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Defect dynamics in active smectics induced by
confining geometry and topology
Zhi-Feng Huang 1✉, Hartmut Löwen 2✉ & Axel Voigt 3✉

The persistent dynamics in systems out of equilibrium, particularly those characterized by

annihilation and creation of topological defects, is known to involve complicated spatio-

temporal processes and is deemed difficult to control. Here the complex dynamics of defects

in active smectic layers exposed to strong confinements is explored, through self-propulsion

of active particles and a variety of confining geometries with different topology, ranging from

circular, flower-shaped epicycloid, to hypocycloid cavities, channels, and rings. We identify a

wealth of dynamical behaviors during the evolution of complex spatiotemporal defect pat-

terns as induced by the confining shape and topology, particularly a perpetual creation-

annihilation dynamical state at intermediate activity with large fluctuations of topological

defects and a controllable transition from oscillatory to damped time correlation of defect

number density via mechanisms governed by boundary cusps. Our results are obtained by

using an active phase field crystal approach. Possible experimental realizations are also

discussed.
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Defects in ordered or pattern-forming systems are of great
interest both from a fundamental physics point of view
highlighting the role of topology in condensed matter1–5

and for applications since they largely control the material
properties. For the example of liquid crystals, most of the studies
have focused on topological defects in the orientational ordered
nematic phase of lyotropic or thermotropic liquid crystals and by
now it has been well understood how to trigger them by external
influences6–10 and confinements11–16. In the layered smectic
phase, defect characterization is more complex due to the addi-
tional positional ordering17–20 but can be varied by confinement
as well21,22.

In recent years, active particles that are self-propelled intrin-
sically and relevant for biological swarms, motor proteins and
biofilaments have been of tremendous interest23–26. These par-
ticles self-organize into fascinating “active” liquid crystalline
phases which are qualitatively different from their passive coun-
terparts in or near equilibrium and are governed by nonrelaxa-
tional dynamical processes that are the characteristics of far-
from-equilibrium pattern-forming or chaotic systems4. One
important example of active matter systems involves active
nematics showing orientational order. The dynamics of topolo-
gical defects in active nematics have been analyzed to a large
extent and a plethora of new phenomena were discovered (see,
e.g., Refs. 27–36). In particular, effects of confinement were
explored for channels and capillaries37–44, resulting in e.g., non-
trivial dancing motion of defects45. However, confinements dif-
ferent from channels were only rarely addressed46. In parallel,
effects of topology in the confinement have been studied for
active nematics47,48. Also active layered smectic-like states which
exhibit an additional positional order have been examined49,50.
These systems are modeled by aligning51 and nonreciprocal52

interactions or nonlinear feedback53. Due to the nontrivial cou-
pling between orientational and positional degrees of freedom
with the active driving force, active layered smectic systems and
their defect dynamics are much more complex than their nematic
counterparts. To the best of our knowledge, studies of defects in
active smectics, including their dynamics and controllability by
external constraints, are still sparse. Moreover, the effect of sharp
cusps in the confinement shape has never been addressed for any
active liquid crystalline or active pattern systems.

Here, we contribute to fill this gap and explore defect dynamics
of active smectic systems by using an active phase field crystal
(PFC) model54–61 in a parameter setting where a traveling stripe
phase is stable. We expose this state of self-propelled smectics to
strong confinements where the smectic layer width is getting
comparable to or not far from the confining length scales. A rich
variety of boundary geometries with different topologies,
including cavities and open or closed channels that are of various
convex, concave, and cusped shapes, are considered. Our purpose
here is to attain a systematic understanding of the complex
dynamics of defects in the confined active smectics, particularly
the effects of both geometry and topology. The confinements
examined can be classified into two types of topology, closed
cavity vs channel/ring (including closed rings and open channels
with periodic boundary condition along open ends). Each of them
includes different types of confining geometries with different
number of sharp, singular cusps, either inward cusps (in epicy-
cloid cavities or rings or cycloid open channel) or outward cusps
(in hypocycloid cavities), or both combined (as in hypocycloid
rings). Each type of topology also involves smooth boundaries
with the lack of cusps (such as circular cavity, S-shaped open
channel, and annulus).

In this study a wealth of nonequilibrium defected states are
found in the evolution towards complex spatiotemporal patterns
arising from a competition of activity and confinement. The

mechanisms governing the dynamics of defects at large enough
activity strongly differ from those of passive patterns and active
nematics. The persistent defect dynamics identified here, espe-
cially the highly fluctuating defect state, goes far beyond the
traditional classification familiar in passive systems, and is shown
to be induced by the confining shape and topology of the cavity or
channel and the degree of particle self-propulsion. This dyna-
mical regime of high defect fluctuations occurs at intermediate
activity as characterized by the perpetual process of defect crea-
tion-propagation-annihilation, showing as intermittently varying
time stages with bursts of defects emerging in most of boundary
confinements other than the smooth-boundary channels without
cusp (i.e., S-shaped channel and annulus). In particular, the
presence of cuspated boundaries induces or annihilates defects,
which can be utilized to control the dynamics of defect creation
and the quantitative behavior (oscillatory vs damped) of time
correlation of defect density. Our predictions can be verified for
confined dense vibrated granular rods62–64 or self-propelled col-
loidal Janus particles65,66 exposed to strong confinements21.

