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External flows, such as shear flow, add directional biases to particle motion, introducing anisotropic behavior
into the system. Here, we explore the non-equilibrium dynamics that emerge from the interplay between
linear shear flow and stochastic resetting. The particle diffuses with a constant diffusion coefficient while
simultaneously experiencing linear shear and being stochastically returned to its initial position at a constant
rate. We perturbatively derive the steady-state probability distribution that captures the effects of shear-
induced anisotropy on the spatial structure of the distribution. We show that the dynamics, which initially
spread diffusively, will at late times reach a steady state due to resetting. At intermediate timescales, the sys-
tem approaches this steady state either by passing through a super-diffusive regime (in the shear-dominated
case) or by exhibiting purely sub-diffusive behavior (in the resetting-dominated case). The steady state also
gains cross correlations, a feature absent in simpler resetting systems. We also show that the skewness has a
non-monotonic behavior when one passes from the shear-dominated to the resetting-dominated regime. We
demonstrate that at small resetting rates, the energetic cost of maintaining the steady state becomes signifi-
cantly higher due to the displacement caused by shear, a unique scaling not seen without shear. Surprisingly,
if only the x-position is reset, the system can maintain a Brownian yet non-Gaussian diffusion pattern with
non-trivial tails in the distribution.

I. INTRODUCTION

Brownian motion through fluids is of importance to
a wide range of scientific fields, with examples includ-
ing tracers in biological environments, Brownian mo-
tion under external forces, and the control of colloids
in technological applications, among others 1–8. In the
simplest case, Brownian motion in a fluid at rest gives
rise to the well-known diffusive dynamics initially de-
scribed by Einstein and Smoluchowski, where particles
undergo random, thermally-driven motion in an isotropic
medium9,10. However, more complex flow fields and cou-
plings between particles and fluids can produce a rich va-
riety of behaviors, such as resonant effects, Taylor-Aris
dispersion, and anomalous diffusion11–16. Further in-
vestigations into active particle dynamics have extended
this understanding by exploring the complex interplay
between self-propulsion, deformation, and external flow
fields, particularly in shear flows17–20.

In simple sheared fluids, flow-induced cross-
correlations emerge due to the interaction between
the fluid’s motion and the particle’s random walk.
These cross-correlations reflect the particle’s ability to
perform stochastic jumps across streamlines, leading
to anisotropic diffusion and more complex transport
behaviors21. For example, in confined geometries, such
as microfluidic channels or harmonic potentials created
by optical tweezers, shear flow can induce directional
bias in particle motion, significantly altering the statis-
tics of displacement and velocity fluctuations22–24.
Recent experimental advances have explored anomalous
diffusion in sheared diffusive systems, further enrich-
ing our understanding of tracer dynamics under flow

a)Electronic mail: iman.abdoli@hhu.de

conditions25. From an experimental perspective, the
statistics of a confined particle in a flow field is more
compliant than a free particle, the latter of which is
more amenable to large displacements and fluctuations.
For example, the cross-correlations that emerge in shear
flow has been measured by holding the particle in a
harmonic trap generated by optical tweezers21.

An alternative, less invasive method of introducing
confinement is stochastic resetting, where a particle is
allowed to freely explore the sheared fluid but is intermit-
tently returned to a prescribed position at random inter-
vals26,27. This resetting mechanism disrupts the system’s
natural evolution, breaking time-reversal symmetry and
leading to complex steady states with novel relaxation
properties28–30. Such non-equilibrium dynamics have
garnered significant attention across various fields, in-
cluding statistical physics, search optimization31–34, and
biological systems35, where resetting can optimize effi-
ciency or regulate system behavior.

While much is known about resetting in simple diffu-
sive systems, less is understood about how it interacts
with more complex environments, particularly those in-
volving external forces or flow fields. Recent develop-
ments in this direction includes the study of the combined
effect of resetting and spatially or temporally disordered
diffusion coefficients36–44, resetting in external magnetic
fields45,46, resetting in complex geometries47–51, and pro-
cesses with spatial or temporal modulation of the reset-
ting rate27,52–56. Resetting in systems where the dynam-
ics have a bias, such as asymmetric random walks or
drift-diffusion processes, has been studied, which could
correspond to the simplest case of a time-independent
spatially homogeneous fluid flow57–64.

In this work, we investigate the interplay of linear shear
flow and stochastic resetting in a two-dimensional diffu-
sive system. The shear flow in the x-direction creates
a situation where the velocity of a particle depends lin-
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early on its position, leading to a differential movement in
the horizontal direction. This introduces an asymmetry
in the dynamics, where motion in the vertical direction
remains unaffected by shear, while motion in the horizon-
tal direction becomes biased. This asymmetry results in
an anisotropic steady-state distribution, which deviates
from the isotropic distributions typically found in purely
diffusive resetting systems. Using perturbative methods,
for small shear rates γ̇ ≪ 1, we derive an approximate
expression for the steady-state probability distribution
of the particle’s position that captures the anisotropy
induced by the shear; the system is characterized by a
diffusive core, with a correction term that reflects the in-
fluence of the shear flow. This correction term introduces
anisotropy into the spatial structure of the distribution,
leading to different behaviors in the two spatial direc-
tions.

For an arbitrary shear rate, we use the method of mo-
ments to exactly compute the first four cumulants of
the propagator. When resetting to a location to high
shear flow, the system exhibits a crossover from diffu-
sive to super-diffusive motion before reaching a steady
state. When resetting to regions of lower shear, the
super-diffusive regime is no longer observed. The steady
state also gains cross correlations due to the simultane-
ous presence of resetting and shear flow. The skewness
has a non-monotonic behavior when one passes from the
shear-dominated (i.e., γ̇ ≫ r) to the resetting-dominated
(i.e., r ≫ γ̇) regime and is zero when the problem is
symmetric. The kurtosis in the x-direction shows high
non-Gaussianity in the shear-dominated regime, and sat-
urates to 6 in the resetting-dominated regime, which is
known for the case of one-dimensional diffusion with re-
setting.

