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ABSTRACT
We propose a new overarching model for self-propelled particles that flexibly generates a full family of “descendants.” The general dynamics
introduced in this paper, which we denote as the “parental” active model (PAM), unifies two special cases commonly used to describe active
matter, namely, active Brownian particles (ABPs) and active Ornstein–Uhlenbeck particles (AOUPs). We thereby document the existence of
a deep and close stochastic relationship between them, resulting in the subtle balance between fluctuations in the magnitude and direction of
the self-propulsion velocity. Besides illustrating the relation between these two common models, the PAM can generate additional offsprings,
interpolating between ABP and AOUP dynamics, that could provide more suitable models for a large class of living and inanimate active
matter systems, possessing characteristic distributions of their self-propulsion velocity. Our general model is evaluated in the presence of a
harmonic external confinement. For this reference example, we present a two-state phase diagram that sheds light on the transition in the
shape of the positional density distribution from a unimodal Gaussian for AOUPs to a Mexican-hat-like profile for ABPs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0084213

INTRODUCTION

Active matter includes a broad variety of biological and physi-
cal systems,1–3 ranging from bacteria,4,5 colloids,6–11 more complex
organisms, such as sperms and cells,12 and even animals at the
macroscopic scales,13,14 such as birds15 and fish.16 Each of these
systems is formed by individual active units that convert energy
into motion, a property that allows them to be denoted as active
systems.17 Despite this generic label, the multitude of mechanisms
behind active motion results in a large amount of diversity, e.g., giv-
ing rise to systems whose typical active velocity is constant or subject
to fluctuations.

On the theoretical side, there are two major paradigms for
modeling active particles as a diffusive stochastic process:18,19

active Brownian particles (ABPs),20–26 introduced to describe
the diffusion-driven behavior of active colloids, and active
Ornstein–Uhlenbeck particles (AOUPs),27–34 originally proposed
for mathematical convenience35,36 but also found to be a good
approximation for a passive particle in an active bath.37–40 Both
models possess two major common ingredients: the typical self-
propulsion velocity induced by the active force (sometimes called

the swim velocity), which is constant for ABPs or given by an average
value for AOUPs, and the persistence time, indicating the strength
of rotational diffusion for ABPs and the characteristic time scale in
the autocorrelation of the active noise for AOUPs.

It is well known that ABPs and AOUPs share a similar phe-
nomenology in a large range of fundamental physical problems,
e.g., both predict the accumulation near walls and obstacles,41–43

clustering44,45 and motility induced phase separation,20,24,46–51 and
spatial velocity correlations in dense systems26,52–54 and active
glasses.55,56 However, some prominent differences emerge in a few
special cases, such as the failure of AOUPs to reproduce the bimodal
spatial distribution in a harmonic potential (for instance, see Ref. 36
for AOUPs and Refs. 57 and 58 for ABPs) or the distinct behavior
of the density in the bulk of a confined system.59–61 For this rea-
son, ABPs are usually perceived as the established model to describe
active colloids, while AOUPs are considered as a useful but over-
simplified approximation for ABPs when the model parameters are
appropriately chosen. However, the propitious theoretical possibil-
ities offered by the AOUPs have contributed to establish it as an
important model for active matter systems in its own right. This
has led to a continuously increasing number of works dedicated to
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FIG. 1. Illustration of the considered family of active models, uniquely charac-
terized by a velocity scale v0 and the self-propulsion vector n, determined by a
stochastic process of unit variance. The parental active model (PAM) is described
by the shown distribution P(n) in the form of a shifted Gaussian [see Eq. (7)] with
the single free parameter μ, which identifies the most likely value of the modulus
∣n∣. The width of the distribution, quantified by α(μ), is constrained by the condi-
tion ⟨n2

⟩ = 1 [see Eq. (9)]. The 3d plots at the bottom show P(n) for three specific
choices of μ, indicated by the axis below, which are further discussed in the text.

the AOUP model with the aim of deriving exact or approximate
analytical results for single-particle62,63 or interacting systems.64–68

The recent interest in AOUPs implies the need to reevaluate the
unilateral relation to the ABP model by going beyond the standard
qualitative way to compare these two fundamental approaches.

