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Tunable critical Casimir forces counteract 
Casimir–Lifshitz attraction

Falko Schmidt1,2  , Agnese Callegari    1, Abdallah Daddi-Moussa-Ider    3,4, 
Battulga Munkhbat    5,6, Ruggero Verre    5, Timur Shegai    5, Mikael Käll    5, 
Hartmut Löwen3, Andrea Gambassi    7,8 and Giovanni Volpe    1 

In developing micro- and nanodevices, stiction between their parts, that is, 
static friction preventing surfaces in contact from moving, is a well-known 
problem. It is caused by the finite-temperature analogue of the quantum 
electrodynamical Casimir–Lifshitz forces, which are normally attractive. 
Repulsive Casimir–Lifshitz forces have been realized experimentally, but 
their reliance on specialized materials severely limits their applicability 
and prevents their dynamic control. Here we demonstrate that repulsive 
critical Casimir forces, which emerge in a critical binary liquid mixture 
upon approaching the critical temperature, can be used to counteract 
stiction due to Casimir–Lifshitz forces and actively control microscopic and 
nanoscopic objects with nanometre precision. Our experiment is conducted 
on a microscopic gold flake suspended above a flat gold-coated substrate 
immersed in a critical binary liquid mixture. This may stimulate the 
development of micro- and nanodevices by preventing stiction as well as by 
providing active control and precise tunability of the forces acting between 
their constituent parts.

Long-range forces emerge between microscopic objects that confine 
a fluctuating field, irrespective of the field’s specific nature. Quantum 
electrodynamical Casimir forces, for example, act on neighbouring 
uncharged conducting objects because they effectively confine electro-
magnetic fluctuations of the quantum vacuum1. Their generalization at 
finite temperature and in material media is known as Casimir–Lifshitz 
forces1–3. Since these forces are almost always attractive4–6, they can 
cause the well-known problem of stiction between the various parts of 
nanodevices, such as those found in microelectromechanical systems 
(MEMS) and nanoelectromechanical systems (NEMS)7. This has moti-
vated several recent studies to search for repulsive Casimir–Lifshitz 
forces both in vacuum8–12 and in media13,14. Making Casimir–Lifshitz 
forces repulsive in vacuum requires a careful design of the geometrical 
shape of the surfaces involved9,15 and this repulsion is usually possible 
only along some spatial directions. Experimentally, repulsive forces 

have only been obtained for specifically engineered systems, for exam-
ple, by a careful choice of the materials of the two interacting surfaces 
and the separating liquid16–19, by using metamaterials with negative 
refractive index (which, however, are not readily available8,20,21), by 
coating one of the surfaces with a low-refractive-index material22 or by 
adjusting the concentration of ligands in solution23, while theoretical 
studies have investigated the possibility of realizing repulsive forces 
experimentally by employing optically chiral materials in combination 
with magnetic fields24. In any case, these forces do not give rise to stable 
equilibria25 and, as a more severe limitation, their magnitude is deter-
mined by the properties of the various materials and, in the majority 
of the cases, cannot be controlled by external parameters. Recently, 
experimental studies have shown that a combination of attractive and 
repulsive Casimir–Lifshitz forces can be used to levitate particles away 
from a surface22, and that they can trap freely floating particles near 
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fluids37 have also been investigated. Studies of the phase behaviour of 
colloidal dispersions in a critical mixture30,38 have indicated that criti-
cal Casimir forces are viable candidates to control the self-assembly 
of micro- and nanostructures39–41 and quantum dots42. In addition, 
fluctuation-induced effects similar to critical Casimir forces have been 
investigated, for example, at the percolation transition of a chemical 
sol43, in the presence of temperature gradients44, in granular fluids45 
and in active matter systems46,47.

Here we demonstrate experimentally that repulsive critical 
Casimir forces can be used to compensate for attractive Casimir–Lif-
shitz forces. In particular, we study a microscopic gold flake diffusing 
above a gold surface immersed in a critical binary liquid mixture. We 
control the magnitude of these forces by varying the temperature 
of the mixture and the attractive/repulsive character of the critical 
Casimir forces by chemical functionalization of the gold flake and 
surface, obtaining repulsive forces for opposite surface functionaliza-
tions. Far from the critical temperature, we observe stiction between 
the flake and the surface due to Casimir–Lifshitz forces. However, as 
we approach the critical temperature, we observe the emergence of 
repulsive critical Casimir forces that are sufficiently strong to prevent 
stiction and to release the flake from the surface, above which it then 
levitates. In addition, we demonstrate that this behaviour is revers-
ible and can be employed to actively control the flake position above 
a structured surface.

Results
Working principle
We first describe a simple model to clarify how repulsive critical Casimir 
forces can be employed to counteract attractive Casimir–Lifshitz 
forces, by estimating theoretically the orders of magnitude of the forces 
involved. Consider two flat parallel plates (Fig. 1a): One is a thin gold 
flake (length a = 1,520 nm, thickness b = 34 nm) suspended in a criti-
cal binary liquid mixture above a gold-coated (thickness 40 nm) glass 
substrate, which is the second plate. The first plate hovers at a height h 
above the surface because of the interplay of three forces (see details in 
Methods): the Casimir–Lifshitz force, which, in this case, is attractive; 
the critical Casimir force, whose character and strength can be varied 
by modifying the surface functionalization and tuning the solvent 

surfaces, leading to the formation of Fabry–Pérot cavities when multi-
ple particles assemble on top of each other23. Despite these advances in 
the manipulation of nanoparticles, these systems are inherently static 
and lack any tunable parameters to allow dynamic control. Although 
a protocol to dynamically control the Casimir–Lifshitz force was pro-
posed theoretically in ref. 24 by varying the strength and orientation 
of a magnetic field, its experimental realization is still challenging.

Critical Casimir forces are the thermodynamic analogue of quan-
tum electrodynamical Casimir forces and were first theoretically 
predicted by Fisher and de Gennes in 197826. They arise, for exam-
ple, between objects immersed in a binary liquid mixture kept near 
a second-order phase transition, owing to the confinement of the 
thermal fluctuations of the local concentration of one of the com-
ponents of the binary mixture (which is the order parameter of the 
transition)27. In soft matter, thermal fluctuations typically occur on 
molecular length scales (subnanometre) and, accordingly, the effects 
they produce are generally negligible at larger separations. However, 
upon approaching the critical point of a second-order phase transition, 
the fluctuations become correlated on much longer length scales (up 
to several microns) and can thus substantially affect the behaviour 
of microscopic systems27. Importantly, critical Casimir forces can be 
either attractive or repulsive depending on the surface chemistry of 
the objects involved28–30: While the critical Casimir forces between 
surfaces with similar adsorption preferences (either hydrophilic or 
hydrophobic) are attractive, they become repulsive when these prefer-
ences are opposite.

