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Structural correlations in highly asymmetric
binary charged colloidal mixtures

Elshad Allahyarov, abc Hartmut Löwenb and Alan R. Denton d

We explore structural correlations of strongly asymmetric mixtures of binary charged colloids within the

primitive model of electrolytes considering large charge and size ratios of 10 and higher. Using

computer simulations with explicit microions, we obtain the partial pair correlation functions between

the like-charged colloidal macroions. Interestingly the big–small correlation peak amplitude is smaller

than that of the big–big and small–small macroion correlation peaks, which is unfamiliar for additive

repulsive interactions. Extracting optimal effective microion-averaged pair interactions between the

macroions, we find that on top of non-additive Yukawa-like repulsions an additional shifted Gaussian

attractive potential between the small macroions is needed to accurately reproduce their correct pair

correlations. For small Coulomb couplings, the behavior is reproduced in a coarse-grained theory with

microion-averaged effective interactions between the macroions. However, the accuracy of the theory

deteriorates with increasing Coulomb coupling. We emphasize the relevance of entropic interactions

exerted by the microions on the macroions. Our results are experimentally verifiable in binary mixtures

of micron-sized colloids and like-charge nanoparticles.

1 Introduction

Charged colloidal suspensions are interesting model systems
for classical many-body systems as their effective interactions
can be tuned and tailored externally by adding depletants,1 salt
and changing the solvent polarity.2–8 From the early days of
colloidal fluids, light scattering data of charged suspensions9,10

have been used to test liquid integral equations theories11–14

which predict the pair correlation between the colloidal parti-
cles based on their effective screened Coulomb (or Yukawa)
pair potential,15 or to compare to computer simulations using
the microion-resolved primitive model of electrolytes.16–20

This can subsequently generalized to binary mixtures of
colloidal suspensions with different charges.21–37 In this case,
the effective interaction forces and particle correlations can be
determined experimentally as well22–24,38 and compared to pre-
dictions of model simulations39–45 or theories.46–64 In general, a
purely repulsive mixture is non-additive and characterized by a
non-additivity parameter D,24,65 the sign of which implies whether
there is clustering of similar species or microphase separation.

In most of the theoretical and simulational studies so far,
binary mixtures of charged particles were assumed to differ not
too much in charge and size.65–67 For example, as shown in
ref. 67, a modified hypernetted chain integral equation closure
to the Ornstein–Zernike equation is capable to reproduce fairly
well computer simulation structural and thermodynamic data
of binary hard–core Yukawa mixtures with size and charge
asymmetries not greater than two. Such moderate asymmetries
are realized for many23,24 but not for all charged colloidal
mixtures (see ref. 68 for an experimental example). Even more
importantly, when micron-sized colloidal particles are mixed
with nano-particles,34,36 a strongly asymmetric mixture arises.
For highly asymmetric mixtures, correlations are much harder
to predict by theory as liquid integral equations typically break
down for large asymmetries. Also in simulations, the length
scale separation between big and small macroions drastically
reduces a proper sampling of both species. When taking
explicit microions into account within the primitive model
approach of electrolytes, the situation is even more challenging
since there are two length scale gaps involved, the first between
the colloids and the nanoparticles and the second between the
nanoparticles and the microions.

In this paper we present a comprehensive computer simula-
tion study using the highly asymmetric primitive model of
electrolytes for strongly asymmetric colloidal suspensions. By
computing the partial pair distribution functions in the fluid
binary mixture, we find that the cross-interaction big–small
correlation peak amplitude is smaller than that of the big–big
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and that of the small–small correlations. This is uncommon for
almost symmetric repulsive mixtures. Moreover we show that
entropic forces arising from the excluded volume interactions
due to the finite core size contribute significantly to the total
interaction forces. We then extract optimal effective microion-
averaged pair potentials between the macroions following a
scheme proposed for one-component systems.69 As a result, we
find that non-additive Yukawa-like repulsions provide a good fit
but an additional shifted attractive Gaussian potential between
the small macroions is needed to reproduce the correct pair
correlations. It is suggested that this additional potential origi-
nates from the effective attraction between the small macroions
located in the cage created by the macroions, mediated by the
screening counterions between the neighboring macroions. For
small Coulomb couplings, the behavior is reproduced by a theory
based on a coarse-grained model that was proposed by one of us
(AD) with coworkers.70–72 However, the theory deteriorates for
larger Coulomb coupling. Our results are experimentally verifiable
in binary mixtures of micron-sized colloids and like-charge
nanoparticles.