Furthermore, we show that at small resetting rates,
even though a resetting event is rare, once it occurs
there will be a large energetic cost to maintain the non-
equilibrium steady state resulting from resetting. Finally,
we demonstrate that if we only reset the x-position of the
particle, surprisingly, the system never reaches a steady
state but rather spread diffusively. This is in spite of
the non-Gaussinanity of the probability density encoded
in the kurtosis indicating an example of Brownian yet
non-Gaussian diffusion65–67.

II. MODEL

We consider a two-dimensional Brownian particle sub-
ject to a combination of shear flow and stochastic re-
setting. The particle diffuses with a constant diffusion
coefficient D while simultaneously being advected in a
linear shear flow characterized by a shear rate γ̇, where
the velocity in the x-direction is proportional to the y-
coordinate. At random intervals, the particle is reset to
its initial position (x0, y0) with a constant resetting rate
r. The waiting time between two consecutive resetting
events is a random variable with a Poisson distribution:

FIG. 1. Schematic of a two-dimensional Brownian particle in
a linear shear flow in the x-direction γ̇yêx where γ̇ is the shear
rate. The particle undergoes stochastic resetting to its initial
position X0 = (x0, y0) at random times with a constant rate
r, indicated by the arched arrow.

in a small time interval ∆t the particle is either reset to
its initial position with probability r∆t or continues to
diffuse with probability 1 − r∆t. An illustration of the
system is shown in Fig. 1.

The probability density for finding the particle at po-
sition (x, y) at time t, given that it started at and reset
to (x0, y0), p(x, y, t|x0, y0) ≡ p(x, y, t) is governed by the
following Fokker-Planck equation (FPE)28

∂tp(x, y, t) = D∇2p(x, y, t)− γ̇y∂xp(x, y, t)

− rp(x, y, t) + rδ(x− x0)δ(y − y0), (1)

where ∂i stands for derivative with respect to i ∈ {t, x}.
The first term on the right hand side represents pure
diffusion and the second term corresponds to the advec-
tion in linear shear flow. The resetting mechanism is
modeled by introducing a loss term, proportional to the
resetting rate r, that removes probability density from
all positions and redistributes it at the resetting position
(x0, y0), which are represented by the third and forth
terms, respectively. Throughout this work we set the
friction coefficient to unity.

The time-dependent FPE without resetting (i.e., ig-
noring the third and the forth terms) can be solved (see
Appendix A) and the solution reads5,68

p(x, y, t) =

√
3

2πDt
√

(12 + (γ̇t)2)
e−φ(x,y,t), (2)

where we defined

φ(x, y, t) =
(y − y0)

2
(

γ̇2t2 + 3
)

+ 3(x− γ̇ty)2

Dt(12 + (γ̇t)2)
(3)

+
3 (γ̇t (y−y0)−2x0) (x−γ̇ty)+3γ̇tx0 (y0−y) + 3x2

0

Dt(12 + (γ̇t)2)
.
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a)

c)

b)

d)

FIG. 2. The steady-state probability density of the parti-
cle’s position and the corresponding probability fluxes in the
system obtained from Eq. (6) and Eq. (7) for γ̇/r = 0.1 are
shown in (a) and (b), respectively. The direction of the fluxes
is shown by the arrows; the magnitude is color-coded. (c)
shows the diffusive core (without shear) and (d) represents
the first order correction which induces anisotropy in the spa-
tial structure of the distribution. The particle starts at and
resets to (0.0, 0.0).

III. NON-EQUILIBRIUM STEADY STATE

The probability density under stochastic resetting can
be computed by using the renewal approach. The
probability density in the presence of resetting, de-
noted by pr(X, t|X0), can be obtained from the renewal
equation28

pr(X, t|X0) = e−rtp(X, t|X0) (4)

+ r

∫ t

0

dτe−rτ

∫

dY pr(Y , t− τ |X0)p(X, τ |XR),

where X = (x, y) and XR is the resetting location. The
first term corresponds to trajectories where no resetting
took place. The second term takes into account trajecto-
ries (with resetting) up to the time of the last resetting
event before time t, i.e. at time t− τ , when the particle
is at position Y . After the last reset, the particle propa-
gates from the resetting location to X in the remaining
time τ .

The resetting process interrupts the particle’s natural
diffusive trajectory, leading to a non-equilibrium steady
state. In the steady state, the renewal equation simplifies
to

pss(X|X0) = r

∫

∞

0

dτe−rτp(X, τ |XR), (5)

b)

c) d)

a)

FIG. 3. The steady-state probability density of the particle’s
position and the corresponding probability fluxes: (a) and (c)
in a system with γ̇/r = 1.0, (b) and (d) in a system with γ̇/r =
10.0. The particle starts at and resets to (0.0, 2.0). For such
large shear rates the distribution becomes further stretched
as going away from vertical initial position. The results are
obtained by numerically solving Eq. (5) and Eq. (2). The
direction of the fluxes is shown by the arrows; the magnitude
is color-coded.

where p(X, τ |XR) is given in Eq.(2) and Eq.(3). Obtain-
ing an exact solution to the above equation is challeng-
ing, so we use a perturbative approach to solve it (see
Appendix B for details). The solution reads

pss(x, y) ≈
(

r

2πD
− γ̇r [x(y − y0)− 2xy]

8πD2

)

×K0

(

α
√

(y − y0)2 + x2
)