The first direct experimental measurement of critical Casimir 
forces was achieved only in 200829: Using total internal reflection 
microscopy, femtonewton forces were measured on a single spherical 
microscopic particle suspended above a planar surface in a critical 
water–lutidine liquid mixture. Since then, these forces have been 
investigated under various conditions, for example, by varying the 
properties of the surfaces involved, demonstrating the occurrence 
of both attractive and repulsive forces29–31 as well as the existence of 
many-body effects32 and the possibility of levitating spherical col-
loids over patterned substrates solely by critical Casimir forces33. The 
subtle interplay between these forces and the electrostatic interac-
tion in the presence of salt34–36 or the van der Waals force in nonpolar 
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Fig. 1 | Casimir–Lifshitz and critical Casimir forces between parallel plates.  
a, Schematic (not to scale) of a hydrophilic (−) gold flake hovering at an 
equilibrium height h above a glass surface coated with a gold layer and treated 
with SAMs to control the preferential surface adsorption. b, Forces acting on 
a hydrophilic flake above a hydrophilic (blue layer, inset) surface as a function 
of its height h. Since the boundary conditions are symmetric (−, −), both the 
Casimir–Lifshitz forces (dashed orange line, Eq. (5)) and the critical Casimir 
forces (dashed blue line, Eq. (2) at ΔT = T − Tc = −0.1 K, where T is the solution 
temperature and Tc is the critical temperature of the critical binary mixture) are 
attractive. The total force (black line) including also a repulsive electrostatic 

component (dashed green line) vanishes at h ≈ 80 nm. c, Forces on a hydrophilic 
(−) flake above a hydrophobic (+) surface (red layer, top inset) as a function of h. 
Here, the antisymmetric (−, +) boundary conditions induce a repulsive critical 
Casimir force (dashed red line, Eq. (2) at ΔT = −0.1 K), while the Casimir–Lifshitz 
force (dashed orange line, Eq. (5)) remains attractive. Accordingly, the total 
force vanishes at much larger h ≈ 210 nm (bottom inset shows a zoom-in view of 
this region). The presence of repulsive critical Casimir forces greatly raises the 
equilibrium height of the flake above the surface. The forces shown in b and c are 
calculated for a 34-nm-thick 1,520-nm-wide gold flake suspended in water– 
2,6-lutidine above a 40-nm-thick gold layer.
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temperature; and the electrostatic force, which provides a short-range 
repulsion between the flake and the substrate. The gravitational force 
acting on the flake is negligible compared with the other forces acting 
on the flake in close proximity to the substrate.

The attractive Casimir–Lifshitz force between two plates depends 
on h as

FCL(h) = −dGCL
dh

S, (1)

where GCL is the Casimir–Lifshitz free energy per unit area of the system 
and S is the area of the flake (ref. 48 and Methods). In this case, the force 
depends on the thicknesses of the flake and of the gold layer deposited 
on the glass surface, as well as on the dielectric properties of the glass 
and of the solvent (Methods and Extended Data Fig. 1). The resulting 
Casimir–Lifshitz forces are plotted as dashed orange lines in Fig. 1b,c 
for two opposite surface treatments of the gold layer.

The critical Casimir forces are induced by the confinement of the 
critical mixture between the flake and the substrate. Their strength 
Fcrit depends on the adsorption preference of the surfaces involved 
and on the difference ΔT = T − Tc between the actual temperature T of 
the binary liquid mixture and its critical temperature Tc. In particular,

Fcrit(h,ΔT) = −kBTc
h3

θ (h/ξ(ΔT)) S, (2)

where ξ(ΔT) is the correlation length of the fluctuations of the order 
parameter of the mixture depending on ΔT and θ (h/ξ(ΔT)) is a univer-
sal scaling function27. For the sake of simplicity, in the following we 
omit the explicit dependence on ΔT of ξ. Whether the critical Casimir 
forces are repulsive or attractive depends on the boundary conditions 
given by the surface preferential adsorption of one of the two compo-
nents of the mixture (indicated by “−” or “+”). We can control these 
boundary conditions by chemically functionalizing the surfaces with 
appropriate self-assembled monolayers (SAMs) (Methods). In the case 
of symmetric boundary conditions (−, −) or (+, +) (that is, the flake and 
surface prefer the same component of the mixture), the critical Casimir 
forces are attractive (Fig. 1b, dashed blue line). For antisymmetric 
boundary conditions (−, +) (that is, preference for different compo-
nents), the critical Casimir forces are repulsive (Fig. 1c, dashed red 
line).

The electrostatic repulsive force FES is due to the double layer 
of counterions in close proximity to the surface of the flake and the 
substrate49. According to the Derjaguin–Landau–Verwey–Overbeek 
(DLVO) theory (neglecting boundary effects), we have

FES(h) = P0 e−h/λDS, (3)

where λD is the Debye screening length of the critical mixture and P0 is 
a parameter with the dimensions of pressure.

The theoretical predictions presented in Fig. 1b,c show that, in the 
configuration we consider at ΔT = −0.1 K, the magnitude of the critical 
Casimir forces is expected to be larger than that of the Casimir–Lifshitz 
forces, so we can use the critical Casimir forces to tune the equilibrium 
position of the flake above the surface. In the case of asymmetric bound-
ary conditions (−, +) (Fig. 1c), this provides an additional repulsion 
between the flake and surface, which can be used to prevent stiction.

Experimental setup and analysis
In the experiment, we consider a gold flake suspended in a near-critical 
water–2,6-lutidine mixture (lutidine critical concentration ccL = 0.286 
mass fraction, lower critical temperature Tc ≈ 310 K, that is, 34 °C) above 
a gold-coated surface (Fig. 1a). The gold flakes are fabricated using a 
wet chemical synthesis method50 that produces single-crystalline gold 
flakes (diameter d = 3 ± 2 μm), stabilized by cetrimonium bromide 

(CTAB) ligand molecules, with average thickness of b = 34 ± 10 nm in 
aqueous solution23 and of various geometrical shapes (scanning elec-
tron microscopy image in Fig. 2a and details in Methods). These flakes 
are hydrophilic due to the formation of a CTAB bilayer on their surface51. 
For this study, we select flakes with the shape of equilateral hexagons 
(Fig. 2b, inset) owing to their larger degree of symmetry.

The substrate is constituted by a glass slide on which a 35-nm-thick 
gold coating is deposited by sputtering. To control the surface preferen-
tial adsorption, the gold coating is chemically functionalized by a SAM 
of either hydrophilic or hydrophobic thiols by immersing the surface 
in a 1 mM thiol solution with different end groups (Methods)52. We tune 
the temperature of the sample via a two-stage feedback temperature 
controller with ±20 mK stability32,53 and thus control the strength of 
the critical Casimir forces.

