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Abstract We discuss the dynamics of a Brownian particle under the influence of a spatially periodic
noise strength in one dimension using analytical theory and computer simulations. In the absence of a
deterministic force, the Langevin equation can be integrated formally exactly. We determine the short- and
long-time behaviour of the mean displacement (MD) and mean-squared displacement (MSD). In particular,

we find a very slow dynamics for the mean displacement, scaling as t−1/2 with time t. Placed under an
additional external periodic force near the critical tilt value we compute the stationary current obtained
from the corresponding Fokker–Planck equation and identify an essential singularity if the minimum of the
noise strength is zero. Finally, in order to further elucidate the effect of the random periodic driving on
the diffusion process, we introduce a phase factor in the spatial noise with respect to the external periodic
force and identify the value of the phase shift for which the random force exerts its strongest effect on the
long-time drift velocity and diffusion coefficient

1 Introduction

Dating back to the important paper by Einstein in the
annus mirabilis 1905 [1], the dynamics of Brownian par-
ticles has been in the focus of statistical physics for
more than 100 years now [2]. The constant interest in
Brownian particles is basically inspired by two facts:
First, their stochastic description requires fundamen-
tal principles such as the Langevin or Smoluchowski
picture such that they serve as paradigmatic models
which can be made systematically more complex. Sec-
ond, there is a variety of excellent realizations of Brow-
nian particles including mesoscopic colloidal particles
in suspension [3], random walkers in the macroscopic
world (such as [4]) and in the microscopic biological
context [5], and even elements of the stock exchange
market [6]. This facilitates a direct comparison of the
stochastic averages between the stochastic modelling
and real experimental data.

In its simplest one-dimensional form, the most basic
model Langevin equation for a particle trajectory x(t)
as a function of time t is ẋ(t) =

√
Dη(t) in which η(t) is

white noise with zero mean and variance 〈η(t)η(t′)〉 =
δ(t − t′) and D > 0 is the diffusion constant. Here,
〈...〉 denotes a noise average. With the initial position
x(t = 0) = x0, the mean displacement vanishes due
to symmetry, 〈x(t) − x0〉 = 0, and the mean-squared
displacement is purely diffusive, 〈(x(t) − x0)2〉 = 2Dt.
Clearly, this basic equation can be extended towards
more complicated situations including an additional
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static external force, time-dependent external forcing,
higher spatial dimensions, and many interacting parti-
cles, see [7–10] for some reviews.

One particularly interesting way to extend the equa-
tion is to generalize it to a situation of multiplicative
noise, where the noise strength is a positive function
D(x, t). While the case where D is only an explicit func-
tion of time t is well studied, for example in the context
of Brownian ratchets [11–15] and heat engines [16–20],
in this work we focus on the case where we have a spa-
tially dependent noise strength [21–24] modelled by a
positive function D(x), i.e. a space-dependent diffusion
coefficient, such that the most basic model for such pro-
cesses is given by the Langevin equation

ẋ(t) =
√

D(x(t))η(t). (1)

The special case of multiplicative noise where ẋ(t) =
−κx(t)η(t) with positive κ [25], which is somehow
related to this model, documents already that the spa-
tial dependence of the noise gives rise to fundamen-
tally new mathematical concepts also known as the Itô-
Stratonovich problem [26]. The mathematical difficul-
ties associated with the formal treatment of Eq. (1) are
subject to intense discussion, see, e.g., the recent work
by Leibovich and Barkai for the specific choice of D(x)
as a power-law [27] and numerous other studies [24,28–
40].

In this paper, we consider a variant of this model
in the context of the discussion of particle motion in
tilted potentials. There is a large literature on this
topic, see [41–54]. Following the original suggestion by
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Büttiker [21] and Landauer [22] the spatially-varying
thermal noise source can be combined with a ratchet
potential, as, e.g., recently discussed by [55]. Our model
considers overdamped Brownian particles subject to an
oscillating tilted potential and a space-dependent peri-
odic noise amplitude with the same wave vector k as
the force; furthermore, we will ultimately also allow a
shifted phase φ in the random force. In its general form,
the model is given by the Langevin equation

γẋ(t) = −∇V (x) +
√

2γkBT (x)η(t), (2)

where V (x) := −F0 (x + ε sin(kx)/k) is the potential,
T (x) := T0 (1 + ν cos(kx + φ))2 is the space-dependent
noise strength, γ is the friction coefficient, F0 is the tilt-
ing force, T0 is a reference temperature, η(t) is a white
noise, as introduced before, and ε and ν are dimension-
less parameters. The critical tilt in this model arises
when ε = 1. In order keep the noise strength differen-
tiable everywhere and its phase in a fixed frame we con-
sider 0 ≤ ν ≤ 1. The period of both the force and the
noise will be L = 2π/k. We remark that the case ν = 1
plays a special role insofar as there are special positions
at which the noise is zero. In absence of forces, the par-
ticle will therefore never cross these positions but stay
confined within a periodicity length L.

