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40225 Düsseldorf, Germany
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Abstract We study a one-dimensional three-state run-and-tumble model motivated by the bacterium
Caulobacter crescentus which displays a cell cycle between two non-proliferating mobile phases and a
proliferating sedentary phase. Our model implements kinetic transitions between the two mobile and one
sedentary states described in terms of their number densities, where mobility is allowed with different
running speeds in forward and backward direction. We start by analyzing the stationary states of the
system and compute the mean and squared-displacements for the distribution of all cells, as well as for the
number density of settled cells. The latter displays a surprising super-ballistic scaling ∼ t3 at early times.
Including repulsive and attractive interactions between the mobile cell populations and the settled cells, we
explore the stability of the system and employ numerical methods to study structure formation in the fully
nonlinear system. We find traveling waves of bacteria, whose occurrence is quantified in a non-equilibrium
state diagram.

1 Introduction

Understanding the motion of bacteria has been a classic
problem of biophysics [1,2]. Bacteria are propelled by
their flagellae, whose motor generates a torque which
translates into forward or backward motion of the bac-
teria. The problem has also found interest within the
soft matter community, as bacteria are but one exam-
ple of a much larger class of systems, commonly denoted
as microswimmers [3]. The run-and-tumble (RT) model
of an active particle system is originally motivated by
specific features of bacterial motion: this motion only
persists for a finite time, the ‘run’-time, after which the
bacterium stalls, the ‘tumble’-period, before continuing
its motion typically in a different direction, see e.g. [4].
The properties of the basic RT model have been con-
fronted with experiments, e.g. in [5,6]. The RT model
also relates to other stochastic processes, e.g. the exclu-
sion process [7] or even to the dynamics of quantum
particles [8].

RT models in one dimension are a special case within
this model class. Here, the bacterium can only switch
between left- and right motion in a stochastic man-
ner. One-dimensional RT-models have proven to be
an extremely rich field for analytic calculations; exem-
plary papers dealing with diverse aspects are: confine-
ment [9]; space-dependent velocities, space-dependent
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transition rates and general drift velocity distribu-
tions [10–14]; hard-core particles with spin [15]; inho-
mogeneous media [16]; attractive/repulsive interactions
[17,18]; phase transitions [19]; entropy production [20].
Field-theoretic methods have been applied to RT mod-
els recently as well [21,22].

In some sense, the (one-dimensional) RT model can
be thought of playing in active systems a role analogous
to Ising models in equilibrium statistical mechanics. In
the very recent past, several works have appeared carry-
ing this analogy further, since they consider the number
of ‘states’ in which the bacterium can find itself to go
beyond the dichotomy of left- and right-moving states.
Models with three and even more states have been
discussed—in our Ising-model analogy, this amounts to
looking at active analogues of ‘Potts’-type models [23–
25].

The present paper inserts itself in this line of research
by considering a three-state RT model with the states:
left-moving, right-moving and sedentary. Our model is
motivated by the behavior of the bacterium Caulobac-
ter crescentus (CC), a model organism in microbiology
since it has a complex lifestyle [26,27]. CC has a bac-
terial analogue of a cell cycle usually found in eukary-
otes; in order to undergo cell division, the bacterium
has to switch from its mobile swarmer state to a spa-
tially localized stalked state. Only from the latter state
the proliferation of new cells is possible. Our model,
capturing this biological feature, is however not limited
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to CC or bacteria alone. E.g., the green algae Chlamy-
domonas reinhartii has a similar cell cycle [28] with
sedentary and swimming states and also performs a
run-and-tumble motion [4]. The capacity of cell divi-
sion in our RT model inks it to the problem of the
growth of bacterial colonies. Recently, the authors of
[29] developed a growth-expansion model which gener-
ates traveling waves in bacterial chemotaxis, in accord
with experimental observations. We show that traveling
waves also arise in our much simpler 1d run-and-tumble
model.

The paper is organized as follows. In Sect. 2, we intro-
duce our RT-model as a toy model, inspired by the cell
cycle of CC. In Sect. 3, we first focus on the case of free
cells for which we derive the conditions for stability of
the system when spatial dependencies are neglected. In
Sect. 4 we consider the spatial dependence built into
the model and study the mean displacement (MD) and
mean squared displacement (MSD) for a single cell in
the process of duplicating, both showing a surprising
t3 regime for short times. Allowing the cells to inter-
act via both attraction and repulsion mechanisms, this
antagonistic effect is found to lead to structure forma-
tion: we numerically find traveling wave solutions of
the system density and quantify their occurrence in a
non-equilibrium state diagram. Finally we discuss how
the model performs with parameter values specific of
CC. Section 5 concludes the paper with a discussion of
the results of our model and a brief outlook on further
work.