The paper is organized as follows. In Section 2 we describe
the details of our primitive model simulations for the binary
colloidal system. The results obtained for the partial pair
correlation functions are discussed in Section 3 and compared
to the prediction of the coarse-grained theory. In Section 4 we
explore the role of entropic forces in the macroion interactions.
Section 5 is devoted to the extraction of the optimal pairwise
interactions between the macroions. We conclude in Section 6.

2 Details of the primitive model

We consider a three-component binary colloidal suspension
consisting of NZ big macroions of charge q(Z) =Ze and size sZ = s
at positions -

r(z)
i (i = 1,. . ., NZ), Nz small macroions of charge

q(z) =ze and size sz = s/10 at positions -
r(z)

i (i = 1,. . ., Nz), and
Nc = ZNZ + zNz monovalent counterions of charge q(c) = �e and
size sc = s/600 at positions -

r(c)
c (c =1,. . ., Nc). Here e is the

absolute value of the electron charge. We fix the size ratio to
reduce parameter space to realistic values. The pair interaction
potential between the species a and b with a, b A {Z, z, c} are
given as a combination of excluded volume and Coulomb
interactions (in SI units),

VðabÞðrijÞ ¼
1; for rij � sab

qðaÞqðbÞ= 4pe0erij
� �

; for rij 4sab

( )
(1)

where -
rij = -

r(a)
j �

-
r(b)

j with i A 1,. . ., Na (a = Z, z, c) and j A 1,. . ., Nb

(b =Z, z, c) is the distance between the two particles, sab =
(sa + sb)/2 is their additive hard core diameter, e0 is the vacuum
permittivity, and e is the relative permittivity of the suspension.
For simplicity, we assume that e is the same throughout the
system in order to avoid image charge and dielectric boundary
effects.

The following parameters characterize the intensity of inter-
particle interactions and counterion screening effects in binary
colloidal systems:

– the packing fraction of big macroions, Z,
– the packing fraction of small macroions, Zs,
– the Debye–Hückel inverse screening length

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nce2=ðe0ekBTÞ

p
of counterions, where kB is the Boltz-

mann constant and T is the temperature in the system,

– the Bjerrum length, lB = e2/(4pe0ekBT),
– the average distance between the big macroions, a =

L(6/(pNZ))1/3, where L is the edge length of the cubic
simulation box,

– the average distance between the small macroions,
b = L(6/(pNz))

1/3,
– the Coulomb coupling parameter between the big macro-

ions, G =Z2exp(�ka)lB/a,
– the Coulomb coupling parameter between the small

macroions, x = z2 exp(�kb)lB/b.
Note that, the cell volume accessible to counterions is V = L3

(1 � Z � Zs), thus the available-volume corrected counterion
density and the inverse screening length become nc/(1 � Z � Zs)

and kZ ¼ k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z� Zs

p
, respectively. Additionally, for concen-

trated colloidal systems considered in this work, the true
electrostatic screening length might strongly differ from the
classical Debye–Hückel length 1/k (for details, see ref. 73).

3 Results from primitive model
simulations

We have simulated globally electroneutral binary colloidal
mixtures in a cubic box of edge length L with periodic boundary
conditions in all three Cartesian directions. The molecular
dynamics simulation method used here is the same as in ref.
65, 66, 74 and 75. In order to handle the long-ranged Coulomb
interactions,76 we use the Lekner summation method,77–79

which takes the real-space particle coordinates as its only input.
All simulations were carried out at room temperature T = 293 K,
solvent permittivity e = 80, and the big macroion diameter s =
100 nm. For all runs the small macroion packing fraction Zs was
more than ten times smaller than that of the big macroions, Z,
and the Bjerrum length was equal to lB =0.0071s.

We produced four different series of simulation runs: the
low Z binary colloid runs Ai, the high Z binary colloid runs Bi,
big macroion runs Ci in the absence of small macroions, and
small macroion runs Dj in the absence of big macroions, where
i = 1,. . .,4, and j = 1, 2. Simulation parameters for these runs are
collected in Table 1. For the A- and B-series, NZ = 500 and
Nz = 1500; for the C-series, NZ = 500 and Nz = 0; and for the
D-series, NZ = 0 and Nz = 4000.

A representative snapshot from the simulation box is
pictured in Fig. 1 for run B2. The color gradient from blue to
green along the z-axis indicates the macroion altitude in the
simulation box. The macroions are depicted as spheres and the
counterions as small red dots.