Results and discussion
Model. We describe the evolution of active smectics under con-
finement based on a continuum density-field theory, i.e., the
active PFC model which can be derived from dynamical density
functional theory54,55 and also from a particle-based microscopic
description60. It reads

∂ψ

∂t
¼ ∇2 δF

δψ
� v0∇ � P; ð1Þ

∂P
∂t

¼ ∇2 � Dr

� � δF
δP

� v0∇ψ; ð2Þ

where ψ is the particle density variation field, the polarization P
represents the local orientation vector field, v0 measures the
strength of particle self-propulsion, and Dr is the rotational diffu-
sion constant. The above dynamical equations have been rescaled,
with a diffusive timescale and a length scale set via the pattern
periodicity. The model considers conserved dynamics for ψ, as seen
in Eq. (1), and thus the average density ψ0 remains unchanged
during the system evolution. We set F ¼ F aPFC þ F anch, whereF aPFC is the rescaled free energy functional of active PFC54,55

F aPFC ¼
Z

dr
1
2
ψ ϵþ ∇2 þ q20

� �2h i
ψ þ 1

4
ψ4 þ C1

2
jPj2

� �
; ð3Þ

with ϵ < 0, the characteristic wave number q0= 1 after rescaling,
and C1 > 0 tending to suppress any spontaneous ordering of
orientational alignment. ϵ and the average density ψ0 are chosen to
give rise to the resting or traveling active smectic phase54.

We represent the effect of boundary confinement via an
anchoring energy

F anch ¼
Z

dr
VbðrÞ
2

ðψ � ψbÞ2 þ jP� Pbj2 þ n̂ � ∇ψ� �2h i
;

ð4Þ
to effectively satisfy both Dirichlet and Neumann boundary
conditions ψ= ψb, P= Pb, and n̂ � ∇ψ ¼ 0 (with n̂ the local unit
normal) at any implicitly defined domain boundary, with

VbðrÞ ¼
Vb0

2
1þ tanh

rsðrÞ
Δ

� �� 	
; ð5Þ

where Vb0 gives the anchoring strength, rs(r) is the signed
distance function to the domain boundary (with rs < 0 inside the
domain and > 0 outside), and Δ sets the thickness of boundary
interface. This approach we develop here combines an approx-
imation of domain interface energy for imposing the boundary
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conditions and a setup of boundary via Vb(r)= Vb0ϕ(r) with an
auxiliary phase field function ϕ(r) used in the diffuse domain
method67 to control the confinement geometry implicitly. More
details, including the specific analytical forms for different
geometries of the cavities or channels simulated, are given in
the Methods section. Among them, the geometry of epicycloid or
hypercycloid with integer n cusps is described as a closed plane
curve formed by the rolling of a small circle of radius b on the
outside or inside of another larger fixed circle of radius a= nb,
respectively, with their parametric equations given in Eqs. (26)
and (27) of the Methods section. Equation (4) produces the
condition of planar anchoring as found in experiments. Its last
term is analogous to the Rapini-Papoular form of surface
potential3,14. In our simulations (starting from random initial
conditions), we set (ϵ, ψ0,Dr, C1)= (−0.98, 0, 0.5, 0.2) in the
strong segregation regime of stripe phase, and (Vb0, Δ, ψb, Pb)=
(1, 0.1, 0, 0) for the cavity or channel boundary setup. We have
tested stronger anchoring strength with larger value of Vb0 and
found that larger self-propulsion strength v0 would then be
needed to overcome the stronger boundary confinement
particularly for defect nucleation, while the corresponding results
obtained are qualitatively similar.

Defects dynamics in closed cavities. The emergence of topolo-
gical defects, including disclinations, dislocations, and grain
boundaries, is observed in our simulation systems (see Fig. 1 for
some typical smectic defects, similar to those found in passive
smectic or stripe-pattern systems1–5). Their complex behaviors of
dynamical evolution is further complicated by the effects of active
self-driving and boundary confinement. In the confined cavities
of different geometries, our results presented in Fig. 2 show that
the evolution of these defects in active smectics is governed by
three intrinsically different dynamical regimes. At weak enough
self-propulsion strength v0 (first column of Fig. 2a–c), the stripes
(smectic layers) remain perpendicular to the boundary, showing
planar anchoring with tangential alignment of constituent particle
orientations. The defects emerging from the early stage of system
evolution become mostly pinned, with extremely slow local
dynamics, similar to the glassy state observed in strongly segre-
gated passive stripe patterns showing no long range orientational
order as a result of defect pinning by the pattern-periodicity
induced potential barrier68.

In the other limit of large enough v0, the particle self-
propulsion completely overcomes the defect pinning barrier,
facilitating the fast annihilation of defects as accelerated by the
effect of self-driving on the smectic layer alignment. As shown in
the last column of Fig. 2a–c, large particle activity also enables the
overcoming of boundary anchoring constraint, leading to the
violation of local planar anchoring, and depending on the

boundary geometry, even to (partially) homeotropic anchoring.
At late stage such a strong self-driving induces the rotation of
smectics inside the cavity, either clockwise or counterclockwise,
and hence the persistent self-rotation of the remaining multi-core
spiral defects trapped at the cavity center.

The transition between these different dynamical regimes
occurs within a narrow range of the self-propulsion strength v0
(middle column of Fig. 2a–c). To understand this transition
between localized and traveling smectic patterns, we focus on the
bulk state and neglect the boundary anchoring energy. This
allows us to rewrite Eqs. (1) and (2) via defining a local
polarization divergence field S=∇ ⋅ P, i.e.,

∂ψ

∂t
¼ ∇2 ϵψ þ ∇2 þ q20

� �2
ψ þ ψ3

h i
� v0S; ð6Þ

∂S
∂t

¼ C1 ∇2 � Dr

� �
S� v0∇

2ψ: ð7Þ

Working in a comoving frame with r ! r0 ¼ r� vmt and
assuming ψ= ψ(r− vmt) and S= S(r− vmt) in the nonequili-
brium steady state of pattern dynamics, where vm is the migration
velocity of smectic layers, we can obtain the equations governing
the Fourier components ψ̂q and Ŝq of the ψ and S fields as

iðq � vmÞψ̂q ¼ q2 ϵþ q2 � q20
� �2h i

ψ̂q þ ψ3jq
n o

þ v0Ŝq; ð8Þ

iðq � vmÞŜq ¼ C1 q2 þ Dr

� �
Ŝq � v0q

2ψ̂q: ð9Þ
In one-mode approximation the density field for a perfect

stripe phase is given by ψ ¼ A exp½iqs � ðr� vmtÞ� þ c:c: ¼
A expðiqs � r0Þ þ c:c:, where qs is the selected wave vector of the
pattern and A ¼ A0e

iϕ0 with a constant phase ϕ0. Here we have
assumed that the model parameters (including ϵ, v0, C1, and Dr)
are within the range of the traveling state of active smectic pattern
examined in this work. For mode qs Eqs. (8) and (9) then become