2 The model

Inspired by the reproductive behavior of Caulobacter
crescentus we consider a one-dimensional toy model
representing bacteria that can actively move rightward,
leftward or settle down, and that when settled double in
number. We note that CC performs a run-reverse-flick
motion [30], where the bacterium first performs a for-
ward motion, then reverses its direction of motion and
in a third step makes a turn mediated by a buckling
instability in its flagellum [31]. Since our setup is one
dimensional, the run-reverse-flick motion is equivalent
to a run and tumble motion.

The ‘cell cycle’ of our three-state RT model moti-
vated by CC is summarized in Fig. 1. We allow for three
populations with the number densities ρ+(x, t), ρ−(x, t)
and ρ0(x, t), functions of space x and time t, respec-
tively corresponding to right and left movers, and to
the sedentary population. The ‘cell cycle’ step is given
by the rate of settling down, λs, which can occur from
either moving state, and the cell doubling with rate λd

with which a sedentary bacterium gives rise to a pair
of right- and left-moving cells. The exchange of direc-
tion, i.e. the RT step, is denoted by λe. Finally, μ is
the death rate, which we consider for motile cells only.
In a proliferating system, this rate prevents exponential
growth.

Fig. 1 Graphical representation of the transition rates
among different species. These transitions are motivated by
the cell cycle of Caulobacter crescentus, that either moves
actively or settles down to reproduce. Our model contains
three different species: the cells moving to the right ρ+, those
moving to the left ρ− and the settled ones ρ0. The moving
cells can either settle via the rate λs, move in the opposite
direction with λe or die with μ. Settled cells duplicate via
λd, and generate both a left- and a right-moving cell

This idealized CC-‘cell cycle’ is implemented in terms
of evolution equations for the cell number densities. In
the case where there is no death or proliferation, the
number densities can also be interpreted as probabil-
ity densities and the evolution equations correspond to
Fokker–Planck equations.

As the bacteria are micron-sized swimmers, we
assume a low Reynolds number and overdamped dynam-
ics. To describe this behavior mathematically, we first
group the three densities into the vector of densities
ρ = (ρ+, ρ0, ρ−). The dynamics of the system will then
be described by the differential equation

∂tρ = D∂2
xρ + ∂x[(∂xU) · ρ] − V · ∂xρ + Mρ (1)

which generalizes the standard expression of growth-
expansion equations of logistic growth, usually formu-
lated for a single density [29]. In Eq. (1), the first term
is a diffusion term where the matrix D has the form

D =

(
D 0 0
0 0 0
0 0 D

)
(2)

since the sedentary particles do not diffuse. The second
term on the right-hand side is a nonlinear diffusion coef-
ficient containing an interaction matrix U of the form

U =

(−κρ0 0 0
0 κ0ρ0 0
0 0 −κρ0

)
. (3)

The matrix entries describe attractive interactions
(negative sign) of the moving cells to regions in which
particles have settled and repulsive interactions among
settled cells (positive sign) in order to mimic biofilm
behaviour. The third term on the right-hand side of
Eq. (1) describes the active motion of the particles in

123



Eur. Phys. J. E (2022) 45 :83 Page 3 of 11 83

the right and left directions along the line. Hence

V =

(
v+ 0 0
0 0 0
0 0 −v−

)
. (4)

Finally, we have for the cell cycle or population dynam-
ics part, following the transitions shown in Fig. 1, the
matrix M given by

M =

(−(λs + λe + μ) λd λe

λs −λd λs

λe λd −(λs + λe + μ)

)
. (5)

Given that our run-and-tumble model allows for prolif-
eration and death of cells, it is important to recognize
that the population dynamics of Eq. (1) is the linear
limit of the more general nonlinear decay-growth equa-
tion

∂tρ = D∂2
xρ + ∂x[(∂xU) · ρ] − V · ∂xρ

+MDρ + MODR(ρ). (6)

In Eq. (6), MD and MOD are the diagonal and off-
diagonal parts of the matrix M, i.e., one has M =
MD +MOD. The diagonal part describes the cell num-
ber decay, while the off-diagonal part describes the
growth of the cell population. In order to limit growth,
the non-diagonal term is generally nonlinear and satu-
rating at the carrying capacity, as is common in growth-
expansion models, see, e.g. [29]. The vector R is thus
given by

R =

⎛
⎝ρ+(1 − ρ+

ρ+,c
)

ρ0(1 − ρ0
ρ0,c

)
ρ−(1 − ρ−

ρ−,c
)

⎞
⎠ .

where the carrying capacity is given by the vector

ρc(x) ≡ (ρ+,c(x), ρ0,cx), ρ−,c(x)) . (7)

The linear limit of Eq. (6) is reached for |ρ| � |ρc|. It is
important to notice that since R is only applied to one
part of the M matrix, the stationary values reached
by the population in the linear limit will not neces-
sarily be those given by ρc. The main benefit of the
nonlinear model is that it prevents the number of cells
from exploding independently of the parameters. In this
manuscript we will mainly focus on the linear case,
while explicitly referring to the full nonlinear growth
equation if needed.

