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Abstract
Self-propelled particles, which convert energy into mechanical motion, exhibit inertia if they
have a macroscopic size or move inside a gaseous medium, in contrast to micron-sized
overdamped particles immersed in a viscous fluid. Here we study an extension of the active
Ornstein–Uhlenbeck model, in which self-propulsion is described by colored noise, to access
these inertial effects. We summarize and discuss analytical solutions of the particle’s
mean-squared displacement and velocity autocorrelation function for several settings ranging
from a free particle to various external influences, like a linear or harmonic potential and
coupling to another particle via a harmonic spring. Taking into account the particular role of
the initial particle velocity in a nonstationary setup, we observe all dynamical exponents
between zero and four. After the typical inertial time, determined by the particle’s mass, the
results inherently revert to the behavior of an overdamped particle with the exception of the
harmonically confined systems, in which the overall displacement is enhanced by inertia. We
further consider an underdamped model for an active particle with a time-dependent mass,
which critically affects the displacement in the intermediate time-regime. Most strikingly, for a
sufficiently large rate of mass accumulation, the particle’s motion is completely governed by
inertial effects as it remains superdiffusive for all times.

Keywords: inertial active matter, active Ornstein–Uhlenbeck particles, mean-squared
displacement, dynamical exponents, active dumbbell, time-dependent mass

(Some figures may appear in colour only in the online journal)

1. Introduction

The physics of self-propelled particles is a flourishing research
arena. There exist many different biological microswimmers in
nature, for instance, bacteria and unicellular protozoa, which
typically generate their swimming motion with flagella or cilia
powered by molecular motors [1, 2]. Janus particles are exam-
ples of synthetic microswimmers, which possess surfaces with
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two distinct physical or chemical properties. This asymmetric
structure leads to self-propulsion via various mechanisms [3].
Even on the single particle level, active motion is a nonequi-
librium phenomenon, therefore challenging a basic modeling
from a statistical mechanics point of view. In the last decades,
various simple models were designed and proposed for single
active particles including self-propulsion generated by nonlin-
ear friction [4, 5], by non-reciprocal bead motions [6], and
by an internal driving force combined with overdamped ori-
entational Brownian dynamics [7–9], the latter leading to the
standard model of active Brownian particles (ABPs) [10].

More recently, perhaps the simplest nontrivial model for
an overdamped fluctuating self-propelled particle in a vis-
cous fluid was proposed. Such an active Ornstein–Uhlenbeck
particle (AOUP) possesses a stochastic driving force whose
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Figure 1. Overview of the main results. Top row: schematic illustration of an inertial AOUP at position r(t) (gray sphere) and moving with
velocity ṙ(t) (direction of the blue cloud). Its stochastic motion, determined by equation (4), depends on the initial conditions r0 := r(0) and
ṙ0 := ṙ(0), its mass m, diffusion coefficient D, persistence time τ and the particular setup (i)–(v). Bottom row: qualitative illustration of the
observed dynamical exponents α(t) (colored lines) in the MSD. The relevant time regimes are drawn in different layers (upper horizontal
bars). In each layer, the characteristic time scales (vertical bars with ticks on the t axis) separating different regimes can be shifted
horizontally (corresponding to a change of parameters), but their order is fixed (the big dots cannot get past each other). Shifting a solid
vertical bar prolongs one adjacent time regime and shortens the other one or even completely overlays the regime(s) from the layer(s) below.
The dashed vertical bar indicates the end of the inertial regime, which generally results in a fundamental change of the dynamical behavior.
The exponents valid for the shown order of time scales are drawn as solid lines while the dotted lines become valid instead if the dashed
vertical bar is shifted. The dotted vertical line indicates a transition between two distinct regimes with the same exponent. The annotated
time scales correspond to the shown setting, while their full definition and meaning is explained in the text for each scenario. A detailed
example of how to read this exponent diagram is given for a free particle in section 3.1.3. Columns: (i) force-free AOUP, cf section 3.1, (ii)
constant external force F, cf section 3.2, (iii) harmonic external potential with constant k (α(t) is illustrated here for a spring with k > 0), cf
section 3.3, (iv) two harmonically coupled AOUPs with equal mass m but different diffusion coefficient D′ and persistence time τ ′ (α(t) is
illustrated here for the center-of-mass coordinate R), cf section 3.4, and (v) with time-dependent mass m(t) of constant slope ṁ (α(t) is
illustrated here for ṁ < 0), cf section 3.5.

memory decays exponentially in time, leading to a persis-
tence in the particle motion which mimicks the activity. This
model, originally proposed by Ornstein and Uhlenbeck to
study velocity distributions of passive particles [11] and subse-
quently exploited for various other physical and mathematical
problems [12–15], has by now become a basic reference for
active motion [16–30]. Although the AOUP model does not
resolve the orientational degrees of freedom, it admits some
characteristic features of activity, like persistent motion, sur-
face accumulation and, most prominently, motility-induced
phase separation (MIPS) [16, 31]. Describing self-propelled
motion by an AOUP has the advantage that exact analytical
solutions can be obtained for a large range of problems [24,
32–37]. Moreover, the model provides a convenient basis to
develop the theoretical description of more complex settings
of interacting particles [38–46]. The experimental relevance
of the AOUPs model has been also demonstrated for a passive
tracer particle in an active bath [47, 48].

If the self-propelled object has a macroscopic size or
moves in a gaseous medium, the emerging inertial effects pose
some new challenges for theoretical modeling. Depending on
whether the motion is in a gas or a viscous medium, this under-
damped active matter can be divided into two classes, namely
‘dry’ and ‘wet’ systems. Wet particles are affected by hydrody-
namic effects, described within the Navier–Stokes equations
[49], where perhaps the most prominent example from nature
is a school of fish. In contrast, dry particles only perform a
practically undamped motion due to their inertia. Apart from
nature’s typical realization of such a system in a flock of birds,

there is a large range of dry inertial particles whose motion
is still affected by fluctuating random kicks of the surround-
ing medium. Whirling fruits self-propelling in the air [50]
and small animals such as insects [51, 52] are macroscopic
examples found in nature. Besides these biological organisms,
there are also artificial dry self-propelled particles. Mesoscopic
dust particles in plasmas, the so-called ‘complex plasma’, can
be brought into a joint underdamped self-propulsion by non-
reciprocal interactions [53–55] or photophoresis [56]. Other
examples of inertial dry active matter are man-made macro-
scopic granules self-propelling on a vibrating plate [57, 58]
or equipped with an internal vibration motor [59, 60] and
mini-robots [61, 62]. These various experimental realizations
have also triggered an increasing number of theoretical work
[58, 63–69] considering dry active particles with inertia, see
[70] for a recent review.