, (6)

where α =
√

r/D. When no shear flow is included, i.e.
γ̇ = 0, we recover the results for two-dimensional Brow-
nian motion under resetting69.
Using the steady-state probability density in Eq. (6),

we can calculate the probability fluxes in the system as

J(x, y) = −D∇pss(x, y) + v(x, y)pss(x, y), (7)

where v(x, y) = (γ̇y, 0) is the drift velocity due to the
shear flow, which acts in the x-direction and depends
linearly on y. The expression for the fluxes is given in
Appendix B.
Figure 2 (a) and (b), respectively, show the steady-

state probability distribution of the particle’s position
from Eq. (6) and the corresponding fluxes in the system
from Eq. (7) for a small value of the shear rate. The
system is characterized by a diffusive core, shown in (c),
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with a correction term that reflects the influence of the
shear flow, which is represented in (d). This correction
term introduces anisotropy into the spatial structure of
the distribution, leading to different behaviors in the two
spatial directions. Figure 3 shows the results for larger
values of the shear rate from the numerical solution of
Eq. (5), Eq. (2), and Eq. (3).

A. Moments

Further insights can be obtained by considering the
moments and cumulants. From the renewal equation,
any observable O(x, y) can be studied under resetting
through

⟨O(t)|X0⟩r = e−rt⟨O(t)|X0⟩+ r

∫ t

0

dτe−rτ ⟨O(τ)|XR⟩.
(8)

Here the expectation values without subscripts are cal-
culated using the time-dependent solution in Eq. (2) and
Eq.(3). Below we consider several moments, cumulants
and cross correlations to better understand the compet-
ing effects of shear and resetting. Details regarding the
moments of the system without resetting are given in the
Appendix A, which we here use in conjunction with the
above renewal equation, Eq. (8).

The centered means are simply given as

⟨x− x0⟩ss =
γ̇y0
r

, (9)

⟨y − y0⟩ss = 0. (10)

While the process is centered in the y-direction, there is
a bias in the x-direction governed by the shear rate and
the initial position y0. The variances read

⟨[x(t)− ⟨x(t)⟩]2⟩ss =
2D(r2 + 2γ̇2)

r3
+

γ̇2

r2
y20 , (11)

⟨[y(t)− ⟨y(t)⟩]2⟩ss =
2D

r
. (12)

Since the motion is purely diffusive in the y-direction, the
variance ⟨[y(t) − ⟨y(t)⟩]2 is identical to that of ordinary
Brownian motion. In the x-direction, the steady-state
variance is more complex and has a crossover

⟨[x(t)− ⟨x(t)⟩]2⟩ss ∝
{

r−3 if r ≪ γ̇,
r−1 if r ≫ γ̇.

(13)

Since the steady-state variance for Brownian particles
under resets normally scale as ∼ r−1, we can interpret
the above new scaling ∼ r−3 as the regime in which the
shear flow plays a dominant effect. The crossover reset-
ting rate rc is given by matching the small- and large-r
behaviors, resulting in rc =

√
2γ̇. Hence, there is no

crossover and only one scaling regime in the absence
of shear (γ̇ = 0 ⇒ rc = 0), while for infinitely strong

FIG. 4. (a) The mean square displacement in units of
√

D/γ̇
in the x-direction and (b) the corresponding dynamical expo-
nent with respect to (dimensionless) time for different values

of the (dimensionless) initial position y0
√

γ̇/D. While the
shear rate gives rise to a monotonic increase of the variance,
the resets confine the steady state and makes the variance
smaller. When the particle starts its motion away from the
origin, the dynamics start from normal diffusion and cross
over to super-diffusion due to the shear flow, before resetting
finally brings the system to a steady state. The crossover
ceases to exist in the absence of the shear flow.

shear only the ∼ r−3 regime can be observed. We also
note that while the shear rate gives rise to a monotonic
increase of the variance, the resets confine the steady
state and makes the variance smaller. Figure.4 (a) shows
the mean square displacement (MSD) as a function of
time, with panel (b) showing the dynamical exponent
ζ(t) = ∂

∂ log t log⟨[x(t)−⟨x(t)⟩]2⟩ which governs the typical

temporal scaling ⟨[x(t)−⟨x(t)⟩]2⟩ ∼ tζ . Clearly, multiple
dynamical crossovers exist depending on the value of y0.
At early times, the motion is diffusive. For y0 > 0 the
dynamics cross over to super-diffusive due to the shear
flow, before resetting finally brings the system to a steady
state. When y0 = 0, the steady state is approached in a
purely sub-diffusive manner.
The steady states also gain non-zero cross correlations

due to the shear flow. This can be measured by the first-
order cross-correlation function

⟨(x− ⟨x⟩)(y − y0)⟩ss =
2Dγ̇

r2
, (14)

which clearly vanishes when γ̇ = 0. Note that ⟨y⟩ = y0
from Eq.(10).
The skewness Sx can in the steady state be calculated

as

Sx(r) = lim
t→∞

⟨(x− ⟨x⟩)3⟩
⟨(x− ⟨x⟩)2⟩3/2 (15)

= y0

√
r
[

6γ̇D
(

6γ̇2 + r2
)

+ 2γ̇3ry20
]

(2D (2γ̇2 + r2) + γ̇2ry20)
3/2

. (16)

While the skewness has a complex behavior as the re-
setting rate is varied, a general feature is that it van-
ishes for y0 = 0, when the problem is symmetric around
x = 0. Furthermore, to leading order is small resetting
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FIG. 5. The steady-state skewness and kurtosis in the x-
direction, with lengthscales set by