3 Free cells

We start by setting the cell interaction parameters κ =
κ0 = 0, and hence consider free cells.

3.1 Population dynamics

In this section we further set D = 0 as well as the
velocities v+ = v− = 0, thus we first study free cells
undergoing the pure population dynamics given by

∂tρ(x, t) = Mρ(x, t) . (8)

This linear system of equations can be solved analyti-
cally via matrix calculations, leading to

ρ(x, t) = eMtρ(x, 0) = PeEtP−1ρ(x, 0). (9)

P is the eigenvector matrix of M and E is the diagonal
matrix containing the eigenvalues of M, that are

E1 = − (μ + 2λe + λs)
E2 = − (μ + λd + λs + Λ)/2 (10)
E3 = − (μ + λd + λs − Λ)/2,

where Λ =
√

(μ + λd + λs)2 + 4λd(λs − μ). We notice
that the first two eigenvalues are always negative and
therefore stable, while the sign of the third depends
on λs − μ, which can become unstable. This instability
facilitates an exponential growth of the colony. In fact,
for small values of λd(λs−μ) with respect to μ+λd+λs

the unstable eigenvalue becomes

E3 � λd(λs − μ)
μ + λd + λs

. (11)

The exponential growth or collapse of the system is
therefore decided by the difference of λs and μ, or in dif-
ferent terms, the separating line between the two behav-
iors is λs = μ. It is also worth pointing out that in the
case of instant doubling, that is the limit of λd → ∞,
E3 simply reduces to λs − μ, as can be seen in Fig. 2.
Physically this is expected, as in this model cells can
double only when settled and can die only when mov-
ing, meaning that the growth or decay of the system
size depends exclusively on whether a moving cell is
faster in settling or dying.

In the case of λs = μ, it is possible to calculate the
stationary value of ρ(x, t → ∞) as a function of the
initial conditions ρ(x, 0):

ρ+(x, t → ∞) =
λd

2(2μ + λd)
R(x, 0)

ρ0(x, t → ∞) =
μ

2μ + λd
R(x, 0) (12)

ρ−(x, t → ∞) =
λd

2(2μ + λd)
R(x, 0),

where R(x, 0) = 2ρ0(x, 0) + ρ−(x, 0) + ρ+(x, 0). Since
the exchange rate between right ρ+ and left ρ− moving
cells is symmetric, the amounts of left and right mov-
ing cells are the same in the stationary state (ρ+ = ρ−,
see also Fig. 3). Furthermore, if λd = 2μ = 2λs all the

123



83 Page 4 of 11 Eur. Phys. J. E (2022) 45 :83

Fig. 2 Unstable eigenvalue E3 (solid lines) as a function of
doubling rate λd for different values of λs (color code) and
μ = 10λe. The sign of E3 is the same of λs −μ, and its value
also stabilizes at λs − μ for very large values of λd (dashed
lines)

Fig. 3 Space averages of right- ρ+, left-moving ρ− and
sedentary ρ0 cells as functions of time, both for the linear
model (solid lines) with λs = μ and for the nonlinear model
(dashed lines) with λs = 3μ. For both models λd is set to
be equal to λe, while μ = λe in the nonlinear model and
μ = 2.848λe in the linear one. As initial conditions we chose
the constant values ρ(x, 0) = (0, .1, 0.479) for both models.
For the nonlinear model we further set the carrying capacity
ρc(x) = (1, 1, 1)

three populations equilibrate to the same value, inde-
pendently of the initial conditions. In the case of λs > μ
it is always possible in the frame of the nonlinear growth
model to find values of ρc for which the populations
stabilize around the values given by Eq. (12). Figure 3
shows the linear and nonlinear model equations with
different parameters and with the same stationary val-
ues.