ϵþ q2s � q20
� �2 þ v20

C1 q2s þ Dr

� �� iqs � vm
� iqs � vm

q2s

" #
A0 þ 3A3

0 ¼ 0;

ð10Þ

Ŝqs ¼
v0q

2
s A

C1 q2s þ Dr

� �� iqs � vm
: ð11Þ

Separating real and imaginary parts of Eq. (10) leads to the
following solutions for velocity vm and amplitude A0: When
∣v0∣ ≤ v0c, we have vm= 0 corresponding to localized stripe
patterns, with

A2
0ðvm ¼ 0Þ ¼ � 1

3
ϵþ q2s � q20

� �2 þ v20
C1 q2s þ Dr

� �
" #

; ð12Þ

Fig. 1 Topological defects in active smectics. Typical topological defects found in simulations of active smectic pattern as determined by the density field
profile, including (a)+ 1/2 and (b)− 1/2 disclinations, and (c) a single and a doublet of edge dislocations. Some local normal directions of smectic layers
are indicated by arrows, and an integral of their orientational angle θs over a counterclockwise closed-path loop around the defect core (white-circled)
determines its topological charge via ∮dθs/2π= ± 1/2, 0 for disclinations and dislocations respectively. (Note that angles θs with a π difference are
equivalent to each other).
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Fig. 2 Three dynamical regimes of active smectics defect evolution in closed cavities. a–c Transitions between pinned, highly fluctuating (annihilation-
nucleation), and self-rotating defect states with the increase of self-propulsion strength v0, in (a) circular, (b) epicycloid, and (c) hypocycloid cavities. Each
regime is represented by sample snapshots of the spatial profiles of density field ψ obtained from simulations, with the ψ scale labelled by the color bars. In
the mid panels the circled regions highlight the time-evolving process of boundary-induced defect generation. The bulk defects inside are labeled by white
symbols, and boundary defects by black ones. Among them the square symbols indicate dislocations and the up or down triangles indicate ± 1/2
disclinations respectively. d Sample time variation of defect number density in the fluctuation regime at v0= 0.31 (for system size of 512 × 512 grid points).
e The corresponding normalized time correlation Cn(τ) of defect density, calculated over t= 105− 106 and averaged over 80 simulations for each cavity.
For a better illustration only the error-bar band for epicycloid of n= 6 cusps is shown, while those for other cases are of similar range.
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while at large enough activity ∣v0∣ > v0c, the pattern travels with
nonzero velocity vm as determined by

qs � vm ¼ qs v20 � v20c
� �1=2

; ð13Þ

A2
0 ¼ � 1

3
ϵþ q2s � q20

� �2 þ C1 1þ Dr=q
2
s

� �h i
; ð14Þ

where v0c is the critical threshold of activity for the transition, as
given by

v0c ¼ C1 q2s þ Dr

� �
=qs: ð15Þ

For a nonpotential, nonrelaxational system like the active system
studied here, the selected wave number qs of an ordered pattern in
the long-time steady state cannot be determined from free energy
minimization and is difficult to identify through analytical
calculations4. In the active PFC model the value of qs is expected
to be near q0 as also found in our numerical simulations.
Substituting the parameter values used in our simulations (i.e.,
C1= 0.2 and Dr= 0.5) and approximating qs ~ q0= 1, we get
v0c= 0.3 from the above analytic result, the same as what has
been found in simulations and presented in Fig. 2a–c.

The direction of pattern traveling velocity vm and the
orientation of the selected wave vector qs (which tend to locally
align with each other) highly depend on the initial and boundary
conditions, and could vary in different parts of the system due to
the effect of boundary confinement, as seen in our numerical
simulations (e.g., Fig. 2 and Supplementary Movies 1–7).

Defect dynamics in these different regimes (localized and
traveling smectic patterns and their transition) reveal the
competition between rigid boundary confinement restricting the
local smectic orientation and the tendency of bulk alignment of
stripes69,70. An interesting type of dynamics occurs in the
transition regime when such two incompatible boundary and
bulk effects are of comparable strength, giving rise to a highly
fluctuating state (middle column of Fig. 2a–c). Although the
planar boundary anchoring is maintained at very early stage, the
deviation occurs at later times as caused by self-propulsion,
leading to local distortion of stripes inside the cavity as a result of
confinement-alignment competition. Importantly, in addition to
the annihilation of defects (including dislocations and disclina-
tions, majorities of which occur at cavity boundaries), new defects
can nucleate from the boundary, propagating into the bulk,
evolving and generating a subsequence of more new defects like a
chain effect, as seen in the circled regions of Fig. 2 and
Supplementary Movies 1–7 for epicycloid and hypocycloid
cavities. This results in the repeated succession of tranquil and
active time stages in terms of defect density and dynamics, with
some examples for circular and 6-cusp epicycloid and hypocy-
cloid cavities given in Fig. 2d. In contrast to the fully bulk state
without any boundary confinement (thus with the absence of
defect generation) which shows a monotonic time decay of defect
number, the cavity confinement induces an intermittency-type
behavior with seemingly irregular bursts of number of defects.
The boundary cusps appear to enhance the creation of new
defects, yielding higher defect density peaks, as compared to the
smooth boundary of circular cavity. It is noted that the overall
system activity is governed by v0 which is kept unchanged for
different confinement geometries and cusp number, although
there would be local variations of effective activity as a result of
complex nonlinear defect dynamics particularly defect creation
and annihilation.