In this paper, we study in detail the dynamical properties
of an AOUP, whose translational motion is affected by iner-
tia [71, 72]. Our motivation for this choice is twofold. First,
providing the simplest description of activity subject to iner-
tia, the AOUP serves as a minimal reference model to com-
pare and discuss experimental and simulation data. Second, it
allows to understand inertial effects in various environments
and settings through obtaining explicit analytical solutions. In
detail, we give solutions for an inertial AOUP affected by con-
stant and harmonic forces and then for two AOUPs connected
by a harmonic spring. We further explore an active particle
which ejects mass in an isotropic way. A graphical overview of
these problems is given in figure 1 together with an illustration
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summarizing the different dynamical exponents obtained in
this paper. Parts of our results have been independently
obtained recently in reference [72].

This paper is organized as follows. In section 2, we
introduce the AOUP model and the dynamical quantities of
interest. Then we present in section 3 our main results, elabo-
rating on the role of inertia and the effect of initial conditions,
and conclude in section 4.

2. Inertial AOUP model and noise averages

The AOUP is arguably the simplest model for one self-
propelled particle. It makes use of a stochastic driving veloc-
ity u(t) with a memory on a finite time scale τ leading to a
persistent motion, which mimics activity. In detail, this Orn-
stein–Uhlenbeck process is defined by the stochastic equation

u̇(t) = −u(t)
τ

+
ξ(t)
τ

, (1)

where ξ(t) is a Gaussian distributed white noise, which is
characterized by its first two moments, i.e. 〈ξi(t)〉 = 0 and
〈ξi(t)ξ j(t

′)〉 = 2Dδi jδ(t − t′) with i, j ∈ {1, . . . , d} for d spa-
tial dimensions. Ornstein and Uhlenbeck originally developed
the model to study the velocity distribution of passive particles
[11], but it can also be used for many other physical and mathe-
matical problems. Solving equation (1) yields the moments for
the random velocity u(t), which is Gaussian distributed colored
noise, namely

〈ui(t)〉 = 0 and 〈ui(t)u j(t′)〉 =
D
τ
δi je−

|t−t′ |
τ . (2)

Here, τ is the persistence time, which is the time scale at
which the stochastic self-propulsion velocity u(t) randomizes.
The diffusion coefficient D characterizes the motility of the
particle.

Both parameters τ and D quantify the activity of the AOUP
[43] and can be combined to define the persistence length
l0 :=

√
Dτ as a typical length scale and the square root

u0 :=
√
〈u(t) · u(t)〉 =

√
dD
τ

, (3)

of the equal-time self correlation of the random velocity u(t) as
a typical magnitude of the active velocity in d spatial dimen-
sions. The meaning of u0 can be best understood by making
the connection to the model of ABPs which possess a constant
self-propulsion velocity v0 in direction of the instantaneous
orientation p subject to rotational diffusion with diffusivity Dr.
Comparing the steady-state correlation of the random velocity
v0p to equation (2) results in the identification of the two mod-
els upon setting v0 = u0 and D−1

r = (d − 1)τ [39, 43]. In other
words, all second moments of the particle’s motion which we
calculate in this work are also applicable to active Brownian
motion upon making the appropriate substitutions of param-
eters. In the remainder of this work, we restrict ourselves to
d = 2.

The inertial dynamics can be described by the particle’s
center-of-mass position r(t) and velocity ṙ(t). Given the ini-
tial conditions r0 := r(0) and ṙ0 := ṙ(0), we consider the under-
damped equation of motion

mr̈(t) + γṙ(t) = Fext(r, t) + γu(t) (4)

for one AOUP in the Langevin picture, where the coeffi-
cient of friction for linear drag is denoted by γ. Moreover,
Fext(r, t) = −�∇Vext(r, t) is an external force caused by an
external potential Vext(r, t) acting on the system and γu(t)
represents the active force. Note that, in the AOUP model,
a passive Brownian system is conveniently obtained by tak-
ing the white-noise limit τ → 0 of zero persistence time τ
in equation (1), such that the stochastic velocity u(t) ≡ ξ(t)
becomes a white noise with the (passive) diffusion coefficient
D. For this reason, we do not include an additional white noise
in equation (4) to represent the translational Brownian diffu-
sion, usually present in the active Brownian case. Moreover,
the diffusion due to thermal kicks by the particles of the sur-
rounding medium is often much smaller than the active contri-
bution, in particular for the inertial active particles considered
in this work. Finally, for a fixed activity of the AOUP, the
inertial effects can be quantified by defining the dimensionless
mass as

m̃ :=
m
γτ

=
τm

τ
, (5)

which can be written as a ratio of two basic time scales, namely
the inertial delay time τm :=m/γ and the activity persistence
time τ .

As a Gaussian process the AOUP is characterized by its first
two moments, equation (2), alone. To analyze the behavior
of such a system, one can calculate dynamical averages and
correlations. These are the velocity autocorrelation function
(VACF)

V(t, t′) := 〈ṙ(t) · ṙ(t′)〉, (6)

the mean displacement (MD)

X(t) := 〈r(t) − r0〉 (7)

and the mean-squared displacement (MSD)

Δ(t) := 〈|r(t) − r0|2〉 = 2
∫ t

0
dt1

∫ t1

0
dt2 V(t1, t2), (8)

where the brackets 〈· · ·〉 denote a noise average as in
equation (2). To characterize the dynamical behavior in differ-
ent time regimes, we introduce the dynamical scaling exponent

α(t) :=
d ln(Δ(t))

d ln(t)
, (9)

of the MSD. We define the long-time self-diffusion coefficient
as DL := limt→∞

Δ
4t . This long-time limit exists in particular, if

the dynamical scaling exponent tends to one as t →∞.

3. Results

In the following section, we determine the solutions of the
stochastic differential equation, equation (4) for both r(t) and
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ṙ(t) in the scenarios depicted in figure 1. Then, we calculate
different correlation functions by carrying out the noise aver-
age with the help of equation (2) and discuss in detail the
time- and mass dependence of the MSD. To provide the basis
for our later study of a harmonic dumbbell and a free particle
with linear mass ejection, we further elaborate on the known
results [72] for an AOUP in the absence of forces and in a har-
monic potential. Moreover, we consider here a more general
nonstationary setup of an AOUP with initial velocity ṙ0 and
position r0 at time t = 0. Selected full analytic solutions of the
problems at hand are stated in appendix A.

3.1. Free particle

As a basic reference, we first consider a free particle in the
absence of any external forces Fext = 0. The only relevant
time scales which govern the dynamical correlations are the
persistence time τ and the inertial delay time τm.