In this work, we propose a general model to describe the self-
propulsion mechanism of active particles on the microscale, which
we call the parental active model (PAM) because it includes both
ABPs and AOUPs as two subcases. We thus show that these classical
models actually stand on the same hierarchical level as descendants
of the PAM; see Fig. 1 for an illustrative picture. Specifically, they dif-
fer only by the value of a single parameter, indicating the shape of the
probability distribution of the radial component of the active velo-
city. In other words, the relation between ABPs and AOUPs is that of
two sisters rather than two cousins. By considering a whole class of
overarching models, we both uncover the deep connection between
ABPs and AOUPs going beyond a mutual mapping64,69 and bridge
the gap between these two extreme cases, which may provide a cru-
cial step toward a more realistic description of experimental systems.
To explore the whole family of models, we compare the (famously
distinct) probability density of ABPs and AOUPs in a harmonic trap
to the results for intermediate offspring of the PAM.

GENERIC DYNAMICS OF ACTIVE PARTICLES

The typical overdamped dynamics of a generic active particle is
described by the differential equation

γẋ = γv0n + γ
√

2Dtw + F(x) (1)

for its position x, where F(x) is the external force exerted on the
particle, w is a white noise with unit variance and zero average,
and γ and Dt are the friction coefficient and the translational diffu-
sion coefficient, respectively, related to the temperature of the bath
through the Einstein relation. The term v0γn is called the active force
and v0n is the resulting self-propulsion velocity, where the constant
v0 provides a velocity scale. The self-propulsion vector n is a gen-
eral stochastic process with unit variance whose specific dynamics
determine the active model under consideration. For simplicity, we
restrict ourselves to two spatial dimensions.

ACTIVE BROWNIAN PARTICLES (ABPs)

In the case of ABPs, n represents a unit vector, which denotes
the fluctuating particle orientation. In other words, the direction of
n = (cos θ, sin θ) is described by the steady-state distribution

PABP(n, θ) ∼
1

2π
nδ(n − 1) (2)

with a uniformly distributed orientational angle θ and fluctuation-
free modulus n = ∣n∣ that is always fixed to the average value ⟨n⟩
= 1. As known, the ABP dynamics in polar coordinates is simply a
diffusive process,

θ̇ =
√

2
τ

ξ (3)

for θ, where ξ is a white noise with unit variance and zero average,
and the time scale τ = 1/Dr represents the persistence time induced
by the rotational diffusion coefficient Dr.

ACTIVE ORNSTEIN–UHLENBECK PARTICLES (AOUPs)

In the case of AOUPs, n is represented by a two-dimensional
Ornstein–Uhlenbeck process that allows both the modulus n and
the orientation θ to fluctuate with related amplitudes. The AOUP
distribution is a two-dimensional Gaussian such that each compo-
nent fluctuates around a vanishing mean value with unitary variance.
In polar coordinates, the probability distribution of the AOUP
self-propulsion reads

PAOUP(n, θ) ∼
1

2π
n exp(−n2

). (4)

The dynamics ṅ = − n
τ +
√

1
τ χ generating the process is usually writ-

ten in Cartesian coordinates, where χ is a two-dimensional vector of
white noises with uncorrelated components having unitary variance
and zero average. To shed light on the relation with the ABP, it is
convenient to express the dynamics of AOUP in polar coordinates,
which gives (Itô integration)

ṅ = −
n
τ
+

√
1
τ

χn +
1

2τn
, (5a)

θ̇ =
√

1
τ

χθ

n
, (5b)
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where χn and χθ are white noises with unit variance and zero average.
While still being coupled to the dynamics of n, the angular equation
for θ is quite similar to that describing the ABP dynamics in Eq. (3).