√

D/γ̇, and timescales by
γ̇−1. (a) shows the skewness with respect to the dimensionless
resetting rate r/γ̇. The skewness performs a non-monotonic
behavior as one passes from the shear-dominated (r/γ̇ ≪ 1) to
the resetting-dominated (r/γ̇ ≫ 1) regime. When the prob-
lem is symmetric around x = 0, the skewness is zero. The
dashed line shows the optimal resetting rate, r⋆/γ̇ ≈ 0.764
that maximizes the skewness for small y0. (b) indicates that,
independent of the dimensionless parameter r/γ̇, the skewness
saturates to 2 when the particle starts its motion at y0 ≫ 1.
As shown in (c), the kurtosis is 60 where the shear is domi-
nated the resetting and decreases monotonically with increas-
ing r/γ̇ saturating to Kx = 6 where resetting dominates shear.

rates r, the skewness grows as Sx(r) ∼ r1/2. However, at
late times the skewness decays as Sx(r) ∼ r−1/2, clearly
showing a non-monotonic behavior as one passes from
the shear-dominated to the resetting-dominated regime.
Intuitively, when resetting dominates, the steady state
approached the shear-free system which is symmetric.
When shear dominates, the steady state is stretched out
and becomes flatter, also decreasing the skew. In Fig. 5
(a), we show the non-monotonicity of the skewness for
different values of y0 where we use Eq. (16) for the plots.

Identifying the value of the resetting rate that maxi-
mizes the skew is arduous for general parameter regimes.
However, to leading order in y0, as the system is per-
turbed away from its symmetric conditions, one can iden-
tify the optimal resetting rate

r∗
γ̇

=

√

(4
√
7− 10) ≈ 0.764... (17)

This dimensionless value characterizes the balance be-
tween the strengths of resetting and shear, which is shown
in Fig. 5 (a) by the dashed line.
As a function of the initial vertical displacement y0,

however, the skewness also shows a non-trivial behavior.
While the steady state has zero skew for y0 = 0 and
initially increases linearly as y0 is increased, it saturates
at the value Sx(y0 → ∞) = 2. This is independent from
the value of r/γ̇ as shown in Fig. 5 (b). An optimal value
of y0 can be found, taking the form

y∗0 =
1

2

√

√

√

√

D

r

(

12 +

(

r

γ̇

)4

+ 8

(

r

γ̇

)2
)

. (18)

We note that non-trivial skewness has been observed in
other resetting systems in the past, most notably in the
case of resetting in an external potential. A mismatch be-
tween the potential minimum and the resetting position
typically leads to skewed steady states70,71. However, we
emphasize that here the external forces, resulting from
the shear flow, are non-conservative.
The kurtosis in the x-direction, which measures the

tailedness or non-Gaussianity of the marginal distribu-
tion, can be calculated to be

Kx ≡ lim
t→∞

⟨[x(t)− ⟨x(t)⟩]4⟩
⟨[x(t)− ⟨x(t)⟩]2⟩2 (19)

=
3
[

8D2
(

40γ̇4 + r4 + 8γ̇2r2
)]

[2D (2γ̇2 + r2) + γ̇2ry20 ]
2

+
3
[

4γ̇2Dry20
(

26γ̇2 + 3r2
)

+ 3γ̇4r2y40
]

[2D (2γ̇2 + r2) + γ̇2ry20 ]
2 . (20)

In Fig. 5 (c), using the above equation we plot the
kurtosis. It clearly shows that Kx = 60 where shear
dominates resetting and decreases monotonically with in-
creasing r/γ̇ saturating to Kx = 6 where resetting dom-
inates shear. This is the result for the Laplace distribu-
tion known to be the steady state for one-dimensional
diffusion with resets.
The relationships between the obtained cumulants

demonstrate a transition from ⟨[x(t) − ⟨x(t)⟩]2⟩ss ∝
S2
x (resetting-dominated) to ⟨[x(t) − ⟨x(t)⟩]2⟩ss ∝ S−6

x

(shear-dominated), highlighting the complex interplay
between resetting and shear. The interplay between
skewness and kurtosis demonstrates that by controlling
the ratio of resetting to shear, we can tune the shape of
the distribution—from highly localized, symmetric dis-
tributions (with heavy tails, Kx = 6) in the resetting-
dominated regime, to stretched, non-Gaussian distribu-
tions (with Kx = 60) in the shear-dominated regime.

B. Cost of maintaining the steady state

In recent years, the cost needed to maintain the non-
equilibrium steady state resulting from resetting (often a
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6

thermodynamic cost such as entropy or work) has been
studied intensively, both in theory and experiment72–85.
This not only gives insights into how far from equilibrium
the system is, but also provides a measure of the energetic
cost associated with performing random recurrent resets
using, e.g., optimal tweezer setups. Here we consider,
in the simplest scenario, the mean thermodynamic work
associated with resetting in the presence of shear flow.

The thermodynamic cost of resetting depends on
the specific implementation of the resetting mechanism,
which hitherto we have left unspecified. In the simplest
case, a confining trap Φ(X), with a minimum at the
resetting location, is switched on at the time of reset,
and deactivated after the particle has relaxed near the
trap minimum (see Fig. 6). This was explored in Ref.73,
which we follow here. The energetic cost associated with
activating the trap in the steady-state regime is simply
⟨Φ(X)|Y ⟩ss. Since the particle relaxes to the steady state
in the trap at every resetting event, the expectation value
is conditioned on Y , which is a random variable dis-
tributed with the steady state Ptrap(Y ) associated with
the combined effect of a potential and shear flow. Once
the potential is deactivated, the energy cost associated
with a full resetting cycle is ⟨Φ(X)|Y ⟩ss − Φ(Y )).

