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A geometric criterion for the optimal spreading
of active polymers in porous media
Christina Kurzthaler 1,8✉, Suvendu Mandal 2,3,4,8✉, Tapomoy Bhattacharjee5,6, Hartmut Löwen2,

Sujit S. Datta 7 & Howard A. Stone 1✉

Efficient navigation through disordered, porous environments poses a major challenge for

swimming microorganisms and future synthetic cargo-carriers. We perform Brownian

dynamics simulations of active stiff polymers undergoing run-reverse dynamics, and so

mimic bacterial swimming, in porous media. In accord with experiments of Escherichia coli, the

polymer dynamics are characterized by trapping phases interrupted by directed hopping

motion through the pores. Our findings show that the spreading of active agents in porous

media can be optimized by tuning their run lengths, which we rationalize using a coarse-

grained model. More significantly, we discover a geometric criterion for the optimal

spreading, which emerges when their run lengths are comparable to the longest straight path

available in the porous medium. Our criterion unifies results for porous media with disparate

pore sizes and shapes and for run-and-tumble polymers. It thus provides a fundamental

principle for optimal transport of active agents in densely-packed biological and environ-

mental settings.
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M icroorganisms display agile motility features to optimize
their survival strategies and efficiently navigate through
their natural disordered and porous habitats1–5. While

locomotion by swimming represents the most prominent, inevi-
table transport feature of many microorganisms, sudden changes
of their swimming direction are also an essential tool for their
efficient search for nutrients6 or escape from harmful
environments7. These reorientation events are generated by
intrinsic biophysical mechanisms and generate different swim-
ming modes, such as the run-and-tumble motion of Escherichia
coli3 or Bacillus subtilis8, run-reverse(-flick) patterns of diverse
bacteria9,10, sharp turns in swimming algae11, and run-reverse
behavior of different species of archaea12. In unconfined media
these transport features lead to trajectories reminiscent of a
random walk, yet their consequences for the navigation through
real, porous environments, characteristic of a wide variety of
biological, biomedical, and environmental contexts, such as bio-
logical gels and tissues or environmental soils and sediments,
remain largely unexplored. Understanding the underlying phy-
sical mechanisms is thus paramount for revealing fundamental
microbiological processes, such as biofilm formation and com-
munity ecology13,14, and has significant potential to enable novel
nanotechnological applications15,16.

Engineering the propulsive mechanisms of microorganisms has
proven to be a promising route towards the design and develop-
ment of smart, self-propelled cargo-carriers17,18 that overcome
several limitations of their passive counterparts (e.g., ordinary col-
loids). Yet, their ability to self-propel might not suffice to make
them generally suitable for performing complex tasks in biomedical
and environmental settings, where, for example, they may be
expected to deliver drugs to a specific target19, penetrate the porous
structure of tumors20,21, or find and induce degradation of
contaminants16,22. In fact, randomizing the swimming direction of
these autonomous agents could be an efficient strategy for reaching
a target. To date, however, experimental realizations of controlled
reorientation of self-propelled synthetic agents are sparse23,24.

Experiments of biological microswimmers25–28 and synthetic,
active agents29,30 in confined, disordered environments are often
concerned with near-surface motility. These studies display a
range of unusual phenomena, ranging from the circular swimming
motion of bacteria near walls25,26, hydrodynamic trapping29,30,
and enhancement of bacterial transport near surfaces due to the
presence of obstacles27. Similarly, theoretical studies on active
transport in crowded environments mainly focus on 2D models
for active, point-like particles moving in periodic structures31, on a
lattice with obstacles32, or disordered environments33. Accounting
for elongated shapes, Brownian dynamics simulations of self-
propelled flexible polymers have revealed subdiffusive motion in
2D porous media34. Quantitative studies of active transport in 3D
porous media, however, are sparse and it was only recently that
the hop and trap mechanism of individual E. coli cells moving in a
3D porous structure was identified4,5.

While such studies shed light on how pore-scale confinement
influences bacterial motility, it is still unclear what motility pat-
terns are optimal for spreading in porous media. A clue comes
from the seminal work of Wolfe and Berg1, who studied the
spreading of engineered bacteria, which lacked the ability to sense
chemical gradients and whose tumbling rate could be controlled
chemically. Their experiments indicated that smooth swimming
strains of E. coli get stuck in the porous structure of the semi-solid
agar, similarly to incessantly tumbling cells, while at an inter-
mediate tumbling rate bacterial transport appeared more efficient.
A non-monotonic transport behavior as a function of the tum-
bling rate has been found also theoretically in 2D systems32,35,36,
where the effects of pore shape36 and mobile obstacles32 have
been addressed. However, the underlying optimal transport

mechanism, dictated by the interplay of swimming characteristics
and geometric features of the 3D porous medium, remains an
open question.

