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ABSTRACT
Magnetic gels are composite materials consisting of a polymer matrix and embedded magnetic particles. Those are mechanically coupled to
each other, giving rise to the magnetostrictive effects as well as to a controllable overall elasticity responsive to external magnetic fields. Due
to their inherent composite and thereby multiscale nature, a theoretical framework bridging different levels of description is indispensable for
understanding the magnetomechanical properties of magnetic gels. In this study, we extend a recently developed density functional approach
from two spatial dimensions to more realistic three-dimensional systems. Along these lines, we connect a mesoscopic characterization resolv-
ing the discrete structure of the magnetic particles to macroscopic continuum parameters of magnetic gels. In particular, we incorporate the
long-range nature of the magnetic dipole–dipole interaction and consider the approximate incompressibility of the embedding media and
relative rotations with respect to an external magnetic field breaking rotational symmetry. We then probe the shape of the model system in its
reference state, confirming the dependence of magnetostrictive effects on the configuration of the magnetic particles and on the shape of the
considered sample. Moreover, calculating the elastic and rotational coefficients on the basis of our mesoscopic approach, we examine how the
macroscopic types of behavior are related to the mesoscopic properties. Implications for real systems of random particle configurations are
also discussed.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133207

I. INTRODUCTION

Ferrogels, magnetic gels, as well as magnetorheological gels and
elastomers, all referred to as magnetic gels, are soft elastic compos-
ite materials containing magnetic or magnetizable particles, both
simply referred to as magnetic particles. Their mechanical proper-
ties are controllable by external magnetic fields.1–4 The composite
nature arises as the magnetic particles are mechanically coupled to a
surrounding polymeric matrix.5–9 Such a magnetomechanical cou-
pling has even been enhanced by anchoring polymers directly on
the surface of magnetic particles.2,5,6,9 To understand the rheological

properties of these materials, the dependence of their elastic mod-
uli and magnetostrictive effects on external magnetic fields has been
investigated in various settings.10–17 In particular, induced changes
in the configuration of the magnetic particles, especially the touch-
ing of adjacent particles and chain formation, have been repeatedly
reported as prominent features in the response of magnetic gels to
external magnetic fields.7,18–23

Due to their inherent composite nature, a complete theoretical
understanding of magnetic gels is still challenging.24 At macro-
scopic scales, thermodynamic and hydrodynamic theories have been
developed,25–27 in which both the magnetic and elastic components
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are modeled as homogeneous continua. Notably, the positive mag-
netostriction, namely, elongation along the magnetic field direction,
has been predicted using such continuum approaches.28–30 How-
ever, potential effects stemming from the detailed configurations of
the magnetic particles and the polymers as well as the mechanisms
governing these effects are hardly resolved at this scale. Rather,
phenomenological coefficients have to be determined via model-
ing or experiments. In a theoretical perspective, one may consider
a model resolving all the magnetic particles and polymer molecules
at a microscopic level. Indeed, numerical simulation studies have
been performed at this scale, revealing the roles of the polymer
network topology and the coupling between the orientation of mag-
netic particles and the surrounding polymers,31,32 as well as the
degree of cross-linking in the polymer matrix.33 However, unifying
all the ingredients of such models to derive macroscopic parameters
remains a demanding task.

In this regard, mesoscopic approaches still address the con-
figurations of the magnetic particles explicitly, while individual
polymeric building blocks are not resolved. Indeed, the significance
of detailed structures at mesoscopic length scales has been revealed,
as the mesoscopic models predict, for instance, both positive and
negative magnetostrictive effects depending on the specific configu-
ration of the magnetic particles.34–37 The rotational fluctuations of
magnetic particles have also been addressed within a mesoscopic
approach.38 Specifically, the polymer matrix can be coarse-grained
as an elastic continuum.39–42 We note that the role of the mag-
netic particles can also be modeled using continuum fields43,44 that
describe the particle arrangements.

Alternatively, the elastic continuum can be discretized on the
mesoscopic scale as a network of harmonic springs.45–47 One advan-
tage of this approach is that microscopic theories as well as simula-
tion techniques developed in the framework of statistical mechanics
are directly applicable. The interaction energies are explicitly defined
in this case. As demonstrated in Ref. 48 using a description of a uni-
axial magnetic gel, and in Refs. 24 and 49 using an approach for
isotropic one- and two-dimensional systems, a bridging description
between mesoscopic and macroscopic scales may unravel the role of
the discrete mesoscopic structures in the materials for the macro-
scopic behavior. In this way, the gap between continuum theories
and mesoscopic models is closed.

In the present study, we further explore the issue of scale-
bridging and, in particular, the statistical mechanics of magnetic
gels. As for the mesoscopic description, we employ a simple but tan-
gible model consisting of magnetic dipolar particles and harmonic
springs connecting them. Starting from the mesoscale model, we
aim at calculating macroscopic elastic and rotational coefficients,
the trend of which we then correlate with mesoscopic character-
istics, i.e., the configuration of the magnetic particles. Specifically,
we employ classical density functional theory (DFT),50–53 extending
the concept of mapping the elastic interactions between the particles
through the surrounding elastic medium onto pseudosprings24,49 to
three dimensions. The resulting free energy allows for a calculation
of macroscopic elasticity parameters.

To this end, the following issues need to be addressed in
advance. First, the dipolar magnetic interaction is strictly long-
ranged, rendering the system thermodynamically ill-defined.54

While the Ewald summation technique55,56 can be adopted to
numerically simulate systems with long-range interactions, such as

suspensions of magnetic particles in liquid crystalline matrices,57,58

the shape dependence of the free energy has to be clarified as
in the studies of dipolar fluids59,60 and of magneto-sensitive elas-
tomers.61 In addition, we note that the aforementioned magne-
tostrictive effects originate from the anisotropic nature of the mag-
netic dipole–dipole interaction. These points require a careful choice
of the DFT implementation. Second, thermal fluctuations of the
magnetic particles need to be included. As we develop a statis-
tical theory for the equilibrium free energy, i.e., DFT, this issue
is resolved automatically. Third, when an external magnetic field
explicitly breaks the rotational symmetry of the system, relative
rotations with respect to the field direction should be considered
in the underlying elasticity theory. In this case, elastic materials
are no longer invariant under rotations, and, therefore, a rotation
is accompanied by a corresponding energy cost. Equivalently to
elastic moduli quantifying the resistance to stresses, rotation coef-
ficients are used to characterize to which extent a material resists
to torques. Originally, this concept was introduced in the con-
text of liquid-crystalline elastomers62–65 but has also been extended
to uniaxial magnetic gels.26,48 Finally, the role of incompressibil-
ity that may be inherent in many systems of magnetic gels should
also be clarified in the description. Just as conventional gels, mag-
netic gels can swell/shrink by absorbing/releasing liquid. Otherwise,
they are regarded as incompressible, for instance, due to the dis-
persed fluid. Such incompressibility may alter the mechanical prop-
erties of magnetic gels,15,66 calling for a theory respecting volume
conservation.

This paper is organized as follows: In Sec. II, our model for
magnetic gels is introduced. The DFT for our model system and its
implementation are described in Sec. III. In Sec. IV, we investigate
the elastic and rotation coefficients as well as magnetostrictive effects
from the DFT calculation based on a nonlinear framework for elas-
ticity under constraints. Finally, discussions are included in Sec. V.
Technical details are shifted to the appendices.

II. MESOSCOPIC DIPOLE-SPRING MODEL
We consider a three-dimensional version of the previously

studied dipole-spring system46,67 as a mesoscopic model for mag-
netic gels. The model consists of N identical magnetic particles of
diameter σD and dipole moment m, which are connected by identi-
cal harmonic springs of spring constant kel and rest length ael. We
denote the position of the ith particle by ri (i = 1, . . . , N).

The total Hamiltonian Htot of the system is introduced as the
sum of the kinetic part Hkin and the interaction part Hint of the
magnetic particles, the latter of which splits into three parts,

Hint = Hm +Hel +Hst. (1)

Here, Hm and Hst, respectively, denote the energies of the magnetic
dipole–dipole interaction and the steric repulsion, which are all-to-
all pairwise additive. Therefore, with rij = rj − ri, they take the form

Hm,st =
1
2∑i≠j

um,st(rij), (2)

where um and ust denote the two-body magnetic dipole–dipole
interaction and steric repulsion, respectively, as detailed below.
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In stark contrast to Eq. (2), the elastic part Hel does not simply
take the form of a pairwise additive potential, namely, no general
two-body potential applying simultaneously to all pairs of particles
can be introduced. Specifically, the elastic contribution is written in
the form

Hel = ∑
⟨i,j⟩

uel(rij) = ∑
⟨i,j⟩

1
2

kel(rij − ael)
2, (3)

where ⟨i, j⟩ indicates that the sum only includes a predefined set of
neighbors, which labels the particles such that they become distin-
guishable. Thus, the potential energy cannot be written as a sum
over pair potentials of indistinguishable particles. For the two-body
potential uel, a harmonic spring potential of spring constant kel is
adopted, while ael is the rest length of the springs and rij = ∣rij∣. Here,
we assume a face-centered cubic (FCC) lattice structure with twelve
nearest-neighbor particles, which is indicated by the angular bracket
in Eq. (3). Therefore, in total, 6N harmonic springs connect the
nearest-neighboring pairs of magnetic particles in this specific model
(except for boundary effects).

Next, for the two-body steric repulsion in Eq. (2), we assume a
particle diameter σD and adopt a hard-core potential in the form of

ust(r) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if r ≥ σD,

∞ otherwise.
(4)

As a dimensionless density, we introduce the packing fraction η
defined as the fraction of the volume occupied by the magnetic par-
ticles, i.e., η ≡ N(4π/3)(σD/2)3

/V , where V is the volume of the
system.