MAPPING BETWEEN ABPs AND AOUPs

Usually, the connection between ABPs and AOUPs is estab-
lished by demanding that the steady-state temporal correlations of
the self-propulsion velocity v0n of ABPs and AOUPs are equal. Note
that by introducing this generic form of the active force in Eq. (1),
we have already included in the dynamics the mapping 2Da/τ=v2

0
through which we have eliminated the active diffusivity Da from the
conventional notation for the AOUP dynamics. Likewise, the second
relation Dr = 1/τ is implied in Eq. (3). As a result, both models share
the same autocorrelation function

⟨n(t) ⋅ n(0)⟩ = exp(−
t
τ
) (6)

of the self-propulsion vector n, despite possessing different distri-
bution PABP(n, θ) ≠ PAOUP(n, θ). Apart from this mapping, there is
currently no apparent deeper relation between the stochastic pro-
cesses Eq. (3) and Eq. (5b), underlying the dynamics of ABP and
AOUP, respectively. As a next step, we establish such a connection
by introducing a more general model.

UNIFICATION IN THE PARENTAL ACTIVE MODEL
(PAM)

Now, we are ready to define a “parental” active model (PAM)
from which one can recover both ABPs and AOUPs as limiting cases.
The most natural steady-state distribution for a PAM accounting for
these features simply introduces Gaussian fluctuations and reads

P(n, θ) ∼
n

2π
exp(−

(n − μ)2

2α2 ). (7)

This is one of the most simple distributions that allow the modu-
lus to fluctuate around a nonzero peak of the distribution, μ, with
modulus fluctuations, α2, which are independent of those of the
active force direction θ. Note that P(n, θ) is constant in θ so that
P(n, θ)∼ P̄(n), where P̄ = ∫

2π
0 dθP is the reduced distribution of the

self-propulsion velocity modulus (cf. Fig. 2).
The dynamics of the PAM, i.e., the dynamics that gener-

ate the steady-state distribution (7) in polar coordinates are (Itô
integration)

ṅ = −
(n − μ)

τ
+

√
2α2

τ
χn +

α2

τn
, (8a)

θ̇ =

√
2 f (α)

τ
χθ

n
, (8b)

where f (α) = 1 − α2 and α ∈ [0, 1/
√

2]. The representation of Eq. (8)
in Cartesian coordinates is discussed in Appendix A. The form
of f (α) guarantees that the total noise strength remains constant

FIG. 2. Stationary solution for the self-propulsion vector n in the PAM. Panel
(a): distribution P̄(n) = ∫

2π
0 dθP(n, θ), given by Eq. (7), of the radial compo-

nent n = ∣n∣ for different values of μ, interpolating between AOUP (μ = 0) and
ABP (μ = 1). Panel (b): relation between the parameters α and μ, which guaran-
tees that ⟨n2

⟩ = 1, leaving the velocity scale v0 invariant. Red and yellow dashed
curves indicate the asymptotic solutions for μ→ 0 and μ→ 1, respectively, given
by Eq. (9).

throughout all offsprings of the PAM, namely, α2
+ f (α) = 1. Fixing

α = 1/
√

2 and μ = 0, the dynamics coincides with that of an AOUP
[cf. Equation (5)]. For α = 0 and μ = 1, we obtain the ABP dynamics
because the deterministic time evolution of n, Eq. (8a), admits the
general solution n(t) = 1 + (n(0) − 1) exp(−t/τ) for n(0) ≠ 1 and
the special solution n(t) ≡ 1 for n(0) = 1. In fact, the latter initial
condition, n(0) = 1, is the only physical choice (consistent with the
requirement ⟨n2

⟩ = 1 stated below). This implies that the normalized
self-propulsion vector n = (cos θ, sin θ) of an ABP is recovered for
every time t. Moreover, the dynamics, Eq. (8b), for the angle θ then
reverts to Eq. (3).

While our general PAM contains the two parameters α and μ, it
is sufficient to restrict the offspring to those models that give rise
to the typical speed v0 as a common scale of the self-propulsion
velocity. To see this, we note that any process n with ⟨n2

⟩ = a can be
rewritten as

√
añ, where ñ has unit standard deviation, such that the

case a ≠ 1 would merely correspond to renormalizing v0 in Eq. (1).
Therefore, we can simply relate the modulus fluctuations α to the
peak position μ by requiring ⟨n2

⟩ = 1. The resulting relation α(μ)
(see Appendix B) leaves μ as the only free parameter of the PAM (at
fixed v0). Near the two limiting cases of the AOUP (μ→ 0) and ABP
(μ→ 1), the relation α(μ) simplifies and reads

α ≈

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1
√

2
(1 −

√
π

4
μ), μ→ 0,

√
1 − μ2

3
, μ→ 1.