In this work, we elucidate the spreading of self-propelled stiff
polymers, as model systems for elongated microorganisms, in
porous media by performing Brownian dynamics simulations and
developing a coarse-grained theory. We demonstrate that reor-
ientation mechanisms are indispensable for efficient dispersion
through porous media, as intrinsic reversals enhance the overall
diffusivities by up to two orders in magnitude. We identify a
competition between the pore length, a direct measurement of
straight pathways available in the pore space, and the run length
of self-propelled polymers. In particular, the hopping lengths of
rarely and frequently reversing polymers are constrained by the
pore length and their intrinsic run length, respectively. Most
importantly, maximal spreading occurs when the intrinsic run
length of the polymers is comparable to the longest pore length of
the porous medium, which allows us to introduce a simple but
robust geometric criterion for optimal transport. Subsequently,
we rationalize the non-monotonic transport behavior in terms of
a renewal theory.

While such a non-monotonic behavior is predicted in
refs. 32,35,36, our study unravels the underlying mechanism and
demonstrates that this large-scale non-monotonic behavior per-
sists irrespective of the pore shapes and reorientation mechanism
of the polymers and is dictated by the maximal pore length only.
These findings together with our geometric criterion provide
fundamental, physical insight into earlier experimental
observations1 and thereby should guide the future design of
synthetic cargo-carriers, applicable in biomedical and environ-
mental settings.

Results
Model: run-reverse polymer in a porous environment. We
model the elongated shape of a bacterial cell by a stiff polymer
with aspect ratio L/σ= 5, where L denotes the polymer length and
σ the diameter of the individual monomers. We employ Brownian
dynamics simulations of the discretized polymer, where the
monomers are connected via stiff springs according to the well-
established bead-spring model (see Fig. 1a and Methods). The
stiffness of the polymer is characterized by a persistence length ℓp,
which exceeds its contour length L, ℓp/L≫ 1. The self-propulsion
of the polymer is modeled by active forces of magnitude Fp acting
on each monomer in the direction tangential to its backbone37

(Fig. 1a). The velocity along the contour of the polymer is then
determined by the friction coefficient ζ of a single monomer,
vc= Fp/ζ, and each monomer is subject to translational diffusion
with diffusivity D0= kBT/ζ, where kB is the Boltzmann constant
and T the temperature. The diffusive time scale of a single
monomer is τ0= σ2/D0.

In addition, the active polymer randomly reverses its swimming
direction at exponentially distributed times with reversal rate λ
(Fig. 1b). At these ‘pseudo’ ‘reversal events’ the polymer either
instantaneously changes its swimming direction and moves along
the opposite direction or continues swimming along the same
direction. The run length of the polymer is then defined as the
length the polymer moves before it can reverse: ℓrun≡ vc/λ. A run-
reverse mechanism is employed by several microorganisms9,12, yet
for studying the large-scale spreading of active agents in a porous
environment we anticipate that it can be used to model run-and-
tumble bacteria3,8 since often the only way to escape narrow pores
is by reversing the swimming direction4,5. We demonstrate this by
complementing our findings for run-reverse polymers by run-
and-tumble polymers, which change their swimming direction
randomly3,8 (see Methods).
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The swimming characteristics of run-reverse polymers can be
described by two dimensionless parameters: (1) the Péclet
number Pe≡ vcL/D0, which measures the self-propulsion strength
relative to diffusion, and (2) the reversal rate λ with respect to the
characteristic diffusive time scale of a single monomer τ0, i.e., λτ0.

To model the porous medium, we generate a disordered,
monodisperse, porous structure composed of N overlapping
spheres of size 4σ within a cubic box of length 30σ [Figs. 1c and d
for N= 103]. The micro-architecture of the porous medium can
be characterized by the distribution of the straight paths, referred
to as chord lengths, available in the medium, φLc

ð‘Þ38. It is shown
for different N in Fig. 1e. We further introduce the maximal
chord length Lc;max via φLc

ðLc;maxÞ ¼ 10�5=σ. Throughout the
manuscript we mainly focus on very densely packed environ-
ments and hence N= 103, unless stated otherwise. For this case,
the maximal chord length is Lc;max ’ 20σ and the medium is
characterized by narrow channels of average pore diameter σp
comparable in size to the individual monomer σp/σ≃ 3.5 (or the
polymer σp/L≃ 0.7), as is typical of many natural environments39

(see Methods).

Dynamics: mean-square displacement. To investigate the
dynamics of a self-propelled polymer in a porous environment,
we measure the mean-square displacement (MSD) of the center
monomer hjΔrcðtÞj2i with Δrc(t)= rc(t)− rc(0) and ΔrcðtÞ ¼
½ΔxcðtÞ;ΔycðtÞ;ΔzcðtÞ�T . We keep the Péclet number fixed, Pe=
50, and tune the rate of reversal events, λ (Fig. 2). At short times
t ≲ τdiff � D0=v

2
c , the MSDs of active agents with different

reversal rates λ collapse and display a linear increase reflecting
their diffusive motion at short times, which remains independent
of the porous structure of the environment. At intermediate
times, the directed motion of the polymers dominates and the
MSDs exhibit a superdiffusive increase (for λτ0≳ 5 · 10−4), which
varies for different λ. The MSDs eventually cross over to a linear
regime, which characterizes the effective diffusive behavior of the
run-reverse polymers in a porous medium.