Specifying the two-body magnetic dipole–dipole interaction
energy, the two-body potential in Eq. (2) reads

um(r) =
μ0

4π
[

m ⋅m
r3 −

3(m ⋅ r)(m ⋅ r)
r5 ], (5)

where μ0 is the vacuum permeability. The magnetic moment m is
determined by the applied magnetic field H = Hẑ, which is always
directed along the z-direction, and the magnetization properties of
each magnetic particle (see, e.g., Refs. 68 and 69). When an exter-
nal magnetic field is applied, we assume that m(H)∥H, i.e., m = mẑ
[see Fig. 1(a) for illustration]. In the absence of the applied field,
magnetic particles may or may not retain their magnetization. Here,
we consider two simple cases. First, in Model I, we assume that the
magnetic particles are ferromagnetic. There, the magnetic moment
of each particle persists and is fixed with respect to the orientation
of the material body (the FCC lattice in this study), once the mag-
netic particles are magnetized. We then investigate elastic properties
of the model system in the absence of external fields as depicted in
Fig. 1(b). In this case, the dipole moment m rotates rigidly with the
whole system. In Model II, we assume that the magnetic particles
are paramagnetic. To retain the magnetization, the external field H
needs to be persistently applied to the system in this case. In con-
trast to Model I, m is then always directed along H as shown in
Fig. 1(c), even when the whole system rotates. Consequently, rela-
tive rotations between the magnetization direction and the rest of the
system become relevant. We note that the magnetic dipole–dipole
interaction breaks the isotropy of the system both in Model I
and Model II.

FIG. 1. Illustration of the model. Cubic unit cells of the face-centered cubic lattice
consisting of magnetic particles (green spheres) are shown. Black solid lines repre-
sent springs connecting the magnetic particles, and blue arrows indicate the dipole
moments m of the particles. (a) Under an external magnetic field H, the magnetic
dipole moments are aligned along the external field direction H (red arrow) in the
initial state. Regarding rotations, we consider two models: (b) Model I for idealized
ferromagnetic particles and (c) Model II for idealized paramagnetic particles. As
the dipole moments of ferromagnetic particles persist even under a rotation of the
material body (the background face-centered cubic lattice), we investigate elastic
properties of Model I in the absence of H as shown in (b). In contrast, an external
field is persistently required to retain the dipole moments for paramagnetic parti-
cles (Model II) as described in (c). In this case, the system is no longer invariant
under rotation with respect to the external field H because the dipole moments
of magnetic particles do not rotate along with the rotation of the lattice. Note that
the (0,0,1)-orientation of the FCC lattice is directed along the external field in this
illustration. We also study the case where the (1,1,1)-orientation of the FCC lattice
is directed along H.

As for the orientation of the system, we consider two cases
in which the (0,0,1)- and (1,1,1)-orientations of the FCC lattice
are directed along the z-axis.36 When the lattices are elongated or
contracted along the z-direction due to the anisotropic magnetic
interaction, the resultant lattices of the (0,0,1)- and (1,1,1)-cases are
tetragonal and rhombohedral, respectively.

Finally, we assume that our model system is incompressible,
i.e., the volume of the whole system is fixed and persists even under
deformations. Here, we set V = (

√
2/2)a3

elN, at which the total
Hamiltonian Htot is minimized for m = 0.

III. DENSITY FUNCTIONAL THEORY:
BRIDGING SCALES

We then formulate a density functional theory (DFT) for the
dipole-spring model by approximating the free-energy functional
F[ρ(r)], where ρ(r) denotes the one-body density field of the
magnetic particles. Together with the ideal gas term

F id
[ρ(r)] = β−1

∫ dr ρ(r)[ln{Λ3ρ(r)} − 1], (6)

where β ≡ (kBT)−1 is the inverse temperature, the total free-energy
functional subjected to minimization is given as

F[ρ(r)] = F id
[ρ(r)] + F ex

[ρ(r)], (7)

where F ex
[ρ(r)] denotes the excess functional describing the inter-

particle interactions (1). Following Ref. 70, we employ the Picard
iteration algorithm

ρ(i+1)
(r) = αρ̃ (i)(r) + (1 − α)ρ(i)(r), (8)
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with a mixing parameter α and

ρ̃ (i)(r) = exp(−β
δF ex

δρ(i)(r)
+ βμi), (9)

where

μi ≡
1

Vcell
∫

cell
dr [ln{ρ(i)(r)Λ3

} −
δF ex

δρ(i)(r)
], (10)

which is updated in each iteration step to ensure that the total
(average) number of particles is kept fixed. Accordingly, for the ver-
ification of successful minimization, we use the relative chemical
potential defined as

Δμrel ≡
μi+1 − μi

μi+1
. (11)

In this way, F is minimized for a prescribed value of the vacancy
concentration nvac. In principle, our model systems are defect-free,
i.e., nvac = 0. To accelerate and enhance the robustness of the min-
imization processes, however, we consider lattices with vacancy
concentration of nvac = 0.001 ± 10−6.

Regarding the geometry of the calculation box, we use the prim-
itive unit cell in our calculations, consisting of only one particle,
instead of the cubic unit cell of the FCC lattice, consisting of four
particles, usually adopted in DFT studies of freezing. Accordingly,
we use periodic boundary conditions in the directions of three prim-
itive vectors. Both expressions for the primitive and corresponding
reciprocal lattice vectors can be found in Appendix A. With this
geometry, we are able to minimize our free-energy functional more
precisely (Δμrel < 10−15 in most cases), compared to the method
using the cubic unit cell (Δμrel ≈ 10−8 for the tested cases). In prin-
ciple, our DFT model could also be used to investigate additional
structure formations involving more than a single particle in a larger
calculation box. Such an extension, however, would require a more
complicated pseudospring potential than the one we employ here
(see Sec. III B for more details) and, therefore, goes beyond the scope
of this study.

Now we turn to the excess functional F ex
[ρ(r)], which is given

as a sum of three functionals corresponding to the steric repulsion,
magnetic dipole–dipole interaction, and harmonic spring potential.
First, for the hard-core repulsion, we use the White-Bear II (WB-II)
functional71 with the Tarazona tensors,72 which is one of the most
precise versions among the fundamental measure theory for hard
spheres.73 Then, for the elastic and magnetic dipole–dipole inter-
actions, we intend to adopt the simple mean-field functional in the
form of

FMF[ρ(r)] ≡
1
2 ∫

dr∫ dr′ ρ(r) u(r − r′) ρ(r′), (12)

where u(r) is an appropriate pair potential. However, the practi-
cal evaluation of the above functionals is not straightforward. In
what follows, we describe how to construct the Fourier transforms
of the elastic and magnetic energies, which allow us to perform DFT
calculations in Fourier space.

A. Magnetic dipolar interaction
As discussed, there are two important properties inherent in the

magnetic dipole–dipole interaction [Eq. (5)] in three dimensions.

It is long-range and anisotropic,74 which has to be taken into account
in DFT calculations.

When we switch from m = 0 to m ≠ 0 in the initial orientation,
the systems elongate or contract along the direction of m, i.e., ẑ, and
so does the unit cell. Then, the side lengths of the cubic unit cell are
no longer the same, but satisfy the relation ax = ay ≠ az , where ax, ay,
and az denote the side lengths in the x-, y-, and z-direction, respec-
tively. Here, we define the aspect ratio as Rasp ≡ az/ax. We note that
Rasp characterizes the deformation of the internal lattice structure.

Now, we address the long-range nature of the magnetic
dipole–dipole interaction in three dimensions. The difficulty arises
from the fact that the interaction energy, i.e., the integral of um,
diverges at both short and long distances. In our DFT calculation,
this issue can be resolved rather easily. On the one hand, the steric
repulsion hinders particles from approaching closer than their dia-
meter and therefore prevents the divergence at short distances. On
the other hand, as the DFT calculation is performed in Fourier
space, the divergence at long distance can be handled directly as
follows. While, for k ≠ 0 Fourier modes, the Fourier transform of
the dipole–dipole interaction can be obtained with the aid of the
orthogonality of the spherical harmonics Ym

l , the k = 0 mode, which
dictates the long-range divergence, indeed depends on the shape of
the whole material body (see Appendix B for more details). With
such a shape dependent mode, which is related to the demagnetizing
factor in continuum theory,61 we are able to capture the long-ranged
nature of the magnetic interaction. In general, we may consider a
system with the initially spheroidal shape (at m = 0) of the shape
parameter Rsh ≡ Rz/Rx, where Rx = Ry and Rz are the lengths of the
semiaxes along the x-, y-, and z-axis, respectively. In contrast to Rasp,
here Rsh indicates the aspect ratio of the whole material. As we turn
on the magnetic interaction applying a magnetic field, the initial
aspect ratio of the whole system shape further changes to RaspRsh
due to magnetostriction associated with a change in internal lattice
structure.

B. Elastic energy
While the magnetic particles are strictly labeled due to fixation

by the surrounding polymer matrix, namely, the elastic interaction
term given in Eq. (3), the conventional machinery of DFT calcula-
tion assumes the indistiguishability of particles, i.e., as if the potential
uel was acting equally between all pairs of particles throughout the
system. To nevertheless enable DFT calculations, a mapping of the
harmonic spring potential onto a pseudospring potential upseudo has
been proposed in Ref. 24. There, only nearest-neighbor pairs of the
resulting configuration are within the range of upseudo and thus elas-
tically coupled to each other, as in the original system based on
the harmonic springs [see Eq. (3)]. In the present study, the map-
ping is extended to three dimensions. Notably, in two and three
spatial dimensions, the success of applying the finite-ranged pseu-
dospring potential is connected to the particle arrangement arising
from a freezing transition,49 which has been extensively investigated
within density functional approaches.75–79 Specifically, we consider
the pseudospring potential

upseudo(r) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
2

kel(r − ael)
2
− u0, r < Rc,

0 otherwise.
(13)
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In this expression, Rc and u0 denote the cut-off length and the off-
set for the pseudospring potential, respectively. The cutoff length
Rc is determined from corresponding Monte Carlo simulations as
the distance at which the pair correlation function g(r) is min-
imized, which turns out to be Rc = 1.21ael. The value of u0 is
determined within the DFT calculations so as to match the vacancy
concentration of the resultant lattice with the prescribed value of
nvac = 0.001.