(9)

In Fig. 2(b), we compare these simple representations to α(μ),
obtained by solving numerically ⟨n2

⟩ = 1, and we find good agree-
ment in the regimes 0 ≤ μ ≲ 0.3 and 0.7 ≲ μ ≤ 1. The resulting
steady-state distributions are shown in Fig. 2(a) for different μ, inter-
polating between AOUPs (green curve) and ABPs (yellow curve); see
also Fig. 1 for the representation in Cartesian coordinates.

Apart from the free parameter μ, which uniquely characterizes
each descendant of the PAM for a given scale v0 of the self-
propulsion velocity, the whole family of models shares a common
persistence time τ of the active motion and an equal dynamical
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correlation, given by Eq. (6). As a result, some basic dynamical prop-
erties for a potential-free particle are the same for each value of
μ, such as the velocity autocorrelation function and the mean and
mean-squared displacements, in accordance with the well-known
results in the limiting cases of ABPs70,71 and AOUPs.18

PAM IN HARMONIC CONFINEMENT

The main difference between ABPs and AOUPs occurs in the
dynamics of the radial component of the active force. The conse-
quences of that become highly relevant if the particle is subject to an
additional, external potential. As a reference study, we confine the
system via a harmonic trap so that the external force F(x) = −kx is
exerted on the active particle. The curvature of the potential k intro-
duces an additional time scale that is recast onto a dimensionless
parameter kτ controlling the dynamics. In Fig. 3, we study the radial
probability distribution, ρ(r), and the reduced distribution in Carte-
sian coordinates, p(x), projected onto the x axis for different values
of μ and kτ.

Before discussing the behavior of the generic PAM in detail, we
provide further analytic insight into the extreme cases (calculations

are reported in Appendixes C and D). As a Gaussian process, the
AOUP gives rise to the exact solution,42,69,72

ρ(r) ∼ exp
⎛
⎜
⎝
−

kΓ

(DΓ + v2
0 τ
2 )

r2

2

⎞
⎟
⎠

, (10)

where as usual, in AOUP systems, Γ = 1 + kτ plays the role of an
effective friction coefficient.73 Assuming large persistence, kτ ≫ 1,
we further develop the analytical prediction

ρ(r) ∼ r1/2 exp
⎛

⎝
−(k +

1
2τ
)

1
2D
(r −

v0

k + 1
2τ
)

2
⎞

⎠
(11)

for the ABP, which reflects the bimodality of the density
distribution58,74–78 (see also Refs. 57 and 79 for experimental studies)
as a distinct feature compared to the Gaussian shape of the AOUP
solution.

When the active force relaxes faster than the particle position
such that kτ ≪ 1, the dynamical details of the active force in the
generic PAM cannot affect the distribution, which is thus inde-
pendent of μ, as shown in Figs. 3(a) and 3(d). In this regime, the

FIG. 3. Probability distribution of the
active particle position in a harmonic
external potential. Panels (a)–(c) show
the radial density distribution ρ(r) as a
function of rk/v0, while panels (d)–(f)
plot the distribution (projected onto one
axis) p(x) as a function of xk/v0. Pan-
els (a) and (d) are obtained with kτ
= 10−1, panels (b) and (e) with kτ = 1,
and finally, panels (c) and (f) with kτ
= 102. The black dashed lines in all the
panels are obtained by Eq. (10), while
the black dashed–dotted line in panel
(c) by Eq. (11). Panels (a) and (d), (b)
and (e), and (c) and (f) share the same
legend.
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FIG. 4. Two-states phase diagram of the active harmonic oscillator by varying kτ
and μ [and, thus, α(μ) accordingly] distinguishing between the regions where the
spatial distribution, p(x), is unimodal and bimodal, as explicitly indicated in the
graph. The two regions are separated by a black solid line, μc(τc), tracked in
correspondence with the first value of kτ such that p(x) shows a bimodality: in
practice, we fit the exponential of a fourth order polynomial exp(−ax4