If the time during which the potential is active is de-
noted by τR (which must be larger than the relaxation
time of the potential), then the relation between obser-
vation time t and mean number of resets n(t) is t =
(r−1 + τR)n(t). Hence, a total mean work ⟨W (t)|Y ⟩ =
[⟨Φ(X)|Y ⟩ss − Φ(Y ))]n(t) must be paid. The steady
state rate of mean work

µW(r) = lim
t→∞

⟨W ⟩
t

=

∫

dY Ptrap(Y ) [⟨Φ(X)|Y ⟩st − Φ(Y )]

r−1 + τR
, (21)

is therefore a reasonable measure of the thermodynamic
cost needed to maintain the steady state73,74.

As an example, we assume that the resets are mediated
by a harmonic trap Φ(X) = 1

2λ(X − XR)
2, where λ is

the stiffness of the potential and the resetting location
is XR = (0, yR). Moments associated with Ptrap(Y ) are
needed for the calculation of the rate in Eq. (21), which
we report in Appendix C. Combining this with the pre-
vious results of section III, we find a rate of work that
has three contributions, namely

µW(r) = µD(r) + µS(r) + µSD(r), (22)

where

µD(r) =
2Dλ

1 + rτR
, (23)

µS(r) =
γ̇2y2R(r + λ)

r(1 + rτR)
, (24)

µSD(r) =
Dγ̇(r + 2λ)

r2(1 + rτR)
. (25)

FIG. 6. (a) Resetting can be implemented by a trap gen-
erated, for example, by an optical tweezer. (b) Each reset
comes at a thermodynamic cost, which can be measured by
the work. Solid lines show the rate of work for various values
of y0, while the (curved) dashed line shows the rate of work
in the absence of shear flow. Even though resetting events
are infrequent at small resetting rates, each one results in a
substantial energetic cost. The results are from Eq.(22) to
Eq:(25). Dimensionless units are used, where lengthscales are

set by
√

D/γ̇, and timescales by γ̇−1. Parameters are set to
λ/γ̇ = 1 and γ̇τR = 10.

We notice that µD(r) is independent of the shear rate,
and therefore originates purely from diffusion. When γ̇ =
0, we recover the expected results µW(r) = µD(r) as
reported in Ref.73 up to a numerical factor owing to the
fact that we work in two dimensions rather than one. The
contribution µS(r) is independent of the diffusivity, and
comes from the vertical resetting location in the shear
flow. Lastly, the third term µSD has mixed origins.
At small resetting rates, we have the leading order be-

havior

µW(r) ≈ 2Dγ̇2λ

r2
. (26)

This indicates that while a resetting event is very rare in
this limit, once it occurs there will be a large energetic
cost. This is a regime not observed in the absence of
shear flow. Indeed, it was pointed out in Ref.73 that
in the absence of any background flow, the mean rate
of work for resets that are carried out with a harmonic
resetting trap is independent of r at small r-values due
to competing effects; 1) rare resetting events cause the
work to decrease, while 2) eventual resets will come at a
high cost since the particles has had time to diffuse far
away. In the present case, these two effects are no longer
in balance, since the flow transports the particle further
than what it would reach by pure diffusion alone. This
causes the eventual cost of a reset to be much higher,
hence the ∼ r−2 scaling observed at small r, which is
shown in Fig. 6 (b).
As discussed in the preceding sections, the system ex-

periences a competition between shear, which promotes
skewness and cross-correlations, and resetting, which acts
to restore (parity) symmetry. This competition can have
interesting consequences for the rate of work needed to
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7

FIG. 7. Schematic of a two-dimensional Brownian particle
in a linear shear flow in the x-direction γ̇yêx where γ̇ is the
shear rate. The x-coordinate of the particle is reset, which
is indicated by the arched arrow, while the y-coordinate is
diffusing freely.

produce a steady state with certain asymmetry prop-
erties. In the following, we assume that resets can be
performed with a sharp trap that well approximates the
instantaneous resetting used in preceding sections.

As most observables show crossovers between differ-
ent scaling behaviors as a function of the resetting rate,
it is convenient to consider the resetting-dominated and
shear-dominated regimes separately. At small rates, one
can show by combining the above results that

S4
x(r)µW (r) ≈ γ̇2λy4R

D
∼ const. (27)

which is independent of rate r. This relation is a trade-
off relation that states that if we want to tune the rate of
resets to increase skewness, the rate of work goes down
(and vice versa). For example, doubling the skewness
leads to a rate of work reduced by a factor of 16. Analo-
gously, in the resetting-dominated regime at high rates,
we have

µW (r)

S2
x(r)

≈ 2D[γ̇2(y2R +D/λ) + 2Dλ]

9γ̇2y2RτR
∼ const. (28)

In contrast to the shear-dominated regime, here we see
that tuning the rate to increase the skewness requires an
increase also in the rate of work.

IV. RESETTING PARALLEL TO THE FLOW

Resetting famously gives rise to steady states by con-
fining a system’s trajectories. For a pure diffusion process
in the plane, a steady state in the x-direction is obtained
even if the y-coordinate is left to diffuse freely and only x
is reset. In the present case, however, the effect of advec-
tion increases as y is allowed to grow. A priori, it is not
clear whether the x-dynamics will reach a steady state if
only the particles x component is reset (see Fig. 7).

In this case, the last renewal equation takes the form

pr(X, t|X0) = e−rtp(X, t|X0)

+ r

∫ t

0

dτe−rτ

∫

dX ′pr(X
′, t− τ |X0)p(X, τ |0, y′).

