in general a
difference between biaxial phases and biaxial particles. A
biaxial phase is a phase in which, in addition to S, P is also
nonzero—which can at least mathematically also happen if
the underlying particles are uniaxial. In contrast, U and F can
only be nonzero if the particles are biaxial (an example for this
would be hard cuboids).

Finally, we note that we can recover the special case for
constant directors discussed in Sec. I A by simply setting
l; = e;. Note that in this case the names “director frame”
and “laboratory frame” can be and are used interchangeably
[73,81]. This no longer holds in the general time-dependent
case that we consider here.

IV. FREE ENERGIES

A. Macroscopic model

There have been multiple studies investigating the formu-
lation of a macroscopic model incorporating full biaxiality
by generalizing the early uniaxial macroscopic theory of de
Gennes [1], such as done in, e.g., Refs. [89-93]. Here we give
a short overview over these results. General methods for the
derivation can be found in Refs. [93] and [92].

We formulate our theory with the tensors Q = (M) and
K = (M,). However, very often authors assume that Q =
V3/2(My) and K = (M) /~/2 for their macroscopic models.
This difference is solely notation convention and does not
influence the physics. @ is often used for denoting the well-
known nematic/uniaxial order tensor whose largest eigenvalue
is equal to S, with the corresponding eigenvector being I3 [94].
(“Uniaxial” refers to particle uniaxiality here. Q is capable of
describing phase biaxiality, for example the biaxial structure
of the cores of topological defects and the intrinsic structure
of the nematic-isotropic interface.) In a theory accounting for

the coupling of the two tensors Q and K, the bulk energy is
given by the following linear combination of tensor invariants
up to fourth order where we combined expressions from Refs.
[89,90] and Ref. [54] to arrive at the following expression for
the free-energy density f:

f = b1 Tr(Q%) + by Tr(Q®) + by Tr(Q?)? + by Tr(K?)
+bs Tr(K*)* + b Tr(QK)” + b7 Tr(Q*K?) + bs Tr(QK)
+ by Tr(K?) + b1o Tr(Q°K) + by1 Tr(Q°K)
+ b1y Te(QK?) + by3 Te(K?) Tr(Q?) + brayyi + bisyry
+big¥] + by Tr(QK) + bigy Tr(Q%)
+ bioyry Tr(K?) + by Tr(Q?) + boy vy Tr(K*)
+ by Tr(K>Q) + b3y Tr(QPK) + basyr} Tr(Q%)
+ bysyri Tr(K?) + basyri Tr(QK). (38)

The coefficients b — by are macroscopic parameters chosen
in accordance with simulations or experimental data and Tr
denotes the trace operator. Clearly, the expansion (38) is much
more complicated than the uniaxial theory proposed by de
Gennes, which is only based on Q [1]—in Eq. (38); we have
a total of 26 independent terms. Now, following the notation
introduced in Ref. [91], we include the elastic energy. For a
tensor A, we define gradient and divergence as

(VA)i,j]...jn == 8iAj|---j,la
(VA = D A (39)

and for two tensors A and B use the inner product : as defined
in (19). In this notation, the form obtained by Xu and Chen
[91] for the elastic free-energy density of a coupling of two
distinct symmetric traceless tensors Q and K with each other
and with a scalar field v is

f=c(Vy) : (Vi) + c(VQ) : (VQ) + ¢3(VQ) : (VK)
+c4(VK) : (VK) +¢5(V - Q) : (V- Q)
+¢(V-Q): (V-K)+c7(V-K): (V-K)
+cs(VY1) 0 (V-K) + co(VY) : (V- Q)
+c10(V2Y) (V). (40)

Once again, the coefficients c;—cjp are just macroscopic
coefficients chosen in accordance with simulations or experi-
mental data. We chose to include the term ¢1o(V2r1) : (V)
despite the fact that we are only looking at contributions
up to second order in gradients—the reason for that is that
such a term allows for the formation of crystals. Note that
Eq. (40) holds only for particles with symmetry group D5j,.
Reference [91] only gives the bulk energy up to second order.
Another theory is given in Ref. [89], where both the full elastic
energy and the bulk energy up to fourth order is presented.
However, unlike Ref. [91], Ref. [89] does not include the
coupling of the space-dependent density with the nematic
tensors.
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B. General route to mesoscopic PFC models

We now present the general approach for systematic mi-
croscopic derivations of phase-field crystal models, which
naturally account for, in principle, all couplings up to any
order, following previous work on the subject [52,55-57]. We
then use the presented ideas to derive two models for biaxial
liquid crystals.

First, we consider the ideal gas free energy:

(1) We insert the parametrization (33) of the density in
terms of the order parameters into the ideal gas free energy
4).

(2) We Taylor expand the logarithm in Eq. (4) up to third
order (such that the resulting expression for Fi4 is a fourth-
order polynomial). An expansion up to third order is common
as it allows to model crystal formation [54].

(3) We evaluate the angular integrals.

For the excess free energy, the derivation is somewhat more
complicated:

(1) We choose a suitable approximation for the excess free
energy, the explicit form of which is not known. We will here
work with the common Ramakrishnan-Yussouf approxima-
tion [76], where the excess free energy is written in terms
of the second-order direct correlation function. Other ap-
proaches, such as a higher-order functional Taylor expansion,
are also possible and have been investigated before [46,52,61].

(2) We insert the parametrization (33) of the density in
terms of the order parameters into the excess free energy.

(3) Since the orientational dependence of the direct corre-
lation function is generally unknown, we need to perform an
orientational expansion respecting the internal symmetries of
the system. Details are given later.

(4) We evaluate the angular integrals.

(5) The resulting expression involves a convolution in-
tegral. In order to remove this nonlocality, we perform a
gradient expansion up to second order (fourth order for terms
only involving ;). This is a common choice in PFC modeling
[52,54].

This is the basic procedure for deriving phase-field crystal
models for liquid crystals. Of course, details may vary. In
what follows, we show explicitly how to use this method for a
microscopic derivation of the free energy of a model system.
Specifically, we introduce a restricted model for full biaxiality
(by fixing the directors) and a full model for phase biaxiality
(by dropping order parameters related to particle biaxiality).

C. Overview over the considered models

In the following, we will obtain microscopic expressions
for the coefficients of two different models:

(i) Model I incorporates all five scalar order parameters,
¥y, S, U, P, and F, yet holds the directors constant, where we
use the density expansion (26) instead of (33). This means it
describes both biaxial phases and biaxial particles but does
not incorporate elastic interactions, which are, for instance,
responsible for the formation of twist-bend nematics.

(i) Model 2 incorporates the scalar order parameters
Y1, S, and P and does not hold the directors /; constant, where
we drop the other terms in the density expansion (33). As
such, it fully incorporates the well-known tensor order param-
eter @ and its coupling with the orientation averaged density

V1. However, it is limited by not incorporating the second
tensor order parameter K associated with the two scalar order
parameters U and F and thus is not able to describe the effects
induced by molecular biaxiality that would be captured by U
and F.

It is important to note that both of these models are special
cases of the more general macroscopic theory presented in
Sec. IV A. The elastic energy in Eq. (40) provides a good
example: If we restrict ourselves to the term (VQ) - (VK)
and assume the directors to be constant, as done in Model 1,
then we arrive at (VS) - (VU) 4+ (VP) - (VF). In the case of
neglecting shape biaxiality, though, we can easily recognize
that this simply means K = 0 and the term will thus van-
ish completely. In summary, each of our simplified models
capture one aspect of the more general macroscopic model.
However, while the macroscopic theory is the most general
one of the models presented here, the microscopic derivation
has the advantage of providing microscopic expressions for
the coefficients and would, if carried out in full generality,
reproduce the macroscopic model.

An explicit microscopic derivation of the full biaxial model
would be practically difficult due to the high number of free
parameters (see Sec. IV A) and the complex form of the den-
sity with a total of 10 independent tensor elements. However,
after deriving the free energy for Model 1 in Sec. IV D, we
develop a method to infer the full biaxial model from it in
Sec. IVE, where we combine the microscopic result with
the macroscopic model from Sec. IV A. Then, in Sec. IVF,
we introduce and discuss an important special case of the
full biaxial model presented in Sec. IV E (namely the case
of uniaxial particle shapes). Later, in Sec. V, we only derive
dynamic equations for the restricted Models 1 and 2 to avoid
calculating a large number of integral necessary for dynamics.

D. Model 1

We first consider the case where, as in previous work [31],
directors are held constant, implying that we have to deal with
adensity p(0, ¥, S, U, P, F). Explicitly, we assume the form
presented in (26). Note that this considers both tensors (M)
and (M) with constant directors ;. As an important fact, keep
in mind that the exact form of /; matters. Here we choose I3 =
(0,0, 1),1, = (0, 1, 0). Other (constant) choices are possible
but will alter both the density and the resulting free energy.