3.2 Density dynamics

We now set the running speeds v± and the diffusion
constant D to finite values, in order to study the evo-
lution of spatial quantities of the system, such as the
mean displacement MD = 〈x − x0〉, the mean-squared
displacement MSD = 〈(x − x0)2〉 and all the higher
order moments, where x0 is the average position of the

system at t = 0. Here, the average 〈(·)〉 is defined as∫ ∞
−∞(·)P (x, t)dx, where the total probability P (x, t) is

P (x, t) ≡ 1
N(t)

(ρ+(x, t) + ρ0(x, t) + ρ−(x, t)), (13)

N(t) ≡ N0(t) + N+(t) + N−(t) is the total number of
cells, Nα(t) =

∫ ∞
−∞ ρα(x, t)dx is the number of cells in

phase α and α can be (+,−, 0).
In order to compute averages, we first solve the sys-

tem by using a Fourier transform (FT ):

˙̃ρ(k, t) =
(−k2D − ikV + M)

ρ̃(k, t), (14)

where ρ̃(k, t) = FT (ρ(x, t)) is the Fourier transform
of ρ(x, t) and k is the wave number conjugate to x.
Similarly to the constant density case, the solution in
Fourier space will be given by

ρ̃(k, t) = exp
[
(−k2D − ikV + M)t

]
ρ̃(k, 0). (15)

One can use the solution of this equation to extract the
intermediate scattering function (ISF )

F(k, t) ≡ P̃ (k, t)P̃ (−k, 0)N(t). (16)

The ISF can be related to the different moments of the
density [32] by differentiation:

〈(x(t) − x0)n〉 =
in

N(t)
∂n

∂kn
F(k, t)

∣∣∣∣
k=0

, (17)

valid in one dimension (see “Appendix”).
We can also define an average for each cell population

and the relative ISF :

〈(·)〉α ≡
∫ ∞

−∞
(·)ρα(x, t)

Nα(t)
dx, (18)

Fα(k, t) ≡ ρ̃α(k, t)ρ̃α(−k, 0)
Nα(0)

. (19)

The expression corresponding to Eq. (17) is then given
by

〈(x(t) − x0)n〉α =
in

Nα(t)
∂n

∂kn
Fα(k, t)

∣∣∣∣
k=0

. (20)

First we will discuss the behavior of the whole distribu-
tion P (x, t). For simplicity, we will consider the initial
condition ρ(x, 0) = (0, δ(x), 0) which is physically rele-
vant, as it describes a cell initially settled in x = 0 in
the process of reproducing. We do not focus on the case
of an initially mobile cell, as the short-time behaviours
of both the MD and MSD turn out to be simply linear
and the long-time behaviours are identical to that of
the initially settled cell case. We further remark that
our analysis does not assume the condition μ = λs for
a stable population in the linear growth model.
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3.2.1 Full distribution

When v+ 	= v−, the MD is non-zero and we observe two
different regimes: for short times it grows as t2, while
for long times it is proportional to t, as shown in Fig. 4a.
The short-time expansion of the MD in fact yields

〈x(t) − x0〉 = λdvdt
2

−1
3
λdvd(2μ + 4λd + λs)t3

+O (
t4

)
, (21)

where vd = (v+ − v−)/2. The expression shows that
both the transition rates and the running speeds have
a role in determining this initial scaling regime. This
can be interpreted as a composition of the doubling
mechanism and the system acceleration given by cells
suddenly starting to move. We can further define the
typical crossover time t

(1)
c as the ratio between absolute

values of the coefficients of the t2 and t3 scalings, as this
is the time at which the t2 order contribution becomes
smaller than the following ones [33,34]. This is a good
estimate of the average time at which the dynamics is
not dominated by the initial doubling anymore:

t(1)c =
3

2μ + 4λd + λs
. (22)

The long-time expansion of the MD yields

〈x(t) − x0〉 =
4vdλdλs

Λ(μ − λd + λs + Λ)
t + O (

t0
)
, (23)

where Λ is the same of Eq. (10).
As far as the MSD is concerned, in Fig. 4b we still see

a t2 regime for short times, while the long-time behav-
ior depends on the difference between v− and v+. In
the case they are the same, we will only see a diffusive
long-time regime while otherwise this diffusive regime
transitions into a ballistic one. The smaller the differ-
ence between the running speeds, the longer is the time
to reach the ballistic regime. We further calculate the
short-time expansion of the MSD:

〈(x(t) − x0)2〉 = 2Dλdt
2

−2
3
λd

(
D(2μ + 4λd + λs) − v2

a

)
t3

+O (
t4

)
, (24)

where va =
√

(v2
+ + v2−)/2. Again, we define a crossing

time t
(2)
c for the MSD as the ratio between the absolute

values of the coefficients of the t2 and t3 scalings:

t(2)c =
3D

|D(2μ + 4λd + λs) − v2
a| . (25)