Our goal in this paper is to describe the particle
dynamics as functions of ε, ν and φ, either in the vicin-
ity of the critical tilt, or in the absence of the deter-
ministic force, F0 = 0, i.e. in the purely spatial random
noise case. Among our main results are the very slow
dynamics in the relaxation of the mean displacement
(MD) and mean-squared displacement (MSD) for long
times in the F0 = 0 case and an essential singularity
in the stationary current for F0 �= 0 and ε � ν � 1.
In the case of the full model, we build upon the results
of [21] by also considering extreme temperature oscil-
lations where the noise strength vanishes (ν = 1) and
adding an external driving force, while we expand on
[41] by finding a theoretical approximation for both the
long-time drift vL and diffusion constant DL and the
phase value φ for which we have the largest increase of
vL and DL for ε �= 1 and ν �= 0. Our results have been
obtained both with numerical and analytical methods.

The paper is organized as follows: in the beginning
we focus on the free case, for which we study the short-
and long-time behaviour of MD and MSD, then we pro-
ceed with the full model, including the tilted potential,
for which we study the stationary distribution and the
dependence of long time diffusion and drift on φ and ν.
Finally, we summarize the results obtained and discuss
possible experimental realizations of the model.

2 Free particle case

In the case of a vanishing external force (F0 = 0), the
Langevin equation (2) now reads as

γẋ(t) =
√

2γkBT (x)η(t), (3)

where we set φ = 0 without loss of generality. We
decided to approach this problem using the Stratonovich
interpretation. For a given representation of the noise,
this equation can be solved by direct integration in the
particular case of periodic boundary conditions (PBC)
in which we identify x(t) ± L with x(t). The PBC cor-
respond to a ring-like geometry of the one-dimensional
system.

x(t) =
2

k
arctan

[√
1 + ν

1 − ν
tan

(
k

√
kBT0(1 − ν2)

2γ

×
∫ t

0

η(t′)dt′ + arctan

(√
1 + ν

1 − ν
tan

(
kx0

2

)))]

(4)

and the limit of this solution for ν → 1 is

x(t) =
2
k

arctan

[

k

√
2kBT0

γ

∫ t

0

η(t′)dt′ + tan
(

kx0

2

)]

.

(5)

We remark here that in the case with no boundaries,
i.e. when we let the particle diffuse through the whole
x-axis, the analysis is harder and we were not able to
find an analytical expression except for the special case
ν = 1. In this limit PBC and the no boundaries case are
identical as the particle can never trespass the points
where the noise is zero.

Equations (4) and (5) can be used to express noise-
averages of any power of displacement. For an arbitrary
moment Mn(t) := 〈(x(t) − x0)n〉 we obtain

Mn(t) =

∫ ∞

−∞

{
2

k
arctan

[√
1 + ν

1 − ν
tan

(
k

√
kBT0(1 − ν2)

2γ

+arctan

(√
1 + ν

1 − ν
tan

(
kx0

2

)))]
− x0

}n

×e− W2

2t√
2πt

dW (6)

for ν �= 1 and

Mn(t) =
∫ ∞

−∞

{
2
k

arctan

[

k

√
2kBT0

γ
W + tan

(
kx0

2

)]

−x0}n e−W2
2t√

2πt
dW (7)

for ν = 1. Since we are going to focus on the mean dis-
placement 〈x(t) − x0〉 and the mean-squared displace-
ment 〈(x(t) − x0)2〉, we write the expressions for these
two moments (n = 1, 2) explicitly:
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〈x(t) − x0〉 =

∫ ∞

−∞

2

k
arctan

[√
1 + ν

1 − ν
tan

(
k

√
kBT0(1 − ν2)

2γ
W

+ arctan

(√
1 + ν

1 − ν
tan

(
kx0

2

)))]

×e− W2
2t√

2πt
dW − x0 (8)

and

〈(x(t) − x0)
2〉 =

∫ ∞

−∞

{
2

k
arctan

[√
1 + ν

1 − ν
tan

(
k

√
kBT0(1 − ν2)