The main quantities of interest in all runs listed in Table 1
are the pair correlation functions gij (r), namely gZZ(r) and gzz(r)
for big and small macroions, respectively, and gZz(r) for cross
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correlations between big and small macroions. The calculated
results for gij(r) are collected in Fig. 2–4, and compared to the
predictions of a coarse-grained model (CGM) developed by one
of us (AD) with coworkers.70–72 As described in Appendix A, this
model is based on a coarse-graining scheme that assumes linear

response of the counterions to the macroion potentials and invokes
a mean-field approximation for counterion-counterion correlations.
The resulting effective pair potentials in the CGM have the Yukawa
form with a modified screening constant.

As seen from Fig. 2 (first row), there is a systematic deviation
between the PM and CGM results for the low Z runs A1–A4: the
height of the first maximum in gZZ(r) and gZz(r) in the CGM is
higher than in the PM. The height of the first maximum in gzz(r)
is practically the same in the PM and CGM data for the runs A1
and A2, whereas, the CGM data underestimate the height of the
maximum in the PM for the runs A3 and A4, where the big
macroion charge Z is twice as large as in the runs A1 and A2.
This observation clearly indicates the strong influence of the
big macroion charge on the small-small correlations.

A similar tendency is visible for the high Z runs B1–B4 in
Fig. 2 (second row). Here again, the big–big and big–small
macroion pair correlations in the CGM show larger first maximum
heights, and the small–small pair correlations become less
accurate for the highly charged big macroions. Note that the
discrepancy between CGM and PM simulation data for gZZ(r) in
Fig. 2 becomes smaller for the lower values of big–big macroion
coupling parameter G. For the A-series and B-series simulations
the runs A2 and B2 have the lowest G, correspondingly.

Another interesting finding is that in the PM simulations the
peak amplitude of the cross-interaction big–small correlation
function gZz(r) is smaller than that of gZZ(r) and gzz(r). This
feature is uncommon for almost symmetric repulsive mixtures,
which usually exhibit increasing peak amplitude from gzz(r) to
gZz(r) to gZZ(r). In contrast to the PM data, the CGM results
follow such monotonic behavior.

To understand the origin of the observed discrepancies
between theoretical predictions and simulation results, we
examine the non-binary systems C1–C4 and D1–D2 for the big
and small macroions, respectively. Fig. 3 for the runs C1–C4
reveals that the PM and CGM predicted pair correlations gZZ(r)
are practically the same, except for a small difference in the
height of the first maximum for run C3. Fig. 4 also proves that in
colloidal systems with no big macroions, theory and simulation
data for gzz(r) are practically identical. This agreement shows
that the CGM is accurate for one-component systems of

Fig. 1 Simulation snapshots from the run B2 in Table 1. Top image: a full
view; bottom image: a zoomed view. Big and small macroions are shown
as spheres of respective diameters, counterions are shown as scattered
red dots. A color gradient from blue to green on the colorbar corresponds
to the macroion altitude in the cell.

Table 1 Primitive model simulation parameters for different runs. The quantities listed in the first row are explained in the text. The packing fraction Zs for
small macroions was 0.01 for run D1, and 0.001 for run D2

Runs Z z Z Nc ncs
3/(1 � Z � Zs) k s kZs a/s b/s G x

A1 100 10 0.1 65 000 41.7 1.50 1.93 2.15 1.44 1.32 0.06
A2 100 20 0.1 80 000 51.3 1.66 2.15 2.15 1.44 0.93 0.18
A3 200 10 0.1 115 000 73.8 1.99 2.57 2.15 1.44 1.84 0.03
A4 200 20 0.1 130 000 83.4 2.12 2.73 2.15 1.44 1.39 0.09
B1 100 10 0.2 65 000 244 2.11 4.68 1.71 1.10 1.12 0.06
B2 100 20 0.2 80 000 300 2.34 5.19 1.71 1.10 0.76 0.19
B3 200 10 0.2 115 000 431 2.80 6.22 1.71 1.10 1.38 0.03
B4 200 20 0.2 130 000 488 2.98 6.61 1.71 1.10 1.01 0.10
C1 100 — 0.1 50 000 32.1 1.32 — 2.15 — 1.94 —
C2 100 — 0.2 50 000 188 1.84 — 1.71 — 1.79 —
C3 200 — 0.1 100 000 64.2 1.87 — 2.15 — 2.38 —
C4 200 — 0.2 100 000 376 2.60 — 1.71 — 1.96 —
D1 — 10 — 40 000 195 — 4.18 — 7.10 — 0.01
D2 — 10 — 40 000 19 — 1.31 — 15.34 — 0.001
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colloids, regardless of macroion size and charge. It follows,
therefore, that in binary mixtures the big colloids perturb the
distribution of the small colloids and counterions in a way that
the CGM theory does not fully capture. It should be kept in
mind that the CGM assumes spherically symmetric counterion
and small macroion distributions around the big macroions
even when two big macroions closely approach each other.