(29)

Since we are interested in the dynamics of the x coordi-
nate, we can integrate out y. This gives

ρr(x, t|X0) = e−rtρ(x, t|X0)

+ r

∫ t

0

dτe−rτ

∫

dy′℘r(y
′, t− τ |X0)ρ(x, τ |0, y′),

(30)

where we defined the marginal densities

ρr(x, t|x0, y0) ≡
∫

dypr(x, y, t|x0, y0), (31)

℘r(y, t|x0, y0) ≡
∫

dxpr(x, y, t|x0, y0). (32)

Similar definitions hold without resetting. However, since
we only reset x, the propagator ℘r(y, t|x0, y0) is unaf-
fected by resetting. Furthermore, it does not depend on
the initial x coordinate. Hence,

℘r(y, t|x0, y0) = ℘(y, t|y0), (33)

which is nothing but the standard Gaussian solution for
a diffusion process with a point-source initialization at
y0. The propagator can be expressed as

ρr(x, t|X0) = e−rtρ(x, t|X0)

+ r

∫ t

0

dτe−rτ

∫

dy′℘(y′, t− τ |y0)ρ(x, τ |0, y′).
(34)

The expectation value of any observable O(x, y) can as
before be obtained from this renewal equation simply by
multiplication by O(x, y) and integrating over x and y.
Using the moments of the process without resetting

given in Appendix A, we find the horizontal variance

⟨[x− ⟨x⟩]2(t)⟩ =
2e−rt

(

Dr2 (ert−1)+2γ̇2D [rt+ ert(rt−2)+2]
)

r3

+
2e−rt

(

γ̇2ry20 [sinh(rt)− rt]
)

r3
. (35)

As we show in Fig. 8, several crossovers can be observed;
the motion starts out by performing standard diffusion.
This is followed by a superdiffusive regime, followed by
a subdiffusive regime, before at late times diffusive be-
havior is once again recovered. The late-time diffusion
coefficient can be found to be

Deff ≡ lim
t→∞

⟨[x− ⟨x⟩]2(t)⟩
2t

= 2D

(

γ̇

r

)2

. (36)
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FIG. 8. (a) The mean square displacement, for a shear-driven

system where only x is reset, in units of
√

D/γ̇ in the x-
direction and (b) the corresponding dynamical exponent with
respect to (dimensionless) time for different values of the ver-
tical initial position. The dynamics show complex behavior,
with multiple crossovers between different regimes of diffu-
sion, including super-diffusive and sub-diffusive phases before
eventually returning to normal diffusive behavior. The results
are obtained from Eq. (35)

Surprisingly, even though the x-coordinate is reset at rate
r, the system never reaches a steady state but rather
spreads diffusively. A similar effect has been observed by
van den Broeck and coauthors when the particle’s hori-
zontal motion is confined by a harmonic trap while in a
shear flow86. While the dynamics is diffusive, the proba-
bility density itself is highly non-Gaussian. The kurtosis,
at late times, can be calculated to be limt→∞ Kx(t) = 18
indicating a leptokurtic probability density of positions,
where large fluctuations could occur. Intuitively, due to
the lack of constraint in the vertical direction some par-
ticles will diffuse to high y-values, where the shear flow
is very strong. These trajectories will contribute to large
fluctuations in the positions beyond what is observed in
normal Gaussian diffusion processes. Hence, the system
is an example of Brownian yet non-Gaussian diffusion.
While many such systems are found to have exponential
tails (i.e., Laplacian spatial densities) corresponding to
Kx = 6, we here observe a more extreme type of tail.
It is also worth noting that this value is completely in-
dependent of the system parameters. In particular, the
late-time kurtosis is unaffected by the rate of shear or
resetting, while the diffusion coefficient depends only on
their ratio.

V. DISCUSSION

In this work, we explored the non-equilibrium dynam-
ics of a Brownian particle subject to both shear flow and
stochastic resetting. One of the findings is the emer-
gence of anisotropic steady-state distributions driven by
the shear flow. The resetting mechanism, which typically
leads to symmetric and confined steady states in sim-
pler diffusive systems, is disrupted by the shear-induced
asymmetry. This results in a skewed distribution that

is particularly sensitive to the relative strengths of the
shear flow and resetting rate. In the shear-dominated
regime, we observed that the system develops substantial
anisotropy, with the particle distribution stretching fur-
ther along the direction of the shear. Conversely, in the
resetting-dominated regime, the steady state regains its
symmetry, as resetting overrides the effects of shear flow.
This balance between shear and resetting is quantified
through key statistical properties like skewness, which
display non-monotonic behavior as the system transitions
between these regimes.

Interestingly, when only the particle’s x-coordinate is
reset, we discovered that the system does not reach a
steady state, despite the resetting mechanism. Instead,
the particle’s position continues to spread diffusively, sug-
gesting that the advection due to shear prevents the con-
finement typically associated with resetting. This finding
is particularly striking, as it highlights a case where reset-
ting fails to establish a steady state, challenging the con-
ventional understanding of resetting as a mechanism for
system stabilization. The dynamics in this scenario show
complex behavior, with multiple crossovers between dif-
ferent regimes of diffusion, including super-diffusive and
sub-diffusive phases before eventually returning to nor-
mal diffusive behavior.

Furthermore, the energetic cost associated with main-
taining the non-equilibrium steady state was examined.
At low resetting rates, although resets are infrequent,
they incur a disproportionately high energetic cost due to
the particle’s displacement under shear. This cost scaling
with resetting rate differs markedly from the case with-
out shear, where the cost remains relatively constant for
low resetting rates. The sheared system, however, expe-
riences a breakdown of this balance, leading to a sub-
stantial increase in the energetic cost when resets finally
occur. This observation has practical implications for
the design of resetting processes in systems where ener-
getic efficiency is critical, such as in biological systems or
optimization algorithms.