The obtained upseudo instead of uel is inserted into Eq. (12)
via u. We refer to our previous study49 for the detailed description
and verification of the mapping of the real onto the pseudospring
potential. Moreover, due to the anisotropy of dipolar interactions
as discussed in Sec. III A, corresponding lattice structures may
become anisotropic as well. Such anisotropy then should also be
taken into account when we construct the pseudospring poten-
tial. In practice, we cut the spring potential at the surface of the
spheroid with the aspect ratio Rasp, instead of at the surface of the
sphere with the radius Rc as in Eq. (13). In other words, the cut-
ting is direction-dependent. The resultant Fourier components are
explicitly presented in Appendix C.

IV. MACROSCOPIC PARAMETERS
A. Nonlinear deformations

Now we consider macroscopic continuum parameters. To
this end, we must first address the assumed volume conserva-
tion when developing our macroscopic description. While our
model system is initialized with the prescribed volume V at
m = 0, an external magnetic field induces a magnetostrictive effect,
which is not necessarily volume preserving. However, the imposed
incompressibility constraint hinders the system to relax to a new
volume upon magnetization. Such effects introduce a predefor-
mation hidden behind the maintained volume, rendering our
model system nonlinear elastic. Here, following the group theoret-
ical approach proposed in Ref. 80, we consider nonlinear elastic
responses of our model system and calculate elastic moduli accord-
ingly. For self-containedness, we briefly summarize the formulation
and introduce the second-order corrections to the deformation
gradient tensors that are relevant for the computation of elastic
moduli.

Under the incompressibility condition, the deformation gradi-
ents in three dimensions are elements of the special linear group
SL(3,R), the Lie algebra of which is sl(3,R). Generally, the com-
ponents of the deformation gradient tensor F are defined by
Fij = ∂r′i/∂rj, where r′ and r mark the positions of the material
elements in the deformed and undeformed state, respectively. Then
nonlinear deformation gradient tensors F may be expressed via the
exponential map

F = exp(
8

∑
i=1

ϵiλi), (14)

where λi denote the SL(3,R) group generators and ϵi are small coef-
ficients indicating the magnitude of deformations generated by λi.
One should choose a set of generators that is appropriate for the sys-
tem considered. Accordingly, for our model system, we employ the
generators of

λ1 =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, λ2 =
1
√

3

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟
⎟
⎟
⎟
⎠

,

λ3 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0

0 0 1

0 1 0

⎞
⎟
⎟
⎟
⎟
⎠

, λ4 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 1

0 0 0

1 0 0

⎞
⎟
⎟
⎟
⎟
⎠

,

λ5 =

⎛
⎜
⎜
⎜
⎜
⎝

0 1 0

1 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, λ6 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0

0 0 −1

0 1 0

⎞
⎟
⎟
⎟
⎟
⎠

,

λ7 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 1

0 0 0

−1 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, λ8 =

⎛
⎜
⎜
⎜
⎜
⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

(15)

Here, the transformations associated with λ1 stretch (compress) the
system along the x-axis, combined with compressions (stretches)
along the y-axis; the deformations generated by λ2 stretch (com-
press) the system in the xy-plane combined with compressions
(stretches) along the z-axis of twice the magnitude; λ3, λ4, and λ5
generate shear deformations in the yz-, zx-, and xy-plane, respec-
tively; λ6, λ7, and λ8 generate rotations in the yz-, zx-, and xy-plane,
respectively. We note that λ1 can also be regarded as a generator
of shear deformations in the xy-plane, but with orientations dif-
ferent from those generated by λ5. For the purpose of calculating
elastic moduli, corrections up to the second order of ϵi are relevant.
Accordingly, we may truncate the expansion at the third order of
{ϵi} and use

F = I +∑
i

ϵiλi +
1
2
(∑

i
ϵiλi) ⋅

⎛

⎝
∑

j
ϵjλj
⎞

⎠
. (16)

We note that, in general, generators do not commute, i.e., λi ⋅ λj
≠ λj ⋅ λi. Within our approach, the free-energy density F (see
Sec. III for the definition based on density functional theory), equiv-
alent to the deformation energy density in nonlinear elasticity, is
regarded as a function of {ϵi}. This choice naturally allows us to
define the generalized elastic moduli as

Cij =
∂2 F
∂ϵi∂ϵj

. (17)

From our DFT, we determine the elastic constants Cij explicitly
by deforming the primitive unit cell. Numerically, we first trans-
form the primitive vectors via corresponding deformation gradient
tensors F and obtain the associated reciprocal lattice vectors in
deformed states up to the second order, which are presented in
Appendix A. Minimizing our density functional under deforma-
tions, we then calculate free energies F({ϵi}), with which sec-
ond derivatives can be obtained through finite differences when
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compared to the free energy of the reference (undeformed) state.
Specifically, we obtain the diagonal terms of the stiffness tensor from

Cii = (
∂2 F
∂ϵi2 ) ≈

F(ϵi) + F(−ϵi) − 2F(0)
ϵ2

i
, (18)

while the off-diagonal terms can be calculated as

Cij = (
∂2 F
∂ϵi∂ϵj

) ≈
F(ϵi, ϵj) + F(−ϵi,−ϵj) − F(−ϵi, ϵj) − F(ϵi,−ϵj)

4ϵiϵj
.

(19)

In most of the cases, we use ϵ1 = ϵ2/
√

3 = ϵ3 = ⋅ ⋅ ⋅ = ϵ7
= 0.0001, except for the cases of the (1,1,1)-orientation with η = 0.3
and m ≤ 2.5, in which the functional can be minimized down to the
values of Δμrel between 10−4 and 10−8 at most. There, we use two
different values of ϵ1 = ϵ2/

√
3 = ϵ3 = ⋅ ⋅ ⋅ = ϵ7 = 0.0001 and 0.001 to

calculate elastic coefficients and confirm that these values lead to
consistent results.

In the case of Model I, only the five generators λi for
i = 1, . . . , 5 are relevant, among which the shear deformations gen-
erated by λ3 and λ4 lead to identical contributions to F due to the
symmetry of tetragonal and rhombohedral lattices. In addition to
those, the relative rotations corresponding to λ6 and λ7 must be
included for the description of Model II, whereas rotations in the
xy-plane generated by λ8 are still irrelevant. Again due to the sym-
metry, the rotations corresponding to λ6 and λ7 lead to identical
contributions to F .

Before proceeding to the results, we note that some coefficients
vanish and others are equal to each other due to the underlying
symmetries of the considered lattice. In linear elasticity, an irre-
ducible representation of stiffness tensors allows us to determine
nonzero and equal elastic constants, which can also be extended
to our group theoretical approach, as discussed in Appendix D.
The macroscopic approach described here provides a precise and
economic framework to investigate nonlinear elastic properties of
incompressible anisotropic systems. In particular, our choice of gen-
erators given by Eq. (15) and the corresponding stiffness tensors
given in Eqs. (D5) and (D7), respectively, determine all the necessary
and allowed deformations and elastic constants compatible with the
underlying symmetry of the system and the imposed constraint. For
instance, in Figs. 3(b) and 3(f) for rhombohedral lattices, we con-
firm that C11 = C55 and C13 = C45, respectively, in accordance with
Eq. (D7). Accordingly, in Secs. IV C and IV D, we only discuss elas-
tic moduli and rotation coefficients that are nonzero in irreducible
representation.

We stress that a nonlinear framework as outlined by Eq. (16)
is necessary to obtain appropriate results. Sticking to the lin-
ear strain tensors as given by Eq. (D1), instead of our nonlinear
definition in Eq. (16), may involve errors in the second order, which
are relevant for elastic constants. Indeed, the rotation coefficients
C66 and C77 shown in Fig. 4(a) can become negative, if the vol-
ume conservation in the second order is not explicitly taken into
account via Eqs. (14) and (15). Alternatively, one may consider
the method of Lagrange multipliers, which is, however, technically
demanding, particularly in combination with the density functional
calculation.

From now on, we measure lengths and energies in units of the
rest length ael and the thermal energy kBT, respectively. Accord-
ingly, the magnitude m of the magnetic moment and the spring

constant kel are measured in units of m0 ≡
√

kBTa3
el/μ0 and kBT/a2

el,
respectively. We consider systems with elastic constant kel = 100 and
shape parameter Rsh = 1, and we investigate the effects of magne-
tization on the mechanical properties by varying the magnitude of
the magnetic moment m. The two models described in Sec. II give
identical results as long as no rotations are considered, while only
the paramagnetic Model II has a unique reference state with respect
to rotations.

One can also probe steric effects by varying the volume pack-
ing fraction η. Naively speaking, while steric repulsion should affect
the bulk modulus of a system, how and to what extent it would
affect the mechanical properties under each specific deformation
is still unclear. Moreover, there might also appear numerical arti-
facts due to several approximations employed. Therefore, leaving
systematic investigations for further studies, we demonstrate that
our method is valid for a reasonable range of η by employing two
representative values of η = 0.1 and 0.3, which are smaller than the
coexisting fluid (crystal) packing fraction of 0.495 (0.544)70 for the
structural arrangement of the hard-core particles in the absence
of elastic and magnetic interactions. We refer by those numeri-
cal values to the fluid–solid phase transition point for hard-sphere
systems. Notably, the pseudospring potential suffices to stabilize
the FCC crystal for η = 0 within our model when m = 0. Indeed,
for zero or small m, steric effects seem to be negligible, as one
can confirm from Fig. 2 (see Sec. IV B) as well as from Figs. 3
and 4 (see Sec. IV C). For large m, however, the steric repul-
sions turn out to play an important role, which we attribute to
the fact that they prevent a divergence of magnetic dipolar inter-
actions at short distance. We discuss this issue more in detail in
Secs. IV C and IV D.