3.1.1. Evaluation of analytic solutions. Solving the equation
of motion for the velocity of a free particle, we find the gen-
eral VACF as described in appendix A. Taking the steady-state
limit, the VACF

lim
t′→∞

Vf(t + t′, t′) =
2γ2D

m2 − γ2τ 2

(
m
γ

e−γt/m − τe−t/τ

)
(10)

decreases exponentially on the two time scales τm = m/γ and
τ , independent of the initial velocity ṙ0 [72]. The long-time
mean-squared velocity

lim
t→∞

Vf(t, t) =
2γD

m + γτ
=

u2
0

m̃ + 1
(11)

reflects that heavier particles have on average smaller absolute
velocities than lightweight particles which is a clear manifes-
tation of inertia. The MD

Xf(t) = −mṙ0

γ

(
e−

γt
m − 1

)
= ṙ0 t +O(t2) (12)

does not depend on the activity since we consider here the
stationary active velocity u(t) with the moments given by
equation (2), lacking an initial direction. Instead, the MD
reflects a persistent motion of particles with a finite initial
velocity ṙ0 on the inertial time scale, i.e., for t < τm. For
later times, it takes a constant value limt→∞ Xf(t) =

mṙ0
γ deter-

mined by the magnitude and direction of ṙ0. This finding again
constitutes a clear signature of inertia.

Now we turn to the MSD which we split as

Δf(t) = Δ(ss)
f (t) +Δ(acc)

f (t) +Δ(0)
f (t), (13)

in terms of the stationary solution

Δ(ss)
f =

4D
[
m3

(
e−

γt
m − 1 + γt

m

)
− γ3τ 3

(
e−

t
τ − 1 + t

τ

)]
γm2 − γ3τ 2

=
2γD

m + γτ
t2 − γ2D

6mτ (m + γτ )
t4 +O(t5) (14)

for the MSD [72], a correction term

Δ(acc)
f =−

2mD
(

e−
γt
m − 1

)
γm2 − γ3τ 2

[
m(m + γτ )

(
e−

γt
m − 1

)

− 2γ2τ 2
(

e−
t
τ − 1

)]

=− 2γD
m + γτ

t2 +
(3γτ + 4m)γ2D
6m2τ (m + γτ )

t4 +O(t5), (15)

initially decreasing the MSD to describe the acceleration of a
massive particle starting from rest, and a purely inertial term

Δ(0)
f = Xf · Xf =

m2ṙ2
0

γ2

(
e−

γt
m − 1

)2

= ṙ2
0 t2 − γṙ2

0

m
t3 +

7γ2ṙ2
0

12m2
t4 +O(t5), (16)

reflecting the persistence of a general nonzero initial velocity
ṙ0, just as the MD Xf stated in equation (12).

The two nonstationary contributions Δ(acc)
f and Δ(0)

f to the
MSD vanish for zero mass and become constant after a long
time. Therefore, both the overdamped limit

lim
m→0

Δf = 4Dτ
(

e−
t
τ − 1 +

t
τ

)
=

2D
τ

t2 − 2D
3τ 2

t3 +O(t4)

(17)
of the MSD and the long-time self-diffusion coefficient DL =
D follow from Δ(ss)

f alone. Hence, the diffusive behavior of a
free inertial AOUP in the long-time limit is mass-independent,
as also found for ABPs [58]. Since the quadratic terms in
the short-time expansions of Δ(ss)

f and Δ(acc)
f cancel, the early

behavior of the MSD is determined byΔ(0)
f from equation (16).

For an AOUP which is initially at rest, we find

Δf|ṙ0=0 =
γ2D
2τm2

t4 − (5γτ + 2m)γ2D
15τ 2m3

t5 +O(t6), (18)

which means that it is accelerated on average by γu0/m, where
γ2u2

0 is the average squared activity force. The corresponding
expansion in the white-noise limit reads

lim
τ→0

Δf|ṙ0=0 =
4γ2D
3m2

t3 − γ3D
m3

t4 +O(t5) (19)

and describes the motion of an initially resting passive particle
[64].

3.1.2. General discussion of the MSD. The MSD of a free
AOUP is graphically evaluated in figure 2 for different param-
eters. Comparing both time scales involved, we observe two
scenarios. First, if τm > τ (or m̃ > 1, compare figure 2(a)), the
onset of the long-time diffusive regime with DL = D occurs
at t > τm and is thus delayed by inertial effects, when com-
pared to the overdamped limit. Second, if τm < τ (or m̃ < 1,
compare figure 2(b)), there is a ballistic regime due to the
persistent active motion for τm < t < τ and the long-time dif-
fusive regime is finally approached for t > τ . More specif-
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ically, for t > τm, the MSD generally behaves like in the
overdamped limit, as given by equation (17).

As also shown in figures 2(a) and (b), the behavior of the
MSD in the early inertial regime for t < τm crucially depends
on the ratio between the initial velocity ṙ0 and the long-time
mean-squared velocity of the AOUP, given by equation (11),
which indicates whether the AOUP must (on average) be accel-
erated or decelerated to reach the stationary state. For a suffi-
ciently large ṙ2

0 � u2
0/(1 + m̃), the whole regime is governed

by ballistic motion, according to equation (16). In the special
case ṙ2

0 = u2
0/(1 + m̃), the MSD closely follows that in the sta-

tionary state, as illustrated in figure 2(c). The deviations around
t = τm, become negligible for a large mass. This can be under-
stood from the short-time expansion in equation (14), and the
fact that the MSD approaches overdamped behavior after the
decay of inertial effects. If the initial velocity ṙ2

0 � u2
0/(1 + m̃)

is even smaller, the initial ballistic regime ends prematurely, as
the AOUP is further accelerated.

To generally quantify the end of the initial ballistic regime,
we introduce the time scale

τ0 := min

(
2τm

|ṙ0|
u0

, τm

)
, (20)

which indicates the onset of an acceleration due to the aver-
age activity force and thus follows from equating the leading
terms in the short-time expansions from equations (18) and
(16), making use of the definition u0 =

√
2D/τ . The corre-

sponding superballistic regime with α = 4 is then observed in
both figures 2(a) and (b), for τ 0 < t < τ < τm and τ 0 < t <
τm < τ , respectively. In the former case, the exponent changes
to α = 3, following equation (19), in the regime τ 0 < τ < t <
τm, since the active velocity decorrelates at t = τ . Moreover,
if τ 0 > τ , its role is taken by the alternative time scale

τ̃ 0 := min

(
3τ 2

m

2τ
ṙ2

0

u2
0

, τm

)
, (21)

deduced from equations (19) and (16). Then, for τ < τ̃ 0 < t <
τm, there is a direct transition from the initial ballistic regime
to α = 3, as visible in figure 2(a). If τ 0 = τm or τ̃ 0 = τm, there
is no acceleration regime.