As anticipated by our theoretical predictions (Fig. 1 and discussion 
above), a change in the magnitude or sign of the critical Casimir force 
acting on the flake alters its equilibrium height h above the surface. 
However, these changes are on the order of a few tens of nanometres 
and, thus, difficult to measure directly. A more convenient approach 
consists in measuring the lateral diffusion of the flakes along the sub-
strate, which depends sensitively on their height54–56: the higher (lower) 
the flake is above the surface, the larger (smaller) its diffusion is. Accord-
ingly, we record a video of the flake’s motion for a long period of time 
(~100 s, with a sample rate of 100 Hz) using a bright-field microscope 
(Extended Data Fig. 2). Using digital video microscopy, we reconstruct 
the projection of the flake’s position on the x–y plane, where x and y are 
the Cartesian coordinates along the surface of the substrate (Fig. 2b, 
solid line and Supplementary Video 1). The flake diffuses freely along 
the x–y plane, while its motion along the z-direction (perpendicular 
to the substrate) is negligible. From the x–y trajectory, we calculate 
the mean square displacement (MSD(t) at time t in Fig. 2c), which, for 
a freely diffusing flake, grows as MSD(t) = 4Dt, where D is the diffusion 
constant. D can be obtained by fitting the measured MSD (Methods). 
Since D depends sensitively on h, its value can be used to infer the equi-
librium position h of the flake above the surface. We have calibrated 
the theoretical reference D(h) (Fig. 2d, blue line) using hydrodynamic 
simulations of the flake (Methods), which permit a determination of 
the equilibrium height of the flake with nanometre (±1.3 nm) precision 
(Fig. 2d, black dashed lines). In addition, we validated the indirect meas-
urement of h obtained as described above by alternatively measuring 
the Fabry–Pérot cavity modes (Supplementary Information Section 
II). In fact, a microcavity is formed between the flake and the gold sub-
strate. We measure its reflectivity spectrum to determine the spatial 
variation of the cavity thickness using a spectrometer (Methods and 
Extended Data Fig. 3)23. The measured cavity modes in the reflection 
spectrum at different positions were analysed by the standard transfer 
matrix method23. We find that the flake is about 90 ± 10 nm away from 
the surface inside a critical water–2,6-lutidine mixture at ΔT = −0.5 K, 
independently of the actual surface functionalization, and this value 
is in good agreement with our measurements of h = 100 nm using 
hydrodynamic simulations.

Measurement of the Casimir–Lifshitz force
Using the method described in the previous section, we can investi-
gate the separate effects of the various forces on the flake. We start by 
determining the (attractive) Casimir–Lifshitz force at low temperature 
ΔT ≈ −1 K, at which the critical Casimir force is negligible (importantly, the 
Casimir–Lifshitz force and the electrostatic force are not substantially 
affected by a temperature change up to several kelvin, because they 
are expected to be smooth functions of the absolute temperature T, 
whose value changes by less than 1% in our experiment). The Casimir–Lif-
shitz force can then be determined by comparing the total force (which 
includes electrostatics) acting on the gold flake above the uncoated glass 
surface (where the Casimir–Lifshitz force is weak) and the force acting 
when the flake is above a gold-coated surface. In fact, we observe that the 
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flake suspended above an uncoated glass surface hovers at h ≈ 300 nm 
(Extended Data Fig. 4), while its equilibrium height reduces to h ≈ 100 nm, 
when the flake is floating above the gold-coated surface. This fact is 
largely independent of the gold functionalization and, therefore, of 
the adsorption properties of the surface (as seen from the values of h 
at low temperature, ΔT = −1 K, in Fig. 3b,e). This reduction of the value 
of h is the result of the presence of attractive Casimir–Lifshitz forces 
between the gold flake and the gold surface57. Further evidence of the 
nature of this force is provided by the quality of the fit of the experimental 
data with the theoretical model (Extended Data Fig. 5). In particular, we 
compare the inferred heights with the theoretical average height of the 
flake floating above the gold-coated and uncoated silica surface. This fit 
allows us to infer the parameters of the electrostatic interaction in the 
two cases, which are important for the theoretical interpretation of the 
experimental results provided in the following two subsections. The 
details of the fitting procedure are given in Methods.

Interplay between critical Casimir and Casimir–Lifshitz forces
As seen in Fig. 1c, repulsive critical Casimir forces are theoretically 
expected to be able to overcome Casimir–Lifshitz forces in magnitude 
as the solvent’s temperature approaches Tc. In this section, we provide 
experimental evidence for this fact.

In Fig. 3a–c, we consider a hexagonal hydrophilic flake with 
a = 700 nm (Fig. 2b) above a hydrophilic surface, realizing symmet-
ric (−, −) boundary conditions. As the temperature of the solution is 
increased towards Tc, the flake’s diffusion constant D decreases from 
~0.09 μm2 s−1 to 0.07 μm2 s−1 (blue squares in Fig. 3a), indicating that 
the flake’s distance from the substrate decreases from 108 ± 7 nm to 

68 ± 5 nm (Fig. 3b, blue squares). This decrease is primarily due to an 
increasingly stronger critical Casimir force (Fig. 3c, blue symbols), but 
also to an increase of the Casimir–Lifshitz force (Fig. 3c, orange crosses) 
as the equilibrium distance heq of the flake decreases. The experimental 
results agree well with theoretical predictions for the Casimir–Lifshitz 
forces (Fig. 3c, solid orange line), the critical Casimir forces (Fig. 3c, 
solid blue line), the electrostatic force (Fig. 3c, solid green line) and 
the resulting height of the flake (Fig. 3b, solid blue line) (Methods). We 
emphasize that the magnitude of the critical Casimir forces acting on 
the flake becomes larger than that of the Casimir–Lifshitz forces when 
the temperature is sufficiently close to Tc (that is, ΔT > −0.3 K) (Fig. 3c).

In Fig. 3d–f, we consider the case of a hexagonal hydrophilic flake 
with a = 840 nm above a hydrophobic surface realizing antisymmetric 
(−, +) boundary conditions. Interestingly, while the sizes of the two 
flakes are different, their equilibrium heights heq ≈ 100 nm far from Tc 
are similar, confirming that the forces acting per unit area are similar 
and not affected by the critical Casimir contribution, which would 
have opposite signs for the two flakes. In this case, however, as the 
temperature approaches Tc, the flake’s diffusion constant D increases 
(Fig. 3d, red circles) from ~0.067 μm2 s−1 to ~0.15 μm2 s−1, indicating 
that its equilibrium height heq above the surface increases (Fig. 3e, red 
circles). In particular, heq changes from 96 ± 10 nm at ΔT = −0.9 K to 
196 ± 47 nm at ΔT = −0.1 K. This increase is primarily due to the emer-
gence of repulsive critical Casimir forces (Fig. 3f, red circles), combined 
with the decrease of the magnitude of the Casimir–Lifshitz forces  
(Fig. 3f, orange circles) as a consequence of the larger distance between 
the flake and the substrate. These experimental results fit well with the 
theoretical predictions (Fig. 3e,f, solid lines) (Methods). Also for this 
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in b, which provides an estimate of the diffusion constant D = 0.067 μm2 s−1, 
compared with D ≈ 5.98 μm2 s−1 for free diffusion (black line). The s.d. of the 
experimental points is much smaller than the symbols. d, Theoretical diffusion 
D of a hexagonal flake with side a = 840 nm as a function of its height h above 
the surface (Fig. 1a) obtained from hydrodynamic simulations (see Methods 
and Supplementary Information Section IV). The experimentally measured 
D = 0.067 μm2 s−1 corresponds to height h = 100 nm.