1. Ideal gas free energy

We begin with calculating the ideal gas free energy. As

discussed above, we substitute x = % using Eq. (33) and

Taylor expand the logarithm to third order, resulting in

BFu = /dR/dOpan(pﬁ)— 1
_ po/ dR/doa + 00 p0(1 + ) — 1))

28 X
~ R{do(Z-Z4+2), @
fo-l—ﬂo/ / (2 6 +12) (41)

where F; consists of irrelevant constant terms the functional
derivative of which vanishes. Now, we need to calculate
the angular integrals by first inserting the density defined in
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Eq. (26) into the expression Eq. (41) and then calculating
integrals of the form [ dO fy (0)" fx (0)" with a and b being
integers obeying a + b < 4. For a or b equal to 1 or 0, we

J

1 X? 1
BFia =.7:0+87T2,00/dR(§<¢12+Z?) —g(l/ff+
X

XY, 6X2
R

T
2\ 5
X X

1
+ g(12F252 + 6F?U?* + 6F?P? + 68°P? + 68°U? + 12U°P* — 12SUPF)>),

where Fy is an irrelevant constant and X € {S, U, P, F'}.

2. Excess free energy

Now, we turn our attention towards Fex.. We employ the
widely used Ramakrishnan-Yussouff approximation [76],

1
,B]:exc = E/dedezdeI/dOZC(z)

X (R1, Ry, 01, 02)(p(Ry, O1)—po)(p(R2, O2)—po),
(43)
with the direct correlation function c¢® of the reference state
0o that is defined as
—8% Fexc
3p1(Ry, 01)3p2(R2, 02)

P=po

(44)

BcP (R, R;, 01, 0,) =

The definition (44) makes Eq. (43) a functional Taylor expan-
sion of Fexc, Where we expand around a constant bulk density
Po-

We can simplify ¢® by exploiting the symmetries that the
system has in the state p = py where it is evaluated. First, we
employ spatial homogeneity, which implies that

PR, R2,01,0,) = PR, +a,Ry +a,0,0,) (45)

with an arbitrary vector a. Note that the assumption of
spatial homogeneity of ¢, although frequently made, is not
always true—it breaks down for example in crystals [since
c? is a functional of the density which, in a crystal, is not
homogeneous]. For details see Ref. [95], where this was
recently investigated in greater detail. In our case, however,
¢? is homogeneous since we make an expansion around a
spatially homogeneous isotropic equilibrium density pg.

Setting @ = —R», it follows that
cP(R, R, 01,0,) = cP(R) — Ry, 04, 0,). (46)

Next, we exploit the fact that the system is spatially isotropic.
Mathematically, this implies that it is invariant under a rota-
tion D, such that

cP(R; —R,,01,0,) = cP(D- (R, — R,), DOy, DO>).
(47)

Note that D is an abstract rotation operator here, which does
not have to represented by the standard rotation matrix (as the

can use the orthogonality relations (28), which, for example,
imply that terms of the form f dO f5(0) fr(0) vanish. Other-
wise, the integrals are calculated numerically. The result is

3 2
Sl 3 X% — (3PS +3U%S — 3FS — 6UPF — §°)
A 35

5

2
- §w1(12P2S + 12U2%S — 12F2S — 24U PF — 45?)

(42)

(

orientation O also is, since three Euler angles and thus three
molecular axis are needed, not represented by a single vector).
We choose D in such a way that R; — R lies on the z axis:

c?(D - (R, — R»), DO;, DO,)

= ¢®(IR; — Ryle., DO\, DOy), (48)

where e, is the unit vector in z direction. Now we need to
find a way to expand the direct correlation function in a way
that allows us to evaluate the resulting angular integrals. We
cannot choose a simple expansion in spherical harmonics as
done in Ref. [59] since ¢® depends on three angles, such that
an expansion in spherical harmonics is no longer sufficient.
Further, we need to choose an expansion that respects the
internal symmetries of the system, such as the one presented
in Appendix A of Ref. [45] (where, however, the biaxial
expansion coefficients are not given) and applied (for uniaxial
systems only) in Refs. [59,96]. The chosen expansion for
this purpose has (using the abbreviation R := R, — R, and
defining O, as the orientation of R := R; — R;) the form

cP(|Rle:, 01, 01, 05) = Y @, (IRle:)¢: (012, 01, 0),
A
(49)

with the orientational part

$:(012.01.00) = > C(l. b, 1.my,my, m)(Dly )"

my,my,m
x (0)(D%, ) (02)Y}; (012).

Note that O, only depends on two angles given in spherical
coordinates, as it specifies the orientation between the two
vectors R, and R, within center-of-mass coordinate. In con-
trast, Q1 and O, specify the orientation of a particle in terms
of Euler angles and thus depend on three angles. We have used
the multi-index A = (Iy, ny, [, ny, [) and the coefficients

QL+ 1)L +1) [ 4x / /
@ 647 Varg1) 90 [ do:

m=min(l| ,[2)

<D

m=— min(h ,12)

x D! (0,)D"

miny many

(50)

C(ll» m, 12» —m, l» O)

(02)c®(IRle;, 01, 0,). (51)

035416-9



ANOUAR EL MOUMANE et al.

PHYSICAL REVIEW E 112, 035416 (2025)

The essential idea of this expansion is that both ¢, and
¢@ are invariant under a rotation of all angles. The
C(ly,my, l,mp,l, m) are the Clebsch-Gordan coefficients.
This is sufficient for our next steps.

To obtain the excess free energy, we start by inserting
Egs. (49) and (32) into Eq. (43) and integrating out the ori-
entational degrees of freedom. This gives

1
Foxe = E/dRI/dRz >

X.Z.1
X X(R)Z(R2)wsx),,5X),8@)n,52);,1 R — Ry)
x C(S§X)1, 85X )2, S(Z)1, 5(Z), 1, mx + mz)

64714,03
Qlx + D2z + 1)

(52)
with  X,Z e {y1, S, U/v2,P/V2,F/2) and SX)=
(Ix, mx, ny)

Sr1) = (0,0,0),

S(S) = (2,0,0),

SWU)=(2,0,2) or (2,0,-2),

S(P)=(2,2,0) or (2,-2,0),

S(F)=(2,2,2) or (2,-2,-2)
or(2,—-2,2) or (2,2,-2). (53)

J

647 p2X (R))
Qly + D)2l + 1)

fexczé/-de Z

X.Z,1

The notation S(X); is to be understood such that it denotes
the ith element of S(X) as given in (53). As an example, if we
are interested in the terms coupling S and P, then the required
Clebsch-Gordan coefficient would be either C(2, 0, 2, 2, 2, 2)
or C(2,0,2,—-2,2, —2) (since P is expressed through a sum
of two Wigner D matrices), and the factor w, would be w2202
(in both cases). Explicitly, S(X), would be either 2 or -2.
Both combinations need to be realized such that a single
order parameter might result in multiple terms. Note that m =
my + my, as otherwise the Clebsch-Gordan coefficient would
be 0. Due to the gradient expansion we will perform later,
1 € 0,2, since the integral de Y)nim3 ® m3 is nonvanishing
only for ! € 0, 2. Thus, effectively, only the spherical harmon-
ics Yoo, Y20, Y22, and Y,_, are allowed. Afterwards, we perform
a change of variables R = R; — R, and Taylor expand the
order parameter X (R, + R) with respect to R. (This last step
is usually referred to as a “gradient expansion.”) For a generic
function f, we can make the following expansion (which we
will truncate at order / = 2 and order / = 4 for terms only
involving ¥):

_ R!
FRAR) =) =@ V) [(R), (54)
— 1!
with R, R = Rit being arbitrary vectors. Here i@ is the unit
vector with the same orientation as R, while R denotes the
absolute value of R. Finally, we evaluate the integral over R
and arrive at

C(SX)1, 8X)2, S(Z)1, 8(Z2)2, 1, m)

X (Z(Rl)(f d|R| |R|2wS(X)1,S(X);,S(Z)],S(Z)g,l(|R|ez)/ do Ylm)

ij

with the constraints on /, m, and S as explained above. The
values of Iy, my, ny and lz, mz, ny are connected to the sum
over X,Z as given in (53). The integrals sz d0Y,, and

Ik s, d0Y),,m3 ;m3 ; are given in detail in Appendix A 1.