Finally, we consider the special case, |ṙ0| = u0, that the
absolute value of the initial velocity equals the active veloc-
ity. As highlighted in figure 2(d), the MSD closely resem-
bles the overdamped result for both t � τm and t  τm,
as the quadratic term in the respective short-time expan-
sion from equations (16) and (17) is the same. The time-
and mass-dependent deviation can be inferred from the cubic
terms, which become equal for m = 3γτ . For m > 3γτ , we
observe Δf � limm→0Δf for all times, which merely reflects
the implied condition τm > τ , i.e., the ballistic regime due
to the persistent initial velocity is longer than that due to
persistent active motion in the overdamped limit, compare
figure 2(a). In contrast, for m < 3γτ , the ratio Δf/limm→0Δf

first decreases and then returns to unity when the inertial
effects have fully relaxed, even if τm � τ . This behavior indi-
cates that the initial velocity starts to decorrelate at a slightly
earlier time (compared to τm) than the persistence of the active

motion (compared to τ ). The same can be inferred for the
whole duration of both decorrelation processes, regarding in
figure 2(d) the situation for a mass slightly below 3γτ . In the
case τm < τ , where Δf � limm→0Δf for all times, we observe
in figure 2(b) two ballistic regimes, separated at t = τm, which
both possess the same mean-squared velocity u2

0 but for the
two distinct physical reasons discussed before.

3.1.3. Summary and interpretation of the results. Our obser-
vations for a free AOUP are summarized in the first column of
figure 1. This schematic exponent diagram should be under-
stood as follows. The initial regime with α = 2 is always
present (if τ 0 > 0) and thus belongs to the uppermost layer.
As we have τ 0 � τm per definition, these two time scales are
drawn on the same layer. Therefore, there are three possibilities
for the subsequent dynamical regimes. First, if τ 0 < τ < τm,
as depicted in the illustration, the sequence 2–4–3–1 of expo-
nents α is given by the solid lines. Second, if τ < τ 0 < τm,
which corresponds, e.g., to shifting the vertical bar for τ 0 to the
right, the regime for t < τ in the second layer indicatingα = 4
is completely overlaid, such that the sequence is just 2–3–1.
Third, if τ 0 < τm < τ , which corresponds, e.g., to shifting the
vertical bar for τm to the left, the dotted lines between the old
and new position of τm indicate the valid exponent, such that
the sequence is 2–4–2–1. Further sequences are possible if
two or more time scales are equal. In this qualitative picture,
the vertical bar labeled ‘τ 0’ generally represents the time at
which the initial velocity ceases to be persistent. If one is inter-
ested in the explicit formula, the label should be read as either
‘τ 0’ or ‘τ̃ 0’, depending on whether α changes to 3 or 4, as
discussed in section 3.1.2.

Even in the most simplistic scenario without external
forces, the MSD of an AOUP provides deep insights into the
fundamental interplay of activity and inertia. In addition to
the results apparent from figure 2, let us emphasize that the
activity enters implicitly through the scaling factors D and τ .
The effects of increasing the activity thus generally include (i)
increasing values for the MSD, (ii) a delay of the onset of the
diffusive regime and (iii) an effective reduction of the dimen-
sionless mass m̃ (and thus of inertial effects in general), which
should be kept in mind when regarding the following more
complex scenarios.

3.2. Constant force

Next we consider the case of a constant external force
(Fext = F with F = |F| in equation (4)). The steady-state
VACF and mean-squared velocity only differ from the free-
particle results stated in equations (10) and (11) by the constant
term F2/γ2. The MD Xc(t) can be written as

Xc − Xf =
mF
γ2

(
e−

γt
m − 1 +

γt
m

)
=

F
2m

t2 +O(t3). (22)

Hence, Xc deviates from the MD of a free particle given in
equation (12) by a term which denotes an additional accelera-
tion at short times and increases linearly in the long-time limit
due to the directed linear force. As for a free particle, the pure
MD does not carry a footprint of activity under our assumption
of a stationary active velocity.

5
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Figure 2. MSD Δf (t) of a free inertial AOUP, given by equation (13), with different initial velocities ṙ2
0 and masses m̃ = m/(γτ ) (according

to labels and legends) compared to the overdamped limit (thick red lines). Here and in all subsequent figures, the friction coefficient γ, the
persistence time τ and the active diffusivity D enter implicitly as scaling factors. The relevant time scales discussed in the text are
highlighted as labeled where appropriate. (a) MSD for fixed m = 100γτ , such that τm > τ . (b) MSD for fixed m = 0.01γτ , such that
τm < τ . (c) MSD for fixed initial velocity ṙ2

0 = u2
0/(1 + m̃), chosen to match the stationary mean-squared velocity, relative to the stationary

MSD Δ(ss)
f (t) given by equation (14). (d) MSD for fixed ṙ2

0 = u2
0 relative to that in the overdamped limit, m → 0, given by equation (17).

Likewise, the MSD Δc(t) of an AOUP in a constant force
field is supplemented only by terms made up from activity-
independent contributions that can be expressed in terms of
the MD from equations (12) and (22)

Δc −Δf = Xc · (Xc − Xf)

= ṙ0 · F
(

1
2m

t3 − 5γ
12m2

t4

)
+

F2

4m2
t4 +O(t5). (23)

While these additional terms including the constant
force F do not affect the MSD in the ballistic regime
with persistent initial velocity ṙ0 for t < τ 0, compare
equation (16), the constant force further enhances the
subsequent acceleration due to activity, which shortens
the crossover time τ 0 or τ̃ 0 compared to the values given
in equation (20) or equation (21), respectively, for a free
particle. Moreover, the dynamical exponent in the passive
acceleration regime (τ < t < τm) may change from α = 3
according to equation (19) to α = 4 when equation (23)
becomes dominant. Comparing these expansions, we pre-
dict that this happens at τ c = 16γ2D/(3mF2 + 12γ3D)

(if τ < τ c < τm). The long-time limit Δc � (F2/γ2)t2 of the
MSD is always ballistic with velocity F/γ. This final regime
surpasses a free-particle-like diffusive regime with Δc � 4Dt
for t > τ̃ c = 4Dγ2/F2 if τ̃ c > τ and τ̃ c > τm.

All possible dynamical exponents are illustrated in the sec-
ond column of figure 1, where the label ‘τ c’ should be read as
‘τ̃ c’ if the inertial time scale τm becomes shorter, as described
above. We also see that in the case τ0 < τm < τ < τ̃ c there are
three distinct ballistic regimes due to persistent inertial motion
with initial velocity ṙ0, persistent active motion and, finally,
the constant external force.