+ bx2
+ c),

identifying a point on the critical line μc(τc) as the smaller value of μ (for each kτ)
such that b < 0. In addition, we plot the kurtosis of p(x), namely, ⟨x4

⟩/⟨x2
⟩

2, as a
color gradient. We remark that the typical values of the kurtosis in correspondence
with the transition line are between 2.3 and 2.5.

shape of ρ(r) [or equivalently p(x)] coincides with the analytical
AOUP result, Eq. (10) with Γ→ 1, for every μ. This approximation
can be explicitly derived also in the opposite extreme case of ABPs
(see Appendix D). This occurs because the active force behaves as
a noise term, and thus, it only modifies the variance of ρ(r) with
respect to the passive case in the spirit of an effective temperature.
In the intermediate persistence regime, kτ ∼ 1, Figs. 3(b) and 3(e)
indicate that the density gradually departs from its Gaussian form,
given by Eq. (10), when μ is increased: the position of the main
peak of ρ(r) shifts toward larger values of r while the shape p(x)
displays the onset of bimodality. These differences become most
significant in the large persistence regime, kτ ≫ 1, where the ABP
solution is well-represented by Eq. (11), roughly centered around
v0/[k + 1/(2τ)]→ v0/k (for kτ ≫ 1). In addition, for smaller μ, the
radial density ρ(r) has a strongly non-Gaussian shape [see Fig. 3(c)].
We further show in Fig. 3(f) that for a large persistence, even a small
increase of μ induces drastic changes in the shape of p(x), eventually
inducing a unimodal→ bimodal transition.

In Fig. 4, such a transition is depicted through a phase dia-
gram as a function of μ and kτ, distinguishing between unimodal and
bimodal configurations and showing the kurtosis of p(x) as a color
gradient. For small values of μ, the distribution p(x) is unimodal
(region 1) independently of kτ. Starting from μ = 0 (AOUP model),
which is Gaussian, the increase of μ induces non-Gaussianity in the
shape of p(x), which reflects onto the decrease in the kurtosis to
values smaller than 3. However, while for small values of kτ, p(x)
still remains unimodal upon increasing μ [compare Fig. 3(d)], a
transition toward a bimodal distribution, which is characterized by
kurtosis values ∼2, takes place (region 2) as soon as kτ ∼ 1. The cor-
responding critical curve μc(τc) (black line in Fig. 4) decreases when
kτ is increased until reaching a plateau for kτ ≫ 1. This is consis-
tent with Eq. (10) and Eq. (11) in which ρ(r) does not depend on kτ

for kτ ≫ 1. In general, the fluctuation of the modulus n of the self-
propulsion vector inhibits the ability of the active particle to stay far
from the potential minimum, even in the harmonic oscillator case.

CONCLUSIONS

We developed a unifying parental active model (PAM) for the
stochastic dynamics of active particles. This PAM shows that the
established ABPs and AOUPs descriptions stand on an equal level
as being sisters rather than cousins. The family of explored models
shares defining properties of active matter, such as the exponential
dynamical correlations on the scale of the persistence time τ and the
common velocity scale v0. The only differences lie in the modulus
distributions of the self-propulsion velocity, which can be contin-
uously transferred from a Gaussian form (AOUP) to a sharp peak
(ABP) by sweeping a single parameter. As a benchmark study, we
examined the stationary distribution in a harmonic potential and
mapped out the transition between unimodal and bimodal, which
marks the classical “failure” of AOUPs to reproduce the behavior of
ABPs in the large-persistence regime.