If we change the population rates we observe that the
growth or decay in the number of cells does not influ-

ence qualitatively the scalings we just described for
both the MD and MSD. The formula for the long-time
expansion of the MSD and the relative crossing time
t
(2)
l between the long-time regimes ∝ t and ∝ t2 are

quite involved, so we refrain from showing them here.
Finally, we study directly the full intermediate scatter-
ing function F(k, t) as it carries more information than
the MSD and MD. In Fig. 5a, that is in the case of
equal velocities, we can see that the real part of F(k, t)
that generates the MSD among all other even moments,
decays rapidly for small length scales (i.e. large k) while
it has three distinct regimes for large length scales. At
first the function decays or grows, following the growth
in the number of cells, then at time t

(2)
c it plateaus for

a time that grows larger as k gets smaller, and finally
decays completely. The plateau, starting after the tran-
sition of the cell to its moving stage at time t

(2)
c , is

generated by the active cells going back to the settled
stage and not moving anymore, while the final decay
represents the long-time diffusive behavior that we have
already seen in the MSD. In Fig. 5b we see how unequal
velocities change the intermediate scattering function
by introducing an oscillating behavior at long times.
This is a signature of ballistic motion and of a non-
vanishing imaginary part of F(k, t) that generates the
odd moments like the MD.

3.2.2 Distribution of settled cells

The main feature of the MD and MSD of the settled
cells is that they both show an initial t3 regime, as
shown in Fig. 6. The short time expansion of the MD
is given by

〈x(t) − x0〉0 =
1
3
λsλdvdt

3

− 1
6
λsλdvd(μ − λd + λs)t4

+O (
t5

)
, (26)

with the crossing time between the t3 and t4 regimes
t
(1)
c,0 being:

t
(1)
c,0 =

2
|μ − λd + λs| . (27)

The MSD shows the initial t3 regime as well:

〈(x(t) − x0)2〉0 =
2
3
Dλsλdt

3

− 1
6
λsλd

(
2D(μ − λd + λs) − v2

a

)
t4

+O (
t5

)
. (28)

with the crossing time t
(2)
c,0:

t
(2)
c,0 =

4D

|2D(μ − λd + λs) − v2
a| . (29)
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(a) (b)

Fig. 4 a Mean displacement (MD), b mean-squared dis-

placement (MSD), respective crossing times t
(1)
c , t

(2)
c and

short- and long-time approximations for the initial condi-
tions ρ(x, 0) = (0, δ(x), 0)λe/v+, all rates equal to λe and

D = 0.2v2
+/λe. In (b) the solid red line shows unequal swim

velocities (v− = 0.9v+) and the dashed blue line equal swim
speeds (v− = v+). The orange lines represent the short-
time approximations, while the green lines are the long-time
approximations

Fig. 5 Real part of the
intermediate scattering
function F(k, t) for a equal
swimming speeds and b
unequal swimming speeds
(v− = 0.9v+) for the initial
conditions ρ(x, 0) =
(0, δ(x), 0))λe/v+, all rates
equal to λe and
D = 0.2v2

+/λe. The black
lines represent the MSD

short crossing time t
(2)
c

and, in the case of different
speeds, long crossing time

t
(2)
l

(a) (b)

The reason why we observe the t3-behaviour for short
times is the fact that the settled population can only
change by doubling, moving and then settling, with
each one of these processes being at least of order t.
We also notice that for D = 0 the MSD grows initially
with t4, as in this case the short time MSD for moving
cells grows with t2 and not t.
The long-time asymptotes for both MD and MSD of
the settled particles are identical to those of the whole
population.

4 Interacting cells

4.1 Attraction to settled regions

We now discuss the case of interacting cells. Our model
contains an effective attractive force that pushes the
moving cells towards the regions where the density
of settled cells is larger. This force is meant to rep-
resent how bacteria tend to assemble in resource-rich
regions to reproduce or how they accumulate in order
to form biofilms [35,36]; therefore the parameter κ > 0

in Eq. (1). The interaction terms κ∂x(∂x(ρ0)ρ±) render
the equation nonlinear such that it is not analytically
solvable. Instead we first perform a linear stability anal-
ysis around the homogeneous stationary solution to the
linear system ρ̂ computed in Eq. (12) (see also Fig. 3)
by adding a small perturbation δρ(x, t) and neglecting
the nonlinear terms in the perturbation (δρ(x, t))2. We
then arrive at the following system of equations for the
perturbation:

∂tδρ+ = −v+∂xδρ+ − κ∂2
x(δρ0)ρ̂+ + D∂2

xδρ+

− (λs + λe + μ)δρ+ + λeδρ− + λdδρ0
∂tδρ0 = −λdδρ0 + λs(δρ+ + δρ−) (30)