B. Magnetostriction
As a first step, we determine the reference equilibrium state of

the undeformed system for a given magnetization m. Technically,

FIG. 2. The aspect ratio Rasp of the system is presented as a function of m

measured in units of m0 =
√

kBTa3
el/μ0. Converse magnetostriction effects are

observed, depending on the orientation of the lattice.
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FIG. 3. Elastic coefficients are presented
as functions of m. The values of (a) C11
for the (0,0,1)-orientation, (b) C11 and
C55 for the (1,1,1)-orientation, (c) C22
for the (0,0,1)- and (1,1,1)-orientations,
(d) C33 for the (0,0,1)- and (1,1,1)-
orientations, (e) C55 for the (0,0,1)-
orientation, and (f) C13 and C45 for the
(1,1,1)-orientation are shown. For values
of m larger than those presented in this
figure, we were not able to find stable
equilibrium configurations.

we first determine the value of u0 for which the vacancy concen-
tration of the system becomes equal to the prescribed value within
the margin of tolerated error. Then, varying Rasp while fixing u0,
we find the value of the aspect ratio Rasp at which the free-energy
functional is minimized. The resultant values of Rasp are shown
in Fig. 2.

The most prominent feature here is that the magnetostric-
tion effects of the (0,0,1)- and (1,1,1)-orientations are opposite to
each other. In line with the results reported in Ref. 36, our systems
elongate when the dipole moments are directed along the (0,0,1)-
orientation, while a contraction along the direction of the dipole
moments is observed in the (1,1,1)-case, confirming that the internal
configuration of magnetic particles is a decisive factor of the magne-
tostriction effect. In addition, we also note that the magnetostriction
effect can be reversed, if large values of the shape parameter
(Rsh ≳ 2) are used in the case of the (0,0,1)-orientation (results
not shown). Such shape-dependence is a trivial consequence of the
long-range nature of the dipolar interaction.

C. Elastic coefficients

First, we take a closer look at the elastic constant C55, cor-
responding to shear deformations in the xy-plane, and C11, cor-
responding to stretches (compressions) along the x-axis combined
with compressions (stretches) along the y-axis. C11 can also be
regarded as a shear modulus, but corresponding to shear deforma-
tions with orientations different from those for C55. In most cases,
the dipolar interaction, which is repulsive in the plane perpendicu-
lar to the dipole moment, causes an increase of the elastic constants.
Specifically, as shown in Fig. 3(b), values of both C11 = C55 increase
as m increases in the (1,1,1)-case. In the (0,0,1)-case, only C55 is an
increasing function of m, as shown in Fig. 3(e), while C11 in the
(0,0,1)-case is a decreasing function of m, as shown in Fig. 3(a). Fur-
thermore, as m increases further, C11 drops toward zero, indicating
instability of the tetragonal lattices. We notice here that hexagonal
configurations can be obtained eventually by squeezing the tetrag-
onal lattice in the xy-plane, if the whole lattice is projected on the
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FIG. 4. Rotation coefficients obtained from the (1,1,1)-orientation. In (a), the coef-
ficients C66 and C77, respectively, corresponding solely to the rotations in the yz-
and xz-planes are presented, whereas the off-diagonal coefficients C36 and C47 as
well as C16 and C57 are depicted in (b) and (c), respectively.

xy-plane. In other words, as m increases, there might arise a grow-
ing tendency to match the lattice to the underlying symmetry of
the magnetic dipole–dipole interaction, which prefers the hexago-
nal lattice over the tetragonal lattice in the plane perpendicular to
the dipole moment. Therefore, we conclude that such a softening

effect correlates with a rearrangement of the magnetic particles in
the plane perpendicular to m.

Next we turn to the elastic constants of C22, corresponding
to stretches (compressions) in the xy-plane combined with com-
pressions (stretches) along the z-axis of twice the magnitude, and
C33, corresponding to shear deformation in the yz-plane (or equiv-
alently C44, corresponding to shear deformations in the xz-plane).
All of them involve deformations in the z-direction. In both the
(0,0,1)- and (1,1,1)-orientations, C22 is an increasing function of
m [Fig. 3(c)], indicating hardening of the materials. Since there
is no significant difference between the systems of η = 0.1 and
0.3, the phenomenon of hardening observed here has a purely
elastic origin. Simultaneously, C33 is always a decreasing function
of m [Fig. 3(d)]. Moreover, at large m, the rhombohedral lattice
becomes unstable as well, with the values of C33 dropping toward
zero. Such instabilities at large m and the decrease of C33, in gen-
eral, may originate from the tendency toward pair formation20,81

or similarly from the typical chain-like aggregates forming under
strong dipolar interactions.48,82,83 Indeed, we observe a shift of
the energetic minimum in the landscape of two-body interaction
energy from separated to touching configurations between m = 2.5
and 3.0 in the (1,1,1)-case (not shown). This seems to confirm
that the instability is the consequence of the formation of touch-
ing pairs. In the case of the (0,0,1)-orientation, the drop toward
zero in C11 occurs in advance of that in C33 [compare Figs. 3(a)
and 3(d)], indicating that rearrangement in the xy-plane is pre-
ferred over rearrangement in the z-direction. In stark contrast to
the hardening in C22, the onset of the instability accompanied
with the softening depends on η significantly, which seems reason-
able as the formation of pairs should always involve an interplay
between attractive magnetic forces along the dipole orientations and
repulsive steric forces. The hard-core repulsion prevents a diver-
gence of attractive magnetic dipolar interactions, but touching of
neighboring particles may still occur due to thermal fluctuations.
Therefore, we conclude that for large m where the instability may
develop, entropic contributions should be relevant for elastic prop-
erties of dipole-spring systems, verifying the utility of our DFT
approach.

Finally, the values of C13 and C45 in the (1,1,1)-case are pre-
sented in Fig. 3(f). Overall they exhibit a similar behavior, increasing
from negative values for small m to positive ones for large m. We
note, however, that these constants reflect a rather specific symme-
try inherent in the lattice and, therefore, may not reflect the situation
of real magnetic gels.

D. Rotation coefficients
Finally, we investigate the rotation coefficients, which are

relevant only in Model II. Alike the elastic constants, the rota-
tion coefficients are calculated from Eqs. (18) and (19). As the
(0,0,1)-orientation turns out to be unstable with respect to rota-
tions in xz- and yz-planes, we only analyze the results for the
(1,1,1)-orientation.

First, the coupling of the model systems to the applied magnetic
field is captured by the rotation coefficients C66 and C77, correspond-
ing to rotations in the yz- and xz-plane, respectively. As shown
in Fig. 4(a), the values of C66 and C77 increase as m increases,
indicating an enhanced resistance to the rotations. Notably, we
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observe discrepancies between the rotation coefficients at η = 0.1
and 0.3, which again demonstrate the relevance of hard-core
repulsions.

As shown in Fig. 4(b), the mixed coefficients of C36 and C47,
corresponding to mixed shear deformations and rotations in the yz-
and xz-plane, respectively, first exhibit an increase as a function of m
for small values of m. Then, the increasing trend is reversed for large
m. We note that, in Ref. 48, where chain-like aggregates are assumed,
only a decreasing tendency in the form of −m2 has been predicted
for D2, which is related to C36 and C47 in the present study. Presum-
ably, as already mentioned for magnetostrictive effects in Sec. IV B,
different behaviors may be due to the internal configuration of the
magnetic particles. We also note that the values of C66 and C77 are
∼103 times smaller than those of C33 and C44. In Ref. 48, the rota-
tion coefficient D1 (related to C66 and C77 in the present study) is
even larger than Δc5 (related to C33 and C44 in the present study).
Again, this may be caused by the different internal structure, which
is chain-like in Ref. 48.

Finally, the additional mixed coefficients C16 and C57 increase
monotonically, as shown in Fig. 4(c), which seems to be a simple
consequence of enhancement of both hardening in the xy-plane
(C11 and C55) and resistance to rotations in the xz- or yz-plane
(C66 and C77).

V. CONCLUSION
So far, we have constructed and evaluated a DFT for three-

dimensional dipole-spring models, which bridges from the dis-
cretized mesoscopic model to a macroscopic elasticity theory of
magnetic gels. Based on the scale-bridging description, we have
determined the elastic and rotational material coefficients. They
depend on the mesoscopic configuration of the magnetic particles.
Notably, we have observed softening responses to magnetization
both in the external field direction and in the plane perpendic-
ular to the external field, which indicates a tendency toward an
instability. We have proposed that such behaviors imply changes
in overall symmetry, accompanied by rearrangement of magnetic
particles. Such rearrangements might be decomposed into the for-
mation of a hexagonal-like arrangement in the plane perpendic-
ular to the magnetic field and pair formation along the magnetic
field direction. To verify our conclusion, the decreasing behav-
ior of C11 needs to be tested experimentally. Notably, in a pre-
vious study, where random configurations for magnetic particles
are assumed [see Fig. 14(b) of Ref. 46], a decrease of the shear
modulus has been observed, suggesting that the idea of rearrange-
ment may also be valid for real magnetic gels with disordered
configurations.

Conversely, one could equally well think about synthesizing
a sample with the regular arrangement adopted in this study. In
particular, the prescribed FCC-based connectivity shows certain
characteristics as explained above. For instance, 6 among 12 nearest
neighboring particles are located in the same plane perpendicular to
the magnetization in the case of (1,1,1)-orientation, and, thereby, the
repulsive interaction in the plane seems to dominate the response
of the magnetic particles. This leads to the contraction along the
magnetization direction. We note that there have been attempts
to synthesize thin ferrogel films.84 Since, in planar configura-
tions, magnetic particles form hexagonal arrangements in the plane

perpendicular to the external magnetic field,85 it would be possi-
ble to obtain ferrogel films with a hexagonal configuration in such
a way. Then, by stacking two-dimensional layers, a magnetic gel
with a three-dimensional hexagonal structure might be fabricated
experimentally. Our results of the (1,1,1)-case may then provide
insight into such systems.

At the same time, regarding future work on our theory, one
important direction is to address systems with random configu-
rations. An important additional ingredient to model the hetero-
geneity inherent in real samples is polydispersity of the magnetic
particles.86 The idea of the replica DFT87,88 might be used to address
directly disordered configurations. Finally, dynamical density func-
tional theory89–91 should provide a route to investigate the dynamics
of the systems.
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APPENDIX A: RECIPROCAL LATTICES

For the (0,0,1)-, and (1,1,1)-orientations of the FCC lattice, the
primitive vectors read

a1 =
a
2
(x̂ + ŷ), a2 =

a
2
(ŷ + ẑ), a3 =

a
2
(ẑ + x̂) (A1)
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and

a1 =
a
2
(

2
√

6
ŷ +

2
√

3
ẑ),

a2 =
a
2
(−

1
√

2
x̂ −

1
√

6
ŷ +

2
√

3
ẑ),

a3 =
a
2
(

1
√

2
x̂ −

1
√

6
ŷ +

2
√

3
ẑ),

(A2)

respectively. Here, a =
√

2ael denotes the side length of the cubic
unit cell.