Nature Physics

Article https://doi.org/10.1038/s41567-022-01795-6

case of antisymmetric boundary conditions, the magnitude of the criti-
cal Casimir forces eventually exceeds that of the Casimir–Lifshitz force. 
Interestingly, at ΔT ≈ −0.1 K, the equilibrium height heq is increased to 
a value at which the electrostatic repulsion becomes negligible, the 
weight of the flake is still much smaller than the Casimir–Lifshitz attrac-
tion at that distance and thus the attraction of the Casimir–Lifshitz 
force is essentially balanced by the repulsive critical Casimir force. 
The electrostatic repulsion in the two cases with different boundary 
conditions is found to be essentially the same by the fitting procedure 
(Methods). Thus, this experiment demonstrates that the repulsive criti-
cal Casimir forces, as the only tunable repulsive force in the system, can 
effectively overcome the Casimir–Lifshitz attraction upon approaching 
the critical temperature Tc. Note that, in this case, the presence of the 
electrostatic force is not necessary to prevent stiction, at least close to 
the critical point. On the other hand, the electrostatic repulsion may 
be fundamental to avoid stiction when far from criticality or in the 
presence of attractive critical Casimir forces.

Spatio-temporal control
In the following, we show experimentally how a particle confined to a 
metallic surface by Casimir–Lifshitz attraction can be lifted away from 

the substrate by the repulsive critical Casimir force and, therefore, start 
diffusing freely. For this simple, proof-of-principle experiment we fab-
ricated gold stripes (width 3 μm) separated by gaps of glass of the same 
width (Fig. 4a). We treated the glass stripes and the gold stripes with 
SAMs having opposite wetting properties to make them hydrophilic 
and hydrophobic, respectively. A hydrophilic gold flake (a = 1450 nm) 
is floating above this configuration. The size of the flake is indicated in 
Fig. 4a and is comparable to the stripe width. Accordingly, symmetric 
boundary conditions (−, −) are realized when the flake is entirely above 
the glass stripes, while the boundary conditions are antisymmetric 
(+, −) when it is entirely above the gold stripes. To study the interplay 
between the Casimir–Lifshitz forces and the critical Casimir forces, the 
temperature of the mixture is modulated periodically in time (Fig. 4a, 
inset). At temperatures far below Tc, that is, with ΔT ≈ −1.5 K, the flake is 
essentially confined on the gold stripes by the Casimir–Lifshitz forces, 
as shown by its trajectory (Fig. 4b, white line). In fact, one observes 
experimentally that the flake cannot escape from the gold stripe even 
at long times, up to tens of minutes. This behaviour reveals the pres-
ence of an energy barrier that prevents the flake from moving to the 
neighbouring glass stripes. In agreement with the results shown in 
Section 2.4, we know that the flake hovers at an equilibrium height 
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Fig. 3 | Critical Casimir forces overcome Casimir–Lifshitz forces. a,b, The 
diffusion constant D of a hydrophilic hexagonal flake with a = 700 nm above a 
hydrophilic surface (symmetric (−, −) boundary conditions) decreases as the 
temperature T approaches the critical temperature Tc (a, blue squares) while 
its height h decreases (b, blue squares). The solid blue line is the best fit of the 
theoretical model (Eq. (8)), from which we extracted heq in Eq. (9). c, The flake is 
under the action of the Casimir–Lifshitz (CL) force (orange dots) and the critical 
Casimir force (CCF, blue dots), both of which are attractive and whose strengths 
increase as the flake approaches the surface, while electrostatic forces (ES, green 
dots) are repulsive. The orange and blue solid lines are the theoretical (sim) fits 
of the critical Casimir (Eq. (2)) and Casimir–Lifshitz (Eq. (1)) forces, respectively. 
exp, experiment; sim, simulation. Note how the critical Casimir force becomes 
stronger than the Casimir–Lifshitz force at ΔT ≈ −0.3 K. d,e, The diffusion 
constant D (red circles) for a hydrophilic hexagonal flake with a = 840 nm above 

a hydrophobic surface (antisymmetric (−, +) boundary conditions) increases 
upon approaching Tc (d) as its height h (red circles) increases (e). f, The solid red 
line is the best fit of the theoretical model (Eq. (8)) of the average height heq ≈ 〈h〉 
(Eq. (9)) under the action of the Casimir–Lifshitz force (orange dots, attractive), 
the critical Casimir force (red dots, repulsive) and the electrostatic force (green 
dots, repulsive). The red, orange and green solid lines are the theoretical values 
from the fit of the critical Casimir, Casimir–Lifshitz and electrostatic forces, 
respectively. Data presented as mean values. The error bars on the experimental 
points in b and e are the s.d. from three measurements. The error range for the 
theoretical lines in b and e is indicated as shaded areas for the confidence levels 
of 68%, 86% and 95%. In c and f, only the 68% confidence level error range is 
shown. The dashed lines in b and e refer to the equilibrium height of particle far 
away from criticality.
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heq ≈ 100 nm over the gold substrate for ΔT ≲ −0.5 K. Instead, when T 
is increased towards Tc, repulsive critical Casimir forces emerge and 
lift the flake away from the gold stripe, similar to what we observed 
experimentally in Fig. 3e. Thus, the flake diffuses freely away from the 
gold stripe and, eventually, reaches the glass stripe. Here, owing to 
the symmetric boundary conditions, it is attracted towards the glass 
by the presence of the attractive critical Casimir forces (Fig. 4c). Only 
after decreasing T far below Tc, does the critical Casimir force dimin-
ish sufficiently for the flake to get attracted and trapped onto a gold 
stripe again.

This cycle can be repeated by adjusting the temperature of the 
system, resulting in continuous transitions between gold and glass 
stripes (Fig. 4b–i and Supplementary Video S2). The complete trajec-
tory is shown in Fig. 4j, which is colour coded based on the measured 
temperature. It can be seen that the transitions between adjacent 
stripes occur only after Tc (dark red) has been reached.

This experimental behaviour can be explained by a theoretical 
model discussed in detail in Supplementary Information Section III. 

In the theoretical model describing a flake suspended on a substrate 
coated with gold stripes, the flake is subject to a potential Utot(ΔT; x, h) 
(Extended Data Fig. 6a–h), which is a periodic function of the coordi-
nate x of the centre of the flake along the direction perpendicular to 
the stripes. As discussed in detail in Supplementary Information Sec-
tion III, the dynamics of the suspended flake along the x direction for 
a fixed ΔT is ruled by an effective potential Ueff(ΔT; x) (Extended Data 
Fig. 6i–p). For ΔT ≲ −1 K, the minimum of Ueff is located in the middle 
of the gold stripe (Extended Data Fig. 6i), where the probability den-
sity distribution Peff(ΔT; x) (Eq. (S9)) has a sharp peak (Extended Data  
Fig. 6q). Upon decreasing ΔT, the peak of Peff becomes less pronounced, 
though remaining localized at the centre of the gold stripe. Eventually, 
for ΔT ≈ −0.1 K, the probability distribution develops two comparable 
peaks (Extended Data Fig. 6v), the second being localized at the centre 
of the silica stripe. For ΔT ≳ −0.08 K, this second peak becomes pre-
dominant (Extended Data Fig. 6x), in agreement with previous results 
in literature33,58,59.