For the purpose of realistic modeling, however, both AOUPs
and ABPs are idealized. This is because a perfectly constant mod-
ulus of the self-propulsion velocity is highly unlikely due to the
individual nature of biological agents and various types of fluctu-
ations. Bacteria, for example, can display fairly broad80,81 or even
bimodal82,83 speed distributions. In addition, macroscopic agents,
such as locusts,84 whirligig beetles,85 or zebrafish,14,86,87 exhibit nat-
ural speed fluctuations. To realistically describe these systems, a
theoretical approach should incorporate both fluctuations of the
modulus and the direction of the self-propulsion velocity.86–92 For
this purpose, our description within the PAM is particularly con-
venient because it is based on a single stochastic process n of unit
standard deviation (i.e., v0 is treated as a velocity scale and does not
fluctuate itself) such that all descendant models with an intermediate
value of the parameter μ can be evaluated with the same numerical
effort as ABPs and AOUPs.

The family of models can be systematically extended by realiz-
ing that the PAM merely gives rise to more diversity in the stationary
properties of the underlying stochastic process, while the autocorre-
lation (6) of the self-propulsion velocity remains equal for all off-
springs. Another common model of active particles involves the run
and tumble motion93–96 where the autocorrelation is a step function
because after running for a straight path, the particle instantaneously
changes the direction of its active velocity after a typical tumbling
rate. In our line of reasoning, this particular shape (at the same per-
sistence time scale τ related to the inverse of the tumbling rate) of the
dynamical autocorrelation function could be viewed as, say, a differ-
ent gender. In practice, the notion of run-and-tumble-like dynamics
can be easily combined with our PAM by drawing after each tum-
bling event the new direction and modulus of the self-propulsion
vector according to the stationary distribution in Eq. (7).

In conclusion, the PAM both unifies ABPs and AOUPs and
provides a crucial step toward more realistic modeling of over-
damped (dry) active motion, in general, which should in future
work be employed to provide an improved fit of experimental
swim-velocity distributions. Investigating the effect of the swim-
velocity fluctuations could represent an interesting perspective
for circle swimming,97–102 systems with spatial-dependent swim
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velocity,103–108 and inertial dynamics109–113 even affecting the ori-
entational degrees of freedom.114,115 The generalization of PAM to
these cases could be responsible for new intriguing phenomena,
which will be investigated in future works.
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APPENDIX A: PAM DYNAMICS IN CARTESIAN
COORDINATES

In this appendix, we report the expression for the PAM
dynamics in Cartesian coordinates. Applying Itô calculus, we obtain

ṅ = −
1
τ
(n − μ

n
n
) +

n
n2

1
τ
(α2
− f (α))

+

√
2α2

τ
n
n

χn +

√
2 f (α)

τ
R ⋅

n
n

χθ (A1)

with R denoting the rotational matrix of 90○. Alternatively, the last
term can be expressed in a more familiar form

R ⋅
n
n

χθ =
n
n
× ẑχθ (A2)

in terms of the cross product. By setting μ = 0 and α = 1/
√

2 in
Eq. (A1), we recover the AOUP model. Indeed, only the term −n/τ
survives on the first line, while the noise terms in the second line
reduce to a vector of white noise because any orthogonal transfor-
mation applied on a vector of white noises is still a vector of white
noise. Instead, by setting μ = 1 and α = 0 in Eq. (A1), only the term
−n/τ survives on the first line because n2

= n = 1 and only the second
noise survives on the second line so that we obtain the ABP equation
(Itô integration)

ṅ = −Drn +
√

2Drn × z ξ (A3)

in Cartesian coordinates, where z = (0, 0, 1).

APPENDIX B: OBEYING THE UNIT-VARIANCE
CONDITION

In this appendix, we give the analytic expression of the second
moment ⟨n2

⟩ of the PAM distribution [see Eq. (7)] needed to impose

the constraint ⟨n2
⟩ = 1 dictated by the given velocity scale v0. After

algebraic manipulations, we get

⟨n2
⟩ = 3α2

+ μ2
−Nα4e−

μ2

2α2 , (B1)

where N is the normalization constant of the distribution (7), which
explicitly reads

N −1
=

α2

2
μ
√

2α
(4
√

π + Γ(−
1
2

,
μ2

2α2 )). (B2)

Here, Γ(s, x) denotes the upper incomplete gamma function. The
condition requiring ⟨n2

⟩ = 1 follows as

3α2
+ μ2
−Nα4e−

μ2

2α2 = 1, (B3)

which is solved for α(μ) in Fig. 2 and yields the asymptotic solutions
near the two limiting cases of the AOUP (μ→ 0) and ABP (μ→ 1)
models, given by Eq. (9).