In practice, the DFT calculations are performed with the recip-
rocal lattice vectors in Fourier space. For the (0,0,1)-orientation, the
reciprocal vectors read

b1 =
2π
a
(1, 1,−1),

b2 =
2π
a
(−1, 1, 1),

b3 =
2π
a
(1,−1, 1),

(A3)

while for the (1,1,1)-orientation, we obtain

b1 =
2π
a
(0,

4
√

6
,

1
√

3
),

b2 =
2π
a
(−
√

2,−
2
√

6
,

1
√

3
),

b3 =
2π
a
(
√

2,−
2
√

6
,

1
√

3
).

(A4)

Under deformation, the reciprocal vectors are transformed
accordingly. We expand the reciprocal vectors of deformed lattices
with respect to {ϵi} to compute the corresponding reciprocal lattice
vectors in the form

b deformed
1 = b1 +

2π
a

Δb1,

b deformed
2 = b2 +

2π
a

Δb2,

b deformed
3 = b3 +

2π
a

Δb3.

(A5)

The correction terms Δb1, Δb2, and Δb3 for the (0,0,1)- and (1,1,1)-
cases are given in Tables I and II, respectively, which are sufficient

TABLE I. Reciprocal lattice vectors for the (0,0,1)-orientation. As for the infinitesimal parameters {ϵi}, see Eqs. (14) and (15) in which the deformation gradient tensor as well
as the generators are defined.

ϵ Δb1 Δb2 Δb3

ϵ1 (−ϵ + 1
2 ϵ2, ϵ + 1

2 ϵ2, 0) (ϵ − 1
2 ϵ2, ϵ + 1

2 ϵ2, 0) (−ϵ + 1
2 ϵ2,−ϵ − 1

2 ϵ2, 0)

ϵ2 (− 1√
3

ϵ + 1
6 ϵ2,− 1√

3
ϵ + 1

6 ϵ2,− 2√
3

ϵ − 2
3 ϵ2
) ( 1√

3
ϵ − 1

6 ϵ2,− 1√
3

ϵ + 1
6 ϵ2, 2√

3
ϵ + 2

3 ϵ2
) (− 1√

3
ϵ + 1

6 ϵ2, 1√
3

ϵ − 1
6 ϵ2, 2√

3
ϵ + 2

3 ϵ2
)

ϵ3 (0, ϵ + 1
2 ϵ2,−ϵ − 1

2 ϵ2
) (0,−ϵ + 1

2 ϵ2,−ϵ + 1
2 ϵ2
) (0,−ϵ − 1

2 ϵ2, ϵ + 1
2 ϵ2
)

ϵ4 (ϵ + 1
2 ϵ2, 0,−ϵ − 1

2 ϵ2
) (−ϵ − 1

2 ϵ2, 0, ϵ + 1
2 ϵ2
) (−ϵ + 1

2 ϵ2, 0,−ϵ + 1
2 ϵ2
)

ϵ5 (−ϵ + 1
2 ϵ2,−ϵ + 1

2 ϵ2, 0) (−ϵ − 1
2 ϵ2, ϵ + 1

2 ϵ2, 0) (ϵ + 1
2 ϵ2,−ϵ − 1

2 ϵ2, 0)

ϵ6 (0,−ϵ − 1
2 ϵ2,−ϵ + 1

2 ϵ2
) (0, ϵ − 1

2 ϵ2,−ϵ − 1
2 ϵ2
) (0, ϵ + 1

2 ϵ2, ϵ − 1
2 ϵ2
)

ϵ7 (−ϵ − 1
2 ϵ2, 0,−ϵ + 1

2 ϵ2
) (ϵ + 1

2 ϵ2, 0, ϵ − 1
2 ϵ2
) (ϵ − 1

2 ϵ2, 0,−ϵ − 1
2 ϵ2
)

TABLE II. Reciprocal lattice vectors for the (1,1,1)-orientation. The deformation gradient tensor and the group generators corresponding to the infinitesimal parameters {ϵi} are
defined in Eqs. (14) and (15).

ϵ Δb1 Δb2 Δb3

ϵ1 (0, 4√
6

ϵ + 2√
6

ϵ2, 0) (
√

2ϵ −
√

2
2 ϵ2,− 2√

6
ϵ − 1√

6
ϵ2, 0) (−

√
2ϵ +

√
2

2 ϵ2,− 2√
6

ϵ − 1√
6

ϵ2, 0)

ϵ2 (0,− 2
√

2
3 ϵ +

√
6

9 ϵ2, 2
3 ϵ + 2

√
3

9 ϵ2
) (

√
6

3 ϵ −
√

2
6 ϵ2,

√
2

3 ϵ −
√

6
18 ϵ2, 2

3 ϵ + 2
√

3
9 ϵ2
) (−

√
6

3 ϵ +
√

2
6 ϵ2,

√
2

3 ϵ −
√

6
18 ϵ2, 2

3 ϵ + 2
√

3
9 ϵ2
)

ϵ3 (0,− 1√
3

ϵ + 2√
6

ϵ2,− 4√
6

ϵ +
√

3
6 ϵ2
) (0,− 1√

3
ϵ − 1√

6
ϵ2,+ 2√

6
ϵ +

√
3

6 ϵ2
) (0,− 1√

3
ϵ − 1√

6
ϵ2, 2√

6
ϵ +

√
3

6 ϵ2
)

ϵ4 (− 1√
3

ϵ, 0,
√

3
6 ϵ2
) (− 1√

3
ϵ − 1√

2
ϵ2, 0,

√
2ϵ +

√
3

6 ϵ2
) (− 1√

3
ϵ + 1√

2
ϵ2, 0,−

√
2ϵ +

√
3

6 ϵ2
)

ϵ5 (− 4√
6

ϵ, 2√
6

ϵ2, 0) ( 2√
6

ϵ − 1√
2

ϵ2,
√

2ϵ − 1√
6

ϵ2, 0) ( 2√
6

ϵ + 1√
2

ϵ2,−
√

2ϵ − 1√
6

ϵ2, 0)

ϵ6 (0, 1√
3

ϵ − 2√
6

ϵ2,− 4√
6

ϵ −
√

3
6 ϵ2
) (0, 1√

3
ϵ + 1√

6
ϵ2, 2√

6
ϵ −

√
3

6 ϵ2
) (0, 1√

3
ϵ + 1√

6
ϵ2, 2√

6
ϵ −

√
3

6 ϵ2
)

ϵ7 ( 1√
3

ϵ, 0,−
√

3
6 ϵ2
) ( 1√

3
ϵ + 1√

2
, 0,
√

2ϵ −
√

3
6 ϵ2
) ( 1√

3
ϵ − 1√

2
ϵ2, 0,−

√
2ϵ −

√
3

6 ϵ2
)
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for the pure deformations that do not involve mixed terms, i.e., ϵiϵj
for i ≠ j. When more than two different types of deformations are
applied, Eq. (14) still provides a correct formulation. However, such
mixed terms are irrelevant for our incompressible systems because
second-order corrections only enter via the diagonal terms in the
stiffness tensor, as we describe in Appendix D (see Ref. 80 for
details). Therefore, for the calculation of off-diagonal components
in the stiffness tensors, we simply add the second-order corrections
from two different types of pure deformations.

APPENDIX B: FOURIER TRANSFORM
OF THE MAGNETIC DIPOLE–DIPOLE INTERACTION
1. Undeformed system

In the case of the k ≠ 0 terms, we calculate the Fourier
transform utilizing the plane wave expansion

eik⋅r
= 4π

∞

∑
l=0

l

∑
m=−l

iljl(kr)Ym
l (k̂)Y

m∗
l (r̂), (B1)

where jl and Ym
l are spherical Bessel functions and spherical

harmonics, respectively, and the superscript asterisk ∗ denotes
complex conjugate. Since the dipole–dipole interaction energy
[Eq. (5)] is proportional to Y0

2 for m = mẑ, i.e.,

um(r) =
μ0m2

4πr3 (−4
√π

5
)Y0

2(θ, ϕ), (B2)

we obtain

ũm(k) = −∫
∞

σ
dr∫

π

0
dθ∫

2π

0
dϕ

μ0m2

π

√π
5

sin θ
r

Y0
2(θ, ϕ)e−ik⋅r

= 4μ0m2
√π

5
Y0

2(θk, ϕk)∫

∞

σ
dr

j2(kr)
r

= 4μ0m2
√π

5
(1 − 3 cos2 θk)

kσ cos kσ − sin kσ
k3σ3 . (B3)

Meanwhile, the k = 0 term is calculated as follows:

ũ(k = 0) = lim
R→∞

μ0m2

4π
2π∫

π

0
dθ∫

γR/
√

cos2 θ+γ2 sin2 θ

σ
dr r2 sin θ

1 − 3 cos2 θ
r3

= lim
R→∞

μ0m2

2 ∫

π

0
dθ sin θ(1 − 3 cos2 θ) ln r∣γR/

√
cos2 θ+γ2 sin2 θ

σ

= −
μ0m2

2 ∫

π

0
dθ sin θ (1 − 3 cos2 θ) ln

√

cos2 θ + γ2 sin2 θ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
μ0m2

2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
3
+

2
γ2 − 1

−
γ

(γ2 − 1)3/2

⎛
⎜
⎝

sinh−1√γ2 − 1 + tanh−1

¿
Á
ÁÀγ2 − 1

γ2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, γ > 1,

0, γ = 1,

−
μ0m2

2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
3
+

2
γ2 − 1

+
γ

(1 − γ2)3/2

⎛
⎜
⎝

sin−1√1 − γ2 + tan−1

¿
Á
ÁÀ1 − γ2

γ2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, γ < 1,

(B4)

where γ = RaspRsh. Apparently, the k = 0 Fourier mode depends on
the shape of systems, namely, the aspect ratio γ.