In summary, this work demonstrates that the inclu-
sion of shear flow introduces significant complexity into
the dynamics of diffusive systems with resetting. Our
investigation reveals non-monotonic scaling behaviors
and critical crossover points between shear-dominated
and resetting-dominated regimes, differing from previous
studies. The observed behaviors underscore the impor-
tance of considering external forces when modeling re-
setting phenomena and provide new avenues for explor-
ing how non-equilibrium steady states are formed and
maintained. Future work could extend these findings by
exploring resetting in more complex flow fields, such as
turbulent or oscillatory flows, and examining how differ-
ent forms of stochastic resetting (e.g., resetting to non-
fixed positions or variable rates) influence the system’s
behavior.

The results of our model are primarily theoretical, but
they offer intriguing insights into potential applications
in physical and biological systems87–94. For instance,
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this model may be relevant to intracellular diffusion pro-
cesses, where both stochastic resetting (such as particle
reattachment to a specific site) and shear forces (from
cytoskeletal flow) are present. In biological cells, stochas-
tic resetting could symbolize mechanisms like molecular
chaperones returning misfolded proteins to their initial
conformation, while shear forces might represent cellular
flows that direct organelle movement or material trans-
port. Understanding the interplay between resetting and
shear could enhance our comprehension of transport ef-
ficiency and failure modes in densely packed cellular en-
vironments.

Finally, several recent experiments on stochastic re-
setting have taken place, most of which rely on optimal
tweezer methods95–97. Using similar methods, our pre-
dictions could be verified in experiments on sheared col-
loids.
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Appendix A: Time-dependent solution (without shear)

The probability for finding a Brownian particle under
a linear shear flow in the x-direction at position (x, y) at
time t, given that it started at (x0, y0), obeys the follow-
ing Fokker-Planck equation

∂tp(x, y, t) = −γ̇y∂xp(x, y, t) +D∇2p(x, y, t) (A1)

where we have suppressed the dependence on the initial
positions (x0, y0) for notational brevity.

To solve it, we use coordinate transforms first proposed
by Novikov and Elrick5,68

u = x− γ̇yt, (A2)

v = y, (A3)

q = t, (A4)

which transforms the above Fokker-Planck equation into

∂qp = D(1 + γ̇2q2)∂2
up+D∂2

vp− 2Dγ̇q∂u∂vp. (A5)

Performing a double Fourier transform, defined as

p̂(ξ, η, q) =

∫

dudve−iξu−iηvp(u, v, q), (A6)

results in the Fourier-space solution

p̂(ξ, η, q) = e−Λ(ξ,η,q)−iξx0−iηy0 , (A7)

where we have defined the function

Λ(ξ, η, q) = D(ξ2 + η2)q −Dγ̇ξηq2 +
1

3
Dγ̇2ξ2q3. (A8)

Inverting the Fourier transform and transferring back
to the original coordinates gives the propagator, which
reads

p(x, y, t) =

√
3

2πDt
√

12 + (γ̇t)2
e−φ(x,y,t), (A9)

where we defined

φ(x, y, t) =
(y − y0)

2
(

γ̇2t2 + 3
)

+ 3(x− γ̇ty)2

Dt(12 + (γ̇t)2)
(A10)

+
−3 (γ̇t (y0−y)+2x0) (x−γ̇ty)+3γ̇tx0 (y0−y)+3x2

0

Dt(12 + (γ̇t)2)
.

From this propagator, several observables can be calcu-
lated. The bare moments of lowest order are given by

⟨x⟩ = x0 + γ̇y0t, (A11)

⟨xy⟩ = x0y0 + γ̇t(y20 +Dt), (A12)

⟨x2⟩ = (x0 + γ̇y0t)
2 +

2

3
D[3 + (γ̇t)2]t, (A13)

⟨x3⟩ = (x0 + γ̇y0t)
[

2Dt(3 + (γ̇t)2) + (x0 + γ̇y0t)
2
]

,

(A14)

⟨x4⟩ = (x0 + γ̇y0t)
4 + (x0 + γ̇y0t)

24Dt(3 + (γ̇t)2),

+
4

3
D2t2(3 + (γ̇t)2)2. (A15)

More compactly, we can introduce the mean µ(t) = x0 +
y0γ̇t and variance V(t) = 2

3D[3 + (γ̇t)2]t, and write the
centralized moments as

⟨[x− µ(t)]n⟩ = 2
n−2

2 Γ
(

n+1
2

)

√
π

[1 + (−1)n]V(t)n, (A16)

which clearly vanish for odd values of n. Since the motion
in the y direction is purely diffusive, the moments are
simply those of standard one-dimensional diffusion.

Appendix B: Steady-state solution

For a particle starting its motion at (0, y0), Eq. (A9)
and Eq. (A10) reduce to
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p(x, y, t|0, y0) =
√
3

2πDt
√

12 + (γ̇t)2
e−φ(x,y,t), (B1)

where

φ(x, y, t) =
(y − y0)

2 (
γ̇2t2 + 3

)

+ 3(x− γ̇ty)2

Dt(12 + (γ̇t)2)

+
3γ̇t (y − y0) (x− γ̇ty)

Dt(12 + (γ̇t)2)
. (B2)

We aim to derive the steady-state probability density
under stochastic resetting using the renewal approach:

pr(X, t|X0) = e−rtp(X, t|X0) (B3)

+ r

∫ t

0

dτe−rτ

∫

dY pr(Y , t− τ |X0)p(X, τ |XR),

where X = (x, y) and XR is the resetting location. The
first term corresponds to trajectories where no resetting
took place. The second term takes into account trajecto-
ries (with resetting) up to the time of the last resetting
event before time t, i.e. at time t− τ , when the particle
is at position Y . After the last reset, the particle propa-
gates from the resetting location to X in the remaining
time τ .