∂tδρ− = v−∂xδρ− − κ∂2
x(δρ0)ρ̂− + D∂2

xδρ−
− (λs + λe + μ)δρ− + λeδρ+ + λdδρ0,

where the stationary values for the density are sym-
metric, ρ̂+ = ρ̂−. We apply both a Fourier transform in
space and a Laplace transform in time to Eq. (30) and
solve the resulting characteristic equation of the system.
We obtain three different solutions for the eigenvalues
of the system si(k), of which only one, s1(k), can have
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(a) (b)

Fig. 6 a Mean displacement (MD), b mean-square-

displacement (MSD), respective crossing times t
(1)
c , t

(2)
c and

short- and long-time approximations for settled cells, with
initial conditions ρ(x, 0) = (0, δ(x), 0))λe/v+, all rates equal
to λe and D = 0.2v2

+/λe. In (b) the solid red line shows

unequal swim velocities (v− = 0.9v+) and the dashed blue
line equal swim speeds (v− = v+). The orange lines rep-
resent the short-time approximations, while the green lines
are the long-time approximations

a positive real part. In the following we focus on s1(k),
since its positive real part introduces instabilities in the
system.

First of all, for k → 0, the value of s1(k) is one of
the eigenvalues of the system matrix where the initial
densities are constant, and more specifically the one
that can be positive:

s1(0) = E3 � λd(λs − μ)
μ + λd + λs

. (31)

This means that one of the conditions for the system
to be stable is that the number of cells does not grow
exponentially, which is expected.

The second limit we consider is k → ∞. We have
that

lim
k→∞

s1(k) → 2κρ̂+λs

D
− λd. (32)

This second condition states that the diffusion constant
contrasts directly the instabilities generated by a large
settling rate and the attractive constant κ, as it dis-
perses too large clusters of active cells, while a large
doubling rate helps the stability by reducing the size of
groups of settled cells. Knowing the limits of s1(k) in
k = 0 and k = ∞, i.e long- and short-range perturba-
tions respectively, we are sure that the system will be
unstable if the real part of either of them is larger than
zero, giving us two stability conditions for the system:

μ ≥ λs,

λd ≥ 2κρ̂+λs

D
. (33)

For D = 0, s1(k) grows asymptotically like k, mak-
ing the system always unstable. In Fig. 7 we show the
behavior of the eigenvalue Re(s1(k)) for different values
of D. Notice that for the set of parameters considered,

Fig. 7 Eigenvalue s1(k) as a function of wavenumber k
for different values of D, where all rates are equal to λe,
v− = v+ and κ = λ−1

e

if D = 2v2
+/λe the stability conditions are only nar-

rowly fulfilled, but the real part of s1 stays negative for
all the values of k. Lastly, when the cell running speeds
are not isotropic, the imaginary part of s1 can be non-
zero, meaning that there can be stable periodicity in
the system.

While the real part of the other two solutions s2 and
s3 is always negative, their imaginary part is non-zero
for large values of k. More specifically, for large k and
finite D their imaginary part is proportional to k, while
the real part goes with −Dk2. A finite imaginary part
indicates oscillations in the system, although the neg-
ative real part means that these oscillations are only
transient. Signatures of these oscillations can also be
seen in our numerical solutions (see the next Section).

4.2 Repulsion among settled cells

We now include a self-repulsive potential for the cells
that do not move, given by κ0 > 0 in the matrix U in
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Eq. 1. This repulsion models the need for settled bacte-
ria to not overcrowd any particular region and deplete
its resources while reproducing. What is particularly
interesting about having both an attractive and a repul-
sive part in the potential is that the interplay of these
two opposing effects can lead to structures forming in
the system, as we will show now. If we repeat the anal-
ysis described in the last subsection including κ0 > 0,
we find that the limits of s1(k) are

s1(0) = E3

s1(k → ∞) = −κ0ρ̂0k
2 + O(k). (34)

The main difference with Eqs. (31), (32) is that s1 will
always be negative for a sufficiently large value of k.
This means that if we choose parameters for which s1
can be positive, its largest root kr will indicate the
smallest allowed instability of the system, with size
l = 2π/kr. We consequently expect instabilities to form
for systems of size L larger than l. As an example of
this we numerically calculated the values of kr for dif-
ferent values of the running speeds v+ and v−, quantify-
ing their occurrence using two non-dimensional parame-
ters, the maximum speed vm and the reduced difference
speed vr defined by

vm ≡ max(v+, v−)√
Dλe

vr ≡ v+ − v−
v+ + v−

. (35)

We chose specifically to vary the running speeds as they
can easily tune the asymmetry of the system, leading
to interesting instabilities. In Fig. 8 we can see kr as a
function of vr and vm, written in units of k0 = 2π/L.
We expect the system to develop instabilities for values
of kr > k0, so we fitted the separatrix kr = k0 to a
second-order polynomial, vf

m(vr):

vf
m = 2.76 ± 0.01 + (2.73 ± 0.03)vr − (1.14 ± 0.04)v2

r .