E. Inferring the full biaxial model

While an explicit derivation would be very tedious and
practically very difficult, the coefficients of the (macroscopic)
full biaxial model from Sec. IV A. can be microscopically
determined by a comparison to the special (and much less
complex) case of constant directors (Model 1), for which we
provided an explicit microscopic derivation in Sec. IV D. This
(quite surprising) result is obtained as follows: The key to
establish a link between the corresponding free energies is
the relation (17) of the averaged molecular tensors (M) and
(M) to the scalar order parameters S, U, P, F'. We proceed by

IR
+Y 31‘3,/'Z(R1)</ dIR| TwS(X)l,S(X)3,S(Z)]$S(Z)3,l(|R|ez)/ dO Y;,yms3 im3, (55)

(

inserting I; = e; into (17):

—S/v/6+ P//2 0 0
(M) = 0 -S/N6—-pP/v2 0 |,
0 0 25//6
~U/V6+F/V2 0 0
(M) = 0 —U/N6—F/J2 0
0 0 2F /6

(56)

Next, we exploit the fact that we know the structure of (58)
and (59) in advance from the macroscopic considerations
in Sec. IV A. We calculate all tensor invariants for constant
directors by inserting (56) into (38) and (40). Since none
of the terms of the macroscopic model go to zero (this was
explicitly checked), we remain with all coefficients. Thus, we
could collect the appropriate terms, since we already know
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that both approaches need to be at least consistent, that is,
if we assume constant directors in the macroscopic model,
then we need to arrive at (55). We can then finally collect all
terms and compare coefficients and arrive at the full biaxial
energy by using our new method combining a microscopic
and macroscopic approach.

This method might help to greatly simplify calculations for
even more complex symmetry groups, such as for particles
exhibiting molecular chirality. (At least if the primary focus
is deriving microscopic expressions for coefficients and not
a first-principles derivation of the structure of the free en-
ergy. The structure of the free energy, i.e., the relevant tensor
invariants, is, however, essentially a solved problem for all
relevant symmetry groups; see Ref. [91].) Another question
to be addressed is whether the coefficients are dependent on
any of the order parameters, which would render this method
useless. Trivially, there cannot be an explicit dependence as
only the tensor invariants depend on the order parameters.
However, there might be an implicit dependence as the coeffi-

J

cients might change depending on what density we use in the
derivation, similarly to how certain approximations implicitly
affect the resulting set of coefficients. We can, however, rule
out that possibility as it is possible to use (33) instead of
(32) (just with some restrictive assumptions on the tensor
elements to ensure that the condition of constant directors
is fulfilled) and once we evaluate the orientational integrals
the coefficients still cannot depend on any tensor elements (or
scalar order parameters). Since we know that both approaches
have to give the same result for the restricted case, this has to
be true for the general case as well.

For the dynamic equations, however, we do not use the gen-
eral model but restrict ourselves to constant directors again, as
this would result in a huge number of additional coefficients.

1. Ideal gas free energy

The free energy of the ideal gas (42) does not contain any
gradient terms. A direct comparison to the form of (38) thus
gives the general form

2 2 2 2
47, =8n2p0/dR(%(wlz+Tr(<Mo) )+ Tr(M)) )) 1(3w1(Tr((Mo) )T s

5

g 5 ¥

2 1 3
- g(—déTr«MoP) + 3¢6Tr(<Mo><M1>2)>) + E(wi‘ + gw%m«Mo)Z) + Tr((M)?))

8w
35

(=V6 Tr((M)*) + 3v/6 Tr((Mo) (M 1)?)) + %(3 Tr((Mo)*)* + 3 Tr((M)?)?

— 6 Tr((Mo)(M1))* + 12 Tr((M)*) Tr ((M%)))>, (57)

which is valid even for spatially varying directors, as discussed above.

2. Excess free energy

Next, we calculate all tensor invariants presented in the bulk free energy (38) (up to second order only) and the elastic part
given in (40) for constant directors to get the model for the excess free energy,

F _ ! dR ayyv? + 2 2 @2 p2 2, 2
exe = 1 +ax (V)™ +as(Ayn ) a(S™ + P7) +b(U” + F~) + c(SU + PF)

2

3 Viy, - VS 1
+d(\/;<(13 VY- VS) — %) + \/;((11 VYO - VP = (- V) - VP)))

3 Vy, - VU 1
+€(\/;<(l3 VY3 - VU) - I/IIT) +\/;((11 VY)W - VF) =, - V) - VF)))

(VS)? 4 (I3 - VS)?

(,-VP)? + 1, VP)

+ f((VS)? + (VP)?) + g( 5

(1 -VF)Y 4+ (1, -VF)?

> ) + h((VU)? + (VF)?)

.((VU)2+(13-VU)2
+1
2 2

) + j((VS) - (VU) + (VP) - (VF))

+k<(vu> (V) + U3 VU)U5 - VS) | (i VF)E - VP) + (- VF) (Lo - VP))) (58)

2

2
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in terms of scalar order parameters and directors. Now we can compare the undetermined coefficients in (58) to the predictions
from (55) and finally arrive at:

Fexe = / dR (a19? + ax(Vyn > + as(AY1)? + a Tr((Mo)?) + bTr((M1)%) + ¢ Tr((Mo) (M, ))

+d(Vyr) 1 (V- (Mo)) +e(Vin) - (V- (My) + f(V(Mg)) : (V(Mo)) + g(V - (Mo)) : (V- (Mo))
FRVM ) 2 (VML) +i(V - (M) 2 (V- (M) + j(VMo)) : (VM) +k(V - (M) : (V- (M1))) (59

with the coefficients
9
4 = 12873 p? / dIR| IR 2wonono (IRle:),
9
4 = — 12878 p2 / dIR| IR *ooonoo(Rle:),

9 R|®
az = 128n2p§/d|R| —w00000(|R|ez

12871
a= 25[ dIR| |RI*@20000(IRe,),
1287‘[
= d|R| |R|* Qw20 (|Rle;) + wino(|R]e;) + wr_2-20(|Rle,)),
50[
12871
25«/_\/_ dIR| IR*(@20220(|Rle;) + wr02-20(|Re)),

d= 64”5p°,/36/d|R| IRP(IRle.)
= 5 15 00202 €;),
6477 p% [36 )
e=———% Vs d|R| |R|"(wo0222(|Re;) + woo2—22(|R]e;)),

6477 p} IR|* (45 JZ\/T
—— | dR| — | — R — Rle,) ),
5 / |R| > ( 5 w20202(| le;) + 3 5w20200(| |e~))

6473 p IRI* [ —2/5 N2 \/T
=-2 d|IR| — R - R — ,
8 ( 25 / |R| ( 5 76020202(| le;) + 3 5w20200(| le:) f

6472 p2 IRI* (445 |2
h=— TO/ d|R| T(F 7(0)22222(|R|ez) + wr—2-2(|R]e;) + 2wr_200(|R]e))

f=-

Va4 1
+ 5 g(w22220(|R|ez) + wa_2-20(|Re;) + 2wr_200(|R]e,)) |,

, 6473 p? IR (=245 |2
i= _2<T0/ d|R| —(T 7(w22222(|R|ez) + wr_2-22(|Rle;) + 2wr_205(|R]e;))

«/Z 1
+— —(w22220(|R|ez) + wr_2-20(|Rle;) + 2602—2220(|R|ez))> - h),

64 Rl /4
J=- 2:\//_30 \/>/ LN ( ff(w20222(|R|ez)+w202 »n(|Rle;)) + — \/7(60202224-60202 22))

64 RI* (=25 |2 4 /1
k= ( ;Tf air E ( 1sf‘\f5(wzozzz<|R|eZ>+wzoz22<|Rlez>>+%@WZO”Z('R'“H“’”Z22('R'e1))>_j>

(60)

for (59). Combined with the ideal gas free energy (42), we found the most general full biaxial model in a quasimicroscopic way
by explicitly calculating all tensor invariants from the macroscopic model presented in Sec. IV A for the case of constant directors
and comparing terms. To arrive at the ¢; and b; introduced in Sec. IV A, we simply need to add the coefficients presented above
in (60) to the coefficients in (57) if they correspond to the same term in (59). We chose this presentation as it shows more clearly
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how the microscopic coefficients arise. Explicitly, the expres-
sions for b; are

b — 4% py n a . 1672 po _ 272 po
1 = 5 2’ 2 = 35,\/6 ’ 3 = 35 ’
A7%py b 2% po 472 py
by = 2 b= p =T 0
=75 T BT 5 °~ 735
br=0. by=3. by=0. bo=0. by=0,
87[2:00 2 a)
b, =0, biz= , buy=4 —,
12 13 35 14 7T + 5
—47° po 872 oo
bis = , b= , bi7=0,
15 3 16 35 17
b — —47% py bre — —47%py _ 16v/67%pg
8= "5 > b1 5 b 05
—16+/672py 2% py
by =0, bypy= , by =0, by= )
21 22 35 23 24 35
212 p
bis =37 b =0, (61)
and the expressions for ¢; are
c1 = a—2 CHr = Z cr = i Co = ﬁ Cs = E
1=5, =3, =5, a=5, =7,
X .
C6 = 5 C7—%, Cs—g, ==, C10=%. (62)
F. Model 2

The second microscopic model we will consider for the
explicit derivation of dynamic equations is a full theory for
Y1, (My)ij, and their coupling. This means that we go beyond
earlier PFC models only describing uniaxial phases (such as
Refs. [54,59]) and introduce phase biaxiality by using the
order parameter P. We, however, neglect the second tensor
order parameter (M) and work only with (My). Thus, we can
arrive at this model by taking the results from Sec. IV E and
setting (M) to 0. This special case describes the important
situation of uniaxial particles in the most general way, not
fully presented in the PFC model literature so far. (As an
alternate derivation for this model, one could also argue that
the coefficients from Refs. [54,59] are, if formulated through
the nematic tensor, still valid, as its symmetry does not change
with the inclusion of the additional order parameter P. This is
a bit similar to the discussion given below (60). In that case,
however, we would need to adapt our definition of the order
parameters as they vary slightly in the chosen convention.)