3.3. Harmonic potential

As a next step we consider an AOUP subject to a time-
independent external force in equation (4) generated by the
harmonic potential

Vext(r) =
1
2

kr2 (24)

6
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with the constant k. We consider here both cases of a harmonic
trap, where k > 0 acts as a spring constant, and an unsta-
ble situation with k < 0. For such a nonlinear potential the
translational invariance is broken, such that the noise-averaged
quantities of interest explicitly depend on the initial position
r0.

Here we focus on the MSD Δh, for which we obtain the
general short-time expansion

Δh(t) = ṙ2
0 t2 − ṙ0 · (γṙ0 + kr0)

m
t3

+
(7γ2ṙ2

0 − 4kmṙ2
0 + 10γkr0 · ṙ0 + 3k2r2

0)
12m2

t4

+
γ2D
2m2τ

t4 +O(t5), (25)

whose leading terms with and without an initial velocity are the
same as for a free particle, cf equations (16) and (18), respec-
tively. For vanishing initial conditions r0 = 0 and ṙ0 = 0, the
first correction

Δh(t) −Δf(t) = −k
γ2D

12m3τ
t6 +O(t7) (26)

to the free-particle expansion depending on k appears at
sixth order in time. The sign of this term indicates that the
MSD compared to a free AOUP is reduced for a positive k,
i.e., if the particle starts in the center of a harmonic trap, and
enhanced for a negative k, i.e., if the particle initially sits on
top of an unstable potential hill.

In the long-time limit, the MSD diverges exponentially for
k < 0, while we find for k > 0 the expression

lim
t→∞

Δh(t) = r2
0 +

2(m + γτ )γD
k(m + γτ + kτ 2)

, (27)

which is constant in time and reflects how far (on average)
the particle can climb the potential gradient of the trap. This
distance thus increases (i) for an increasing average active
velocity u0 =

√
2D/τ , (ii) for an increasing persistence of the

particle’s velocity due to inertia (increasing mass m) or activ-
ity (increasing persistence time τ at constant u0) and (iii) for a
decreasing spring constant k. The initial position of the particle
in the potential merely marks a vertical offset.

To understand the full analytic solution for the MSD, given
in appendix A and illustrated in figure 3, we first notice that
in the overdamped limit the trap merely induces an additional
time scale τ k := γ/|k|, which indicates how long the particle
can (on average) move freely before being affected by the
potential. For a finite particle mass, the relevant passive time
scales can be determined from the exponential solutions r(t) ∝
exp(−t/τ 1/2) of homogeneous differential equation mr̈(t) +
γṙ(t) + kr(t) = 0, while the active time scale τ enters through
the inhomogeneous part of equation (4). In general, we find

τ1/2 =
2τm

1 ±
√

1 − 4 τm
τk

sgn(k)
, (28)

where sgn(k) denotes the sign of k. Expanding these factors
for τm � τ k yields τ 1 � τm and τ 2 � sgn(k)τ k, which means

that they denote the decay of inertial effects and the onset of
potential effects, respectively. The detailed behavior depends
on the sign of k and is discussed in the following.

The MSD in a harmonic trap with sgn(k) = 1 is illustrated
in figures 3(a) and (b). It becomes apparent that the differ-
ent dynamical regimes are separated by the time scales τ
and τ 1/2 from equation (28) as long as the particle’s mass is
below a critical value, determined by the condition τ k/2 =
2τm, such that τ 1 = τ 2. As long as t � τ 2, the MSD resembles
that discussed in section 3.1 for a free particle, which is best
observed in figure 3(a). Unlike the free-particle case, however,
the MSD does not revert to the overdamped limit for t  τ 1

but rather takes a constant value for long times, which explic-
itly depends on mass, activity and the spring constant, accord-
ing to equation (27). For critical damping, the acceleration
regime is directly followed by the final regime with a con-
stant MSD. For even larger masses, we rewrite equation (28)
as τ−1

1/2 = (2τm)−1 ± iω, introducing the angular frequency

ω :=
1

2m

√
4km − γ2 =

1
2τm

√
4
τm

τk
− 1 (29)

of the oscillation, such that the MSD for ṙ0 = 0 develops a first
maximum after a half period πω−1, compare figure 3(b). The
time scale 2τm > ω−1 then marks the end of the oscillatory
regime in this underdamped case, as the inertial persistence
ceases and the MSD remains constant.

The dynamical exponents of an overdamped AOUP in a har-
monic trap are summarized in the third column of figure 1,
where the indicated time scales represent the overdamped sit-
uation. In the underdamped case, where the time scale corre-
sponding to the vertical bar labeled ‘τ 1’ is larger than that for
‘τ 2’, these labels should be interpreted as ‘πω−1’ and ‘2τm’,
respectively. Further note that the active time scale τ does not
indicate a change of the dynamical exponent if it is the longest
time scale in the system but still affects the maximal MSD,
given by equation (27), in the constant regime. In the most gen-
eral scenario with 0 < |ṙ0| < u0, k > 0 and τ < τm < τ k/4,
there are five different dynamical exponentsα ∈ {0, 1, 2, 3, 4}.

In the case of an unstable potential with sgn(k) = −1,
there are always the two exponential time scales τ 1 and
−τ 2 > τ 1 > 0 from equation (28). As shown in figures 3(c)
and (d), the MSD behaves like in the force-free case or in a
harmonic trap until the particle begins to feel the potential at
t ≈ −τ 2, which results in the onset of exponential growth. In
contrast to the harmonic trap, the unstable potential has no crit-
ical damping. The equality of τ k/2 = 2τm rather indicates a
crossover between the two limits τm � τ k, where −τ 2 � τ k

is mass-independent (and equal to the overdamped limit), and
τm  τ k, where −τ2 � τ1 � √

τmτk increases with increasing
mass and approaches τ 1.

3.4. Harmonic dumbbell

As a next step, we consider a generalization of equation (4) by
introducing another AOUP with the same mass m and an active
velocity u′(t) with the distinct parameters D′ and τ ′, which is
coupled to the first particle by a harmonic force of spring con-
stant k′ > 0. The coupled Langevin equations describing this

7
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Figure 3. MSD of an inertial AOUP initially resting (ṙ0 = 0) in the center (r0 = 0) of a harmonic potential, equation (24), with constant k.
We consider different masses m̃ = m/(γτ ) (according to legends) and compare to the overdamped limit (thick red lines), while γ, τ and D
are arbitrary scaling factors. (a) MSD in a trap with k = 10−4γ/(4τ ), such that τ k > τ and critical damping (dot-dashed lines) for
m = 104γτ . (b) MSD in a trap with k = 104γ/(4τ ), such that τ k < τ and critical damping (dot-dashed lines) for m = 10−4γτ . (c) MSD in
an unstable potential with k = −10−4γ/(4τ ). (d) MSD in an unstable potential with k = −104γ/(4τ ).

setup read

mr̈1 + γṙ1 + k′(r1 − r2) = γu(t), (30)

mr̈2 + γṙ2 + k′(r2 − r1) = γu′(t). (31)

To decouple we transform the coordinates by defining the posi-
tion of the center of mass as R(t) := 1

2 (r1 + r2) and the relative
position of the two particles as Q(t) := r1 − r2. In these newly
defined coordinates equations (30) and (31) become

mR̈ + γṘ =
1
2

(f1(t) + f2(t)), (32)

mQ̈ + γQ̇ + 2k′Q = f1(t) − f2(t), (33)

with the initial conditions R0 = R(0), Ṙ0 = Ṙ(0), Q0 = Q(0)
and Q̇0 = Q̇(0). In the following, we assume τ ′ � τ without
loss of generality.