2. Deformed systems
When k ≠ 0, the Fourier transformation is shape independent.

For the k = 0 mode, however, the Fourier transform of the deformed
system is, in general, different from the undeformed one, due to the
dependence on the sample shape. To calculate the correction, we first
clarify how a deformation F modifies the integration via

∫
Ω(r,θ,ϕ)

d3 r
r2
− 3z2

r5 → ∫
Ω′(r,θ,ϕ)

d3r
r2
− 3z2

r5 , (B5)

where the prime indicates that the region of integration has been
changed according to the deformation. Then, we recover the origi-
nal shape of the system by changing the variables via r′ = F ⋅ r where
the center dot ⋅ denotes matrix multiplication, and subsequently,
rewriting the integration as

∫

π

0
dθ∫

2π

0
dϕ∫

γRc/
√

cos2 θ+γ2 sin2 θ

σ′(θ,ϕ)
dr

r2 sin θ (x′2 + y′2 − 2z′2)
r′2

= ∫

π

0
dθ U(θ), (B6)

while the boundaries of integration region stemming from the hard-
core repulsion must be modified accordingly. We note that the
differential d3r = dr r2 sin θ remains unchanged because ∣det F∣ = 1.
Also note that F ≡ ∂r′/∂r. Then, the above integration can be per-
formed up to the second order of {ϵi} with straightforward algebra,
which has been performed using Mathematica.92 Here, with

U0(θ) = −
sin θ − 3 sin 3θ

16
ln (cos2 θ + γ2 sin2 θ), (B7)

we write the integrand in Eq. (B6) as

U(θ) = U0(θ) + ΔU(θ,{ϵi}), (B8)

where ΔU is the correction due to deformation.
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First, for stretches (compressions) along the x-axis, combined
with compressions (stretches) along the y-axis associated with λ1,
ΔU reads

ΔU(θ, ϵ1) = −
ϵ2

1

128
sin3 θ[24 + 32 cos 2θ + 72 cos 4θ

+ (99 + 180 cos 2θ + 105 cos 4θ) ln (cos2 θ + γ2 sin2 θ)]

≡ ΔU1(θ, ϵ1). (B9)

At the same time, the correction stemming from the deforma-
tion associated with λ2 are already reflected in Eq. (B4), as we have
calculated the values of um(k = 0) for arbitrary aspect ratios. Because
of the uniaxial symmetry of the magnetic dipolar interaction, the
correction due to the shear deformations in the xy-plane takes the
same form as Eq. (B9), namely, ΔU(θ, ϵ5) = ΔU1(θ, ϵ5). Next, the
correction due to the shear deformations in the yz-plane is given as

ΔU(θ, ϵ3) =
ϵ2

3

256
[36 sin 3θ + 28 sin 5θ − 72 sin 7θ

+ (15 sin θ − 27 sin 3θ + 45 sin 5θ − 105 sin 7θ)

× ln (cos2 θ + γ2 sin2 θ)]

≡ ΔU3(θ, ϵ3). (B10)

Due to the symmetry, we obtain ΔU(θ, ϵ4) = ΔU3(θ, ϵ4) for the
shear deformation in the xz-plane. Now we turn to the deformations
involving rotations. Again due to the uniaxial symmetry, the correc-
tions due to the rotations in the xz- and yz-planes are identical with
each other, reading

ΔU(θ, ϵ6) =
3ϵ2

6

32
(sin θ − 3 sin 3θ) ln (cos2 θ + γ2 sin2 θ)

≡ ΔU6(θ, ϵ6). (B11)

For the off-diagonal terms, the form of ΔU is simply given as the sum
of two deformations, except for the cases of C36 and C47, in which the
correction terms are given by

ΔU(θ, ϵ3, ϵ6) = ΔU3(θ, ϵ3) + ΔU6(θ, ϵ6)

+
ϵ3ϵ6

128
[28 sin θ + 18 sin 3θ − 42 sin 5θ

+ (6 sin θ + 45 sin 3θ − 105 sin 5θ)

× ln (cos2 θ + γ2 sin2 θ)]

≡ U36(θ, ϵ3, ϵ6) (B12)

and

ΔU(θ, ϵ4, ϵ7) = ΔU36(θ, ϵ4, ϵ7). (B13)

The appearance of the additional correction terms of ϵ3ϵ6 and ϵ4ϵ7
is the direct consequence of the uniaxial symmetry underlying the
magnetic dipole–dipole interaction. Such corrections correspond to
the only nonzero mixing terms associated with the shear deforma-
tion and the rotation in any plane parallel to the anisotropy axis of
uniaxial systems, namely, the coefficient D2 in Ref. 48. Moreover,
equivalently to elastic constants as discussed in Appendix A, the cor-
rections to ũ(k = 0) associated with mixing in the second order do
not depend on nonlinear corrections in the deformation gradient
F. For the incompressibility constraint, they only appear at higher
orders.

APPENDIX C: FOURIER TRANSFORM
OF THE ANISOTROPIC PSEUDO-SPRING POTENTIAL

When k = 0, the Fourier transformation can be performed
analytically. In cylindrical coordinates, it reads

ũpseudo(k = 0) = 2π∫
RaspRc

−RaspRc

dz∫

√
R2

c−z2/R2
asp

0
dρ ρ[

1
2

kel(
√

ρ2 + z2 − ael)
2
− u0]

= 2π∫
RaspRc

−RaspRc

dz [
1
8

kelρ
4
−

1
3

kelael(ρ
2
+ z2
)

3/2
+

1
2

ρ2
(

1
2

kelz
2
+

1
2

kela
2
el − u0)]

√
R2

c−z2/R2
asp

0

= 4π∫
RaspRc

0
dz [

1
8

kel(R
2
c − z2

/R2
asp)

2
−

1
3

kelael(R
2
c − z2

/R2
asp + z2

)
3/2

+
1
3

kelaelz
3
+

1
2
(

1
2

kelz
2
+

1
2

kela
2
el − u0)(R2

c − z2
/R2

asp)], (C1)

which can be evaluated straightforwardly, except for

∫

RaspRc

0
dz (R2

c − z2
/R2

asp + z2
)

3/2
− z3
=

1
8

R2
aspR4

c(3 + 2R2
asp) +

3
8

RaspR4
c

sinh−1√
−1 + R2

asp
√
−1 + R2

asp
. (C2)

Altogether, we obtain
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ũpseudo(k = 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π[
1

15
Rasp(2 + R2

asp)kelR
5
c −

1
4
(R2

asp +
Rasp sinh−1√

−1 + R2
asp

√
−1 + R2

asp
)kelaelR

4
c

+
2
3

Rasp(
1
2

kela
2
el − u0)R3

c] − C0, Rasp > 1,

4π[
1

10
kelR

5
c −

1
4

kelR
4
c ael +

1
3

R3
c(

1
2

kela
2
el − u0)] − C0, Rasp = 1,

2π[
1

15
Rasp(2 + R2

asp)kelR
5
c −

1
4
(R2

asp +
Rasp sin−1√1 − R2

asp
√

1 − R2
asp

)kelaelR
4
c

+
2
3

Rasp(
1
2

kela
2
el − u0)R3

c] − C0, Rasp < 1,

where

C0 ≡ 4π[
1

10
kelσ

5
−

1
4

kelσ
4ael +

1
3

σ3
(

1
2

kela
2
el − u0)]. (C3)

When k ≠ 0, we have

ũpseudo(k) = ∫
RaspRc

−RaspRc

dz∫

√
R2

c−z2/R2
asp

0
dρ∫

2π

0
dϕ ρ[

1
2

kel(
√

ρ2 + z2 − ael)
2
− u0]e−ik⋅r

− ∫

σ

0
dr∫

π

0
dθ∫

2π

0
dϕ r2 sin θ [

1
2

kel(r − ael)
2
− u0]e−ik⋅r

= 4π∫
RaspRc

0
dz∫

√
R2

c−z2/R2
asp

0
dρ ρ [

1
2

kel(
√

ρ2 + z2 − ael)
2
− u0] cos (kzz) J0 (ρ

√

k2
x + k2

y)

−
2π
k5 [4kelk + {kel(−4 + 6σ)k − kel(σ

3
− 2σ2

+ σ)k3
+ 2u0σk3

} cos kσ]

+ {−6kel + kel(1 − 4σ + 3σ2
)k2
− 2u0k2

} sin kσ], (C4)

where J0 is the Bessel function of the first kind of order zero. We
implemented the double integration in the third line using the
Cubature package.93

We recall our assumption and observation underlying the map-
ping onto the pseudo-spring system that the interaction does not
depend much on the precise location of the boundaries of the
Wigner–Seitz cells. This results from the localization of the peaks
in the density profiles mainly in the center of the cells.49 Therefore,
in contrast to the magnetic dipole–dipole interaction, we simply use
the same value of ũpseudo(k) obtained for the undeformed geometry
also for the deformed systems.