The stiffness of the lateral Casimir–Lifshitz force trapping the flake 
on the gold stripe when T ≪ Tc can be quantified by measuring the 
effective attractive potential to which the flake is subject. This is done 
by calculating the probability distribution Pexp(x) of the x-component 
of the trajectories shown in Fig. 4b,d,f,h, from which the effective 
potential Uexp(x) is determined by inverting the Boltzmann factor, that 
is, Uexp(x) = −kBT ln (Pexp(x)). The resulting experimental potentials 
(Fig. 4k, dashed lines) are then fitted to a harmonic potential 
U(x) = kx2/2 (Fig. 4k, solid black line) with stiffness k ≈ 0.1 pN μm−1. 
Comparing with the theoretical model (Extended Data Fig. 7), we see 
that we can obtain a value of the stiffness on the same order of magni-
tude for an appropriate range of the flake’s size.

Conclusions and outlook
Our method provides a novel way of controlling the distances of micro- 
and nanostructures using tunable critical Casimir forces to counteract 
forces such as the Casimir–Lifshitz force, thereby preventing stiction 
and device failure. Due to the simplicity of our design—which does not 
require additional external actions such as that of magnetic fields—the 
concept can be easily adapted to already existing MEMS and NEMS. 
Moreover, this path opens up new possibilities for the dynamic control 
of MEMS and NEMS where the temperature of the system could be 
controlled via light illumination, enabling faster transitions and higher 
selectivity for a new generation of the micromembranes that are found 
ubiquitously in MEMS and NEMS devices.
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maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Calculation of the Casimir–Lifshitz and critical Casimir forces
The theoretical model which relates the measured experimental tem-
peratures to the equilibrium heights of the flake in the presence of two 
different boundary conditions of the order parameter accounts for the 
following forces: the weight and buoyancy of the flake, the DLVO electro-
static interaction, the Casimir–Lifshitz force and the critical Casimir force.

Weight and buoyancy. For the hexagonal flakes used in our experiments 
(Fig. 2a), the sum of the weight and the buoyancy is within the range 
of 5–30 fN, depending on the volume of the flake. In the case of a flake 
suspended above a gold-coated substrate, this sum is negligible in com-
parison with the Casimir–Lifshitz attraction and the electrostatic forces, 
the magnitude of which is within the range of ~1–10 pN for distances on 
the order of ~100–200 nm, such as those observed in our experiments. 
In the case of a flake suspended above an uncoated silica substrate, 
instead, the sum of the weight and buoyancy is not negligible compared 
with the other relevant forces because the flake hovers at a higher h and 
the Casimir–Lifshitz attraction is ~20 times smaller (for the same h). 
Hence, we included weight and buoyancy in all the theoretical model-
ling, although omitting their contribution for the gold-coated substrate 
does not change the results for the explored experimental parameters.

Electrostatic force. The DLVO electrostatic force49 FES between the flake 
and the substrate, at a distance h, is modelled according to Eq. (3) and 
is parametrized by the Debye screening length of the critical mixture 
λD and the parameter with dimensions of pressure, P0. For each choice 
of the surfaces involved, we fitted these parameters independently, 
determining the combination of values of λD and P0 that minimizes the 
χ2 (square error) when comparing the experimental data for the average 
height ⟨h⟩ with the model. As a result, the various substrates turn out to 
be characterized by slightly different values of the parameters of the 
electrostatics, with a pronounced difference in the case of an uncoated 
surface, where the existence of larger separations between the flake 
and the substrate leads to larger fluctuations of 〈h〉 (Extended Data  
Fig. 4). For our experiments, we found the following combinations:

As expected, these three independent fits give very similar values of 
λD, while the value of P0 in the case of uncoated silica is much larger 
than in the case of the gold-coated substrate, indicating a stronger 
electrostatic repulsion.

Casimir–Lifshitz force. The Casimir–Lifshitz force FCL in Eq. (1) was 
calculated according to ref. 48 for the layered planar bodies involved 
in the experimental setup in Fig. 1a. The corresponding free energy 
per unit area is given by

GCL(h) = −
A2/3(h)
12πh2

− A1/3(h + a1)
12π(h + a1)

2 −
A2/4(h + b)
12π(h + b)2

− A1/4(h + a1 + b)
12π(h + a1 + b)2

, (5)

where A2/3, A1/3, A2/4 and A1/4 are the Hamaker functions (Supplementary 
Information Section I), a1 is the thickness of the gold layer deposited 
on the substrate and b is the thickness of the gold flake. In the simpler 
case of a bottom slide of uncoated silica, instead, the dispersion forces 
can be derived from

GCL(h) = −
A5/3(h)
12πh2

− A5/4(h + b)
12π(h + b)2

, (6)

where A5/3 and A5/4 are the corresponding Hamaker functions (Supple-
mentary Information Section I). Note that, in this analysis, we neglect 
any spatial inhomogeneities within the fluid, which are known to gen-
erate an additional effective interface potential scaling as 1/h3 (ref. 60).

Critical Casimir force. The expression for the critical Casimir force 
Fcrit in Eq. (2) depends on the correlation length ξ of the order parameter 
fluctuation of the binary liquid mixture, which is related to ΔT<0 as 
ξ = ξ0(|ΔT|/Tc)

−ν, where ξ0 ≈ 0.22 nm for the water–2,6-lutidine mixture 
while ν ≃ 0.63 is the critical exponent of the Ising universality class to 
which the mixture belongs30.

Total force and potential. The total force Ftot acting on a flake is

Ftot(h,ΔT) = FES(h) + FCL(h) + Fcrit(h,ΔT) + Fw+b, (7)

where the term Fw+b due to weight and buoyancy can be neglected in 
the case of a flake suspended on a gold-coated substrate at the typical 
distances observed in our experiments, as explained above. The total 
potential Utot of the flake is therefore

Utot(h,ΔT) = UES(h) + GCL(h)S + Ucrit(h,ΔT) + Uw+b, (8)

in terms of the potentials corresponding to the forces shown in Eq. (7). 
In the case of a gold flake floating on a gold-coated substrate, Utot(h, ΔT) 
displays a very sharp minimum at a certain h(ΔT) for all ΔT, while for 
the flake suspended on an uncoated silica substrate, the minimum of 
the potential becomes shallow for |ΔT| ≳ 0.1 K.