We begin by writing

p = po(1+ Yy +

and consider the full three-dimensional nematic tensor for
uniaxial particles,

(My) = \/gS<I3 Rl — %1) + %(11 Rl —1,®1,),
(64)
where by including the order parameter P and the director
I, we also allow for the description of biaxial phases (see

(My) : M) (63)

Sec. II A for a discussion of the difference between biaxial
phases and biaxial particles).

1. Ideal gas free energy
The ideal gas free energy is given by

1 §*+P?
BFia = 87T2,00/ dr (5 <1ﬂ12 + >

5
1 3,3V @ 2 2 2 3
- (24P - =3P S - §
6(‘”1+ T )
1, 38*+PYH L6824 P?)
+E<1/f1 T35 + i s

2 6S2pP?
— — 1 (12P%S — 453 ,
35 Vi ( ) + T ))

which equals (57) when dropping the terms involving (M ).
This can be seen by inserting (64). (The tensor invariants
not involving any derivatives do not have any director de-
pendence.) Alternatively, one can also use (42) and set U =
F = 0. This can be cross-checked by performing a Taylor
expansion of the logarithm and integrating out orientational
degrees of freedom of (41), as discussed in Sec. IV B.

2. Excess free energy

The excess free energy is then

Fexe = / dR (ar1y} + ax(Vy)* + az(Ay )?

+aTr((Mo)?) +d(Vir) : (V- (M)
+ f(V - (M) : (V- (M)
+g(V(My)) : (V(M))), (65)

where the parameters are given in (60). This could also be
written explicitly in terms of S, P, and the three directors, as
in (58).

This free energy does not only include the Frank elastic
energy

1
Franss = 5 / AR (Ky5(V - 13 + Kos(ls - (V x I5))?

+ K513 x (V x 13))%), (66)

coming from contributions of the uniaxial director /3, but also
gives expressions for the elastic energy for the directors I,
and /,. Taking, for instance, the director I,, the elastic energy
would include, for example, the term

1
Frnts = 5 f AR (K, p(V - 1) + Ko pa - (V x 1))

+ K3 p(la x (V x 12))%). (67)
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The Frank coefficients are then given by

K —\/352 K

1,§ — ) 1,8
3,

K= ES ‘Ko s,

K3 s = Ky s,

1,
Kip= EP -Kip,

T,
K p= EP -Kap,

K3 p =K p, (68)

where the unique relation between K; and the elastic coeffi-
cients f and g (also commonly denoted as L; and L, in the
literature) in (59) is given by

Kis=2f+g

Ky s =2f,

Kip=2h+i,

Ky p = 2h. (69)

The degeneracy of K; y = K3y is an artifact of our expansion,
which should be resolved in higher orders, as in the uniaxial
case [94]. We see that there generally appear different kinds
of Frank constants in biaxial systems. In the most general
theory, involving both tensor order parameters, there will be
complex coupling between all four S, U, P, F parameters and
their directors as seen in Sec. [V A.

V. DYNAMICAL FIELD THEORIES

A. General ingredients

Having expressed the free energy in terms of the orien-
tational order parameters, we now derive the corresponding
dynamic equations for Model 1 and Model 2. In both cases,
our starting point is the DDFT for biaxial particles given by
Eq. (6). If we want to derive dynamical equations for the
orientational order parameters, then we will have to take an
orientational average of Eq. (6). For doing this, we need to
know the form of the diffusion tensor D(0O) appearing in this
equation.

Since calculating the diffusion tensor is in general not ana-
lytically possible, we use as an approximation the form known
for hard rods. This is reasonable as long as the particles’
diffusion behavior is sufficiently similar to that of rods or
spheres (the diffusion tensor for rods contains that of spheres
as a limiting case), which should be the case if, for instance,
the particles are long and thin cuboids (similar to rods) or if
they are cubes (similar to spheres). If the particle shape is
different, then the qualitative form of the obtained field theory
will still be correct as long as translation-diffusion-coupling
can be neglected, but the values of the mobility coefficients
may be less accurate. An explicit assumption about the form
of D is required primarily to be able to analytically derive the
dynamical equations for our order parameters in closed form.

The diffusion tensor of hard rods is given by [97]

Dir = Dgr =0,
Dyr =Dym3; @ms + D, (I —m3 @ m3), (70)
Dgrr = Drl.

Here 0 is a tensor where all entries are zero, and m3 and could
be represented by

m; =R-(0,0, 1), (71)
which, using Eq. (14), is given by
m3 = (cos(¢) sin(@), sin(¢) sin(@), cos(H)). (72)

The explicit formulas for D) (parallel translational dif-
fusion coefficient), D, (perpendicular translational diffusion
coefficient), and Dg (rotational diffusion coefficient) are
(see Ref. [97])

D”:]ﬂ, DL:kB—T, DR:kB—T. (73)
Y Vi R

Further,

nnL31 (L) 2L
= n — 1, = —F,
=3 D) "T ()

In this case, L and D are the length and diameter of the rod,
respectively, and n denotes the viscosity of the surrounding
solvent.

yL=2y. (74

B. Model 1: PFC for scalar order parameters
1. Full formulation

Having clarified the necessary prerequisites for the usage
of DDFT, we can derive dynamical equations for Model 1 in
terms of our scalar order parameters. We start by taking the
first time derivative of the definition (9) of a generic scalar
order parameter ¥ and insert (6):

2y +1

8 F
8Y = iy f do fy(0)BVr - <D(0)pVR—)- (75)
%P0 3p

Here the free energy has the form given in (55) added to (65).
We assume ly =2 forY € S,U,P, F and ly =0 forY = .
Next, we use the relation

8F 2ly +1  6F

- _ - 76
Sp - 00872 fr 8Y (76)

and insert

p= po(l + Zfﬂ) (77)
Y

with Y € 1, S, U, P, F into Eq. (75). Moreover, we define the
coefficients
. 21 1)(21 1

M)((I?,TZT)z(Y—i_ )(42+) do

6474 po SO@3)
x Dr1(0)fy (0)fx(0)fz(0),
Qly + HRIz+1)

6474 po SO(3)

x Vo - (fx(0)Vofz(0)) (78)

7(Drr) __
MXYZ -

dO Dgr fr (0)
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with X, Y, Z € {y, S, U, P, F} and (once again) the conven-
tion fy, = 1. The parameter Ix is 0 for X = v; and 2 else.
After evaluating the orientational integrals in Eq. (75), we
arrive at the final result

_ 5F
— (Drr)
3Y = BV XEZ XMy~

O

(79)

The coefficients can be easily calculated with the integrals
presented in Appendix A.

2. Constant mobility approximation

One important approximation used in many PFC models
is the so-called constant mobility approximation, where we
assume the density-dependent mobility of (6) to be constant,
that is, we set 8Dp ~ BDpg to arrive at

SF
&p = poBVr - D(O) - V’R%' (80)
We will now use (80) by inserting it into the first time
derivative of (10) to proceed with the derivation of our new
simplified models.
Using the constant mobility approximation, we arrive at

o =9 M 8 MR
Z

This model is drastically simpler than the previously pre-
sented full DDFT model given by Eq. (79), since the
summation over X vanishes completely. This leads to a much
smaller number of terms in (79) and thus less coefficients to
be calculated.

C. Model 2: PFC for tensorial order parameters

Here we derive equations for the dynamics of the uniaxial
nematic tensor (My);; in Model 2. As the number of required
coefficients is quite large, we only consider the constant mo-
bility approximation explained in Sec. V B. Doing so, we
arrive at the following dynamic equations, extending results
obtained for the special case P = 0 in Ref. [98]:

1 S F
Y = m/ do <5V2 (:OODTT(O)g)

§F
+ DRRVO,OO(S—

do ;
87‘[ ,00/ f(”% im3,j — )
)

5F F
X (ﬁvzpo <DTT(O)8_> + DRRV(z)PO_)-
P sp

(82)

9 (Mo)ij

By using the relation

8F L 8F 5 \/? 1\ &6F
— = — S\maima— 5 ) oo
Sp  8mlpo oy | SmipoV 2\ T3 3({Mo);;

(83)

we can use the microscopic definition of the order parameters
in Eq. (9) to arrive at

OoF
W =BV D My,
VA

8,(Mo)i; = BV - Y My v +ﬁZ (ﬁ';'ﬁfzaz
V4

Z € {Yyr1, (Mo)ij}, (84)

where the coefficients are defined as
Qly + DRI+ 1)

M(DTT) —
Xz 6417* po
x / dOfx(0)fz(0)Drr(0),
SO@3)
P = Qlx + D2z + 1)

6474 pg

y / dOfx (02 £,(0).
SO(@3)

3 1
f(MO)ij = \/;(mﬁ’,imlj - §>,

S =1 (85)

The integrals necessary for the coefficients are given in detail
in Appendix B. [One might wonder why we chose to integrate
over SO(3), instead of S,, as only two angles are relevant.
This is done simply to ensure a unified notation—since the
distributions do not depend on x here, the additional inte-
gral over x simply contributes an extra factor 2w, which is
canceled by our normalization, as explained in the comment
below (36).]