2γ
W

+ arctan

(√
1 + ν

1 − ν
tan

(
kx0

2

)))]

−x0

}2
e− W2

2t√
2πt

dW

(9)

for ν �= 1 and

〈x(t) − x0〉 =
∫ ∞

−∞

2
k

arctan

[

k

√
2kBT0

γ
W

+ tan
(

kx0

2

)]
e−W2

2t√
2πt

dW − x0

(10)

and

〈(x(t) − x0)2〉 =
∫ ∞

−∞

{
2
k

arctan

[

k

√
2kBT0

γ
W

+ tan
(

kx0

2

)]
− x0

}2 e−W2
2t√

2πt
dW

(11)

for ν = 1.

2.1 Short-time behavior

We can use equations (8-11) to extract the short-time
behavior of the MD and MSD. Expanding the integrand
in powers of t using a Taylor series and integrating the

terms separately we obtain for the MD:

〈x(t) − x0〉 = −kkBT0t

γ
sin(kx0)ν

×
[
(1 + ν) cos2

(
k

2
x0

)

+(1 − ν) sin2

(
k

2
x0

)]

+O (
t2

)
(12)

and for the MSD

〈(x(t) − x0)2〉 =
2kBT0t

γ

[
(1 + ν) cos2

(
k

2
x0

)

+(1 − ν) sin2

(
k

2
x0

)]2

+ O (
t2

)
. (13)

In the special limit ν = 1 we also add the second-order
correction as:

〈x(t) − x0〉 = −2kkBT0t

γ
cos2

(
k

2
x0

)
sin(kx0)

×
[
1 − 6k2kBT0t

γ
cos2

(
k

2
x0

)
cos(kx0)

]

+O (
t3

)
(14)

and

〈(x(t) − x0)
2〉 =

8kBT0t

γ
cos4

(
k

2
x0

)

×
[
1 +

k2kBT0t

γ
cos2

(
k

2
x0

)

× (7 − 11 cos (kx0))

]
+O (

t3
)
. (15)

Clearly, the first-order correction of (14) and (15) coin-
cides with equations (12) and (13) in the limit ν → 1.
Moreover for ν = 0 we recover the white noise case
solved by Einstein [1].

We now define an effective potential of the mean dis-
placement such that a particle subject to this poten-
tial and constant white noise will experience the same
average drift as a particle in a space-dependent noise
landscape. In other words, following the spirit of the
mapping proposed by Büttiker [21], the effective force
resulting from this potential can be viewed as a sub-
stitute source for the drift when only white noise is
considered. Hence, we define this force FM (x) up to a
friction coefficient prefactor γ as the first coefficient of
the short-time expansion of the MD

〈x(t) − x0〉 = a1(x0, ν)t + O (
t2

)
(16)
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Fig. 1 Effective potential of the mean displacement VM ,
obtained from the short-time drift of the mean displace-
ment, and space-dependent noise T (x) for ν = 0.5 and φ = 0
as functions of space x. While the averaged MD tends to
the minima of VM , where the noise strength T (x) is largest,
individual trajectories spend most of their time around the
maxima of VM

as follows

FM (x) := a1(x, ν)γ

= −kkBT0 sin(kx)ν
[
(1 + ν) cos2

(
k

2
x

)

+(1 − ν) sin2

(
k

2
x

)]
. (17)

The effective potential of the mean displacement is then
defined by VM (x) = − ∫ x

0
FM (x′)dx′ yielding

VM (x) = kBT0ν

×
[
(1 − ν) sin4

(
k

2
x

)
− (1 + ν) cos4

(
k

2
x

)

+1 + ν

]
.

(18)

This potential is shown in Fig. 1. Even though this
potential is defined just by the short-time expansion
of the MD, it is still significant for any finite time, as
the particle is overdamped and feels at every time a
short-time drift depending only on its position. As a
result, the MD of a particle subject to this potential
and white noise can be perfectly mapped to the MD of
a free particle with space-dependent noise.

While the average mean displacement behaves accord-
ing to VM , moving over time towards the regions where
VM is smaller and the noise strength is larger, we want
to stress that individual trajectories will not accumulate
in the minima of VM but will instead freely move over
all the domain, spending most of their time in the max-
ima of VM instead. This is because when particles reach
such low-noise regions they take a longer time escaping,
as their fluctuations there are severely reduced.