To access the anisotropy of the counterion cloud around the
macroions, we define the averaged counterion density field rc(

-
r) �

rc(
-r, {-r(z)

i , -r(z)
j }) which parametrically depends on the fixed macroion

positions {-r(z)
i , -

r(z)
j , i = 1,. . .NZ; j = 1,. . .Nz}. As usual, we define

rcð~rÞ ¼
XNc

‘¼1
dð~r�~rðcÞ‘ Þ

* +
c

; (2)

performing a canonical counterion average h. . .ic for fixed macroion
positions. In Fig. 5 we show the counterion density field around the

Fig. 3 Pair correlations gZZ(r) for the runs C1–C4. Thin lines are for the CGM, thick lines are for the PM simulations.

Fig. 4 Pair correlations gzz(r) for the runs D1 and D2. Thin lines are for the
CGM, thick lines are for the PM simulations.

Fig. 2 Pair correlations gij (r) for the runs A1–A4 (first row) and for the runs B1–B4 (second row). Thin lines are for the CGM, thick lines are for the PM
simulations. Green lines are for i = j = Z, red lines are for i = j = z, and blue lines are for i = Z and j = z.
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big macroions for run A2 as obtained by an additional average over
typical macroion positions. This field is directionally resolved, the
direction being fixed by neighboring macroions. The resulting rc(y)
shows that the counterions are mainly located between two big
macroions where the direction angle y = 0. Next one can similarly
average the density field rz(

-
r) of the small macroions around fixed

big macroions. The directionality of this field rz(y) is also shown in
Fig. 5 and shows a peak at a finite direction angle y E 5p/12.

4 The role of entropic forces in binary
mixtures

The excluded volume of the macroions generates entropic
forces arising from the contact density of counterions at the
macroion surface. The entropic force acting on the i-th macro-
ion of species a at the position r(a)

i with i A 1,. . ., Na (a = Z, z) is
defined as.74,75,80–83

~F
ðaÞ
entð~r

ðaÞ
i Þ ¼ �kBT

ð
S
ðaÞ
i

d~f rcð~rÞ; (3)

where
-

f is a surface normal vector pointing outwards from the
macroion’s core and Si

(a) is the surface of the hard core of the
i-th macroion centered around r(a)

i with diameter (sa + sb)/2.
The entropic force, usually neglected in weakly charged macro-
ion systems, strongly modifies the macroion interactions in
highly charged and dense colloidal systems.

Likewise, the canonically averaged electrostatic force acting
on the i-th macroion of species a is defined as

~F
ðaÞ
elecð~r

ðaÞ
i Þ ¼

X
b¼Z;z;c

XNb

j¼1

~F ðabÞð~rðaÞi �~r
ðbÞ
i Þð1� dabdijÞ

* +
c

; (4)

where a = Z, z. The Kronecker delta functions in this expression
nullify the self-interaction of macroions. Clearly, in eqn (4) the
electrostatic pair interaction forces

-

F(ab) are defined as

~F ðabÞð~rijÞ ¼ �~r~rij VðabÞðrijÞ ¼
1

4pe0

qðaÞqðbÞ

erij2
~rij
rij
; (5)

for rij 4 sab, where -
rij = -

r(a)
i �

-
r(b)

i .
The contribution of the entropic forces acting on the macro-

ions of species a = Z, z can be evaluated by the force-ratio factor

f ðaÞ ¼ 1

Na

XNa

i¼1
f
ðaÞ
i ; f

ðaÞ
i ¼

~F
ðaÞ
elec ~r

ðaÞ
i

� �
þ ~F

ðaÞ
ent ~r

ðaÞ
i

� ���� ���
~Felec ~r

ðaÞ
i

� ���� ��� : (6)

Obviously, f (a)
i 4 1 implies that the entropic force acting on

the i-th macroion of species a is aligned with the electrostatic
force, while f (a)

i o 1 means anti-alignment. The averaged force-
ratio distribution,

P(a)(g) = hhd(g � f (a))icim, (7)

where h. . . im is a full canonical average over both macroion
species, is shown in Fig. 6 for the runs A1–A4 and B1–B4. For
the small macroions P(z)(g) is maximal at g = 1 regardless of the
packing fraction Z. This condition means that, in most cases,
the contact counterion density at the small macroion surface is