Note that the form of (84) implies that only v, is conserved
(due to mass conservation) but not (My);;. This is because

the coefficients M,((D %‘“) vanish only for X = ;. In this case,
coefficients of this type do not appear, as they are propor-
tional to the angular derivative of a constant function, which
is obviously 0. This is, however, not the case for all other
order parameters, whose microscopic definition is weighted
with some angular function. For the scalar order parameters
S,U, P, F, this would be the corresponding Mulder matrix;
for a tensor order parameter element (My);;, this would be

3 I
\/;(m&im.%,j —3)

VI. APPLICATION: RELAXATION TO EQUILIBRIUM

To demonstrate the practical usefulness of our model, we
study as a simple application the relaxation of the system to
isotropic equilibrium. Since in previous work [31] the ho-
mogeneous equilibrium states of biaxial liquid crystals were
classified via the order parameters S, U, P, and F, a natural
scenario to consider is a spatially homogeneous version of
Model 1 (which is basically a nonequilibrium extension of the
work in Ref. [31]).

To do this we make the following assumptions: First, our
initial state is characterized by order parameters not dependent
on position, i.e., X # X (R). This in particular implies ¥, = 0
for all times and all gradient terms vanish. Second, we set
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the parameters P = U = 0 for the moment, as these are less
relevant in many systems of interest (for details see Ref. [31]).
Third, we assume that the perturbation from the isotropic
equilibrium state is small. This means we limit ourselves to
second-order terms and ignore all higher contributions. (As a
short note, one further reason our restriction to second order is
sensible is that this is the only way a dynamic equation using
the constant mobility approximation can reproduce the dif-
fusion equation in the noninteracting limit—for details and
a further explanation see Ref. [52].) We thus arrive at a free
energy of the form

F= /dR/dO(b152+b4F2) (86)

using the coefficients b; and by from Eq. (61). Inserting
Eq. (86) into Eq. (81) then gives

3,8 = BbM{Rs,

Sy S
OF = BbsMy)F, (87)
which has the solution
S@) = Spe,
F(t) = Fye™ (88)

with initial perturbation amplitudes Sy and Fp and relaxation
rates

5 3
A = ———Bb Dy —=7?),
1 64714,00'31 R< 27T)

5 126
Ay = ———BbsDg| ———n?). 89
2 64714,00'3 4 R< 357 ) (89)

Thus, in this simple model, the parameters simply show in-
dependent exponential relaxation to equilibrium. While this
result is not very surprising, the value of our model lies in the
availability of explicit analytical predictions for the relaxation
rates. In leading order, we have A, A, o py (since by pg
and by pg ) and further A, A, o Dg. This means that higher
densities and higher diffusion rates decrease the characteristic
timescale on which the system relaxes to equilibrium, as is
expected from physical intuition. Note that § and F relax on
different timescales.

We now consider the more complicated case that also P
and U are nonzero, once again with the coefficients given in
61):

F =/dR/d0 (b1(S* + P?) + by(F? 4+ U?)
+ bo(SU + PF)). (90)
Inserting Eq. (90) into Eq. (81) results in
0,8 = B(iMG" + boM ")) S + BboMy " U,
QU = BboM )8 + B(baMy %) + oMU (91)
and
P = (DM + boM{*))P + BboM % F,

OF = oMy )P + B(baMy ™) + boMy ))F. (92)

Somewhat surprisingly, the equations decouple into two in-
dependent sets of ODEs. Mathematically, this is because we
expanded both (M) and (M) into the orthonormal base
{Ly, L}, so the only bulk coupling term allowed by symmetry,
which is (M) - (M), resolves to be SU + PF for constant
directors.

It is clear that the respective coupling of § and U as well as
F and P in the free energy (90) leads to a coupling in the
analytic solutions X (¢) € {S, U, P, F} as well. The intuitive
reason might be that both S and U measure uniaxial phases
and cannot detect the onset of biaxial order, whereas as both
F and P are only nonzero in biaxial phases. More explicitly,
we can write Eq. (92) as matrix equation in the form

(3)-( B)E)
a(r)=( 2)(F) ©3)

with coefficients k; and /; that can be read off from Eq. (92).
Equation (93) has the following analytical solution for the
order parameters S and U:

(8.U) (S.U)
St) =V ket 4 ke

S.U) S.U)
U([) — CES,U)()\’(IS,U) _ kl)ell t + C;S,U)()"(QS’U) _ kl)ekz t

(%94)
with eigenvalues
seu _ kit kot Vs = ka)? + dkoks
1 = 2 ,
ki + ks — v/ (ki — ka)* + dhok

S.U) 1 4 1 4 k3

2SO = _ (5)
2

Here cES'U) and C(ZS’U) are coefficients that are determined

through initial conditions. Similarly, for the order parameters
P and F we have

(P.F) (PF)
P(t) = cPPhe 4 PPRe

(P.F) (P.F)
t + C(ZP.F)(AERF) _ ll)e)Lz t

F@t) =P\ —1y)eh

(96)
with eigenvalues
sen _ htlt v — 1) + 4b1;
1 - 9
I+ 1y — /(I — )* +4Dbl
AP = 1+ (=l + ol -

2

In conclusion, we have demonstrated how our theory can
analytically predict an exponential relaxation to equilibrium
starting from a small homogeneous perturbation. For a simul-
taneous relaxation of all four orientational order parameters
S,U, P, and F, we find that only S and U as well as P and F
are coupled, respectively.

VII. CONCLUSION

Starting from the general form of a DDFT for biaxial
particles [46], we have derived PFC models for the coupled
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dynamics of the orientational order parameters S, U, P, and
F relevant for biaxial particles [31,73] (Model 1) and for
the dynamics of the full nematic tensor of uniaxial parti-
cles that can form biaxial phases (Model 2). We moreover
demonstrated that the derivation gives the correct coefficients
in the free energy also for general biaxial liquid crystals.
The models derived here provide a general description of
spatially inhomogeneous orientational ordering dynamics in
nonpolar systems and allow to simulate it more efficiently
than previously existing theories, such as DDFT. It is also
more general than previous PFC models for uniaxial liquid
crystals [54]. Despite this, it still remains a theory based on
first principles, unlike macroscopic theories that have to get
numerical values for the coefficients elsewhere, such as in
experiments or simulations [91].

We have also demonstrated that our models can be used
to analytically characterize the relaxation dynamics to equi-
librium. The next step would be a numerical implementation
and investigation of the models derived here. Moreover, one
could extend the theory towards the active case to obtain
a biaxial active PFC model. Finally, one could investigate
particles with lower symmetry class. The method proposed
in this work allows to do this with a significantly reduced
derivation effort, allowing to perform previously unattempted
derivations.
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APPENDIX A: COEFFICIENTS FOR MODEL 1

In this section, we list and compute all of the integrals
needed for the coefficients M )((I;TZT) and M)(g‘g‘) defined in (78)
and the spherical harmonics integrals mentioned earlier.

1. Taylor expansion

In Sec. IV D 2 we derived the excess free energy for a sys-
tem of biaxial liquid crystals with constant directors. In order
to approximately calculate a convolution integral appearing
in this derivation, we need to perform a gradient expansion,
which involves calculating several angular integrals. We now
give all integrals necessary for the gradient expansion. For the
second order of the gradient expansion we need the following

integrals:

V215 i2m/5 0
/d0m3®m3Y22(0)= i2n /15 =27 /15 0],
5 0 0 0
/ dOm; ® m3Y,,(0)
$2

) /5 VS5t /5w
= diag| -2 ,—2 4 ,
15 15 15
/d0m3®m3Y272(0)
S>
27 /15 —i /27 /15 O
= | —iv2r/15 —V27/15 0],
0 0 0
fd0m3®m3Yoo(0)
Sz
Var Jar J4
=diag< 3”, 3”, 3”). (A1)

For zeroth order of the gradient expansion we need the fol-
lowing integral:

/ 40 Yi(0) = 8105m03/3. (A2)
S

Here i denotes the imaginary unit.