When comparing with experiments, one has to keep in mind 
that the experimentally accessible quantity is the average height of  
the potential

⟨h⟩ = ∫
+∞

0
dhhP(h,ΔT), (9)

which is defined in terms of the equilibrium probability distribution 
function P(h, ΔT) associated with the potential Utot(h, ΔT), that is,

P(h,ΔT) = 1
Z e

− Utot(h,ΔT)
kBT , (10)

where Z = ∫+∞
0 e−

Utot(h,ΔT)
kBT dh. Hence, the comparison with the experimen-

tal data must consider the equilibrium height of the potential h, defined 
as

dUtot(heq)
dh

= 0. (11)

In a potential with a sharp dip, heq and ⟨h⟩ are often very close, and 
therefore ⟨h⟩ can be estimated by heq. In contrast, in a shallow, asym-
metric potential, the equilibrium height h may differ substantially from 
the average height ⟨h⟩. In the experimental conditions considered here, 
the difference between ⟨h⟩ and heq for a gold flake suspended on an 
uncoated silica surface is | ⟨h⟩ − heq| ≈ 50−100nm, while when the flake 
is suspended on a gold substrate, this difference is <5 nm.

To compare the predictions of the model discussed above with 
the experimental data, we focus on the average height ⟨h⟩ due to the 
total potential, considering also the amplitude Δh of its fluctuations. 
In our calculation and fitting procedure, Δh is set to correspond to a 
confidence level of 68%. Only Fcrit(h) and Ucrit(h) depend strongly on 
the minute variations of ΔT (via the dependence on ξ(ΔT) of the scaling 
function θ (h/ξ) in Eq. (2)). The electrostatic and Casimir–Lifshitz inter-
actions do not depend on ΔT, with the caveat that, when the correlation 
length ξ of the solvent becomes comparable to the Debye screening 
length λD of the electrostatics, other effects might come into play.  
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In fact, when λD becomes comparable to ξ, the description of the elec-
trostatics with Eq. (3) is no longer appropriate. Given that the estimated 
value of the Debye screening length is λD ≃ 16−17 nm, the value of the 
corresponding correlation length ξ is smaller than λD for the typical 
temperature differences in our system up to ΔT ≈− 0.1 K.

We first determined the parameters of the electrostatic interaction 
by fitting the value of the Debye screening length λD and the prefactor 
P0 such that they minimize

χ2 =
N
∑
j=1

(⟨hj,exp⟩ − ⟨hj⟩)
2

Δh2j
, (12)

where ⟨hj⟩ and Δhj were calculated for each different combination of 
parameters for the experimental temperature ΔTj of the experimental 
data ⟨hj,exp⟩. The fitted λD is in the range of values obtained in similar 
experiments32,53.

Experimental details
We consider a dilute suspension of gold flakes (monocrystalline, poly-
disperse and with average thickness d = 34 ± 10 nm determined via 
atomic force microscopy measurements23). The gold nanoflakes are 
wet-chemically synthesized using a rapid and seedless method in 
aqueous solution described in detail in ref. 50. Briefly, 100 μL of 100 mM 
HAuCl4 was added to 3 mL of 20 mM CTAB aqueous solution in a glass 
vial, and the mixture was gently mixed and left undisturbed for sev-
eral minutes. Then, 100 μL of 100 mM ascorbic acid was added to the 
mixture, followed by rapid inversions of the vial for 10 s. The resulting 
solution was immediately placed in a water bath at 85 °C and kept undis-
turbed for about 1 h. The products were washed by centrifugation at 
4,000 rpm (2,218g) for 10 min and finally dispersed in deionized water 
for further experiments.

The flakes obtained as described above were then suspended in a 
near-critical binary liquid mixture of water and 2,6-lutidine at the criti-
cal composition of lutidine ccL = 0.286, having a lower critical point at 
Tc ≈ 34 °C (ref. 61 and Extended Data Fig. 8). The suspension was confined 
in a sample cell between a microscopy slide and a cover slip spaced by 
about 300 μm.

On top of the cover slip, a 40-nm-thick gold layer was sputtered 
homogeneously across the sample. The cover slip was then left over-
night in 1 mM solution of thiols (1-octanethiol for hydrophobic and 
6-mercapto-1-hexanol for hydrophilic treatment) and ethanol, creating 
a SAM on top of the gold. To create a hydrophobic SAM on top of the 
glass, trichloro(1H,1H,2H,2H-perfluorooctyl)silane was evaporated 
for 4 h under vacuum. The stark contrast in the resulting wetting angle 
between hydrophilic SAM (θ = 19°, measured from the side) and hydro-
phobic SAM (θ = 102°) of a 10 μL water droplet can be seen in Extended 
Data Fig. 9.

For the patterned substrate shown in Fig. 4, an additional 
3-nm-thick layer of titanium was added to the glass substrate for bet-
ter adhesion before sputtering gold. The patterned gold stripes were 
fabricated by direct laser writing and lift-off. The substrates were spin 
coated with LOR 3A (4,000 rpm for 60 s, baking at 200 °C for 5 min) 
and S1805 (3,000 rpm for 45 s, baking at 110 °C for 1 min). The samples 
were exposed using a Heidelberg DWL2000 direct laser writer and 
developed in MF CD26 for 50 s. Titanium and gold were deposited, and 
lift-off was performed in hot remover 1165 at 70 °C overnight.

A schematic of the experimental setup is shown in Extended Data 
Fig. 2. The whole sample is temperature stabilized by using a two-stage 
temperature controller consisting of a copper-plate heat exchanger 
coupled to a circulating water bath at T0 = 32.5 °C (T100, Grant Instru-
ments) and two Peltier elements (TEC3-6, Thorlabs) attached to the 
imaging objective and in feedback with a controller unit (TED4015, 
Thorlabs), reaching ±20 mK temperature stability32,53. The flake’s trans-
lational motion is captured using digital video microscopy at a frame 

rate of 100 Hz. The particle images are thresholded to determine the 
particle’s centroid. The reconstructed trajectory is then analysed using 
standard methods.

Diffusion of a flake
The determination of the equilibrium height h of a flake depends on 
three crucial factors: the measurement of the diffusion constant D, the 
hydrodynamic simulations for extracting h from D and the presence 
of spurious concentrations of salt in solution, as discussed below. 
In principle, the diffusion constant D depends on the flake diffusion 
in three spatial dimensions. However, as the flake has a mass den-
sity of ρAu ≈ 17 × 103 kg m−3, much larger than that of the surrounding 
fluid (ρWL ≈ 0.98 × 103 kg m−3), it settles quickly from bulk into proxim-
ity of the substrate at an equilibrium distance h so that, in practice, 
we observe its motion along the horizontal x–y plane only, whereas 
any motion along the vertical direction z is negligible. A theoretical 
estimate based on the potential we obtain with our model (Eq. (8)) 
gives that a typical amplitude of the vertical fluctuation Δh is within 
Δh ≲ 5 nm.

The presence of salts in solution, which further screen the flake, 
might reduce the repulsive electrostatic forces and therefore its heights 
above the surface, as studied previously23. However, we can neglect any 
influence of salt in our system, as our gold flakes, originally prepared 
in CTAB buffer solution, have been diluted more than 2,000 times 
with deionized water. This is confirmed by the fact that, even after the 
surface treatment with SAM or in control experiments in pure water, 
the average height h ≈ 100 nm of the flake does not change (Extended 
Data Fig. 4).