Fig. 5 Simulation results for the non-normalized density field of counterions rc(y) (red line) and the small macroions rz(y) (blue line) around the big
macroions for run A2 from Table 1. The insets explain the directionality of this field for a pair of big macroions M1 and M2. Each distribution corresponds to
the number of corresponding particles in the 3D conical shell of width 0.1 radians around the big macroion M1 with a proper angular normalization factor
1/sin y. A sample counterion is shown as a red dot in the left inset and a sample small macroion as a hollow blue circle in the right inset. The vectors a

-
and

b
-

are defined as~a ¼~r ðcÞ‘ �~r ðZÞM1
, ~b ¼~r ðZÞM2

�~r ðZÞM1
, and therefore the direction angle is y = acos(a

-�b-/|a
-
8b
-

|). The vector c
-

is defined as ~c ¼~rðzÞi �~r
ðZÞ
M1

, and
therefore the direction angle in this case is y = acos(c

-�b-/|c
-
8b
-

|). In the calculation of ra(y) (a = z, c) we accounted for only the big macroion pairs with the
separation distance b o 1.8s, counterions with a o b/2, and small macroions with c o b/2.
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spherically symmetric and experiences no distortion from the
electric field of the neighboring macroions. It is also apparent
that the force-ratio distribution is affected by the small macro-
ion charge z: the higher the charge z, the broader the distribu-
tion P (z)(g), and its height at the maximum becomes smaller.

The big macroion force-ratio distribution P(Z)(g) is also
shown in Fig. 6. The distribution is centered around g = 1.25
for the low Z runs A1–A4, and around g = 1.5 for the high Z runs
B1–B4. These observations imply that the distortion of the
counterion contact density at the big macroion surface (and
associated with it the bolstering effect of the entropic forces)
increases with the macroion packing fraction Z. Such bolstering
effect, ignored in the CGM model, might explain the discre-
pancies observed between the PM and CGM data in Fig. 2.

Fig. 6 also reveals that the position of the maximum in P(Z)(g)
systematically shifts to higher values of g from run A1 to run A4,
and from run B1 to run B4. These shifts can be explained by the
increase of the available-volume-corrected counterion density
nc/(1 � Z � Zs) along these runs as seen from Table 1, which
intensifies the contribution of the entropic forces.

In Fig. 7 the distribution P(Z)(g) is resolved according to the
macroion distance. The force-ratio shift for the highly charged
macroion has practically no dependence on the macroion–
macroion separation distance r. This insensitivity is a manifes-
tation of the fact that the counterion cloud distortion is a robust
effect and is strong even at the separation distances comparable
with the average macroion separation distance a in the system.

5 Optimal effective pair interaction
between macroions
5.1 Fitting of the PM macroion forces with non-additive
Yukawa forces

In the previous section it was found that the CGM did not
completely reproduce the PM simulation results for the pair
correlation functions. An improvement can be sought in the

implementation of non-additive Yukawa pair interaction poten-
tials between the species a and b with a, b A {ZY, zY},24,65,69

V
ðabÞ
Y ðrijÞ ¼

1; for rij � sab;

qðaÞqðbÞe�kY rij
1þ 1� dab

� �
DY

4pe0erij
; for rij 4sab;

8>><
>>:

9>>=
>>;

(8)

where q(a) and q(b) with a, b = ZY,zY denote effective Yukawa
charges for the macroions, -rij = -r(a)

j �
-r(b)

j with i A 1,. . ., Na (a =
ZY,zY) and jA 1,. . ., Nb (b = ZY, zY) is the distance between the
two effective Yukawa charges, DY is the non-additivity para-
meter between the big and small macroions, kY is an effective
Yukawa inverse screening length, and da b is the Kronecker
delta. The corresponding interaction forces between the species

Fig. 7 Non-normalized and averaged distribution P(Z)(g) of the force-ratio
factor g for the big macroions in run B2 for different macroion–macroion
separation distances r. From bottom to top: 1.0 r r/s o 1.1 (black line),
1.1 r r/s o 1.2 (orange), 1.2 r r/s o 1.3 (pink), 1.3 r r/s o 1.4 (green),
1.4 r r/s o 1.5 (blue), r/s Z 1.5 (red).