2. Translational diffusion

When deriving dynamic equations for the order parame-
ters, the coefficients of the resulting terms can be calculated
analytically, which involves a number of angular integrals.
This involves two distinct parts: translational and rotational
diffusion, which are calculated in two different manners, as
explained in (78). Now, we give all integrals necessary for the
translational diffusion coefficients:

/ d0 m3 @ m3 £5(0)£5(0) f5(0)
SO(3)

2

8
= —diag(—1, —1, 8),
105 iag( )

/ d0ms @ ms f5(0)fy (0)fy(0)
SO(3)

dia —87% —8n? 0
= a1l —_—
B\ 735 735 )

/ dOm3 @ m3 - f5(0)fy(0)fp(0) = 0,
SO(3)

/ d0m; ® ms - f5(0)fy (0)fr(0)
SO@3)

4«/5712

105

/ d0m; ® ms - f5(0)fs(0)fy (0) = 0,
SO@3)

diag(—1, 1, 0),
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/ d0 m3 @ m3 £5(0) £5(0) £(0)
SO(3)

8372
= i 1, -1
105 diag(1, —1,0),

/ 40 m; ® ms - f5(0)f(0)f(0)
SO(3)

. —8n% —8x?
= diag| ———, ———, 0],
35 35

/ d0m; ® ms - f5(0)f»(0)fr(0) = 0,

SO(3)

/ 40 my @ ms - £5(0)f5(O)fr(0) =0,
SO3)

/ d0m; ® ms - f5(0)fr (0)f (0)
SO(3)

. 1672
= diag|{ 0,0, —— |,
35

/ 40 ms ® ms - f5(0)fy, (0)fy(0) =0,

SO(3)

/ d0m; ® ms - f5(0)fy, (0)fr(0) =0,
SOQ3)

/ d0ms @ ms - f5(0)f,,(0)f5(0)
SO(3)

. 87?2 8% 88m?
= diag| —, —, —— |,
21 21 ° 105

[ d0Oms @ ms - £5(0)f,,(0)fp(0)
SO®3)

_ 16«/5712
105

/ d0m3 @ m3 - £5(0)fy,(0)f4,(0)
SO(3)

diag(—1, 1, 0),

8 2
- %diag(—l, ~1,2),

/ d0ms ® ms - f5(0)f>(0)f3(0)
SO(3)

84372
35

diag(1, —1, 0),

/ d0Oms @ ms - fp(0)fr(0)f,,(0)
SO(3)

) 247% 247w? 8x?
=diag| —, —, — |,
35 35 35

/ dOm3 @ ms - fp(0)fy,(0)fy,(0)
SO@3)

. (8372 8/3n?
= diag 5 15 ,0),

f d0m; @ ms - fr(0)fy,(0)fr(0) =0,
SO(3)

/ d0m; @ ms - f2(0)f,(0)fu(0) = 0,
SO(3)

/ d0m3 @ m3 fr(0)f+(0)fy (0)
SO(3)

. 4w? 4x? 8m?
= diag| —, —, — |,
21~ 21 105

/ d0m; ® ms - fr(0)f(0)fu (0) = 0,

SO(3)

/ 40 my ® ms - fp(0)fr(0)fi(0) = 0
SO(3)

/ dOm; @ms - fy(0)fu(0)fy(0) =0,
SO(3)

/ d0m; ® ms - fy(0)fy(0)f,,(0)
SO@3)

. (24n? 24m?* 8x?
= diag| —, —, — ),
35 35 35

/ d0ms ® ms - fy(0)fy, (0)fy,(0) = 0,
SO(3)
/ d0ms ® ms - fy(0)fy, (0)f(0)

SO(3)

B 164/372
T 105

/ d0my ® ms - fy(0)fu (0)fr(0) = 0,
SO(3)

diag(1, —1, 0),

/ d0m; ® ms - fu(0)f+(0)f(0) = 0,

SO@3)

/ d0ms ® ms - f(0)fr (0)f+(0) =0,
SO(3)

/ d0ms @ ms - fr(0)fr(0)fy, (0)
SO(3)
. (87? 872 88x?
=diag(| —, —, —— ),
21 21 105

/ 40 ms ® ms - fr(0)fy, (0)fy,(0) = 0,
SO@3)

/ dOms @ ms - £5,(0)f,,(0)f,,(0)
SO@3)

. [4n? 4n? 4x?
=diag| —, —, — ).
3 3 3

All other integrals for translational diffusion follow from
symmetry, €.g., f dOm; @ ms - fx(0)fy(0)fz(0) is equal to
JdOm3 @ m; - fy(0)fx(0)f2(0).

3. Rotational diffusion

The aforementioned symmetry does not apply to rotational
diffusion due to the different structure of the integrals involv-
ing angular derivatives. We now give all integrals necessary

035416-18
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for evaluating the coefficients in Eq. (78):

/ dO f4,(0)Vo - (f4,(0)Vof5(0)) = 872,
SO@3)

/ do fs(0)Vg

SO(3)

/ 40 f5(0)Yo
SO(3)

/ 40 f5(0)Vo
SO(3)

/ 40 £5(0)Vo -
SO@3)
[ do fs(0)Vy -
S0(3)
f 40 £5(0)Vo -
SO(3)
/ do fs(0)Vo -
SO(@3)
f 40 £5(0)Vo -
SO(3)
/ 40 £5(0)Vo -
SO(3)
f 40 £5(0)Vo -
SO(3)
/ 40 f5(0)Vo -
S0(3)
/ 40 £5(0)Vo -
SO(3)
/ do fs(0)Vo -
SO(3)
f 40 £5(0)Vo -
SO(3)
/ 40 £5(0)Vo -
S0(3)
/ 40 £5(0)Vo -
SO@3)
/ do fs(0)Vy -
SO(3)
/ 40 £5(0)Vo -
SO(3)
/ do fs(0)Vo -
SO(@3)
/ do fs(0)Vy -
S0(3)

/ 40 £5(0)Vo -
SO(3)

(O f5(0) = 37
- (fn (0)Vofu(0)) =0,
- (fn (0)Vofr(0)) =0,
(£ (0o fr(0)) =0,

6
= —j'[2’

(fs(0)Vofy,(0)) 5

64
(fs(O)Vofs(0)) = gﬂz,
(fs(O)Vofu(0)) =0,
(fs(O)Vofr(0)) =0,
(fs(O)Vofr(0)) =0,
(fu(O)Vo fy,(0)) =0,
(fu(O)Vofs(0)) =0,

48
(fu(0)Vofu(0)) = FTA
(fu(O)Vo fp(0)) =0,
(fu(O)Vofr(0)) =0,
(fp(0)Vo fy, () =0,
(fr(0)Vofs(0)) =0,
(fp(0)Vo fu(0)) =0,

48 5
(fr(O)Vofp(0)) = FTa
(fP(0)Vo fr(0)) =0,

(fr(@)Vofy,(0)) =0,

(fr(0)Vofs(0)) =0,
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/ 40 £5(0)Vo -
SO(3)
f do fs(0)Vo -
SO(@3)
/ 40 f5(0)Vo -
S0(3)
f 40 £, (O)Vo -
SO(3)
/ 40 £, (0)Vo -
SO(3)
/ 40 £, (0)Vo -
SO(3)
f do fy(0)Vy -
SO(@3)
/ do fy(0)Vy -
S0(3)
/ 40 £, (0)Vp -
SO(3)
/ 40 f,(0)Vo -
SO(3)
/ 40 £, (0)Vo -
SO(3)
f 40 £, (O)Vo -
SO(@3)
/ 40 £, (O)Vo -
SO(3)
/ 40 £, (0)Vo -
SO(3)
/ 40 £, (0)Vo -
SO(3)
/ 40 £, (0)Vo -
SO(3)
f 40 £y (O)Vo -
SO(@3)
/ 40 £, (0)Vo -
S0(3)
/ 40 £, (0)Vo -
SO(3)
/ 40 £, (0)Vo -
SO(3)
f do fy (0)Vy -
SO(@3)
/ 40 f4(0)Vo -
S0(3)

/ 40 £, (O)Vo -
SO(3)

(fr(0)Vofy(0)) =0,
(fr(0)Vofr(0)) =0,
(fr(0)Vofr(0)) = 2—;‘%,
(f1.(0)Vofy,(0)) =0,
(£ (0)Vofs(0)) =0,

28
(f, (O)Vofy(0)) = ——n?,

5
(£ (0)Vofr(0)) = 0,
(fin OV fr(0)) =0,
(fs(0)Vofy,(0)) =0,
(f5(0)Vo 5(0)) = 0,
(5O fu(©O) = 37,
(f5(0)Vo fr(0)) =0,
(f5(0)¥o fr(0)) =0,
(f0(O)Vo/y,©0) = 37"
(o @V fs(©0) = 37,
(fu (0)Vo fy (0)) =0,
(fu (0o f(0)) =0,
(fu (0)¥0fp(0)) = 0,
(fr(0)Vofy,(0)) =0,
(f+(0)Vo f5(0)) =0,
(fr(O)Vofs(0) =0,
(f(0)Vo f(0)) =0,

34
(fP(O)Vo fr(0)) = —Eﬂz,
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/ 40 £, (0)Vo -

SO(3)

/ do fy(0)Vy -
SO@3)

/ do fy(0)Vo -
S0(3)