In the steady state, the renewal equation simplifies to

pss(X|X0) = r

∫

∞

0

dτe−rτp(X, τ |XR), (B4)

where p(X, τ |XR) is given in Eq.(A9) Obtaining an exact
solution is challenging, so we use a perturbative approach
by expanding Φ(x, y, τ) in powers of γ̇ up to the first
order, given as

φ(x, y, τ) ≈ φ0(x, y, τ) + γ̇φ1(x, y, τ), (B5)

where φ0(x, y, τ) is the zeroth-order term (without shear,
i.e., γ̇ = 0) and φ1(x, y, τ) is the first-order correction due
to shear. Therefore, the probability density becomes

p(x, y, τ) ≈ p0(x, y, τ) [1− γ̇φ1(x, y, τ)] , (B6)

where p0(x, y, τ) = exp (−φ0(x, y, τ)) /4πDτ represents
pure diffusion (without shear) and φ1(x, y, τ) is the first-
order correction, capturing the shear flow effect, given
by

φ0(x, y, τ) =
(y − y0)

2 + x2

4Dτ
, (B7)

and

φ1(x, y) =
x(y − y0)− 2xy

4D
. (B8)

Using the renewal approach the steady-state solution is:

pss(x, y) ≈ p(0)ss (x, y)− γ̇p(1)ss (x, y), (B9)

where p
(0)
ss (x, y) and p

(1)
ss (x, y) are solutions to the renewal

equation in Eq.(B4). The zeroth-order (diffusion) term
gives the well-known results26

p(0)ss (x, y) =
r

2πD
K0

(

α
√

(y − y0)2 + x2
)

, (B10)

where α =
√

r/D and K0 is the modified Bessel func-
tion of the second kind (order zero). Similarly, we can
calculate the first order correction, given by

p(1)ss = r

∫

∞

0

e−rτp0(x, y, τ)Φ1(x, y)dτ. (B11)

Plugging p0(x, y, τ) and Eq.(B8) in the above equation
and solving the integral gives

p(1)ss (x, y, τ) =
r (x(y−y0)−2xy)

4D
K0

(

α
√

(y−y0)2+x2
)

.

(B12)
Substituting these into Eq.(B9) yields the full pertur-

bative solution

pss(x, y) ≈
(

r

2πD
− γ̇r [x(y − y0)− 2xy]

8πD2

)

×K0

(

α
√

(y − y0)2 + x2
)

. (B13)

We can calculate the probability fluxes in the system
as

J(x, y) = −D∇pss(x, y) + v(x, y)pss(x, y), (B14)

where v(x, y) = (γ̇y, 0) is the drift velocity due to the
shear flow, which acts in the x-direction and depends
linearly on y. Using Eq.(B13) the expressions for the
fluxes read as

Jx(x, y) =
r

8D2π

[

γ̇ (D(3y − y0) + γ̇xy(y + y0))

×K0

(

α
√

x2 + (y − y0)2
)

− (4D + γ̇x(y + y0))D

×



−αx
K1

(

α
√

x2 + (y − y0)2
)

√

x2 + (y − y0)2





]

.

(B15)

Similarly
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a) b)

FIG. 9. The steady-state probability density of the particle’s
position and the corresponding probability fluxes in a system
with γ̇/r = 0.1, are shown in (a) and (b), respectively. The
particle starts at and resets to (0.0, 0.0). The results are ob-
tained by numerically solving Eq. (B4) and Eq. (B1). The
results are in agreement with the perturbative results, repre-
sented in FIG. 2. The direction of the fluxes is shown by the
arrows; the magnitude is color-coded.

Jy(x, y) =
r

8Dπ

[

− γ̇xK0

(

α
√

x2 + (y − y0)2
)

+ α(y − y0) (4D + γ̇x(y + y0))

×
K1

(

α
√

x2 + (y − y0)2
)

√

x2 + (y − y0)2

]

. (B16)

where K1 is the modified Bessel function of the second
kind of the first order.

In Fig. 9, we show the steady-state probability density
of the particle’s position and the corresponding probabil-
ity fluxes obtained by numerically solving Eq. (B4) and
Eq. (B1). The results are in agreement with those ob-
tained from perturbative solutions, given in Eq. (B13) -
Eq. (B16), which is represented in Fig. 2.

Appendix C: Moments under shear flow and a harmonic
potential

To calculate the mean rate of thermodynamic work, we
used the steady-state moments under the combined effect
of shear flow and a harmonic potential. In this case, the
Langevin equations can be written as98

ẋ = −λx+ γ̇y +
√
2Dξx(t), (C1)

ẏ = −λ(y − yR) +
√
2Dξy(t), (C2)

where ξx(t) and ξy(t) are Gaussian white noises along
the i axis with i = x, y with zero mean and Dirac delta
time correlations ⟨ξi(t)ξj(t′)⟩ = δijδ(t − t′). Here we as-
sumed that the potential is centered at (0, yR), and that
its stiffness is λ. Since the y-direction is unaffected by the
shear flow, we have the standard moments in harmonic

potentials

⟨y(t)⟩λ = yR(1− e−λt), (C3)

⟨y2(t)⟩λ =
e−2λt

λ
(eλt − 1)

(

D − y2Rλ+ eλt[D + y2Rλ]
)

,

(C4)

where we used the subscript λ to denote averages in the
presence of the harmonic potential. As a function of y,
the motion in the x-direction can be obtained by explic-
itly solving the Langevin equation, e.g.

x(t) = e−λt

∫ t

0

dseλs
(

γ̇y +
√
2Dξx(s)

)

. (C5)

In the above we have ignored initial conditions as these
do not matter in the steady state. From these results, we
calculate the steady state moments explicitly:

⟨y⟩λ = yR, (C6)

⟨y2⟩λ = y2R +
D

λ
, (C7)

⟨x⟩λ =
γ̇yR
λ

, (C8)

⟨x2⟩λ =
Dλ+ y2Rγ̇

2

λ2
. (C9)

(C10)
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