3.4.1. Center-of-mass coordinate. Focusing first on
equation (32), we immediately see that the center of mass R
behaves like a free particle subject to two independent random

forces. The corresponding MSD can thus be constructed as

ΔR =
Δf +Δ′

f

4

∣∣∣∣
ṙ0=2Ṙ0

, (34)

where Δf and Δ′
f are both given by equation (13) for the

respective activity parameters of the two particles. The
center-of-mass motion is subject to the additional time
scales τ d :=Dτ ′/D′ and τ ′, which is best understood in the
overdamped limit. In this case, figure 4(a) illustrates that the
initial ballistic motion for t < τ , determined by the expansion
ΔR = (D/τ + D′/τ ′)t2 +O(t3), depends on the activ-
ity parameters of both particles. Likewise, we find
ΔR � (D + D′)t for t > τ ′, which means that the value
of the long-time diffusion coefficient DL = (D + D′)/4 of the
dumbbell equals half the average of that of two free particles.
The MSD in the intermediate time regime, τ < t < τ ′, is
subject to the competition between the diffusive behavior
with ΔR � Dt of the less persistent particle and the ballistic
behavior with ΔR � (D′/τ ′)t2 of the more persistent particle.
Equating the two expressions shows that a transition from the

8
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Figure 4. MSD of a harmonic dumbbell consisting of two coupled inertial AOUPs with identical masses m̃ = m/(γτ ) and spring constant
k′. The second particle may have a different persistence time τ ′ and diffusivity D′, measured in units of τ and D, respectively. Hence, there
are two additional active time scales τ ′ and τ d (or τ̃ d, see text for details), as indicated by crosses or vertical lines. After a change of
coordinates, we show for fixed τ ′ = 104τ the MSD ΔR of the center-of-mass coordinate R (independent of k′) with Ṙ0 = 0 for (a) different
values of D′ (according to interior legend) in the overdamped limit (m = 0) and (b) D′ = 100D and different masses m̃ (according to exterior
legend), as well as, the MSD ΔQ of the relative coordinate Q with Q̇0 = 0 for the same parameters and the spring constant (c)
k′ = 10−4γ/(2τ ) and (d) k′ = 104γ/(2τ ) (line style and symbols as in figure 3).

former to the latter can be observed at t = τ d if τ < τ d < τ ′.
Otherwise, there are in total only three time regimes, while in
the two extreme cases D′ � D and D′  D only the transition
from ballistic to diffusive is observable at t = τ and t = τ ′,
respectively.

With inertia, the short-time behavior of the MSD differs
from the overdamped limit for t < τm, analogous to a free
particle. If the center of mass is initially at rest (Ṙ0 = 0),
figure 4(b) illustrates up to three different superballistic accel-
eration regimes in the case τ < τ̃ d < τm, where the time scale
τ̃ d := 8Dτ ′/(3D′) for a possible transition from the dynamical
exponent three to four can be found by equating the leading
terms in equations (19) and (18) for the appropriate parame-
ters. As τ̃ d � τd, we observe that analogous to the MSD of a
free particle that the exponents three or four occur for t < τm if
the overdamped behavior is diffusive or ballistic, respectively.

All possible dynamical exponents are illustrated in the
fourth column of figure 1. This exponent diagram points out

the two additional regimes compared to a free particle, result-
ing from both the persistent and decorrelated active motion of
the two individual AOUPs forming the dumbbell. It is appar-
ent from the vertical bar labeled ‘τ d’ drawn on the lowest
layer that the transition from decorrelated back to persistent
is only observed for certain combinations of parameters (such
that τ < τ d < τ ′) and, in particular, for different persistence
times τ ′ �= τ . Also here, the location of τm, i.e., the mass of
the particles, determines whether the difference between per-
sistent and decorrelated active motion is reflected by different
acceleration regimes or by alternating ballistic and diffusive
motion. As described above, the label ‘τ d’ should be read as
‘τ̃ d’ if the inertial time scale τm becomes shorter than τ d.

3.4.2. Relative coordinate. The relative position Q of the two
monomers evolves in time according to equation (33), i.e., like
a single particle in an effective harmonic trap with spring con-
stant k = 2k′, compare equation (24). The resulting MSD can

9
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thus be expressed as

ΔQ =
(
Δh +Δ′

h

)∣∣
ṙ0=Q̇0/2

, (35)

where the full expression for Δh is given in appendix A. The
relevant time scales τ ′1 and τ ′2, denoting the end of the iner-
tial regime and the onset of confinement effects, respectively,
can be inferred from equation (28). Recalling the discussion
from section 3.3, the second active time scale τ ′ is only rele-
vant if it is not the largest time scale, which requires a relatively
small (effective) coupling between the particles, as illustrated
in figure 4(c). In this case, the short-time behavior is similar (up
to a factor of four) to that of the unbounded center of mass with
two active time scales, as discussed in the previous paragraph.
The MSD then becomes constant for times exceeding the
threshold which is set by the spring constant or the particles’
mass. The maximal displacement of the relative coordinate can
be easily deduced from equation (27) and depends on all four
activity coordinates and the particles’ mass. For a stronger cou-
pling between the particles, figure 4(d) depicts characteristic
oscillations in the relative MSD, whose angular frequency ω′

follows from inserting k = 2k′ into equation (28).
In conclusion, there are up to seven different dynami-

cal regimes possible for the relative position of the AOUPs
connected to a harmonic dumbbell, covering all dynamical
exponents α ranging from zero to four. This behavior can be
illustrated by adding a final bar labeled ‘τ 2’ to the exponent
diagram in the fourth column of figure 1 and relabeling ‘τm’
to ‘τ 1’, just according to the difference between the first and
third columns, compare the discussion in section 3.3.