Hydrodynamic simulations
In our hydrodynamics simulations, a flake is modelled as a rigid assem-
bly of N spheres (typically, N ≈ 1,000–3,000) of radius r, with r = b/2, 
where b is the thickness of the flake, glued together and arranged on 
a regular hexagon. The assembled object is immersed in an incom-
pressible Newtonian fluid bounded by a no-slip wall. At low Reynolds 
numbers, the fluid dynamics is governed by the Stokes equations, in 
which viscous forces dominate inertial forces. Under these conditions, 
the translational velocity Vi of the sphere labelled by the index i = 1, …, N 
and composing the conglomerate is linearly related to the force Fj 
exerted on either the same sphere (j = i) or on adjacent spheres via the 
hydrodynamic mobility tensor62. Specifically,

Vi = μSFi +∑
j≠i

μPFj, (13)

where μS denotes the self-mobility tensor of a single sphere sediment-
ing near a hard wall and μP corresponds to the pair mobility tensor quan-
tifying the hydrodynamic interactions between the spheres and the 
wall63. Here we employ the well-established Rotne–Prager approxima-
tion64 combined with the Blake solution65 to account for the corrections 
due to the presence of the wall. The diffusion coefficient is obtained 
from the drag coefficient, which, in turn, is obtained by following the 
usual procedure of evaluating the mean drag per sphere within the 
assembly. The accuracy of our approach has been assessed by close 
comparison of the predicted bulk drag coefficients with the exact 
numerical simulations of a closely packed conglomerate of spheres, 
which was obtained by using the freely available and open-source 
library HYDROLIB (Extended Data Fig. 10).

These results allow us to simulate the diffusion of a regular hex-
agonal flake with side length a at height h above a wall as in the repre-
sentative case of a flake with a = 840 nm in Fig. 2d (cases of particles 
with different sizes are shown in Extended Data Fig. 10c).

Moreover, hydrodynamic simulations allow us to investigate the 
influence of a possible Brownian rotation on the diffusion of the flake in 
the presence of the confining interface, which we find to be negligible. 
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As a last remark about the hydrodynamic simulation, its underlying 
assumption is that the viscosity of the solvent does not depend sub-
stantially on temperature. This is actually the case in experiments. 
In fact, the viscosity of water–lutidine at critical concentration does 
not change appreciably in the temperature range of our experiments. 
Moreover, we do not possess experimental evidence of the presence 
of a wetting layer.

Optical measurements and analysis
Reflection spectra at normal incidence (numerical aperture 0.5) 
were collected by using an inverted microscope (Nikon Eclipse 
TE2000-E) equipped with an oil-immersion 100× objective (switcha-
ble numerical aperture of 0.5–1.3, Nikon), directed to a fibre-coupled 
spectrometer (Andor Shamrock SR-303i), equipped with a Andor 
iDus 420 charge-coupled detector (see schematic in ref. 23). The 
obtained reflection spectra were analysed by the standard transfer  
matrix method23.

Data availability
All experimental data are available via the depository figshare under 
https://doi.org/10.6084/m9.figshare.20037581.v166. Source data are 
provided with this paper.

Code availability
The codes that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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Extended Data Fig. 1 | Schematics of the materials involved in the 
experiments. a, Configuration used to calculate the force acting on the flake 
depending on the material properties and on the distances indicated by the 
arrows. See Eqs. (1), (S1), and (S2) for the case of a gold-coated silica substrate. WL 
indicates the water–2,6-lutidine mixture, SiO2 the silica, and Au the gold layers. 
b, Same as panel a but for the case of an uncoated silica substrate. In both panels, 
the text indicates each interface in the notation used for the Hamaker function 
(Eqs. (S1) and (S3)) and the Δa-b (Eq. (S2)). The order of the symbols a and b in the 
subscript of Δa-b follows the convention to determine the Casimir–Lifshitz force 

contribution defined in ref. 48, that is, the symbol that comes first always refers to 
the material that is on the outside of the interface looking toward the separating 
medium, which in our case is the layer of water–2,6-lutidine of thickness h. 
The double arrows in both panels indicate the pair of interfaces considered for 
each Hamaker function: in a the terms in Eqs. (S1); in b the terms in Eqs. (S3). c, 
Dielectric response functions of the materials involved in the experiment. For the 
parametrization of these functions with respect to water–2,6-lutidine and silica 
we follow ref. 30, while for gold we follow ref. 48, page 268, Table L2.4. Gold, Four-
term fit to absorption data.
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Extended Data Fig. 2 | Schematic of the experimental setup for digital 
video microscopy. Homemade version of an inverted brightfield microscope 
consisting of a white light (LED) illuminating the sample from above, which 
is temperature-stabilized by using a two-stage temperature controller at the 

sample and by indirect heating of the objective (O). The scattered light is 
collected by the 100 × objective (numerical aperture = 1.30) and projected onto a 
camera. The flake motion is tracked and analysed with digital video microscopy.
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Extended Data Fig. 3 | Height measurement of a metal flake using Fabry–
Pérot cavity modes. a, In a bright-field image of a gold flake, the tilt with 
respect to the substrate becomes visible as a change in colour, whereas in b, 
no colour variation is observed for a flake oriented parallel to the substrate. c, 
The Fabry–Pérot cavity modes are measured across the flake along the dashed 
lines indicated in panels a and b and reveal a shift in energy corresponding to a 
variation of the distance h from the substrate from h = 90 ± 10 to 210 ± 10 nm. In 

panel d, instead, the measured energy values remain constant and correspond to 
a distance h = 90 ± 10 nm above the substrate. The colour bar shows the measured 
reflection intensity. Scale bars in panels a and b correspond to 1 μm. The analysis 
of the Fabry–Pérot experimental data and the determination of the local height 
of the cavity has been conducted according to the transfer-matrix model, which 
is described in ref. 23.
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Extended Data Fig. 4 | Dependence of the flake height on surface treatment. 
Far away from Tc, the particle height h above a gold surface is reduced to 
h ≈ 100 nm due to the attractive Casimir–Lifshitz force, independent of whether 
a SAM is present (red circles, inset with red frame) or not (yellow diamonds, 
inset with yellow frame). For dielectric surfaces such as silica (grey triangles, 
inset grey frame), the particle fluctuates at a much larger distance h ≈ 300 nm 

because of the substantially smaller attractive Casimir–Lifshitz force. Here, all 
measurements have been performed far away from criticality with ΔT≤ − 0.3 K, 
in a range where these results are independent of ΔT. All error bars indicated in 
the plot correspond to the standard deviation and amount to about 5% of the 
absolute value. The data are presented as mean values.
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Extended Data Fig. 5 | Comparison between the dispersion forces on a flake 
suspended on an untreated silica substrate and on a gold-coated substrate. 
a, Casimir–Lifshitz force acting on a gold flake suspended at a height h above a 
gold coated substrate (orange line) or an untreated silica substrate (grey line). 
The magnitude of the force is represented in a log-log plot and is calculated for a 
reference hexagonal flake with side length equal to 700 nm. The force is 
attractive for both substrates, but in the case of an untreated silica substrate the 
force is one order of magnitude smaller than in the gold-coated case. b, 
Experimental values of ‹h› (see Eq. (9) for its definition) of the flake for the various 
cases, that is, gold flake suspended on a gold-coated substrate with hydrophilic 
SAM (red symbols), hydrophobic SAM (blue symbols), and uncoated silica 
substrate (green symbols). The solid lines represent the theoretical model. The 
resulting fit is in good agreement with the experimental measurements for all 