The property of this transition zone with dynamical fluctuations
of defects can be further quantified through the normalized time

autocorrelation function of the defect number density nd, i.e.,

CnðτÞ ¼
hðndðt þ τÞ � hndiÞðndðtÞ � hndiÞi

hðndðtÞ � hndiÞ2i
; ð16Þ

where the averages are conducted over a long time series in the
steady state (e.g., t= 105− 106 in our calculations) for each
simulation run, assuming ergodicity of the corresponding
probability measure4. Some results of Cn(τ) are presented in
Fig. 2e, showing a decay behavior for circular and 6-cusp
hypocycloid cavities. Interestingly, for epicycloid cavity with
n= 6 cusps a weak oscillation around a negative minimum
correlation (near time scale τm ~ 5000) appears, implying a
correlated behavior between the burst (active) and low-number
(tranquil) regimes of defect density and dynamics.

For a given geometric type of confinement, the behavior of
defect autocorrelation can be qualitatively changed through
different number of boundary cusps. As shown in Fig. 3, for
epicycloid cavities decreasing the cusp number n from n= 6 to 3
leads to the variation of Cn(τ) from local negative minimum to
positive maximum of correlation. A more dramatic change occurs
when lowering the cusp number of hypocycloid cavities. When
n= 5 and 6 a damped time correlation of defect density is
observed, while the n= 4 (i.e., astroid) cavity is featured by an
oscillatory behavior (within the statistical error) of time
correlation, indicating a cyclic state of defect density variation
with periodic creation and annihilation of defects over a
characteristic time period τT ~ 4300. In this cyclic defect
dynamics, although generally the spatial locations of boundary
defect nucleation and annihilation seem uncorrelated, statistically
the periodicity in autocorrelation Cn(τ) can be attributed to the
propagation of defects between different sides of boundary within
the defect creation-annihilation time interval.

Figure 4 gives the corresponding power spectrum of the defect
number density for some closed cavities with different number of
cusps. It has been averaged over independent simulation runs as
calculated via

Sω ¼ 1
Lt
hjn̂dðωÞj2i; ð17Þ

where n̂dðωÞ is the temporal Fourier transform of defect density

Fig. 3 Time correlation of defect density in closed cavities.
Autocorrelation function Cn(τ) of defect number density for various
epicycloid and hypocycloid closed cavities at v0= 0.31. Also shown are two
sample snapshots of the ψ field spatial profile, with the scale of ψ indicated
by the color bar and the same symbol labeling of defects as that in Fig. 2.
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nd(t) and Lt is the length of nd time series which needs to be long
enough particularly for non-periodic variation of nd (in our
calculations a time range of t= 105− 106 for each run is used,
with 80 different runs). The inverse Fourier transform of this
power spectrum Sω gives the unnormalized time autocorrelation
function 〈nd(t+ τ)nd(t)〉, according to the Wiener-Khinchin
theorem. An oscillatory behavior of autocorrelation Cn(τ) then
corresponds to a single high peak in the power spectrum plot, as
shown in Fig. 4 for the n= 4 hypocycloid cavity with a peak
located around ω ~ 2π/τT= 0.00146, consistent with its Cn(τ)
result given in Fig. 3.

The complex behaviors of defect dynamics revealed above for
active smectic systems are governed by intrinsically different
mechanisms compared to those examined in previous works of
defect dynamics in stripe or convection-roll patterns of passive
systems4. Most of those passive model systems, either potential or
nonpotential, are governed by nonconserved dynamics, such as
the original or generalized Swift-Hohenberg equations with or
without the coupling to hydrodynamic mean flow and vertical
vorticity68,71–75. For conserved dynamics as studied here, the
treatments are more complicated and some related developments
for the study of dislocation motion in passive crystalline systems
were available only recently76,77. The considered approach was
based on amplitude equation expansion in the weakly nonlinear
regime and applied to the pattern near onset. This is different
from the active system studied here which is nonpotential and
nonrelaxational and is far from onset with strong segregation.
The corresponding amplitude equation formulation and the
related analysis for strongly segregated patterns would be much
more involved and need the incorporation of nonadiabatic effects
for lattice pinning68,78,79.

The defect dynamics here also differ from those known in
active nematics, where they strongly depend on the type of the
defects and the interactions between them26–29,34. In active
smectics the defect type and the interactions between individual
defects are only of secondary effect for the parameter range and
the corresponding dynamical regimes examined in this work. At
low activity (i.e., v0 ≤ v0c with the threshold v0c determined by Eq.
(15)), since the system examined here is in the strong segregation
regime (with ϵ=− 0.98), the defects are pinned to the underlying
periodic structure of the stripe pattern (similar to that of a passive
potential system exhibiting a stripe phase in Ref. 68); thus the
driving forces caused by the intrinsic interactions between defects
(between either different dislocations or disclinations) are much
smaller than the pinning force and do not overcome the pinning
barrier. When v0 > v0c at large enough activity which is the main
focus here, the active self-driving force overcomes the pattern
pinning effect and when combined with the effect of boundary

confinement, dominates the evolution and motion of all the
defects as it clearly exceeds the pinning force and hence far
exceeds the defect-defect interactions which now play a secondary
role. This can be observed in numerical simulations (see
Supplementary Movies 1–7), where at the leading order the
motion of defects mostly follows the traveling of local stripe layers
as driven by the self-propulsion, accompanied by further defect
generation/splitting or annihilation through the coupling to rigid
boundary confinement and the effect of large activity.