3.5. Time-dependent mass

Our final setup consists of a particle with a time-dependent
mass m(t). We consider here only an isotropic (undirected)
ejection or accumulation of mass, in contrast to the rocket-
like setup discussed in reference [65]. Hence, we start from the
generic Langevin equation, equation (4), by replacing m with
m(t) for a free particle with Fext = 0. In particular, to allow
for an analytic solution [73], we consider the mass to change
linearly in time according to the function

m(t) =

⎧⎪⎨
⎪⎩

M + ṁt, for t <
m − M

ṁ
,

m, for t � m − M
ṁ

,
(36)

where M :=m(0) is the initial, m the final mass of the parti-
cle and ṁ denotes the constant time derivative of m(t) in the
time-dependent regime. The limits ṁ → 0 and ṁ →±∞ cor-
respond to a free AOUP with constant mass M and m, respec-
tively. Moreover, ṁ < 0 denotes the rate of mass ejection and
ṁ > 0 the rate of mass accumulation. In the remainder of this
section, we discuss the MSD ΔM of an AOUP for these two
cases separately.

3.5.1. Mass ejection. An AOUP whose mass decreases lin-
early in time according to equation (36) is affected by this
process until all ‘fuel’ of mass M − m is depleted at the

characteristic time τe := m−M
ṁ . Afterward it behaves as a free

particle of mass m. Hence, for long times, the MSD generally
reverts to the overdamped result. In terms of maximizing the
MSD, the strategy to eject fuel gives a temporary advantage
compared to moving with constant initial mass M if the initial
velocity |ṙ0| � u0 is so small that the AOUP first needs to be
accelerated, which we illustrate for an initially resting particle
(ṙ0 = 0) in figure 5(a). The particular relevance of the possi-
ble inertial timescales τM = M/γ or τm = m/γ of the particle
with or without fuel is therefore closely related to the time
scale τ e at which the change of mass takes effect.

In detail, for τ e � τM , i.e., a slow mass ejection, the overall
MSD is largely the same as for a free AOUP with constant ini-
tial mass M, as the behavior for t > τM is not strongly affected
by the particle’s mass. The behavior in this time regime is
emphasized in figure 5(b), which also illustrates the initially
enhanced acceleration due to mass ejection. Moreover, the
MSD for a sufficiently slow mass ejection eventually falls
below the MSD for constant M, with a maximal relative devi-
ation at t = τ e, which is because the velocity decorrelates ear-
lier for a smaller mass m(t) < M, before the common over-
damped limit is approached. For a faster mass ejection, the
time scale τ e indicates an exponential approach of the MSD to
that of a free particle with mass m, as apparent from the nearly
vertical lines in figure 5(a). Hence, for τm � τ e � τM , the
inertial regime ends abruptly at t = τ e, as the MSD directly
switches from underdamped behavior with mass M to the over-
damped result. Finally, for τ e � τm, there is a transition at
t = τ e between two different superballistic regimes with the
same dynamical exponents, as the magnitude of the average
acceleration decreases due to the lost mass. The inertial regime
then ends at t = τm.

The dynamical exponents for an AOUP with linear mass
ejection are illustrated in the fifth column of figure 1, where
the dotted vertical bar labeled ‘τ e’ indicates that there are two
different regimes to its left and right, which have the same
dynamical exponent (before and after the mass ejection). As
this observation can only be made within the inertial regime,
more specifically if τ e < τm, this bar is drawn on the upper-
most layer. If the time τ e > τm of mass ejection takes longer
than the inertial time scale τm of the empty particle, then the
dashed vertical bar labeled ‘τm’, which always indicates the
end of the inertial regime, should be read as ‘min (τe, τM)’,
while the dotted bar labeled ‘τ e’ takes the same position as
the dashed and has no further effect. This general exponent
diagram also emphasizes that there is no effect of mass ejec-
tion observable (compared to a free particle with empty mass
m) if the particle starts with a finite initial velocity ṙ0 such that
τ 0 > τ e. This can be understood from the short-time expansion

Δ(0)
M = ṙ2

0 t2 − γṙ2
0

M
t3 +

(7γ + 4ṁ)γṙ2
0

12M2
t4 +O(t5), (37)

of the term depending on ṙ0, generalizing equation (16), whose
leading order does not depend on the mass. Finally, we stress
that for a large initial velocity |ṙ0|  u0 the strategy of mass
ejection results in a general disadvantage compared to moving
with constant initial mass M, since the direction of ṙ0 remains
persistent for a shorter time if the mass is depleted.

10



J. Phys.: Condens. Matter 34 (2022) 035101 G H P Nguyen et al

Figure 5. MSD of an inertial AOUP with vanishing initial velocity ṙ0 = 0 and linear mass ejection m(t), described by equation (36), from
fixed initial mass M̃ = M/(γτ ) = 100 to fixed final mass m̃ = m/(γτ ) = 0.01 with different slopes ṁ < 0 (according to legends). The time
τ e at which the mass ejection ends is highlighted by crosses. (a) Comparison to the MSD of a free particle with constant mass m or M.
(b) Relative MSD to that of a free AOUP with constant initial mass m̃ = 100 for parameters yielding τ e � τM .

Figure 6. MSD of an inertial AOUP with linear mass accumulation m(t) described by equation (36) with different slopes ṁ > 0. The time
τ ′e at which the gained mass m(τ ′e) − M = 2M equals twice the initial mass M and the inertial time scale τM = M/γ are highlighted as
labeled. (a) Comparison of different accumulation rates ṁ (according to legend) for fixed initial mass M̃ = M/(γτ ) = 100 and vanishing
initial velocity ṙ0 = 0. The case ṁ = 0 with constant mass M corresponds to a free particle as in figure 2(a). (b) Comparison of the
MSD with constant ṁ = 103γ for different initial parameters M̃ and ṙ2

0 (according to legends). The lines corresponding to the same ṙ2
0 lie

partially on top of each other.

3.5.2. Mass accumulation. For an AOUP whose mass
increases linearly over time according to equation (36), we
focus on the particular limit m →∞ that the mass accumu-
lation continues indefinitely. Next, we introduce the timescale
τ ′e := 2M

ṁ denoting the time when the particle has accumulated
the double amount of its initial mass M and examine its compe-
tition with the second inertial time scale τM = M/γ. The typi-
cal behavior of the MSD is shown in figure 6(a) for an initially
resting particle. The situation for a finite value of m can be
easily inferred by appreciating that the behavior reverts to the
generic overdamped limit not later than t = m/γ, analogous
to earlier discussions. For m →∞, however, the MSD does
not necessarily revert to overdamped behavior, as we discuss
below.