substrates. It is worth noting that the confidence interval for the values of ⟨h⟩ for 
the uncoated silica substrate are much larger than those for the gold-coated 
substrates. This happens as the minimum of the total potential is very shallow for 
an uncoated silica substrate, because the Casimir–Lifshitz forces are much 
weaker in this case. At T ≪ Tc, that is, in the absence of attractive critical Casimir 
forces, the gravity plus buoyancy is the only force that is effective in pushing the 
flake towards the substrate. In the case of a gold-coated substrate, the Casimir–
Lifshitz forces are very relevant for T ≪ Tc, and the resulting total potential has a 
very pronounced minimum, which is reflected in the very narrow error intervals. 
In the figure, the darker shade of each colour represents the 68% confidence 
interval. The error on the experimental data is the standard deviation from the 
mean of three measurements. The data are presented as mean values.
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Extended Data Fig. 6 | Trapping and release of a flake, prediction of the 
theoretical model. a–h, Two dimensional potential Utot(ΔT; h, x), i–p, effective 
lateral potential Ueff(ΔT; x), and q–x, effective lateral probability distribution 
function Peff(ΔT; x) for a disk-like flake (radius a = 1450 nm, thickness b = 40 nm) 
hovering on a patterned substrate with hydrophobic, 3-μm-wide, gold-coated 
stripes alternating periodically with hydrophilic, 3-μm-wide, uncoated silica 
stripes. The thickness of each gold-coated stripe is a1 = 30nm. As shown in 
panels a–h, the height of the flake h on the surface is measured with respect to 
the upper surface of the gold stripes; hence, when considering the height of 
the flake with respect to the hydrophilic uncoated surface, one must take into 
account the additional term a1. The profile of the substrate is represented in 
panels a–h. The value of the two-dimensional total potential is represented 
with a contour plot. For ΔT = − 1 K, the minimum of the total potential is located 
over the gold-coated stripe at its centre (for symmetry reasons) about 100nm 
above the surface. Upon increasing the temperature towards Tc, the minimum 

of the potential becomes less and less deep, and for ΔT > − 0.1 K, the minimum 
is located above the uncoated silica stripe. In i–p, the effective lateral potential 
Ueff(ΔT; x) defined in Eq. (S8) is represented with a black continuous line. The zero 
of the potential is set at x = 0. For ΔT≤ − 0.12K (i–m), the effective potential has 
a single minimum at x = 1.5μm; for ΔT≥ − 0.1K (o,p), the effective potential has a 
single minimum at x = 4.5μm, that is, localized at the centre of the uncoated silica 
stripe; for ΔT = − 0.1K (n), the effective potential has two local minima. In i–p the 
effective probability distribution Peff(ΔT; x) defined in Eq. (S9) is represented 
with a black continuous line. In i–m, Peff(ΔT; x) has a single peak at x = 1.5μm, 
indicating that the flake is localized on the gold stripe. The peak is initially very 
sharp, but becomes broader and less high upon increasing the temperature 
towards Tc. In n, Peff(ΔT; x) has two peaks. In n,o, the peak is again one, this time 
localized at the centre of the uncoated silica stripe. In this model, the parameters 
for the electrostatic interaction are λD = 17 nm and P0 = 1.5 kPa for the gold-coated 
stripes, whereas P0 = 28.8 kPa for the gold-coated stripes.
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Extended Data Fig. 7 | Effective stiffness predicted by the theoretical model. 
Stiffness of the lateral trapping (kx) calculated for the effective potential Ueff as a 
function of ΔT = T − Tc. Here we calculate kx using the variance of the peak of the 
probability distribution Peff(ΔT; x), that is, kx =

kBT
σ2

 where 
σ2 = ∫x2

x1
Peff(ΔT; x) (x− xpeak)

2 dx. The extrema of the integral are defined as 
x1 = 0, x2 = 3 μm for the ΔTs where the absolute peak of Peff(ΔT; x) falls in the centre 
of the gold-coated stripe, and as x1 = 3 μm, x2 = 6 μm for the ΔTs where the 
absolute peak of Peff(ΔT; x) falls in the centre of the uncoated silica stripe. We 

remark that, for our model, σ is determined not only by the parameters of the 
interaction, but also by the geometrical characteristics of the system. In 
particular, the main factor affecting σ in our model is the difference between the 
diameter of the flake and the width of the stripes. In fact, Ueff(ΔT; x) is necessarily 
flat over an interval of length w − 2 R, where w is the thickness of the stripe and R is 
the radius of the disk-like flake. Hence, for the same parameters describing the 
interaction per unit area, different flake dimensions have a σ that is at least 
w/2 − R, which increases upon decreasing R.
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Extended Data Fig. 8 | Phase diagram of a water–2,6-lutidine liquid mixture. 
The binary solution of water and 2,6-lutidine possesses two distinct phases given 
by the binodal (black line) and spinodal line (black dotted line) separating mixed 

from demixed phases. The solution is prepared at T0 = 32. 5 ∘C and the critical 
concentration of 2,6-lutidine ccL = 0.286 near the critical point (CP) with Tc ≈ 34 
∘C. The data are obtained from ref. 61.
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Extended Data Fig. 9 | Effect of the treatment with different self-assembled 
monolayers (SAM). Side and top view of a cover glass slide half of which has 
been sputtered with a 30 nm gold layer (left half). The treatment with hydrophilic 

thiols attached to gold and hydrophobic silanation to glass is visible by the 
difference of the wetting angle (black dashed line in the side view) and by the 
spreading (black dashed circle in the top view) of a 10 μL droplet.
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Extended Data Fig. 10 | Scaled diffusion coefficient for edgewise translational 
motion of a flake composed of a conglomerate of spheres arranged on a 
regularly shaped hexagon in an unbounded (bulk) fluid or close to a planar 
hard wall. a, Comparison between the Rotne–Prager approximation employed 
in the present work (red squares) and the bulk diffusion coefficients obtained 
using the open-source software HYDROLIB (blue circles). b, The predictions 
for the scaled diffusion coefficient are obtained by using the Rotne–Prager 
approximation combined with the Blake solution for hydrodynamic interactions 
between the spheres near a hard wall. Three flake sizes of aspect ratio 16, 20, and 

35 are considered, which correspond to total numbers of spheres of 817, 1261, and 
3781, respectively. Horizontal dashed lines correspond to the scaled diffusion 
coefficient in an unbounded fluid medium, that is, in the absence of the confining 
wall given by the substrate. c, Hydrodynamic simulations of a regular hexagon 
with various particle sizes: simulated diffusion constant D for hexagonal particles 
with side length a = 700, 840, 1000, 1450 nm depending on their distance 
to the surface h. Solid lines represent the fitting of the simulation data. See 
Supplementary Information Section IV for additional details.
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