APPENDIX C: AOUP IN A HARMONIC POTENTIAL

Here, we provide the solution of Eq. (1) with the external force
F(x) = −kx. In the AOUP case (or the PAM with μ = 0 and thus
α = 1/

√
2), the dynamics can be solved exactly because of its lin-

earity. The whole solution for the probability distribution P(x, n)
reads

P(x, n) = N exp
⎛

⎝
−

Γk

ΓD + v2
0 τ
2

r2

2
⎞

⎠

× exp
⎛
⎜
⎝
−

Γ
v2

0

⎛
⎜
⎝

n −
k
2

Γv2
0τ

(
v2

0 τ
2 +D)

x
⎞
⎟
⎠

⎞
⎟
⎠

, (C1)

where r2
= x2
+ y2 in two spatial dimensions. By integrating out the

self-propulsion vector n and switching to polar coordinates, we eas-
ily obtain the expression for the radial probability distribution, ρ(r),
which reads

ρ(r) = N exp
⎛
⎜
⎝
−

kΓ

(DΓ + v2
0 τ
2 )

r2

2

⎞
⎟
⎠

, (C2)

where Γ plays the role of an effective friction coefficient and reads

Γ = 1 + kτ, (C3)

as stated in Eq. (10) of the main text. From Eq. (C2), we can identify
an effective temperature, say the variance of the distribution, as

Teff = (D +
v2

0τ
2Γ
). (C4)

APPENDIX D: ABP IN A HARMONIC POTENTIAL

To get analytical results in the case of an ABP (or the PAM with
μ = 1 and thus α = 0) in a harmonic trap, it is convenient to express
the positional dynamics (1) in polar coordinates, (x, y)→ (r, ϕ),
such that r =

√
x2 + y2 and ϕ = atan y

x . Applying Itô calculus to the
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dynamics (1) of the main text to perform the change in variables,
we get

ṙ = −k r +
D
r
+ v0 cos(θ − ϕ) +

√
2Dwr , (D1a)

ϕ̇ = v0
sin(θ − ϕ)

r
+

√
2D
r
√

2Dwϕ, (D1b)

where the orientation θ of the (normalized) self-propulsion vector n
evolves according to Eq. (3). From here, the Fokker–Planck equation
for the probability distribution, p = p(r, ϕ, θ), reads

∂tp = ∂r[k r −
D
r
− v0 cos(θ − ϕ) +D∂r]p

+ ∂ϕ[
D
r2 ∂ϕ −

v0

r
sin(θ − ϕ)]p +

1
τ
∂2

θ p. (D2)

Separating angular and radial currents in Eq. (D2) allows us to
find approximated solutions for the conditional angular probability
distribution f (θ − ϕ∣r) (i.e., the angular probability distribution at
the fixed radial position r), which we will use later to estimate the
radial density distribution ρ(r). In other words, by setting the second
line in Eq. (D2) equal to zero, we obtain

f (θ − ϕ∣r) = Nea cos(θ−ϕ), (D3)

where a reads

a =
v0

D
r

(1 + r2

Dτ )
. (D4)

In the small persistence regime, kτ ≪ 1, this distribution converges
to a flat profile because a→ 0 vanishes. This reflects the fact that both
θ and ϕ are uniformly distributed and, thus, also their difference.
Instead, in the large persistence regime, Eq. (D3) is peaked around
ϕ ∼ θ and its variance becomes smaller as kτ is increased.

As a first step to finding an approximation for ρ(r), we now
calculate the average

⟨cos(θ − ϕ)⟩ =
I1(a)
I0(a)

(D5)

with respect to the conditional angular distribution, Eq. (D3), where
I0(a) and I1(a) are the modified Bessel functions of the first kind
of order 0 and 1, respectively. With this result, we can achieve
the derivation starting directly from Eq. (D2). First, we assume
the zero-current condition for the radial current, namely, we set
to zero the first line in Eq. (D2). Then, we replace cos(θ − ϕ)
→ ⟨cos(θ − ϕ)⟩, where we approximate the result from Eq. (D5) in
two different regimes.