2.2 Dynamics for finite and long times

Now we explore the behavior of the MD and MSD for
finite and long times. First we present an asymptotic
analysis for the special case ν = 1. Then we use a
numerical solution of the integrals in (8) and (9) as
well as computer simulations of the original Langevin
equation to obtain data for finite times and arbitrary
ν.

2.2.1 Asymptotic analysis for ν = 1 for long times

Here we present an asymptotic analysis for the MD and
MSD by starting from Eq. (10) and using the asymp-
totic approximation

arctan(θ) � π

2
sign(θ) − arctan

(
1
θ

)
, (19)

for large θ. We now expand arctan
(
1
θ

)
using Euler’s

formula [56]

arctan
(

1
θ

)
=

θ

θ2 + 1
+ O

(
1
θ3

)
(20)

and insert this expansion in Eq. (10) to obtain

〈x(t) − x0〉 =
∫ ∞

−∞

2
k

[
π

2
sign

(

k

√
2kBT0t

γ
W

+ tan
(

kx0

2

))

−
k
√

2kBT0t
γ W + tan

(
kx0
2

)

1 +
(
k
√

2kBT0t
γ W + tan

(
kx0
2

))2

⎤

⎥
⎦

e−W2
2t√

2πt
dW

−x0 + O
(
t−3/2

)
, (21)

which yields

〈x(t) − x0〉 =
√

πγ

kBT0t

1
k2

tan
(

kx0

2

)

(
1 − 1

2k

√
γ

kBT0t

)
− x0

+O
(
t−3/2

)
. (22)

As a result, the leading asymptotic behavior of 〈x(t)〉
is determined by the first term involving a scaling
behavior of the MD in 1/

√
t. This is remarkably slow

compared to typical behavior of a Brownian particle
in a harmonic potential or of active Brownian motion
where the MD reaches its asymptotic value exponen-
tially in time [57–59] thus constituting an example of
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a very slow relaxation as induced by space-dependent
noise.

Likewise an asymptotic analysis for ν = 1 yields for
the long-time limit of the MSD

lim
t→∞

(〈(x(t) − x0)2〉
)

= x2
0 +

π2

k2
(23)

which represents the degree of smearing of the par-
ticle distribution for long times. We want to remark
that the MSD calculated from a distribution with peri-
odic boundary conditions does not describe the effec-
tive diffusion coefficient DL in periodic systems with
no boundaries, in contrast to the MD which can actu-
ally be calculated from the distribution with periodic
boundary conditions even for open systems.

2.2.2 Computer simulations

We performed direct Brownian dynamics computer sim-
ulations of the original Langevin equations with a finite
time step Δt to obtain numerically results for the MD
and MSD at any times. In order to properly simu-
late a system with space-dependent noise, we used the
order O (Δt) Milstein scheme [60] with a time step of
Δt = 10−3τ , where τ := γL2

kBT0
is a typical Brown-

ian time scale of the system. For each simulation set
we fixed the initial position x0 within the first period
[−L/2, L/2] and averaged typically over 200 trajecto-
ries of length � 500τ .

2.2.3 MD and MSD for finite times

Data for the mean displacement and the mean posi-
tion as a function of time are obtained by a numeri-
cal evaluation of the integral in Eq. (10) and by com-
puter simulation. For ν = 1 results are presented in
Fig. 2 together with the corresponding short-time and
long-time asymptotics (14) and (22). The displacement
starts linear in time t and saturates for long times. The
mean position approaches zero slowly as a power law
in time proportional to t−1/2. For large times the sta-
tistical error in the simulation data is significant but
nevertheless these data are compatible with the scaling
prediction of the theory.

In order to understand the very slow behavior of the
MD we note that while the MD tends to zero, i.e. to
the point with largest noise, this is just an effect of
averaging over particles spending most of their time at
the points with the smallest noise on both sides of the
x-axis: x � −L/2 and x � L/2. This particular mech-
anism explains why the MD approaches its final value
so slowly, as the particles have to hop from one side to
the other to symmetrize their distribution. In Fig. 3a
this is clearly documented in the time evolution of the
particle distribution function p(x, t), which gives the
probability to find a particle after a time t at position
x provided it started at time t = 0 at position x0. The
system evolves from a single-peaked distribution around
x0 to a double-peaked distribution in ±L/2. Near the

two points x = ±L/2 of zero noise the peaks are get-
ting sharper as t → ∞ approaching to δ-peaks such
that limt→∞ p(x, t) = (δ(x−L/2)+ δ(x+L/2))/2. The
intuitive reason for this is that once a particle adsorbs
at the points x = ±L/2 of zero noise it will never return
to the region where the noise is finite.
This peculiar behavior is clearly delineated from the
relaxation in a symmetric double-well potential with
white noise of strength T0. In order to reveal this, we
have performed simulations for a Brownian particle in
the double-well potential with two equal minima