Some sample trajectories of defect motion are illustrated in
Fig. 5 for an n= 4 hypocycloid (astroid) cavity at v0= 0.31. The
dynamics starts from a single defect created at the upper-right
boundary of the cavity; then a chain of new defects is generated
sequentially during the traveling into the bulk (see Fig. 5b and the
corresponding Supplementary Movie 5). This procedure of new
defect generation is caused by the active driving and local
distortions of the smectic layers which depend on the specific
geometry and topology of the boundary confinement (with more
related studies given in the next section), and their motion is
subjected to the flowing of local stripes as observed in
Supplementary Movie 5.

The self-driving force for the time evolution of density field
and the resulting defect dynamics is determined by the local
polarization divergence term v0∇ ⋅ P as can be seen from Eq. (1)
or (6). As an example, in Fig. 5 we show the spatial distribution of
the polarization field P and its divergence field S=∇ ⋅ P (which is
in turn coupled to the local variation of density field through
v0∇2ψ as given in Eq. (7)) around a defect core in a four-cusp
astroid cavity. As illustrated in Fig. 5c, the vector field P
represents the distribution of local orientational order of active-
driving directions, with the net self-propulsion determined by the
asymmetric distribution of the P field surrounding the local
density peak of ψ and the corresponding net orientation of P54,55.
The information of self-driving can then be obtained from the
local spatial gradients of P, with ∇ ⋅ P being of similar pattern as
the density field ψ (see Fig. 5d). The only difference is a nonzero
phase shift between them giving the effect of self-propulsion. This
can be also seen from Eq. (9) or (11) showing their Fourier
components (ψ̂q and Ŝq) being proportional to each other but
with a phase difference when the net migration velocity vm ≠ 0.

Topology-dependent defect dynamics and cusp-induced
mechanism of defect generation. To further understand the
mechanism of defect creation and correlation and hence the
accessibility for varying defect dynamics, we examine the process
of defect flow for a different topology including two types of open
channels, the S-shaped channel with smooth boundary and the
cycloid channel with a single cusp (see Fig. 6, noting the periodic
boundary condition along the vertical open ends). No new defects
are nucleated from the smooth boundary of S-shaped channel
and the defect number decreases with time, with few defects left at
late stage, as seen in Fig. 6a, b. In contrast, during the flow of
stripes in the cycloid channel (Fig. 6c–e), the cusp singularity
enhances the local distortion of the smectic layers, thus enabling
the formation of defects at boundary (not necessarily at the cusp
location). Further distortion during flow can facilitate the defect
motion into the bulk and induce a chain of new defects (see
Fig. 6e). This burst of defects will be diminished due to their
annihilation when traveling to the channel boundary, with few or
none remained. After then the similar nucleation-propagation-
annihilation process repeats, resulting in the periodic variation of
defect number density as shown in Fig. 6a.

For the confined cavities studied in the last section, the
enclosure constraint without open ends, competing with self-
propelled alignment and domain flow in the bulk, leads to a high

Fig. 4 Power spectrum for time variation of defect density in closed
cavities. Power spectrum Sω of the defect number density for circular,
6-cusp epicycloid, and 4- and 6-cusp hypocycloid cavities at v0= 0.31, each
averaged over 80 simulations for t= 105− 106.
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degree of local pattern distortion which enables the defect
nucleation at boundary even for no-cusp, circular cavity of large
enough aspect ratio between the lateral cavity dimension and the
smectic layer spacing (≳ 25 as estimated from simulations; see
Fig. 2). This is different from the above results for open channels
(and the results below for rings or annulus) where no defect
nucleation would occur at smooth boundaries without cusps, due
to different confinement topology. The mechanism originated
from cusp singularity of confinement would play a key role on
enhancing defect generation, and importantly, on controlling the
time-correlated property of defect variations, including the
oscillatory behavior of defect correlation for cavities with small
number of cusps as observed in simulations. When the cusp
number increases the oscillation of time correlation function
would be damped, and thus the degree of defect periodic variation
be reduced, as a result of the interference between the effects
induced by different individual cusps. This interference effect can
account for the transition from oscillatory to non-oscillatory
decay of the correlation shown in Fig. 3. In the other limit of zero
cusp without the oscillatory mechanism, such as the circular
cavity, faster decay of correlation is found (Fig. 2e). These results
further indicate that the mechanism generated by cusp singularity

provides an effective route for controlling the collective property
of defect dynamics and correlation.

Applying this mechanism, one can expect that further
confining via both inner and outer boundaries, i.e., a closed
channel with a void, would result in the damping of correlation
due to greater constraint and larger degree of interference
between boundaries, although with similar processes of defect
generation, traveling, and annihilation. This is seen in Fig. 7
where the single-cusp epicycloid ring can be viewed as a curved
analog of the cycloid channel given in Fig. 6. For small system size
(e.g., 256 × 256 grid points, same as Fig. 6) with narrow channel
width, much weaker oscillation and a damped behavior of time
correlation occurs, as compared to the time-periodic behavior for
the open cycloid channel (see Fig. 7b). Interestingly, wider
channel width leads to longer period of time correlation of defect
number variations, as seen from the Cn(τ) result presented in
Fig. 7. (It is possible that defects could be trapped inside a wide
enough epicycloid channel, without any new boundary defects
nucleated, as found in roughly half of the independent simulation
runs conducted for system size of 512 × 512 grid points. Those
cases are not used in the calculation of Cn(τ) in Fig. 7). In
comparison, for annulus with smooth boundary, no defect

Fig. 5 Spatial profiles of ψ and S fields and defect trajectories in hypocycloid cavity. a Sample simulation snapshot of the density field ψ profile for a
4-cusp hypocycloid (astroid) cavity at v0= 0.31, with the labeling of defects. b Trajectories of defects in the upper part of the cavity, starting from a single
defect (circled on the right) nucleated at the boundary at time t0= 198,650 up to the snapshot of (a) at t= 2 × 105. Larger symbol size corresponds to later
time, and samples for different time are also color-coded according to the color bar given on right. The hypocycloid boundary curve is also plotted. The
corresponding time evolution of the pattern and defects can be found in Supplementary Movie 5. c Enlarged portion of the circled region in (a), with black
arrows indicating the polarization vector field P and the color bar showing the scale of density field ψ. d The corresponding spatial profile of the divergence
field S=∇ ⋅ P, with P vector also shown as arrows and the scale of S field indicated by the color bar. Note a small phase shift of this S field profile with
respect to the ψ profile in (c), which corresponds to a nonzero migration velocity.
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multiplication occurs, analogous to the case of smooth S-shaped
channel, and the bulk defects could self-circle persistently as a
result of self-propulsion (see Supplementary Movie 9 for an
example of annulus at v0= 0.31).