Fig. 6 Normalized and averaged distribution P(a)(g) of the force-ratio factor g for big (a = Z and thick lines) and small (a = z and thin lines) macroions for
the runs A1–A4 and B1–B4.
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a and b are

~F
ðabÞ
Y ð~rijÞ ¼

qðaÞqðbÞ

er2ij
e�kY rij

1

rij
þ kY

� 	
1þ 1� dab

� �
DY

� �
~rij (9)

The optimal parameters for the effective Yukawa potential
are deduced from the best fit between the PM and Yukawa
forces acting on the macroions during the runs. For
this purpose, for the runs in Table 2 we stored entropic

-

F(a)
ent(

-
r(a)

i ) and electrostatic
-

F(a)
elec(-r(a)

i ) forces acting on the macro-
ions during the PM simulations [see eqn (3) and (4)].
In total, we collected Nconf= 100 independent configurations
for each run, and each configuration contained the set of
{
-

F(a)
elec(-r(a)

i )}, {
-

F(a)
ent(

-
r(a)

i )}, and {-r(a)
i } data, where iA 1,. . ., Na

(a =ZY,zY).
Then, using the stored macroion positions {-r(a)

i }, we cal-
culated the devised Yukawa forces

-

F(a)
Y (-r(a)

i ) acting on the macro-
ions,

~F
ðaÞ
Y ð~r

ðaÞ
i Þ ¼

X
b¼ZY ;zY

XNb

j¼1

~F
ðabÞ
Y ð~rijÞð1� dabdijÞ; (10)

and, for each run, performed the following least-square fitting
procedure,

min
X
a¼Z;z

XNa

i¼1
ð~F ðaÞY ð~r

ðaÞ
i Þ � ~F

ðaÞ
elecð~r

ðaÞ
i Þ � ~F

ðaÞ
ent ð~r

ðaÞ
i ÞÞ2

* +
m

" #
(11)

to get the optimal fit values for the effective big macroion
charge Z(opt)

Y , the effective small macroion charge Z(opt)
Y , the

Table 2 Optimal fit values for Z(opt)
Y , z(opt)

Y , D(opt)
Y , and k(opt)

Y for the binary
and non-additive Yukawa system

Run Z(opt)
Y z(opt)

Y D(opt)
Y k(opt)

Y s

A1 128.24 10.04 �0.003 1.44
A2 129.36 19.26 0.009 1.52
A3 247.85 10.19 �0.008 1.81
A4 246.22 19.06 �0.001 1.85
B1 124.79 8.64 0.079 1.55
B2 139.88 17.30 0.016 1.64
B3 237.99 8.74 0.076 1.83
B4 238.70 17.06 0.024 2.15

Fig. 8 Pair correlations gij(r) for the low Z runs A1–A4. Red lines are for the PM results, green lines are results for the binary Yukawa model with
parameters from Table 2, and dashed black lines are for the binary Yukawa with Gaussian attraction model with parameters from Table 3.
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non-additivity parameter D(opt)
Y , and the inverse screening

length k(opt)
Y .

The obtained Yukawa fitting coefficients for the runs A1–A4
and B1–B4 are summarized in Table 2. As a result, the non-
additivity parameter D(opt)

Y is small and varies between �0.003
and 0.079. Effective big macroion charges are always larger
than their bare charges, whereas effective small macroion
charges are either smaller or almost equal to their bare charges.

Optimal fitting parameters, presented in Table 2 were used
in the binary Yukawa mixture simulations to calculate macro-
ion–macroion pair correlations gY

ij(r), which are presented in
Fig. 8 and 9. Here the PM simulation data are given in red and
the Yukawa mixture data are given in green. For the low Z runs
A1–A4 in Fig. 8, the Yukawa mixture data are close to the
PM simulation data for the cross macroion–macroion pair
correlation line gZz(r), but they overestimate the PM simulation
data for gZZ(r) and underestimate the PM simulation data for
gzz(r). A similar tendency is seen for the high Z runs B1–B4 in
Fig. 9. Again, the effective Yukawa mixture data are in good
agreement with the PM data for gZz(r), but they overestimate the
PM data for gZZ(r) and underestimate the PM data for gzz (r). In
total, the sequence of peak amplitudes in gzz, gzZ, and gZZ is

always monotonic for the effective Yukawa model, while it is
non-monotonic in the full PM. This might also explain why an
effective Yukawa picture in the CGM is not sufficient to get the
non-monotonicity.

5.2 Matching PM macroion forces with non-additive Yukawa
and attractive Gaussian forces

We tried to find alternative Yukawa-like models for the best
fitting of the PM simulation results for the pair correlations
gzz(r) in Fig. 8 and 9. As a first attempt, we designed a modified
Yukawa model with separate inverse screening lengths for the
big–big, small–small, and big–small macroion interactions,
respectively. This model, however, failed to improve the fitting
of the PM simulation data. As a second attempt, we used a
double-repulsive Yukawa model with two interaction force
terms for the effective macroion–macroion interactions. This
model also did not significantly improve the fitting of the PM
simulation results.