U(x) := A(x4 − Bx2). (24)

We set A := 48kBT0/L4 and B := L2/2 in order to
have the two wells in ±L/2 such that the energy barrier
between the two minima is 3kBT0. Our simulation for
this white-noise reference case show that both the MD
and the MSD decay exponentially in time t rather than
with 1/

√
t, and hence much faster than for our case of

space-dependent noise. We also defined a particle hop-
ping rate Γh between the two peaks of the distribution
as

Γh(t) :=
Nh(t)
t/2

, (25)

where Nh(t) is the number of times a particle hops from
one peak to the other in the time interval [t/2, t]. Note
that the relevant time window in which hopping is con-
sidered is chosen to be proportional in time in order
to improve the statistics. We have a hop whenever the
particle trespasses the x = L/4 or x = −L/4 thresh-
olds and previously was, respectively, in the left or right
peak.
In fact, as we show in Fig. 3b, for the double-well poten-
tial, the hopping rate Γh(t) converges to a constant for
long times. This rate is maintaining the equilibrium
state with a symmetrized occupation around the two
minima. The rate saturates for t → ∞ to a value very
close to the inverse of the mean first passage time (see
for example [61]) in the double-well potential te [62],
which in our case is given by:

te � 2π
√∇2U(L/2)|∇2U(0)| exp

(
U(0) − U(L/2)

kBT0

)

� 1.859τ. (26)

Conversely, for our case of space-dependent noise, the
hopping rate keeps decreasing as a function of time
again with an inverse power law t−1/2. This reflects the
fact that the peaks of the space-dependent noise distri-
bution keep growing indefinitely as the particles get in
average closer to the points of zero noise.

Now in Fig. 4 we explore the MD for the case ν �= 1
where the particle crosses the position of minimal noise.
Here the boundary conditions do matter and we distin-
guish between no boundaries (Fig. 4a) with infinitely
many oscillations and periodic boundary conditions of
a ring-like geometry (Fig. 4b). While the short-time
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(a) (b)

Fig. 2 Absolute values of the mean displacement 〈x(t) −
x0〉 (a) and the mean position with a minus sign to ensure
positivity −〈x(t)〉 (b) for ν = 1 and x0 = −0.2L as a func-
tion of time t. The numerical evaluation of the integral in
Eq. (10) (theory) and its asymptotic short- and long-time

expansions (14) and (21) are shown together with simula-
tion data. The MD increases linear in time t for short times,
while the decay to its limit scales in a very slow way with

O
(
t−1/2

)

(a) (b)

Fig. 3 a Probability density function p(x, t) for the parti-
cle position at different times t, with ν = 1 and x0 = −0.2L.
Here, we averaged over 10,000 different trajectories of length
10τ . b Hopping rate Γh between the two peaks in the parti-
cle distribution as a function of time t for a space-dependent

noise with points of vanishing noise (ν = 1), and for a
double-well potential with white noise. Here, we have cho-
sen x0 = −0.2L. We also show the stationary state theoret-
ical value of Γh for the double well potential, defined as the
inverse of the mean first passage time te, derived in Eq. (26)

behavior is linear in time for both kind of boundary
conditions, the MD saturates for long times to a finite
value depending on ν and x0 for the no boundaries case.
This finite value is −x0 for periodic boundary condi-
tions since in this case the mean position will always end
at zero due to symmetry. The asymptotic approach to
zero is exponential in time as in the case of the double-
well potential with noise as the particle stays mobile
even when approaching the position where the noise is
minimal. This is in marked contrast to the limit of ν = 1
where the particle gets immobilized at the boundaries.

Now we turn to the MSD, first for the special case
ν = 1 shown in Fig. 5a where boundary conditions do
not matter. The MSD starts linear in time and then
saturates to its long-time limit C := x2

0 + (π/k)2. Its
asymptotic approach to this saturation value is revealed
by plotting the MSD shifted by C which decays to zero
for large times, see Fig. 5b. Similar to the MD for ν = 1,
we find that the asymptotic behavior is compatible with
a 1/

√
t scaling.