Higher degree of correlation damping is expected for closed
channels/rings with more cusps interference, as verified in Fig. 8
for hypocycloid rings with n varying from 3 to 7. Weak oscillation
of Cn(τ) is found for n= 3 and 4; between them the n= 3
hypercycloid ring exhibits faster decay of correlation over time,
which can be attributed to its narrower channel width. Larger
number of cusps (e.g., n= 6, 7) results in non-oscillatory,
damping behavior of correlation due to increasing interference
between cusps, with faster damping for larger n (see Fig. 8 if
comparing n= 7 to n= 6), as expected. On the other hand, the
confinement of closed channel leads to the increase of the
correlation time as compared to the closed cavity, as seen
from the Cn(τ) plots for n= 6 hypocycloid cavity vs ring in Figs. 3
and 8.

The above results for cusped channels or rings correspond to
the intermediate regime of activity with v0 larger than but near v0c
showing high defect number fluctuation and defect creation-
annihilation. In another dynamical regime of larger activity, the
effect of self-driving dominates over that of rigid boundary
confinement, leading to the absence of defect multiplication as in
the case of closed cavities. In the closed channels of annular
or ring geometries the defect dynamics manifests itself either
via local persistent variations involving bulk grain boundaries
and spirals confined by the channel walls, or interestingly, in
the form of persistent self-circling current of bulk defects
(similar to that found in Supplementary Movie 9 for annulus at
smaller v0).

Fig. 6 Time evolution of defects in open channels. a Time evolution of defect number density in two types of open channels at v0= 0.31 (with periodic
boundary condition along the vertical open ends). b–e Snapshots of ψ profiles at different times for (b) S-shaped and (c–e) cycloid channels.

Fig. 7 Defect density and time correlation for channels and rings.
a Sample time evolution of defect number density for annulus and single-
cusp epicycloid rings of two different simulation system sizes at v0= 0.31.
b Autocorrelation Cn(τ) corresponding to the sample simulation of cycloid
channel given in Fig. 6 and for n= 1 epicycloid rings (averaged over
80 simulation runs at t= 105–106 for each system size). c Sample
snapshots of the annulus and one-cusp epicycloid ring simulated.
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We finally remark that defect pinning or local trapping can be
identified under two different conditions. (i) For small self-
driving strengths with v0 < v0c, defects are pinned near the cusps
as well as in the bulk (see the first column of Fig. 2a–c), with
similar results obtained for different confining geometries and
topologies including closed cavities and open and closed channels
as well as different cusp shapes such as the polygonal confining
geometry as found in our simulations (see Supplementary Note 1
for some sample results). (ii) In the intermediate range of v0 with
states of highly fluctuating defect dynamics, it is possible that
some defects could be temporarily trapped close to the cusp as
caused by strong boundary confinement particularly in narrow
closed channels, as shown in an example of an n= 6 hypocycloid
ring in Fig. 8 (see the white-circled corner) and Supplementary
Movie 8. Although these look similar to that found for self-
propelled rods with smectic defect structures trapped in a wedge
by simulations and experiments80,81, the underlying mechanisms
are different. In those previous studies the trapping or escape of
active rods and smectic defects was for an isolated cusp/wedge in
an open environment of particles. While there is an active smectic
structure pinned by the open cusp, the outside region is pretty
dilute in active particles and as a consequence the cusp angle and
shape play a crucial role80,81. In contrast, here the active smectics
fill the whole cavity and are overall confined. Therefore defect
pinning or trapping either occurs as a result of too small activity
v0 to overcome the large pinning barrier in the full strongly
segregated pattern, the occurrence of which is independent of
cusp geometry, or at the intermediate value of v0, could
temporarily appear due to local strong confinement of narrow
channels that hinders the propagation of boundary-nucleated
defects and any subsequent defect multiplication. Finally we also
mention that the classical sources of defect generation and
multiplication by crystal deformation such as the Frank-Read
source82 would not directly apply here since our effects are

controlled by a combination of activity (with the self-propulsion
of smectic layers) and confined boundary conditions.

Conclusions
We have examined the dynamics of topological defects in active
smectic systems subjected to three types of boundary confine-
ments, i.e., closed cavities, open and closed channels with various
geometries. Our simulations based on active PFC modeling
indicate a viable way to effectively vary or control the complex
dynamics and collective time-variation properties of defects
through both particle self-driving and the geometry and topology
of strong confinement, with the underlying mechanisms intrin-
sically distinct from those of passive patterns and active nematic
systems. These confined nonequilibrium smectic systems are
featured by three distinct regimes of active and persistent defect
dynamics, including defect pinning in a glassy state with ultra-
slow evolution, the fast self-rotating of spiral defects in cavities or
local defect variations or persistent self-circling defect currents in
closed channels, and interestingly, a dynamical state governed by
far-from-equilibrium, nonrelaxational processes with large defect
fluctuations in the transition between localized and traveling
smectic patterns. For the latter, a key factor is the intermittent but
perpetual creation of new defects as enabled by the confinement
boundary and enhanced by cuspate boundary geometry. A
transition from random to time-periodic process of defects
creation and annihilation can be made possible through the
control of boundary cusp singularity as the mechanism of
confinement-induced defect generation. These predictions can be
examined and achieved in experiments on e.g., dense self-
propelled rods83 which form an active smectic phase. Examples
range from vibrated granular rods which can be exposed to
circular62, epicycloid-like flower-shaped63 or annular64 confine-
ments, to active colloidal rods65,66 in channels and cavities.