/ 40 £, (0)Vo -
SO@3)

/ do fy(0)Vo -
SO(3)

/ 40 f4(0)Vo -
SO(3)

/ 40 £2(0)Vo -
S0(3)

/ do fp(0)Vg -
S0(3)

/ 40 fr(0)Vo -
SO(3)

/ do fp(0)Vy -
SO(3)

[ 40 f2(0)Vo -
SO(3)

/ 40 £2(0)Vo -
S0(3)

/ do fp(0)Vy -
SO@3)

/ 40 f1(0)Vo -
SO(3)

/ 40 f,(0)Vo -
SO(3)

/ do fp(0)Vo -
SO(@3)

/ do fp(0)Vy -
S0(3)

/ 40 fr(0)Vo -
SO(3)

/ doO fp(0)Vy -
SO(3)

/ 40 f,(0)Vo -
SO(3)

/ do fp(0)Vo -
SO@3)

/ 40 £2(0)Vo -
S0(3)

/ do fp(0)Vo -
S0(3)

(fr(0)Vo fy,(0)) =0,
(fr(0)Vofs(0)) =0,
(fr(0)Vofy(0)) =0,
(r(OVofr(O) = 22’
(fr(0)Vofr(0)) =0,

(f4, (0o iy, (0)) =0,

(£ (0)Vof5(0)) =0,

(1 (0)Vofy0)) =0,

28
(3, (O)Vofp0)) = ——n?,

5

(f3, (O)Vo fr(0)) =0,
(£5(0)Vo fy,(0)) =0,
(fs(0)Vofs(0)) =0,
(fs(0O)Vofu(0)) =0,

20 ,
(fs(0O)Vofr(0)) = gﬂ ,
(fs(0)Vo fr(0)) =0,
(fu(O)Vofy,(0)) =0,
(fu(0)Vofs(0)) = 0,

(fu(O)Vofu(0)) =0,

(fu(O)Vo[p(0)) =0,

34,
(fu(O)Vofr(0)) = —om",

35
28,

(fp(O)Vo fy,(0)) = —27°,

35

20 ,
(fr(O)Vo f5(0)) = ETRE

(fr(O)Vofu(0)) =0,
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/ 40 £,(0)Vo

SO(3)

f do fp(0)Vo -
SO(@3)

/ do fp(0)Vo -
S0(3)

/ 40 £,(0)Vo
SO(3)

/ do fp(0)Vy -
SO(3)

/ 40 £,(0)Vo
SO(3)

[ 40 £2(0)Vo -
S0(3)

/ do fr(0)Vy -
SO(3)

/ 40 f+(0)Vo -
SO(3)

/ 40 f+(0)Vo -
SO(3)

f do fr(0)Vo -
SO(@3)

/ 40 f(0)Vo
S0(3)

/ do fr(0)Vp -
SO(3)

/ 40 f+(0)Vo -
SO(3)

/ 40 f+(0)Vo -
SO(3)

f 40 £ (0)Vo
SO(@3)

/ do fr(0)Vy -
S0(3)

/ 40 f+(0)Vo -
SO(3)

/ doO fr(0)Vp -
SO(3)

f 40 f7(0)Vo
SO(3)

f 40 £ (0)Vo -
SO(@3)

/ do fr(0)Vy -
SO(3)

/ 40 f+(0)Vo -
SO(3)

(fr(0WVofr(0)) =0,
(fr(0WVo fr(0)) =0,
(fr(0)Vofy,(0)) =0,
(fr(0)Vofs(0)) =0,
(rOVofu(0) = i,
(fr(0)Vo fp(0)) =0,
(fr(0)Vofr(0)) =0,

(£ (0)Vofy,(0)) =0,

(fn (0)Vofs(0)) =0,

(£ (0)Vofy(0)) =0,

(fn (0o fr(0)) =0,

126

(fn (OVo fr(0)) = BETRA

(fs(0)Vo fy,(0)) =0,
(fs(0)Vo f5(0)) =0,
(fs(0)Vo fy(0)) =0,
(fs(0)Vo fp(0)) =0,
(fs(0)Vofr(0)) = —%nz,
(fu(O)Vofy,(0)) =0,
(fu(0)Vofs(0)) =0,
(fu(0)Vofy(0)) =0,

20

(fu(O)Vofp(0)) = —gnz,

(fu(O)Vofr(0)) =0,

(fp(0O)Vofy,(0)) =0,
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/ 40 £+ (0)Vo
SO(3)
f 40 £+ (0)Vo -
SO(3)
[ 40 £+ (0)Vo -
S0(3)
/ 40 £+ (0)Vo
SO@3)
/ 40 £+ (0)Vo
SO(3)
/ 40 £+ (0)Vo
SO(3)
f 40 £+ (0)Vo -
SO(3)
/ 40 £+ (0)Vo -
SO(3)

/ 40 £+ (0)Vo -
SO@3)

/ d0 £,,(0)Vo -
SO(3)
/ 40 £,,(0)Vo -
SO(3)
/ 40 f,,(0)Vo -
SO(@3)
/ 40 £,,(0)Vo -
S0(3)
/ 40 f,,(0)Vo -
SO(3)
/ 40 £,,(0)Vo -
SO(3)
/ do fy,(0)Vo -
SO(@3)
/ 40 £,,(0)Vo -
S0(3)
/ 40 £, (0)Vo -
SO(3)
/ d0 £,,(0)V, -
SO(3)
f 40 £,,(0)Vo -
SO(3)
[ 40 £,,(0)Vo -
SO(3)
/ 40 £, (0)Vo -
SO@3)

/ 40 £,,(0)Vo -
SO(3)

(fr(0)Vo [5(0)) =0, ./50(3) d0 f4,(0)Vo - (fu(O)Vo fr(0)) =0,

(fp(0O)Vofy,(0)) =0,

4
_7-[2’

(fr(O)Vofu(0)) = —7

f do £y, (0)Vg -
S0(3)

(fr(0)Vo fr(0)) =0, /50(3) do f4,(0)Vo - (fr(0)Vo [s(0)) =0,

(fr(O)Vo fr(0)) =0, /SO N do f4,(0)Vo - (fr(0)Vo fu(0)) =0,
(

42
(fr(O)Vofy,(0) = —n°,

35 (fr(O)Vofp(0)) =0,

/ 40 £,,(0)Vo -
SO(3)

6
(fr(0)Vofs(0)) = ——n?,

35 (fr(0)Vo fr(0)) =0,

f 40 £,,(0)Vo -
SO(@3)

(fr(0O)Vo fu(0)) =0, /50(3) d0 fy,(0)Vo - (fr(0)Vofy,(0)) =0,

(fr(O)Vofp(0)) =0, /50(3) do f4,(0)Vo - (fr(0)Vofs(0)) =0,

(fr(O)Vo fr(0)) =0, ./50(3) do f4,(0)Vo - (fr(0)Vo fu(0)) =0,

(£ (0)Vofy,(0)) =0, /Som dO fy,(0)Vo - (fr(0)Voyp(0)) =0,

(£ (0)Vofs(0)) =0, /so<3> do f4,(0)Vo - (fr(0)Vo fr(0)) = 0.

(£, (0)Vofy(0)) =0,
( f]/jl (0)Vg fP(O)) =0, APPENDIX B: COEFFICIENTS FOR MODEL 2

As with Model 1, here we evaluate the integrals required
for calculating the coefficients in Eq. (85).

(f0,(O)Vofr(0)) =0,
1. Translational diffusion

We first calculate all integrals of the form
de %(mg,im&j — %)m3,km3,lm3 ® ms. Those are necessary
to calculate the coefficients for translational diffusion:

3 1
/ d0m3,1m3,1—(m3,1m3,1 - —)m3 ® mj
S, 2 3

(£5(0)Vo fy,(0)) =0,
(fs(0)Vofs(0)) =0,

(fs(O)Vo fu(0)) =0,

0V, 0)) =0, 167‘[/35 0 0
(f5(0)V0 fu (0)) =( s )
0 0 47 /105
(fs(O)Vo fr(0)) =0,
3 1
/ d0m3,1m3,1§(m3,1m3,2 - §>m3 ® mj3
(fu(0)Vofy,(0)) =0, >
/5 61/15 0
= 6x/15 —272/15 o |
(fu(0)Vo fy,(0)) =0, 0 0 —27/15
3 1
(fu(0)Vo fu(0)) =0, /S dO m3 1m3 5 (M3,1m3,3 - §)m3 ® m3
/5 0 67 /35
(fU(O)VOfP(O)) =0, — 0 —27{/15 0 ,
67 /15 0 27 /15
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3 1
/ dOm3 1m3 1 = (m3,2m3,3 - —)m3 ® m;
S, 2 3

27 /5 0 0
= o —2r/15 27535 |,
0 20/35  —27/15
3 1
/ dOm3 1m3 1 = (ms,zms,z - —>m3 ® m;3
S, 2 3
—87/35 0 0
| o  4xs105 o |
0 0 —8m /105
3 1
/ dOm3 1m3 ;= (m3,3m3,3 - —)m3 Q@ m;
S, 2 3
—87/35 0 0
= 0 —8m /105 0 ,
0 0 477 /105