APPENDIX D: IRREDUCIBLE REPRESENTATION
FOR STIFFNESS TENSORS

In the framework of linear elasticity theory, irreducible rep-
resentations for stiffness tensors are determined by the underlying
symmetry of the systems. We consider here the strains that are
defined in linear elasticity as

ϵij ≡
1
2
(∇iuj +∇jui), (D1)

where u denotes the displacement field. For a tetragonal lat-
tice [(0,0,1)-orientation], the stiffness matrix C in Mandel

(or orthonormal) notation, where the stiffness matrix becomes a
second-rank tensor,94,95 takes the form

C Tetr
Mandel

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C̃00 C̃01 C̃02 0 0 0

C̃01 C̃00 C̃02 0 0 0

C̃02 C̃02 C̃22 0 0 0

0 0 0 C̃33 0 0

0 0 0 0 C̃33 0

0 0 0 0 0 C̃55

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (D2)

We note that here the indices run from 0 to 5, not from 1 to 6.
We then turn to nonlinear elasticity. The infinitesimal group

generators corresponding to Eq. (D1) are {λ̃i} for i = 0, . . . , 5,
three of which are defined componentwise via [λ̃i−1]lm = δilδim
for i, l, m = 1, 2, 3, and the others by λ̃i = λi for i = 3, 4, 5. Then
we introduce a transformation, which allows us to switch to the
generators of Eq. (15). Since a set of infinitesimal group gen-
erators is a basis of a vector space, namely, Lie algebra, we
can find the form of generalized elastic constants correspond-
ing to Eq. (15) via a linear transformation. Specifically, a unitary
transformation
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U =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
√

3
1
√

3
1
√

3
0 0 0

1
√

2
−

1
√

2
0 0 0 0

1
√

6
1
√

6
−

√
2
√

3
0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(D3)

connects, via ϵ = U ⋅ ϵ̃, the deformation vector ϵ̃ = 1/
√

2(ϵ̃0, . . . , ϵ̃5)

in Mandel notation, corresponding to {λ̃i}, to ϵ = (ϵ0, . . . , ϵ5), cor-
responding to the set of group generators consisting of {λi} for
i = 1, . . . , 5, and λ0 ≡

√
2/3I, where I is the 3 × 3 identity matrix,

such that ∑iϵiλi = ∑iϵ̃iλ̃i. Subsequently, the stiffness tensor C
com

for compressible systems can be computed from C
com
= U ⋅ C

Mandel
⋅U T , as is obvious from linear algebra. Within this representation,
all deformations involving a volume change are associated with the
generator λ0. Therefore, under the incompressibility constraint, the
components in C

com
associated with λ0 become irrelevant. Further-

more, predeformations also give rise to additional terms that are

absent in linear elasticity, as demonstrated in Ref. 80. In our case,
such nonlinear contributions are all diagonal and associated with the
generalized pressure

p = −
1
√

6
∂F
∂ϵ0

, (D4)

which only makes sense if a volume change is allowed.
Finally, we conclude that the stiffness tensor of incompressible

systems for the tetragonal lattice corresponding to the (0,0,1)-case
takes the form of

C Tetr
in
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 0 0 0 0

0 C22 0 0 0

0 0 C33 0 0

0 0 0 C33 0

0 0 0 0 C55

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (D5)

whose components are defined by Eq. (17).
Second, if the (1,1,1)-direction of the lattice is oriented along

the z-axis, we have a rhombohedral lattice (RI Laue group), the
stiffness tensor of which, again in Mandel notation, is given as96,97

C Rhomb
Mandel

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C̃00 C̃01 C̃02
√

2C̃03 0 0

C̃01 C̃00 C̃02 −
√

2C̃03 0 0

C̃02 C̃02 C̃22 0 0 0
√

2C̃03 −
√

2C̃03 0 2C̃33 0 0

0 0 0 0 2C̃33 2C̃03

0 0 0 0 2C̃03 C̃00 − C̃01

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (D6)

Then, the stiffness tensor of the corresponding incompressible
systems, within our notation, reads

C Rhomb
in

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 0 C13 0 0

0 C22 0 0 0

C13 0 C33 0 0

0 0 0 C33 C13

0 0 0 C13 C11

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (D7)

In summary, the stiffness tensors derived here, i.e., Eqs. (D5)
and (D7), are a nonlinear extension of the linear stiffness ten-
sors, e.g., Eq. (D2) for tetragonal lattices, the former of which
are now precise up to the second-order of the deformation
vector ϵ.

REFERENCES
1G. Filipcsei, I. Csetneki, A. Szilágyi, and M. Zrínyi, Adv. Polym. Sci. 206, 137
(2007).
2P. Ilg, Soft Matter 9, 3465 (2013).
3A. M. Menzel, Phys. Rep. 554, 1 (2015).
4S. Odenbach, Arch. Appl. Mech. 86, 269 (2016).
5N. Frickel, R. Messing, and A. M. Schmidt, J. Mater. Chem. 21, 8466 (2011).
6R. Messing, N. Frickel, L. Belkoura, R. Strey, H. Rahn, S. Odenbach, and A. M.
Schmidt, Macromolecules 44, 2990 (2011).
7T. Gundermann and S. Odenbach, Smart Mater. Struct. 23, 105013 (2014).
8J. Landers, L. Roeder, S. Salamon, A. M. Schmidt, and H. Wende, J. Phys. Chem.
C 119, 20642 (2015).
9L. Roeder, P. Bender, M. Kundt, A. Tschöpe, and A. M. Schmidt, Phys. Chem.
Chem. Phys. 17, 1290 (2015).
10J. M. Ginder, S. M. Clark, W. F. Schlotter, and M. E. Nichols, Int. J. Mod. Phys. B
16, 2412 (2002).
11G. Y. Zhou and Z. Y. Jiang, Smart Mater. Struct. 13, 309 (2004).

J. Chem. Phys. 158, 054909 (2023); doi: 10.1063/5.0133207 158, 054909-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1007/12_2006_104
https://doi.org/10.1039/c3sm27809c
https://doi.org/10.1016/j.physrep.2014.10.001
https://doi.org/10.1007/s00419-015-1092-6
https://doi.org/10.1039/c0jm03816d
https://doi.org/10.1021/ma102708b
https://doi.org/10.1088/0964-1726/23/10/105013
https://doi.org/10.1021/acs.jpcc.5b03697
https://doi.org/10.1021/acs.jpcc.5b03697
https://doi.org/10.1039/c4cp04493b
https://doi.org/10.1039/c4cp04493b
https://doi.org/10.1142/s021797920201244x
https://doi.org/10.1088/0964-1726/13/2/009


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

12C. Gollwitzer, A. Turanov, M. Krekhova, G. Lattermann, I. Rehberg, and
R. Richter, J. Chem. Phys. 128, 164709 (2008).
13D. Y. Borin, G. V. Stepanov, and S. Odenbach, J. Phys.: Conf. Ser. 412, 012040
(2013).
14E. Y. Kramarenko, A. V. Chertovich, G. V. Stepanov, A. S. Semisalova, L. A.
Makarova, N. S. Perov, and A. R. Khokhlov, Smart Mater. Struct. 24, 035002
(2015).
15A. P. Safronov and E. A. Mikhnevich, J. Phys.: Conf. Ser. 1389, 012057
(2019).
16D. Y. Borin, S. Odenbach, and G. V. Stepanov, J. Magn. Magn. Mater. 470, 85
(2019).
17D. V. Saveliev, I. A. Belyaeva, D. V. Chashin, L. Y. Fetisov, D. Romeis,
W. Kettl, E. Y. Kramarenko, M. Saphiannikova, G. V. Stepanov, and M. Shamonin,
Materials 13, 3297 (2020).
18K. Danas, S. V. Kankanala, and N. Triantafyllidis, J. Mech. Phys. Solids 60, 120
(2012).
19T. Gundermann, P. Cremer, H. Löwen, A. M. Menzel, and S. Odenbach, Smart
Mater. Struct. 26, 045012 (2017).
20G. Pessot, M. Schümann, T. Gundermann, S. Odenbach, H. Löwen, and A. M.
Menzel, J. Phys.: Condens. Matter 30, 125101 (2018).
21M. Puljiz, S. Huang, K. A. Kalina, J. Nowak, S. Odenbach, M. Kästner, G. K.
Auernhammer, and A. M. Menzel, Soft Matter 14, 6809 (2018).
22S. Sturm, M. Siglreitmeier, D. Wolf, K. Vogel, M. Gratz, D. Faivre, A. Lubk,
B. Büchner, E. V. Sturm, and H. Cölfen, Adv. Funct. Mater. 29, 1905996
(2019).
23M. Schümann, J. Morich, S. Günther, and S. Odenbach, J. Magn. Magn. Mater.
502, 166537 (2020).
24P. Cremer, M. Heinen, A. M. Menzel, and H. Löwen, J. Phys.: Condens. Matter
29, 275102 (2017).
25E. Jarkova, H. Pleiner, H.-W. Müller, and H. R. Brand, Phys. Rev. E 68, 041706
(2003).
26S. Bohlius, H. R. Brand, and H. Pleiner, Phys. Rev. E 70, 061411 (2004).
27T. Potisk, H. Pleiner, and H. R. Brand, Eur. Phys. J. E 42, 35 (2019).
28Y. L. Raikher and O. V. Stolbov, J. Magn. Magn. Mater. 289, 62 (2005).
29Y. L. Raikher and O. V. Stolbov, J. Phys.: Condens. Matter 20, 204126 (2008).
30O. V. Stolbov and Y. L. Raikher, Arch. Appl. Mech. 89, 63 (2019).
31R. Weeber, S. Kantorovich, and C. Holm, Soft Matter 8, 9923 (2012).
32R. Weeber, S. Kantorovich, and C. Holm, J. Chem. Phys. 143, 154901 (2015).
33E. S. Minina, P. A. Sánchez, C. N. Likos, and S. S. Kantorovich, J. Magn. Magn.
Mater. 459, 226 (2018).
34O. V. Stolbov, Y. L. Raikher, and M. Balasoiu, Soft Matter 7, 8484 (2011).
35D. Ivaneyko, V. Toshchevikov, M. Saphiannikova, and G. Heinrich, Condens.
Matter Phys. 15, 33601 (2012).
36L. Fischer and A. M. Menzel, J. Chem. Phys. 151, 114906 (2019).
37D. Romeis, V. Toshchevikov, and M. Saphiannikova, Soft Matter 15, 3552
(2019).
38D. S. Wood and P. J. Camp, Phys. Rev. E 83, 011402 (2011).
39A. M. Biller, O. V. Stolbov, and Y. L. Raikher, J. Appl. Phys. 116, 114904
(2014).
40A. M. Biller, O. V. Stolbov, and Y. L. Raikher, Phys. Rev. E 92, 023202 (2015).
41M. Puljiz, S. Huang, G. K. Auernhammer, and A. M. Menzel, Phys. Rev. Lett.
117, 238003 (2016).
42M. Puljiz and A. M. Menzel, Phys. Rev. E 95, 053002 (2017).
43P. Metsch, K. A. Kalina, C. Spieler, and M. Kästner, Comput. Mater. Sci. 124,
364 (2016).
44D. Romeis, P. Metsch, M. Kästner, and M. Saphiannikova, Phys. Rev. E 95,
042501 (2017).
45G. Pessot, P. Cremer, D. Y. Borin, S. Odenbach, H. Löwen, and A. M. Menzel,
J. Chem. Phys. 141, 015005 (2014).
46G. Pessot, H. Löwen, and A. M. Menzel, J. Chem. Phys. 145, 104904 (2016).
47A. M. Menzel, Arch. Appl. Mech. 89, 17 (2019).
48A. M. Menzel, J. Chem. Phys. 141, 194907 (2014).
49S. Goh, R. Wittmann, A. M. Menzel, and H. Löwen, Phys. Rev. E 100, 012605
(2019).