Analogous to the ejection case, the MSD is qualitatively
similar to that of a free AOUP with constant mass M if

τ ′e � τM , which means that the accumulation of mass happens
not fast enough to delay or even prevent the end of the iner-
tial regime. Thereafter, the particle’s motion does not become
stationary, as its mean-squared velocity

VM(t, t)
tτM=

2γD
m(t) + γτ

(if τ ′e > τM) (38)

continuously decreases for long times, adiabatically follow-
ing the free-particle result from equation (11). In the oppo-
site case, for τ ′e < τM , figure 6(a) shows that the slope of
the MSD decreases as the particle becomes increasingly mas-
sive for t � τ ′e, reflecting its retarded acceleration. The max-
imal velocity, once reached, then remains nearly persistent,
as the acceleration due to random forces, which aim to dis-
perse the particle’s direction of motion, becomes more and
more irrelevant with increasing mass. This is best reflected
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in the particle’s mean-squared velocity Vm(t, t), shown in the
inset of figure 6(a), for large rates ṁ of mass accumulation.
This balance eventually leads to superdiffusive but subballistic
behavior in the long-time limit, i.e., the inertial regime never
ends if τ ′e < τM . The corresponding dynamical exponent

α = 2 − τ ′e
τM

(if τ ′e < τM), (39)

can be determined analytically in the white-noise limit (which
is generally recovered for t  τ ) and is numerically confirmed
for all curves shown in figure 6. Therefore, the MSD for strong
mass accumulation eventually surpasses that of an AOUP with
τ ′e > τM , which becomes diffusive (α = 1) at t = τ or t = τM .
In the special case τ ′e = τM , the MSD behaves as ΔM � t ln(t)
for long times.

Apart from the modified dynamical exponent in
equation (39), the long-time behavior in the case τ ′e < τM

depends on both initial mass M and velocity ṙ0, as illustrated
in figure 6(b), and (implicitly) also on the active velocity
u0 =

√
2D/τ . This observation is related to the particle’s

maximal (persistent) velocity, which follows from these
parameters. Therefore, the MSD at long times is generally
enhanced for smaller M and higher u0, which both increase
the initial acceleration as long as |ṙ0| � u0. If (for τ ′e < τM)
the initial velocity |ṙ0| � u0 itself represents the maximal
(persistent) velocity, the behavior of MSD is independent of
the other parameters.

4. Conclusions

In conclusion, we have explored an AOUP with inertia and cal-
culated analytically various dynamical correlation functions
such as the MSD. In particular, we extended recent work [72]
by including the explicit dependence on the initial velocity
and by considering unstable inverted harmonic potentials, two
coupled dumbbell-like particles and the situation of a time-
dependent mass. Different dynamical scaling regimes were
identified including power laws where the MSD scales in time
t with a power law tα. Here, the dynamical scaling exponent
can be α ∈ {0, 1, 2, 3, 4}. These scalings resemble results in
other situations such as for an ABP in a linear shear field [74]
or a disordered potential energy landscape [64].

In principle, our predictions can be tested in experiments on
macroscopic self-propelled particles or mesoscopic particles
in a gaseous background. Examples from the inanimate macro-
scopic world include autorotating seeds and fruits [50, 75],
camphor surfers [60], hexbug crawlers [60], trapped aerosols
[76], mini-robots [77–81] and vibration-driven granular parti-
cles [57–59, 82–90]. For the latter system dumbbell-like iner-
tial active particles have been recently realized [91]. Moreover,
adding a carrier on top of these vibrated particles constitutes a
promising possibility to isotropically change their mass over
time. Another system which has gained more recent atten-
tion is complex plasmas consisting of mesoscopic charged
dust particles [53, 55, 56, 92–95]. Furthermore, animals mov-
ing at intermediate Reynolds number exhibit inertial effects
such as swimming organisms like nematodes, brine shrimps

or whirligig beetles [49, 52] and flying insects and birds
[51, 96–101]. Since, at low Reynolds numbers, a passive par-
ticle in a sea of active particles was shown to be an excellent
realization of overdamped AOUP [47, 48], one might expect
that a macroscopic (inertial) passive particle in a background
of other active particles will realize an inertial AOUP but this
conjecture needs to be tested.

For the future, the inertial AOUP model can be extended
to more complex situations. Among those is an inertial circle
swimmer, a situation which has been explored for overdamped
ABPs [102–104] and overdamped AOUPs [105], and motions
under an external magnetic field [106, 107] or in non-inertial
frames [108, 109]. An interesting task within the AOUP model
is to take into account also orientation-dependent properties
like the inertial delay function [58]. Moreover, realistic sce-
narios with a time-dependent mass also include directed mass
ejaction [65] which could, e.g., result from a chemical reac-
tion on one side of a Janus particle. In this respect, another
challenge would be to generalize the AOUP model to describe
effects related to the particle’s moment of inertia. Finally, the
collective behavior of many inertial active particles, such as
MIPS [68, 69, 110–114] or pattern formation in general [115],
is largely unexplored and our simple model may provide a
stepping stone to access these fascinating phenomena.
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Appendix A. Additional and full analytic results

First, for a free particle, the general VACF

Vf(t1, t2) = ṙ2
0 e−

γ(t1+t2)
m +

2γD
m2 − γ2τ 2

·
{
γτ

(
e−

t1
τ − γt2

m + e−
t2
τ − γt1

m

− e−
1
τ (t1−t2) − e−

γ(t1+t2)
m

)
+ m

(
e−

γ
m (t1−t2) − e−

γ
m (t1+t2)

)}
, (A1)

calculated according to equation (6) and given here for the
case t1 � t2, does not only depend on the absolute differ-
ence |t1 − t2| because the system is not in steady-state. Tak-
ing the steady-state limit, limt′→∞V f(t′ + t, t′) yields the result
stated in equation (10). The MSD, equation (13), is found
from inserting the VACF from equation (A1) into equation (8).
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In the steady state, the expression for the MSD reduces to
equation (14), which can be seen by inserting the stationary
VACF, equation (10), into equation (8).

Second, the full MSD for an AOUP in a harmonic potential,
given by equation (24), is given by

Δh(t) =

[(γr0

2m
+ v0

) sinh(μt)
μ

e−
γt
2m

+ r0

(
cosh(μt)e−

γt
2m − 1

)]2

+
2Dγ

km(γ2 − 4km)(m2 + 2kmτ 2 − γ2τ 2 + k2τ 4)

·
{
−γkτ 2(γ2 − 4km)

×
[

2mτ cosh(μt) + (2m + γτ )
sinh(μt)

μ

]

× e−
(

γ
2m+ 1

τ

)
t
+ m(m + γτ + kτ 2)

×
[
γ

m
(γ2 − 4km)(γτ − m) cosh(μt)

sinh(μt)
μ

+ 2γ(γ2τ − 2kmτ − γm)

× cosh2(μt) − γ3 τ + γ2m + 4km2

]
e−

γt
m

+ m(γ2 − 4km)(m + γτ )(m − γτ + kτ 2)
}

(A2)

with μ :=

√
1−4 τm

τk
sgn(k)

2τm
=

√
γ2−4km

2m .
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