3 1
/ do m3,1m3,22—<m3,1m3,1 - —)ms ® mj
S5 2 3

0 47/105 0
— | 47 /105 0 0],
0 0 0

3 1
/ do m3,1m3,2§<m3,1m3,2 - §>m3 ® m;3

S
6r /35 -2 /15 0
=|-2r/15 67/15 0 ,

0 0 27 /35

3 1
/ do m3,1m3,2—(m3,1m3,3 - —)m3 ® m3
S, 2 3
0 —27/15 0
=|-2n/15 0 27 /35 ],
0 w35 0

3 1
/ do m3,1m3,2§(m3,2m3,3 - §>m3 ® mj

S
0 2w /15 2m/35
—|=22/15 0 o |
27 /35 0 0

3 1
/ do m3,1m3,2—(m3,2m3,2 - —>m3 ® m3
S, 2 3

0 47/105 0
= | 47 /105 0 0],

0 0 0
3 1
/ do m3,1m3,2—<m3,3m3,3 - —)m3 ® m;
s, 2 3
0 —87 /105 O
= | —8x /105 0 0],
0 0 0
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3 1
/ dO mj3 1ms3, —<m3,1m3,1 - —>m3 ® mj3
S, 2 3

0 0 4r/105
| o 0 o |,
47/105 0 0

3 1
/ d0m3,1m3,3—<m3,1m3,2 - —)m3 ® mj3
S, 2 3

0 0  —27/15
- 0 0 2735 |,
—27/15 27/35 0

3 1
/ dOm3 1m3 3= <m3,1m3,3 - —>m3 ® mj
S, 2

3
61 /35 0 —2m /15
= 0 21 /35 0 ,
=27 /15 0 67 /15

3 1
/ dOm3 1m3 3= <m3,2m3,3 - —)ms ® mj
S, 2 3

0 27/35 —27/15
= | 27/35 0 o |
om/15 0 0

3 1
/ do m3,1m3,3—<m3,2m3,2 - —)m3 ® m;
s, 2 3
0 0 —8m/105
= 0 0 0 ,
—87 /105 O 0

3 1
/ dOm3 m3 3= <m3,3m3,3 - —>m3 ® mj
s, 2 3
0 0 4m/105
= 0 0 0 ,
47 /105 O 0

3 1
/ do m3,2m3,3—(m3,1m3.1 - —>m3 ® mj
s, 2 3

0 0 0
—|o 0 —87/105 |,
0 —87/105 0

3 1
/ do m3,2m3,3—(m3,1m3_2 — —>m3 X ms3
s, 2 3

0 0 27 /35
= 0 0 _27T/15 )
27/35 —27/15 0

3 1
/ do m3,2m3,3—(m3,1m3.3 - —>m3 ® mj
s, 2 3
0 27/35 0
—(ox35 0 —2ns15].
0 —27/15 0
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3 1
/ dOm3 ym3 3 =(m3 om3 | — = )mz @ m3
s, 2 3

27 /35 0 0
=| o 6m/35 —2m/15],
0 —27/15 67135

3 1
/ do m3,2m3,3—<m3,2m3,2 - —>m3 ® m;
s, 2 3

0 0 0
=|o 0 47 /105 |,
0 47/105 0

3 1
/ do m3,2m3,3—<m3,3m3,3 - —)m3 ® mj
S, 2 3

0 0 0
—lo o 4rji05],
0 47/105 0
3 1
f do m3,2m3,2—(m3,1m3,1 - —>m3 ® m;
S, 2 3
472 /105 0 0
[ o =8z o |
0 0 —8m /105
3 1
/ do m3,2m3,2—<m3,1m3,2 - —>m3 ® m;
s, 2 3
2w /15  67/35 0
= 6x/35 -22/5 0 |,
0 0 —2x/15
3 1
/ dOm3 ym3 5= <m3,1m3,3 - —)ms ® m;
s, 2 3
/15 0 27 /35
27 /35 0 —21/15
3 1
/ dOm;3 ym3 5= <m3,2m3,3 - —>m3 ® m;
s, 2 3
/15 0 0
= o 25 6xs35 |,
0 67/35 —27/15

3 1
/ dOm;3 sm3 5= <m3,2m3,2 - —>m3 ® m;
S, 2 3

47 /105 0 0
= o iexs35 0o |,
0 0 47 /105
3 1
/ dOm;3 ym3 5= <m3,3m3,3 - —)ms ® m;
S, 2 3
—8m /105 0 0
= 0 —8m /35 0 ,
0 0 47 /105
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3 1
/ d0m3,3m3,3—(m3,1m3,1 - —)m3 ® mj3
S, 2 3

47 /105 0 0
=1 o —87/105 o |,
0 0 —87/35

3 1
/ dOm3 3m3 3= (m3,1m3,2 — —)m3 ® mj
s, 2 3

/15 2735 0
| 2735 —22p15 o |,
0 0 —21/5
3 1
/d0m3,3m3,3— m3 m3 | — = |m3 ® ms3
S, 2 3
ox/15 0 67 /35
| o o150 |,
67 /35 0o —2x/5

3 1
/ dO m3 3m3 3= (m3,2m3,3 - —>m3 ® m;
s, 2 3

2m/15 0 0
| o —2m/15 ens35 |,
0 67/35 —27/5
3 1
/ do m3,3m3,3—(m3,2m3.2 - —>m3 ® m;
S, 2 3
—8m /105 0 0
_ 0 awj105 0 |,
0 0 —87/35
3 1
/ do m3,3m3,3—(m3,3m3,3 - —>m3 ® m3
S, 2 3
47 /105 0 0
= o 4xji05 o |,
0 0 167/35
/d03 ! ®
= ——)m;@m
905 m3m3,1 — 3 Jms 3
87/15 0 0
= o 4x15 0o |,
0 0 4rn/15
/d03 ! ®
= ——)m;@m
903 m3,m3 — 3 Jms 3
/3 2w)5 0
| 275 —223 0o |
0 0 —2x/3
/dO3 ! ®
= ——m;@m
903 m3m33 — 3 |ms 3
/30 2 /5
| o 25 o |
21 /5 0 —2x/3
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3 1 2
dO = m3 1m3 1 — = |m3 @ m3 dO Vgmsz 1mz, =0,
Sg 2 3 SZ
I /3 2 /5 / 40 Vgims. i3 = 0.
= —_— ) SZ
0 2r/5 —27/3
3 1 / dO V(%m3,2m3,3 = 0
do - <m3,2m3,2 - —)m3 ® m; 52
J, 03 ;
4 /15 0 0 Now we move on to all integrals of the form
= 0 8 /15 0o |, /s, dO 3 (ma oms, — $)Vauiu:
0 0 47 /15
3 1 3 467
/S do §<m3,3m3,3 - §>m3 Q@ m3 / do E(WB 1ms — g)V(Z,m&lmM = — F,
2 $)
—4m /15 0 0 3 1
— 0 —47/15 0 fsz do 5 (m3,1m3,1 - §>V3m3,1m3,2 =0,
0 0 8 /15
/ 3 N\,
Finally, we calculate all integrals of the form ; do 3 ms 1m3| — 3 Vomsimsz =0,
f do mas pms jms3 ® ms: : 3 |
4 /3 0 0 ./s do 7 <m3,1m3,1 - §>V(2)m3,2m3,3 =0,
/ d0m3 Q& m3 = 0 47T/3 0 y : 3 | 38
52 0 0 4m/3 / dO = (ms ms1 — = | Vimsams 0 = _n’
a7/5 0 0 s 2 ; b
T
_ 3 1 8
/ d0m3.lm3,lm3 ® m3 = 0 47‘[/15 0 s / do - m3ms | — = V3m373m-§ 3= T N
S2 0 0 47 /15 S, 2 3 15
3 1 4
Am /15 0 0 / do —<m3,1m3,2 - —)V(Z;ma 1ms = _717
/ dO m3 ,m3 m3 @ m3 = 0 4 /5 0 s Ss 2 3 ’ 3
S, 0 0 4 /15 3 1 147
dO = ms ms 0 — = |Voms ymz 0 = — —,
47 /15 0 0 S, 2 B 3 5
/ do ms3 3ms3 3m3 R®my = 0 47'[/15 0 , 3 1
S, 0 0 4 /5 / do 3 <m3,1m3,2 - §)vgmg,l;mj =0,
S
0 47 /15 0 3 1
/ do m3 1m3 oMz Q@ m3 = 47 /15 0 01, / do §(m3,1m3,2 — §>V3m3$2m3,3 =0,
$2 0 0 0 52
3 1 4
0 0 4rn/15 / do —<m3,1m3,2 - —)V(Z)mmmlz -
/ do m3 1m3 3m3 Q@ m3 = 0 0 0 s S 2 3
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