Small-persistence regime

In the small persistence regime such that kτ ≪ 1, we have a≪ 1
and we can approximate

⟨cos(θ − ϕ)⟩ =
I1(a)
I0(a)

≈
a
2
=

1
2
v0

D
r

(1 + r2

Dτ )
. (D6)

The small persistence time regime further allows us to replace

r2
→ ⟨r2

⟩ = 1
k(D + v2

0 τ
2 ) in Eq. (D6). The expression for ⟨r2

⟩ is

achieved by recalling that the active particle in the small persis-
tence regime is subject to the effective temperature D + v2

0τ/2, a
result holding for a general potential. From here, the zero-current
condition in Eq. (D2) leads to the equation

[k∗r −
D
r
+D

∂

∂r
]ρ(r) = 0 (D7)

for ρ(r), where

k∗ = k +
v2

0

D + 1
kτ (D +

v2
0 τ
2 )

. (D8)

This equation can be easily solved to obtain an expression for ρ(r)
that after algebraic manipulation reads

ρ(r) = N exp
⎛
⎜
⎝
−

kΓ

(DΓ + v2
0 τ
2 )

r2

2

⎞
⎟
⎠

, (D9)

where Γ = 1 + kτ → 1 is defined according to Eq. (C3). This distribu-
tion coincides with the AOUP one (C2).

We observe that in the limit of very small τ, the above result
(D9) coincides with that obtained in the passive limit, which can
be achieved by setting v0 → 0. In this case, we have a→ 0 and thus
⟨cos(θ − ϕ)⟩ = 0 in Eq. (D2) (and the same for the sinus) because
θ is uniformly distributed between 0 and 2π. Therefore, Eq. (D1)
simply converges onto the equation of a passive particle holding for
v2

0τ ≪ D. We further remark that our result is consistent with that
obtained by the hydrodynamic approach holding in the case of ABP
in the regime of small τ, which allows us to recover Eq. (D9) with
Γ→ 1.

Large-persistence regime

In the large persistence case, kτ ≫ 1, the self-propulsion relaxes
much slower than the position distribution. In addition, in this case,
we can adopt the same strategy used in the small persistence regime
with the crucial difference that now we have a≫ 1 so that we can
approximate Eq. (D5) as

⟨cos(θ − ϕ)⟩ =
I1(a)
I0(a)

≈ 1 −
1

2a
= 1 −

1
2

r
v0
(

D
r2 +

1
τ
). (D10)

Plugging this result into Eq. (D2) and using the zero-current condi-
tion allow us to find the equation for the radial density, ρ(r), which
reads

[r(k +
1

2τ
) −

D
r1/2 − v0 +D

∂

∂r
]ρ(r) = 0 (D11)

and whose solution can be explicitly obtained,

ρ(r) = Nr1/2 exp
⎛

⎝
−(k +

1
2τ
)

1
2D
(r −

v0

k + 1
2τ
)

2
⎞

⎠
. (D12)

Here, the result is fairly different from the Gaussian distribution
(C2) obtained in the case of AOUP dynamics. The profile (D12) is
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well-approximated by a Gaussian centered at r = v0/(k + 1/2τ)with
variance D/(k + 1/2τ).

Note that the result (D12) is almost consistent with that
obtained in Ref. 69 in the limit τ →∞. However, with respect to
Ref. 69, here, we improve the approximation for the angular distri-
bution that leads to a prefactor r1/2 (instead of simply r), which is
in better agreement with the data. To establish a closer relation to
this result, we remark that in the large persistence regime, the angu-
lar distribution (D3) derived here can be further approximated by a
Gaussian

f (θ − ϕ∣r) = Ne−
a
2 (θ−ϕ)2

(D13)

after expanding the cosine around θ ∼ ϕ. The expression for ρ(r)
resulting from this approximation is then consistent with the
previous prediction69 in the large persistence regime.
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