(36)

This particular fit was determined using the linear
growth model for the parameter values indicated in the
caption to Fig. 8.

In order to study the emergence of such instabilities
in detail, we further implemented a numerical solver
for both Eqs. (1) and (6), using an explicit fourth-order
Runge–Kutta algorithm [37] for the time integration
and a finite difference scheme in space. We performed
calculations both with the linear and the nonlinear
growth model, setting respectively λs = μ and λs ≥ μ.
We use a finite box of length L with periodic boundary
conditions. Setting the time step to Δt = 10−4λ−1

e we
calculated ∼ 106 steps to ensure that the system set-
tles into a steady state. Our calculations are initialized
using the steady-state solutions of the linear system
(Eqs. (12)), to which we add small fluctuations given by
Gaussian noise. We find that our system develops wave-
like structures, which are static for v+ = v− and become
traveling waves when v+ 	= v− - see Fig. 9 for the linear

Fig. 8 Largest root of s1(k), kr, as function of vr and vm.
As parameters we chose λs = λd = μ = 0.1λe, κ = 0.2λ−1

e ,
κ0 = 0.05λ−1

e and D = 0.001L2λe. In blue we see the param-
eters for which the system is not large enough to enable
instabilities, while in black we have the second order poly-
nomial that fits the kr = k0 curve

growth case and Fig. 11 for the nonlinear case. Test-
ing different initial conditions, e.g. choosing ρ0(x) as a
narrow Gaussian peak that approximates an initially
settled single cell, we also observed that these wave-like
structures always form, even if the specific shape of the
wave can be affected. In our analysis we preferred to use
the steady-state solution of Eqs. (12) as initial condi-
tion, as it makes comparison with the theoretical results
of Fig. 8 more straightforward. Intuitively, the attrac-
tive term κ leads to the formation of peaks, induced by
the instability in Eq. (33). These peaks are then stabi-
lized by the repulsive term κ0. The asymmetry of the
running speeds makes the peaks move.

Migrating bands of bacteria have indeed been observed
experimentally [38–43] and have also been modeled
theoretically [29,44,45], always considering only one
species of cells. A particularly surprising feature of our
model is that in this final stationary state all three
distributions evolve in the same direction at the same
speed, independently of the intrinsic running speed of
the cells.

We replicated the diagram of Fig. 8 with numeri-
cal integration of the model equation, and the resulting
non-equilibrium state diagram is shown in Fig. 10. We
find a clear transition from a stable system (shown in
blue), where all species are constant in space, to the
appearance of wave-like structures (shown in red to
yellow). The gradient visualizes the change in station-
ary speed of the waves vs, defined as the speed of the
waves in the stationary state divided by

√
Dλe, and is

hence non-dimensional. This quantity is almost vanish-
ing near the transition, and grows the further away we
move from it. The formation of these waves is typical of
systems with a large difference between v+ and v− or
rather small absolute speeds. We fitted the separatrix
to a second order polynomial vf

m(vr) and obtained
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Fig. 9 Density of left ρ−,
right ρ+ and sedentary ρ0

cells as functions of space
at different times
(increasing from (a) to
(c)). We set here
λs = λd = μ = .1λe,
κ = .2λ−1

e , κ0 = .05λ−1
e ,

v+ = 2v− = .1Lλe and
D = 0.001L2λe

Fig. 10 State diagram of the system as a function of vr
and vm. As parameters we chose λs = λd = μ = 0.1λe,
κ = 0.2λ−1

e , κ0 = 0.05λ−1
e and D = 0.001L2λe. In blue

we see the parameters for which the system is stably con-
stant, while in red to yellow we see the parameters for which
the system generates traveling wave structures. Examples of
both long-time behaviors are shown in their respective area.
The gradient shows the stationary velocity of the waves vs,
while in black we have the second order polynomial that fits
the transition curve vf

m

vf
m = 2.78 ± 0.01 + (2.56 ± 0.03)vr − (0.88 ± 0.03)v2

r .

(37)

We find that our numerical calculations and theory are
in very good qualitative agreement.