In Fig. 6 we show the MSD for ν �= 1 for both types
of boundary conditions. In absence of boundary con-
ditions (see Fig. 6a) the long-time behavior is linear
in time ≈ 2DLt involving a long-time diffusion coeffi-
cient DL. Clearly the latter depends on ν but not on
the initial position x0. This dependence is depicted in
the inset of Fig. 6a. We found the empirical expres-
sion DL(ν) = D0(1 − ν2) with D0 = kBT0/γ to be a
very good fit to the data. This can be regarded as a
parabolic fit which fulfills the inflection symmetry in ν
and the constraint DL(ν = 1) = 0. The same behavior
was recently found in a similar system [63].

Finally, to better clarify the behaviors of the MD and
MSD for ν = 1, we plot the dynamical exponents (Fig.
7) that define the scaling regimes for the MD (β, β′)
and MSD (α, α′) close to their short-time and long-time
limits, respectively:
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Fig. 4 Mean
displacement 〈x(t) − x0〉
(a,b) as a function of time
t for three values of
ν = 0.25, 0.5, 0.75 and
x0 = −0.2L for no
boundaries (a) and for
periodic boundary
conditions (b)

(a) (b)

(a) (b)

Fig. 5 Absolute values of the mean-squared displacement
(MSD) 〈(x(t) − x0)

2〉 (a) and shifted MSD−C, where C is
the long time limit of the MSD (b) as a function of time t

for ν = 1 and x0 = −0.2L. The numerical evaluation of the
integral in Eq. (11) and its asymptotic short- and long-time
expansions are shown together with simulation data

Fig. 6 a Mean-squared
displacement (MSD)
〈(x(t) − x0)

2〉 as a function
of time t for ν �= 1 and
x0 = −0.2L both for no
boundaries (a) and for
periodic boundary
conditions (b). The inset
shows the long-time
diffusion constant DL as a
function of ν for the no
boundaries case (a) (b)

β :=
d(log10 |〈x(t) − x0〉|)

d(log10(t))
,

β′ :=
d(log10 |〈x(t)〉|)

d(log10(t))
,

α :=
d(log10〈(x(t) − x0)2〉)

d(log10(t))
,

α′ :=
d(log10 |〈(x(t) − x0)2〉 − C|)

d(log10(t))
.

(27)

Both the MD and MSD for short times are linear, while
for long times the scaling of the MD converges clearly to
-0.5, that corresponds to 1/

√
t. Within the time window

explored the MSD has not yet saturated to an ultimate

dynamical exponent for long times. The asymptotics
shown is compatible with a final scaling exponent of
−1/2 although the approach to this final exponent is
much slower for the MSD than for the MD where the
saturation is clearly visible.

We remark that an algebraic asymptotic approach
in the MSD was also found for equilibrium Brownian
dynamics of repulsive interacting particles. Here the
time-derivative of the time-dependent diffusion coeffi-
cient MSD/t scales as t−d/2 in d spatial dimensions
[64–67] but the physical origins of the algebraic scal-
ing laws are different.
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(a)

(c)

(b)

(d)

Fig. 7 Dynamical exponents of the MD (a, c) and MSD
(b, d) close to 0 (a, b) and their final limit (c, d) for ν = 1
and x0 = −0.2L in theory and simulation as functions of
time t. As we have already seen in Fig. 2 for the MD and

Fig. 4 for the MSD, both quantities grow initially linearly
in time and decay to their final limit with 1/

√
t for the MD

and slower than 1/
√

t for the MSD

3 Tilted potential

In this section, we leave the situation in which the
Brownian particle is a free particle only driven by
spatially-dependent noise. We now consider the full
model, including the deterministic tilted potential. We
first look at the situation near the critical value of the
amplitude ε = 1, where the tilted potential develops a
plateau. The situation addressed in shown in Fig. 8.

3.1 The stationary current

Being weakly confined to a region of the determinis-
tic potential in which the dynamics can be considered
‘slow’, a quasi-stationary distribution can be defined
[49]. The Fokker–Planck equation corresponding to the
Langevin equation, Eq. (1) in Stratonovich interpreta-
tion reads as

∂tp(x, t) = −∂xa(x)p(x, t) +
1
2
∂x[b(x)∂x[b(x)p(x, t)]]

(28)

with a(x) the force and b(x) the noise amplitude,

a(x) := F0(1 + ε cos(kx)), b(x) :=
√

2γkBT (x) .