A model that did prove successful incorporates an attrac-
tive and short-ranged Gaussian potential between the small
macroions,

Fig. 9 Pair correlations gij(r) for the low Z runs B1–B4. Red lines are for the PM results, green lines are results for the binary Yukawa model with
parameters from Table 2, and dashed black lines are for the binary Yukawa with Gaussian attraction model with parameters from Table 3.
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UGðrÞ
kBT

¼ �AG exp �ðr� bGÞ2
sG2

� 	
(12)

on top of effective Yukawa repulsion as assumed in Section 5.1.
The corresponding Gaussian attractive force,

~FGðrÞs
kBT

¼ �2AG
r� bG

sG2
exp �ðr� bGÞ2

sG2

� 	
~r

r
; (13)

between the small macroions is capable to raise the height of
the first maximum in gzz(r). Optimal fit parameters for this
Yukawa–Gaussian model are collected in Table 3 for the runs
A1–A4 and B1–B4. From Tables 2 and 3 it is evident that the fit
charge Z̃ o Z(opt)

Y and the fit inverse screening length ~k o k(opt)
Y .

The Gaussian term (eqn (12) for the runs A1–A4 and B1–B4 is
shown in Fig. 10a. The depth of the attractive well varies
between �0.2kBT and �0.6kBT. The total interaction potentials
between the small macroions, plotted in Fig. 10b, show that the
Gaussian attraction is weaker than the Yukawa repulsion, such
that the total effective interaction stays mainly repulsive. For
the runs A1, A2, B1, and B3 with a low charge z, the total
interaction potential has a plateau at the distance r E s/2.

Binary Yukawa–Gaussian simulation results for gij(r) with
the optimal fit parameters from Table 3 are shown as black
dashed lines in Fig. 8 and 9. Indeed, the incorporation of the
attractive Gaussian potential into the small–small macroion
interaction improves the fitting of the PM simulation data for
gzz(r) significantly. Moreover, the non-monotonicity in the peak
amplitude for gzz, gzZ, and gZZ is reproduced in the Yukawa–
Gaussian model.

Finally, let us propose a simple picture for the physical
origin of the effective z–z attraction. It is intuitive to consider
the counterion density cloud, which is essentially dictated and
governed by the big macroions. This screening cloud can be
obtained from Fig. 5 and is sketched in Fig. 11 for a triangular
triplet of big macroions. The small macroions occupy the voids
between the macroions, as revealed by r(y) in Fig. 5 and

Fig. 10 (a) The Gaussian attraction between the small macroions added to the binary Yukawa model. (b) Total interaction potential within the Yukawa–
Gaussian model between the small macroions defined as the sum of the repulsive Yukawa and attractive Gaussian potentials. Thin lines with four different
colors are for the runs A1–A4, thick lines with four different colors are for the runs B1–B4.

Fig. 11 Schematic picture explaining the origin of the effective attraction
between the small macroions. Transparent double-ended arrows point to
the small macroions, which are effectively attracted to each other via the
screening counterion cloud between the macroions.

Table 3 Parameters of the different runs of the binary Yukawa–Gaussian
system simulation. The Coulomb coupling parameter between the big
macroions is GYG = Z̃2 exp(�k̃a) lB/a, and between the small macroions is
xYG = z̃2 exp(�k̃b)lB/b, where the subscript YG refers to the Yukawa–
Gaussian model. The meanings of the other quantities in the first row are
explained in the text

Run Z̃ z̃ ~D k̃ s AG bG sG GYG xYG

A1 121.1 9.85 0.027 1.57 0.25 0.70 0.05 1.66 0.05
A2 121.35 18.17 0.018 1.64 0.30 0.86 0.05 1.44 0.15
A3 233.43 9.93 0.017 1.88 0.36 0.60 0.12 3.17 0.03
A4 245.93 19.09 �0.050 1.82 0.53 0.70 0.16 4.03 0.13
B1 123.70 9.52 �0.043 1.71 0.42 0.51 0.071 3.45 0.09
B2 134.62 16.84 �0.023 2.10 0.46 0.65 0.067 2.07 0.18
B3 232.66 9.40 �0.020 2.29 0.51 0.42 0.066 4.49 0.05
B4 235.78 15.72 �0.040 2.35 0.57 0.55 0.065 4.15 0.12
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sketched in Fig. 11. Now small macroions opposed to the
screening cloud of counterions are effectively mutually
attracted via the counterion cloud. This happens in particular
at a typical distance between two small macroions at around s/
2 where the shifted Gaussian attraction is minimal.