4.3 Application to Caulobacter crescentus

Table 1 gives an idea of the experimentally measured
values for CC which have been extracted from recent
papers on its swimming behaviour [46–49]. It is note-
worthy to comment on the running speeds v+, v−.
While the torque generated by the flagellar motor dif-
fers significantly during forward and backward motion,
the resulting velocities are not dramatically different
(and, in fact, experimentally hard to measure) [49].
We have performed calculations with the parameters
of Table 1 for different values of κ and κ0 which are
undetermined from experiments. Since for Caulobacter
μ < λs, we have included the saturating nonlinearity
for the growth in the model. The results show that the

Table 1 Values of the parameters for Caulobacter crescen-
tus taken from [46–49]

Run-and-tumbling rate (s−1) λe 10−1

Settling rate (s−1) λs 10−5

Doubling rate (s−1) λd 10−4

Decay rate (s−1) μ 10−6

Running speed right (m/s) v+ 4 × 10−5

Running speed left (m/s) v− 3.5 × 10−5

Diffusion coefficient (m2/s) D 2 × 10−9

waves still form provided the ratio κ/κ0 is large enough
(Fig. 11).

5 Conclusions and outlook

In this work we proposed and studied a 1D 3-state
model motivated by the cell cycle progression of the
bacterium Caulobacter crescentus, including both its
run and tumble motion and its reproductive behavior.
We first analyzed the free cell space-independent case
and calculate the parameter regimes for which the num-
ber of cells grows or declines. Adding the spatial depen-
dence we subsequently determined dynamical quanti-
ties of the system such as the mean displacement, the
mean-squared displacement and the intermediate scat-
tering function. We found a surprising super-ballistic
behavior of the MSD at short times with a t3 scaling
which stems from the interplay of cells doubling and
cells starting to swim.

Subsequently, we included attractive and repulsive
interactions between cells into our model, representing
their tendency to swim towards regions in which cells
are settled and to avoid overcrowding. We determined
the stability conditions and, using numerical methods,
we studied the fully nonlinear system in which we iden-
tify traveling waves of cells. Their occurrence is quan-
tified in a non-equilibrium state diagram.

Our model lends itself to further extensions in several
ways. E.g., one could account for complex nutrient land-
scapes and for a more detailed description of the cell
cycle, which is well-studied from various aspects [27];
another possible system for application are Chlamy-
domonas reinhartii cells [28]. The cell cycle can be
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Fig. 11 Nonlinear growth model, density of left ρ−, right
ρ+ and sedentary ρ0 cells as functions of space at differ-
ent times (increasing from (a) to (c)). Because of the large
value of λe compared to the other rate parameters, the
right-moving and left-moving populations have almost the
same shape, making the red line disappear under the blue
line. The shaded areas indicate the largest peak, and how

it moves in time towards the right. We chose as param-
eters the values typical of CC shown in Table 1. For the
interaction potentials, for which no experimental estimates
can be made at present, we chose κ = κ0 = 10λ−1

e , while
for the carrying capacity of the system we set ρc(x, t) =
(0.04, 0.04, 0.04)λe/v+

included in cell-resolved simulations such as performed
recently in [50,51]. Another direction could be a two-
dimensional field description that includes the nematic
ordering of cells such as in [52]. In a higher-dimensional
model it would also be interesting to see what the
effect of different swimming strategies such as run and
tumble, run-reverse or run-reverse-flick [30] is. Finally,
an exploration of the fully nonlinear model—nonlinear
diffusive interactions as well as nonlinear growth—
including a full higher-dimensional tumbling behaviour
for a multi-species system would be an interesting prob-
lem in the context of biofilm growth.
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Appendix

Relation between intermediate scattering function
and momenta of the density in 1D

We show here the calculation that justifies Eq. (17) in one
dimension in the case where the initial conditions for the cell
density are ρ(x, t = 0) = (0, N(0)δ(x), 0). First, we write the
definition for the moments 〈(x(t) − x0)

n〉 = 〈xn(t)〉:

〈xn(t)〉 =

∫ ∞

−∞
dx xnP (x, t), (38)

where P (x, t) is the probability density of the position. We
then apply a Fourier transform and its inverse in the inte-
gral

〈xn(t)〉 =
1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dk eikx

(
in

∂nP̃ (k, t)

∂kn

)
, (39)

where P̃ (k, t) is the Fourier Transform of P (x, t). Finally,
we exchange the order of integration to get

〈xn(t)〉 =
1

2π

∫ ∞

−∞
dk 2πδ(k)

(
in

∂nP̃ (k, t)

∂kn

)

= in
∂nP̃ (k, t)

∂kn

∣∣∣∣
k=0

. (40)
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Knowing that for the initial conditions that we have chosen
ρ̃(−k, 0) = (0, N(0), 0), we have

F(k, t) ≡ P̃ (k, t)P̃ (−k, 0)N(t) = P̃ (k, t)N(t), (41)

and hence

〈xn(t)〉 = in
∂nP̃ (k, t)

∂kn

∣∣∣∣
k=0

=
in

N(t)

∂nF(k, t)

∂kn

∣∣∣∣
k=0

. (42)
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