50R. Evans, Adv. Phys. 28, 143 (1979).
51H. Löwen, J. Phys.: Condens. Matter 14, 11897 (2002).
52D. W. Oxtoby, Annu. Rev. Mater. Res. 32, 39 (2002).
53R. Evans, M. Oettel, R. Roth, and G. Kahl, J. Phys.: Condens. Matter 28, 240401
(2016).
54T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens, Dynamics and
Thermodynamics of Systems with Long-Range Interactions (Springer, 2002),
pp. 1–19.
55A. Arnold and C. Holm, “Efficient methods to compute long-range interactions
for soft matter systems,” in Advanced Computer Simulation Approaches for Soft
Matter Sciences II, edited by C. Holm and K. Kremer (Springer, Berlin Heidelberg,
2005), pp. 59–109.
56M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford
University Press, 2017).
57S. D. Peroukidis and S. H. L. Klapp, Soft Matter 12, 6841 (2016).
58N. H. Siboni, G. P. Shrivastav, S. D. Peroukidis, and S. H. L. Klapp, Phys. Sci.
Rev. 7, 1345 (2022).
59B. Groh and S. Dietrich, Phys. Rev. Lett. 72, 2422 (1994).
60B. Groh and S. Dietrich, Phys. Rev. E 50, 3814 (1994).
61D. Ivaneyko, V. Toshchevikov, M. Saphiannikova, and G. Heinrich, Soft Matter
10, 2213 (2014).
62P. G. de Gennes, “Weak nematic gels,” in Liquid Crystals of One-And
Two-Dimensional Order (Springer, 1980), pp. 231–237.
63H. R. Brand and H. Pleiner, Physica A 208, 359 (1994).
64A. M. Menzel, H. Pleiner, and H. R. Brand, J. Chem. Phys. 126, 234901
(2007).
65A. M. Menzel, H. Pleiner, and H. R. Brand, Eur. Phys. J. E 30, 371
(2009).
66G. Filipcsei and M. Zrínyi, J. Phys.: Condens. Matter 22, 276001 (2010).
67M. A. Annunziata, A. M. Menzel, and H. Löwen, J. Chem. Phys. 138, 204906
(2013).
68P. A. Sánchez, O. V. Stolbov, S. S. Kantorovich, and Y. L. Raikher, Soft Matter
15, 7145 (2019).
69M. V. Vaganov, D. Y. Borin, S. Odenbach, and Y. L. Raikher, J. Magn. Magn.
Mater. 499, 166249 (2020).
70M. Oettel, S. Görig, A. Härtel, H. Löwen, M. Radu, and T. Schilling, Phys. Rev. E
82, 051404 (2010).
71H. Hansen-Goos and R. Roth, J. Phys.: Condens. Matter 18, 8413 (2006).
72P. Tarazona, Phys. Rev. Lett. 84, 694 (2000).
73R. Roth, J. Phys.: Condens. Matter 22, 063102 (2010).
74S. H. L. Klapp, J. Phys.: Condens. Matter 17, R525 (2005).
75T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775 (1979).
76W. A. Curtin and N. W. Ashcroft, Phys. Rev. A 32, 2909 (1985).
77A. R. Denton and N. W. Ashcroft, Phys. Rev. A 39, 4701 (1989).
78Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
79R. Ohnesorge, H. Löwen, and H. Wagner, Europhys. Lett. 22, 245 (1993).
80S. Goh, H. Löwen, and A. M. Menzel, Phys. Rev. B 106, L100101 (2022).
81S. Goh, A. M. Menzel, and H. Löwen, Phys. Chem. Chem. Phys. 20, 15037
(2018).
82E. Allahyarov, H. Löwen, and L. Zhu, Phys. Chem. Chem. Phys. 17, 32479
(2015).
83G. J. L. Jäger, L. Fischer, T. Lutz, and A. M. Menzel, J. Phys.: Condens. Matter
34, 485101 (2022).
84N. Queralto Gratacos, “Functional hydrogels: Ferrogel thin films,” Ph.D. thesis,
Johannes Gutenberg-Universität Mainz, 2010.
85S. van Teeffelen, H. Löwen, and C. N. Likos, J. Phys.: Condens. Matter 20,
404217 (2008).
86L. Fischer and A. M. Menzel, Smart Mater. Struct. 30, 014003 (2020).
87H. Reich and M. Schmidt, J. Stat. Phys. 116, 1683 (2004).
88M. Schmidt, J. Phys.: Condens. Matter 17, S3481 (2005).
89U. M. B. Marconi and P. Tarazona, J. Chem. Phys. 110, 8032 (1999).
90M. Schmidt and J. M. Brader, J. Chem. Phys. 138, 214101 (2013).
91M. te Vrugt, H. Löwen, and R. Wittkowski, Adv. Phys. 69, 121 (2020).

J. Chem. Phys. 158, 054909 (2023); doi: 10.1063/5.0133207 158, 054909-15

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.2905212
https://doi.org/10.1088/1742-6596/412/1/012040
https://doi.org/10.1088/0964-1726/24/3/035002
https://doi.org/10.1088/1742-6596/1389/1/012057
https://doi.org/10.1016/j.jmmm.2017.12.072
https://doi.org/10.3390/ma13153297
https://doi.org/10.1016/j.jmps.2011.09.006
https://doi.org/10.1088/1361-665x/aa5f96
https://doi.org/10.1088/1361-665x/aa5f96
https://doi.org/10.1088/1361-648x/aaaeaa
https://doi.org/10.1039/c8sm01051j
https://doi.org/10.1002/adfm.201905996
https://doi.org/10.1016/j.jmmm.2020.166537
https://doi.org/10.1088/1361-648x/aa73bd
https://doi.org/10.1103/physreve.68.041706
https://doi.org/10.1103/physreve.70.061411
https://doi.org/10.1140/epje/i2019-11798-6
https://doi.org/10.1016/j.jmmm.2004.11.018
https://doi.org/10.1088/0953-8984/20/20/204126
https://doi.org/10.1007/s00419-018-1452-0
https://doi.org/10.1039/c2sm26097b
https://doi.org/10.1063/1.4932371
https://doi.org/10.1016/j.jmmm.2017.10.107
https://doi.org/10.1016/j.jmmm.2017.10.107
https://doi.org/10.1039/c1sm05714f
https://doi.org/10.5488/cmp.15.33601
https://doi.org/10.5488/cmp.15.33601
https://doi.org/10.1063/1.5118875
https://doi.org/10.1039/c9sm00226j
https://doi.org/10.1103/physreve.83.011402
https://doi.org/10.1063/1.4895980
https://doi.org/10.1103/physreve.92.023202
https://doi.org/10.1103/physrevlett.117.238003
https://doi.org/10.1103/physreve.95.053002
https://doi.org/10.1016/j.commatsci.2016.08.012
https://doi.org/10.1103/physreve.95.042501
https://doi.org/10.1063/1.4896147
https://doi.org/10.1063/1.4962365
https://doi.org/10.1007/s00419-018-1413-7
https://doi.org/10.1063/1.4901275
https://doi.org/10.1103/physreve.100.012605
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1088/0953-8984/14/46/301
https://doi.org/10.1146/annurev.matsci.32.100401.103425
https://doi.org/10.1088/0953-8984/28/24/240401
https://doi.org/10.1039/c6sm01264g
https://doi.org/10.1515/psr-2019-0108
https://doi.org/10.1515/psr-2019-0108
https://doi.org/10.1103/physrevlett.72.2422
https://doi.org/10.1103/physreve.50.3814
https://doi.org/10.1039/c3sm52440j
https://doi.org/10.1016/0378-4371(94)00060-3
https://doi.org/10.1063/1.2742383
https://doi.org/10.1140/epje/i2009-10535-2
https://doi.org/10.1088/0953-8984/22/27/276001
https://doi.org/10.1063/1.4807003
https://doi.org/10.1039/c9sm00827f
https://doi.org/10.1016/j.jmmm.2019.166249
https://doi.org/10.1016/j.jmmm.2019.166249
https://doi.org/10.1103/physreve.82.051404
https://doi.org/10.1088/0953-8984/18/37/002
https://doi.org/10.1103/physrevlett.84.694
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1088/0953-8984/17/15/r02
https://doi.org/10.1103/physrevb.19.2775
https://doi.org/10.1103/physreva.32.2909
https://doi.org/10.1103/physreva.39.4701
https://doi.org/10.1103/physrevlett.63.980
https://doi.org/10.1209/0295-5075/22/4/002
https://doi.org/10.1103/physrevb.106.l100101
https://doi.org/10.1039/c8cp01395k
https://doi.org/10.1039/c5cp05522a
https://doi.org/10.1088/1361-648x/ac98e8
https://doi.org/10.1088/0953-8984/20/40/404217
https://doi.org/10.1088/1361-665x/abc148
https://doi.org/10.1023/b:joss.0000041752.55138.0a
https://doi.org/10.1088/0953-8984/17/45/037
https://doi.org/10.1063/1.478705
https://doi.org/10.1063/1.4807586
https://doi.org/10.1080/00018732.2020.1854965


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

92Wolfram Research, Inc., Mathematica, Version 11.3, Champaign, IL, 2020.
93S. G. Johnson, Cubature Package, https://github.com/stevengj/cubature
(accessed 15 Octobver 2022).
94M. M. Mehrabadi and S. C. Cowin, Q. J. Mech. Appl. Math. 43, 15 (1990).
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