6 Conclusions

To summarize, we have calculated the pair correlations in
strongly asymmetric like charge macroion mixtures using the
primitive model with explicit counterions. We have compared
our data to a coarse-grained theory proposed earlier and found
agreement only for small Coulomb couplings. While we found
in the simulations that the big–small correlation peak was
smaller than that of the big–big and small–small correlations,
this could not be reproduced by the theory.

In our simulations we are dealing with effective many-body
forces between the macroions. If these are fitted to effective pairwise
interactions, optimal pair potentials can be extracted. We demon-
strated here that with these optimal pairwise interactions the full
simulation data for the pair correlations can be reproduced. This
indicates that effective triplet interactions are small.84,85 However,
the optimal effective pairwise interactions are not just a non-
additive repulsive Yukawa interactions but strikingly also involve
an additional shifted attractive Gaussian potential in the effective
small–small interactions. We add a remark here that our optimal
pair interactions are different to those which exactly reproduce the
pair correlations according to the theorem of Henderson.86,87 Our
potentials also embody many-body forces while the latter are
substitute potentials to reproduce the pair correlations exactly.

Our simulation results provide benchmark data to test
future theories for the macroion pair structure in strongly
asymmetric mixtures. These should incorporate also entropic
interactions since we found that those contribute significantly
to the total interactions.

Moreover if it comes to an actual comparison to experi-
mental data, the size- and charge polydispersity of the sample
needs to be checked and possible incorporated in the theore-
tical description. In future simulations, a finite concentration
of added salt with microscopic coions66 should be included.
Furthermore an explicit solvent should be considered, see e.g.
ref. 88–92.

Finally, in our model we neglected van der Waals attrac-
tions. If these are taken into account, they will compete with
the Coulomb forces,93 which might lead to new structural
ordering effects. To explore such effects for binary mixtures is
a promising field of future research.
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Appendix A. Details of the Coarse–
Grained model

Within the primitive model, where all charged particles interact
via Coulomb pair potentials, the system is formally governed by
a Hamiltonian,

H = H0 + Hel, (14)

which naturally separates into a reference term H0, including
the total kinetic energy and particle hard–core interactions, and
a term Hel that represents the total electrostatic energy,

Hel = Hmm + Hcc + Hmc. (15)

The three terms on the right side of eqn (15) account for pair
interactions among big and small macroions (m) and counter-
ions (c). These terms can be expressed more explicitly as

Hmm ¼
XNZ

io j¼1
vðZZÞðrijÞ þ

XNz

io j¼1
vðzzÞðrijÞ þ

XNZ

i¼1

XNz

j¼1
vðZzÞðrijÞ (16)

Hcc ¼
XNc

io j¼1
vðccÞðrijÞ (17)

Hmc ¼
XNZ

i¼1

XNc

j¼1
vðZcÞðrijÞ þ

XNz

i¼1

XNc

j¼1
vðzcÞðrijÞ; (18)

where v (a b)(rij) is the Coulomb pair potential between particle i
of species a and particle j of species b separated by center-to-
center distance rij.

By tracing out the counterion degrees of freedom, assuming
that the counterions respond linearly to the potentials of the big
and small macroions, and invoking a mean-field random-phase
approximation for counterion–counterion correlations, the
macroions are determined to interact via hard–core repulsive-
Yukawa effective pair potentials:

v
ðabÞ
Y ðrÞ
kBT

¼ qðaÞqðbÞlB
ekZ saþsbð Þ=2

1þ kZsa=2
� �

1þ kZsb=2
� �e�kZr

r
: (19)

The resulting coarse-grained model (CGM) is then governed
by an effective Hamiltonian,

Heff = H0 + Hel,eff + E0, (20)

where

Hel;eff ¼
XNZ

io j¼1
v
ðZZÞ
Y ðrijÞ þ

XNz

io j¼1
v
ðzzÞ
Y ðrijÞ

þ
XNZ

i¼1

XNz

j¼1
v
ðZzÞ
Y ðrijÞ (21)

and the term E0 represents a one-body volume energy that
accounts for the counterion entropy and macroion-counterion
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interaction energy.70 While not affecting structural properties
of the binary system, E0 influences thermodynamic properties
through its dependence on average macroion densities.
Compared with the PM of charged colloids, the CGM greatly
facilitates computational modeling by excluding counterions,
which are included only implicitly through the effective inverse
screening length kZ, and by replacing long-range Coulomb pair
potentials with shorter-range Yukawa potentials.
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