(29)

Following the discussion in [49], the dynamics near the
critical tilt value for ε ≥ 1 is characterized by a sta-

tionary current given by the one-time integrated FP-
equation

− Js = −a(x)ps(x) +
1
2
b(x)∂x[b(x)ps(x)] . (30)

Defining (b(x)/2)ps(x) = p̂s(x) we can rewrite the last
expression as

− Js

b(x)
= −R(x)p̂s(x) + ∂xp̂s(x) (31)

with

R(x) =
2a(x)
b2(x)

. (32)

The equation can be solved with the Ansatz p̂s(x) =
u(x) · v(x) which reduces the problem to two readily
integrable first-order ordinary differential equations for
u(x) and v(x). One obtains the final expression

ps(x) =
2Js

b(x)

∫ ∞

x

dy
1

b(y)
exp

(
−

∫ y

x

dzR(z)
)

, (33)

in which the current Js can be obtained from the nor-
malization integral

∫ ∞
−∞ dxps(x) = 1. In the following

we take for simplicity (setting all other constants to
one)
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(a)

(b)

Fig. 8 Potential (a) and corresponding force (b) near the
‘flat’ regime ε = 1 as a function of the spatial coordinate x

R(z) =
1 + ε cos(z)

(1 + ν cos(z))2
. (34)

Setting b(z) := exp (−F (z)) = exp(− ln(1 + ν cos(z)),
and expanding both b(z) and R(z) in Taylor series
around the center of the flat region near z = L/2, the
stationary current Js is given by

Js =
1
2

[∫ ∞

−∞
dx exp

(
−F̂ (x)

)

×
∫ ∞

0

dy exp
(
−F̂ (y)

)
exp

(
−

∫ y

x

dzR̂(z)
)]−1

(35)

in which the symbol .̂.. indicates the Taylor-expanded
functions,

F̂ (x) = ln(1 − ν) +
1
2

(
1

1 − ν

)
(x − L/2)2 (36)

and

R̂(z) = 2
1 − ε

(1 − ν)2
+

ε(ν + 1) − 2ν

(1 − ν)3
(z − L/2)2 . (37)

The integration of R̂(z) yields a cubic polynomial, but
due to cancellations the resulting expression in the
exponential is Gaussian in x and cubic in y. The Gaus-
sian integral in y can be calculated exactly, while the
remaining expression in y needs to be evaluated numer-
ically for each value of ε and ν.

The most interesting behavior of the stationary cur-
rent is found in the limit ν → 1, ε ≈ 1. The fact that
the coefficients in Eqs.(36),(37) are singular in 1/(1−ν)
leads to a singular behavior of Js in the form

Js ∝ (1 − ν)m exp
[
− I(ε, ν)

(1 − ν)n

]
, (38)

with n = 3, since the dominant singularity in R̂(z) is
∝ (1 − ν)−3, see Eq. (37). The amplitude is I(ε, ν) =

(ε(ν + 1) − 2ν)/4 and the rational factors combine to
m = 0. The stationary current thus goes to zero with
an essential singularity in (1 − ν).

3.2 Phase difference between noise and potential

For a tilted potential, we now explore the effect of a
nonzero phase φ �= 0 on the long-time behavior of the
particle for different values of ν by using computer sim-
ulation.

As shown in [41], the long-time drift velocity and
diffusion coefficients (vL and DL respectively) can be
analytically calculated for the case ν = 0, where we set
V (x) as potential.

Here the question is how the mismatch of the periodic
noise and external forcing affects the long-time behav-
ior of the particle. Intuitively one would expect that
overcoming an energetic barrier is best if the maximum
of the noise occurs where the external force is opposing
most. Then the noise would help to bring the particle
over the energetic barrier. The position where the force
is opposing most is clearly given for x = L/2 + nL,
where n is an integer. Then it is expected that mobil-
ity gets a maximum if the phase shift is φ = π. This
is indeed what we confirm by simulation. We chose
kBT0 = 0.01F0L and ε = 1.3. The potential barrier
ΔE is given by

ΔE(ε) =
F0L

π

(√
ε2 − 1 − arcsec(ε)

)
, (39)

yielding ΔE � 0.04F0L > 0.01F0L for ε = 1.3.
Given these parameters, we simulated the system for

different values of φ and ν and results are summarized
in Fig. 9. Since to the best of our knowledge there is
no easy generalization of the results in [41] for a space-
dependent temperature, we have compared the simula-
tion data with a mapping on the analytical results for
v
(0)
L and D