Methods
Confinement geometries. As described above in Eqs. (4) and (5), to implement
the planar anchoring condition of boundary confinement we develop an approach
by combining a formulation of surface/interface free energy for imposing the rigid
boundary conditions (i.e., ψ= ψb, n̂ � ∇ψ ¼ 0, and P= Pb, with ψb and Pb the
boundary values of density field ψ and orientation field P), with the control of
confinement geometry via the spatially dependent interface energy amplitude
Vb(r)=Vb0ϕ(r), where Vb0 is the anchoring strength. Here ϕ(r) is an auxiliary
phase field function used in the diffuse domain method67 and is approximated as

ϕðrÞ ¼ 1
2

1þ tanh
rsðrÞ
Δ

� �� 	
; ð18Þ

where Δ is the interface width of the boundary and rs(r) is the signed distance
function from any location r to the domain boundary ∂Ω. rs(r)=− d(r) < 0 inside
the domain Ω and rs(r)= d(r) > 0 outside Ω, with d(r) the distance function to ∂Ω.
Various methods or algorithms for calculating signed distance functions have been
available. For 2D domain boundaries studied here, we can directly obtain analytic
forms of rs for some simple geometries (see below). In the cases of complex
boundary geometries, a straightforward way of approximation, as used in our
simulations, is to numerically compute the distances di= ∣r− rbi∣ to the points
rbi∈ ∂Ω (i= 1, 2, . . . ) discretized on the boundary curve and find the shortest
distance among them, i.e.,

dðrÞ ¼ minðdiðrÞÞ ¼ min
rbi2∂Ω

ðjr� rbijÞ; ð19Þ

which also determines the boundary point rb corresponding to each r. The local
unit normal to the boundary is then

n̂ ¼ ðr� rbÞ=dðrÞ: ð20Þ
The following types of confinement geometries have been examined in our

simulations:
(i) Circular cavity and annulus: For a 2D circular cavity of radius r0, with cavity

center located at rc= (xc, yc), we have jrj ¼ r ¼ ½ðx � xcÞ2 þ ðy � ycÞ2�
1=2

, n̂ ¼ r̂,
rs= r− r0, and

ϕðrÞ ¼ 1
2

1þ tanh
r � r0
Δ


 �h i
: ð21Þ

Fig. 8 Defect density and time correlation for hypocycloid rings. Sample
time evolution of defect number density and the results of autocorrelation
Cn(τ) (each averaged over 80 runs for t= 105–106 with system grid size
512 × 512) for various hypocycloid rings at v0= 0.31. Sample snapshots of
the ψ field spatial profile are also shown, with the white-circled region
corresponding to the local defect trapping near a cusp of n= 6 hypocycloid
ring as seen in Supplementary Movie 8.
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For an annulus with inner and outer radius of rin and rout respectively, n̂ ¼ r̂
and

ϕðrÞ ¼ 1
2

1þ tanh
r � ðrin þ routÞ=2
�� ��� ðrout � rinÞ=2

Δ

� 	� �
: ð22Þ

(ii) S-shaped open channel: Assume the channel is aligned vertically, with its
center at rc= (xc, yc) and the average locations of right and left boundaries at
x− xc= ± x0. The boundary curves are of the form

xb ¼ xc ± x0 � S0 sin½qsðy � ycÞ�; ð23Þ
where S0 is the amplitude and 2π/qs is the periodicity of the S-shaped modulation.
The boundary normal is given by

n̂ ¼ �1; dx=dy
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dx=dy

� �2q ¼ �1;�qsS0 cos½qsðy � ycÞ�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2s S

2
0cos

2½qsðy � ycÞ�
q : ð24Þ

The area of this open channel in a system of vertical length ly is equal to 2x0ly
(when ly is set as an integer number of modulation periodicity), which is used in
the calculation of defect number density. The corresponding phase field function is
approximated by

ϕðrÞ ’ 1
2

1þ tanh
jx � xcj � jxbj

Δ

� �� 	
: ð25Þ

Note that although rs ≠ ∣x− xc∣− ∣xb∣ for this S-shaped channel, the above
equation is still a good approximation for ϕ(r) when Δ is small enough (i.e., for
sharp boundary interface).

(iii) Epicycloid cavities with n cusps: The corresponding parametric equations
are given by

x ¼ ðaþ bÞ cos θ � b cos
aþ b
b

θ

� �
;

y ¼ ðaþ bÞ sin θ � b sin
aþ b
b

θ

� �
;

ð26Þ

where the parameter θ (not the polar angle) ranges from 0 to 2π, and b= a/n for a
n-cusped epicycloid. The area of the enclosed cavity is (n+ 1)(n+ 2)πb2 for integer
n. The related phase field function ϕ(r) is calculated via Eq. (18) with rs(r) and the
unit normal n̂ identified numerically as described above. Some sample results
obtained from our simulations are presented in Figs. 2 and 3 and in Supplementary
Movies 1–4 for different cusp number n, including n= 3 (of shape similar to
trefoil), 4 (similar to quatrefoil), 5 (ranunculoid), and 6.