(0)
L [41] which were obtained for a spatially

constant temperature. Since the crucial position to hop
over the barrier is at x = L/2+nL where the opposing
force is maximal, this represents the kinetic bottleneck
for the dynamical process. Therefore it is tempting to
compare our simulation results with the analytical ones
where this local noise strength T (x = L/2) is inserted
as a homogeneous temperature. We remark that this
temperature T (x = L/2) depends both on the oscilla-
tion strength ν and the phase shift φ of T with respect
to the potential. This mapping theory should work best
if the particle spends most of its time close to the point
x = L/2. In fact, Fig. 9 reveals that this simple map-
ping theory describes the simulation data well even for
large ν. As a function of the phase mismatch φ, both DL

and vL are enhanced when φ is between about 3
5π and

7
5π. Clearly around the value φ = π we find the max-
imal enhancement of both vL and DL. In the comple-
mentary case, the noise strength T (x) has its minimum
closer to the crucial region where the opposing force is
maximal, and as a result the drift velocity and diffusion
are severely reduced. For ν = 1 they are even brought
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Fig. 9 Long time drift
(a) and diffusion (b) for
ε = 1.3 as functions of ν
and φ, simulations results
and theory. For φ between
about 3

5
π and 7

5
π both DL

and vL are enhanced,
having a maximum in
φ = π, while otherwise
they are reduced

(a) (b)

exactly to zero when |φ| < arcsec(ε), since the parti-
cle is stuck and there is no systematic external force to
drift over the positions of vanishing noise.

4 Conclusions and outlook

In conclusion we have presented a detailed study of
a model for a Brownian particle moving in a one-
dimensional environment with a space-periodic noise
and under an external potential with a tilt near its
critical value. In the free case we calculated the exact
solution of the associated Langevin equation, and fur-
ther explicitly obtained short- and long-time approx-
imations of the MD and MSD. These results allow
us to characterize the slow decay of these quantities
at long times. Interesting relaxation dynamics occurs
around points of vanishing noise which establish cen-
ters of growing peaks in the particle distribution, as
particles slow down significantly in the neighborhoods
of these points. Introducing the tilted periodic potential
we first determined the stationary current for the quasi-
stationary state, which for ε ≥ 1 displays an essential
singularity for the maximal strength of the noise oscilla-
tions, ν. Finally, we determined numerically the effects
of a space-periodic noise on the long-time diffusion and
drift as functions of the phase difference between noise
and potential φ and the strength of the noise oscilla-
tions ν, finding the largest enhancements to take place
for a phase of φ = π and the maximal possible noise
oscillations for ν = 1.

Our one-dimensional model with both periodic bound-
ary conditions or no boundaries can be realized by a
colloidal particle confined in a ring or a linear chan-
nel respectively by, e.g. optical forces [48,68–70]. The
space-dependent noise can be added by various means.
First, one can change locally the solvent temperature.
This realization has a limited applicability, since the
state of the solvent can be changed drastically upon
such a temperature variation. However, there are more
general and more important realizations for our model.
First of all, the viscosity or the friction coefficient can
directly be changed without changing the ambient tem-
perature. The solvent viscosity, for instance, can be
tuned over orders of magnitude by imposed patterned
substrates interacting with the solvent or even by vary-
ing the size of the colloids without changing the solvent

phase [71]. Second, space-dependent noise can stem
from active internal fluctuations [72,73] different from
thermal fluctuations and can be embodied into an effec-
tive noise strength that can largely be tuned by activity
[74–78]. Optical gradients can be used to steer activity
as a function of the position, as realized and discussed
in [63,79–81]. Another possibility is to tune the noise
amplitude of skyrmions, which have a similar equation
of motion [82]. Last but not least, the noise can be
mimicked in valuable model systems by applying ran-
domized kicks of an external field to the particle. For
example, the noise strength can largely be tuned exter-
nally without changing the solvent at all by tuning the
rotational diffusion constant of the colloids [83,84]. In
fact, the effective diffusion constant of an active parti-
cle depends on its rotational diffusion constant, and in
the limit of short persistence lengths one can indirectly
tune the translational diffusion by tuning the rotational
one.
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29. J. Pešek, P. Baerts, B. Smeets, C. Maes, H. Ramon, Soft

Matter 12, 3360–3387 (2016)
30. O. Farago, N. Grønbech-Jensen, J. Chem. Phys. 144,

084102 (2016)
31. A.J. Bray, Phys. Rev. E 62, 103–112 (2000)

32. S. Pieprzyk, D.M. Heyes, A.C. Brańka, Biomicrofluidics
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