(iv) Hypocycloid cavities and rings: For a hypocycloid cavity with n cusps, the
parametric equations are written as

x ¼ ða� bÞ cos θ þ b cos
a� b
b

θ

� �
;

y ¼ ða� bÞ sin θ � b sin
a� b
b

θ

� �
;

ð27Þ

where b= a/n. The cavity area is equal to (n− 1)(n− 2)πb2. At each position
inside or outside of cavity, values of phase field function ϕ, rs, and n̂ are computed
numerically by following the above procedure. Some sample simulation results for
n= 4 (astroid), 5, and 6 hypocycloid cavities are given in Figs. 2 and 3 and in
Supplementary Movies 5–7. Similar setup can be used for hypocycloid rings, with
inner and outer boundary curves each determined by the above parametric
equations with two sets of a and b parameters (see some sample simulation
snapshots given in Fig. 8 and Supplementary Movie 8).

(v) Cycloid open channel: For a vertically aligned channel, the left boundary is a
straight line located at x=− x1 (so that rs= ± ∣x+ x1∣ and n̂ ¼ ð1; 0Þ), while the
right boundary curve is of a cycloid or trochoid form described by

x ¼ a� b cos θ þ x0;

y ¼ aθ � b sin θ:
ð28Þ

It is a curtate cycloid if a > b, a prolate cycloid if a < b, and a cycloid when a= b
which is used in our simulations. We choose− π ≤ θ ≤ π and set 2πa= ly to satisfy
the periodic boundary condition along the y direction with open ends of the
channel. The corresponding channel area is equal to π(2a2+ b2)+ 2πa(x0+ x1).
This channel configuration is implemented in our simulations through numerical
calculations of ϕ, rs, and n̂, with examples given in Fig. 6.

In principle any other types of boundary geometries, as long as the
corresponding analytic or numerical expressions of boundary curves are available,
can be described via similar procedure and thus implemented in our modeling and
simulations. This approach that we introduce here, based on Eqs. (4) and (5) and
the above implicit representation of domain boundary, allows us to apply the
pseudospectral method with periodic boundary conditions in the whole system to
numerically solve the active PFC equations subjected to the confinement of various
types of cavity or channel geometry.

Algorithm for defect detection. To identify the topological defects (dislocations,
disclinations, and grain boundaries) in the simulated smectic pattern, we use an

algorithm based on the combination of two methods given in Refs. 84,85, with some
modifications and extension. The implementation steps are described below.

Given the local stripe orientation n̂s ¼ ∇ψ=j∇ψj ¼ ðcos θs; sin θsÞ with θs the
local orientation angle of the smectic layer, we can calculate at each spatial location
r= (x, y)

j∇ψj2 sin 2θs ¼ 2ð∂xψÞð∂yψÞ; j∇ψj2 cos 2θs ¼ ð∂xψÞ2 � ð∂yψÞ2: ð29Þ
Then a Gaussian smoothing of each of j∇ψj2 sin 2θs and j∇ψj2 cos 2θs is

conducted over a neighboring square range of grid points for each position r85, and
the local director orientation is identified by

θs ¼
1
2
arctan

j∇ψj2 sin 2θs
� �

smoothed

j∇ψj2 cos 2θs
� �

smoothed

" #
: ð30Þ

To detect the locations of defect cores, at each grid point the local orientation
gradient is calculated84, i.e., As= ∣∇θs∣2. If As exceeds a threshold value A0s (e.g.,
A0s= 0.2/(Δx)2, with Δx= π/4 the numerical grid spacing), the corresponding grid
point is considered to be in a defect core region. To obtain the specific location of
each individual defect core, first the individual cluster of sites for each defect core
region is identified by using the Hoshen-Kopelman (Union-Find) algorithm with
raster scan to connect neighboring grid points of each cluster tree with large
enough local orientation variation (As > A0s). The cluster’s center of mass then gives
the position rCM of the corresponding defect core, with

rCM ¼ ∑jrjAsðrjÞ
∑jAsðrjÞ

; ð31Þ

where rj is the spatial coordinate of site j within the cluster.
To reduce the artifacts or ambiguities caused by the choice of threshold A0s, if

the size of a cluster is larger than a limit (e.g., 20 grid sites) this part is then re-
clustered through the Union-Find algorithm to divide it into smaller sub-clusters by
increasing its threshold value A0s by a percentage (e.g., 1/8) of maxðAsÞ �minðAsÞ
of that cluster. In addition, if the distance between the centers of mass rCM of any
two clusters is less than another threshold value (e.g., 5.5Δx), they will be merged if
the merged/connected cluster size would not exceed an upper limit (e.g., 18 sites).
This reclustering-merging process is conducted only once, and the corresponding
defect core locations (i.e., cluster centers of mass) will be recalculated.

To identify the specific type of each individual defect, we follow the standard
procedure of calculating the topological charge (winding number) of each defect
core by performing a closed-path integral of θs over a counterclockwise square loop
around the position of defect core84,85. The defect type (charge-0 dislocation vs ± 1/
2 disclination) is determined via the calculated value of topological charge. It is
noted that all the above calculations are for the orientation of stripes (determined
by the apolar density field ψ) and the corresponding topological charges, but not
for the polar vector field P which would yield different topological charges via a
similar procedure of calculation. A boundary defect is labeled if the location of its
defect core is within a certain distance (e.g., 8 grid points) to the cavity or channel
boundary. We can also identify the defect cores (clusters) belonging to a grain
boundary (cluster chain), via the Union-Find algorithm again (but not merging
them), if the distance between the centers of mass (rCM) of any two clusters (defect
cores) is less than or equal to a value (e.g., 25Δx) and if there are at least NGB

(e.g.,= 4) of such clusters (cores).
There would still be some ambiguities/uncertainties of defect identification,

which are unavoidable for any detection algorithm particularly for the cases of
close or crowded defect cores. We have checked the results by varying different
parameters of the algorithm and comparing with some manual spot checks to
identify the close-to-optimal or compromised choices of parameters, and to ensure
the results are consistent statistically.

Data availability
The data that support the findings of this study, including those for the plots of defect
number density, time autocorrelations, and power spectrum, are available
in Supplementary Data. All other data are available from the corresponding author upon
reasonable request.

Code availability
Some codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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