Fig. 1 Model set-up of a run-reverse polymer in a porous environment. a Sketch of a self-propelled stiff polymer composed of monomers (gray spheres)
with active forces acting on each monomer in the direction tangential to the backbone of the polymer. (Zoom) The polymer chain is modeled using a bead-
spring model, where ri is the position of bead i with diameter σ, and ti,i+1 is the tangent vector between bead i and i+ 1. The beads are connected by elastic
springs. Furthermore, FðiÞp ¼ Fpðti�1;i þ ti;iþ1Þ denotes the active force acting on bead i. b Schematic of the run-reverse mechanism of the active polymer. At
the run-reverse event the polymer randomly reverses its swimming direction, in particular, the active forces randomly change sign, FðiÞp ! �FðiÞp .
c Simulation snap-shot of several active stiff polymers immersed in a porous environment composed of overlapping spheres. d Slice of the 3D porous
environment. Red circles indicate 2D slices of the porous structure and white areas correspond to the open pore space. e Chord-length distributions φLc

ð‘Þ
for porous environments composed of a different number of N overlapping spheres. Solid lines correspond to an exponential fit of the data. Source data are
provided as a Source Data file.

Fig. 2 Mean-square displacements, ΔrcðtÞ
�� ��2D E

, of the center monomer of
a polymer with different reversal rates λ. Here, the polymer has 5
monomers and the Péclet number is Pe= 50. Further, τ0 denotes the
diffusion time, τ0rot the rotational relaxation time of a non-tumbling
polymer, τdiff the cross-over time between short-time diffusion and directed
swimming motion, and L the polymer length. The colored triangles indicate
the characteristic time of tumbling, 1/λ divided by τ0, for different reversal
rates. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26942-0 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7088 | https://doi.org/10.1038/s41467-021-26942-0 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


In contrast, non-reversing polymers can only reorient due to
the interplay of thermal fluctuations, activity, and conformational
chain dynamics37. The corresponding rotational relaxation time
of the polymer is denoted by τ0rot and can be extracted by
measuring the fluctuation of the end-to-end direction of the
polymer, e(t)= [r5(t)− r1(t)]/∣r5(t)− r1(t)∣, which evolves as
hjΔeðtÞj2i ¼ 2� 2 expð�t=τ0rot Þ40. The MSD for rarely reversing
polymers, λτ0 ¼ 5 � 10�4 (and polymers with λτ0= 5 ·10−3),
displays a subdiffusive behavior at intermediate times, t � τ0rot ,
where the effect of the porous environment becomes apparent as
the polymer slows down. At long times, the polymer has merely
moved a distance comparable to its own length over the whole
simulation time, which is a fingerprint of confined transport and
indicates that motion in tight narrow spaces becomes hindered if
active agents cannot reverse efficiently.

Moreover, we find that the cross-over time to long-time
diffusion is determined by the faster of the two times: the
reorientation time due to reversing 1/λ and the orientational
relaxation time τ0rot (indicated in Fig. 2). To quantify the long-
time behavior, we extract the effective diffusivities via

Dsim
eff � lim

t!1
hjΔrcðtÞj2i

6t
: ð1Þ

Our findings demonstrate that the long-time effective diffusivities
can be enhanced by more than two orders of magnitude (over the
whole simulation time of 103τ0) upon introducing a reversal
mechanism, Dsim

eff ðλτ0 ¼ 0:5Þ=Dsim
eff ðλτ0 ¼ 0:0005Þ ’ 4 � 102. This

is in stark contrast to the motion of run-reverse polymers in
a dilute environment, whose long time transport becomes
suppressed upon increasing the reversal rate, Dsim

eff ðλτ0 ¼ 0:5Þ=
Dsim
eff ðλτ0 ¼ 0:0005Þ ’ 3 � 10�1.

Non-monotonic transport behavior: effective diffusion. Most
prominently, the MSDs indicate that the long-time diffusivities
Dsim

eff of run-reverse polymers display a non-monotonic behavior
with respect to the reversal rate λ. We further introduce the scaled
path length Λ ¼ Lc;max=‘run = Lc;maxλ=vc, which characterizes the
trade-off between the maximal pore length of the medium and
the run length of the polymer. We find that the non-monotonic
behavior persists for a broad range of Péclet numbers Pe= 25,…
75 (Fig. 3a filled symbols and solid lines). Most significantly, the
effective diffusivities for all Péclet numbers display a prominent

maximum, where the scaled path length is

Λ ¼ Lc;max

‘run
¼ Oð1Þ: ð2Þ

Hence, we propose that equation (2) serves as geometric criterion
for optimal transport of active agents in porous media, which
occurs when the run length ℓrun is comparable to the maximal
pore length Lc;max characteristic of the porous the environment.

Further, we found that the non-monotonic transport behavior
persists for porous media with fewer obstacles, N= 500, 750, but
becomes rather weak for dilute environments, N≲ 500, where it
approaches the monotonic behavior of active polymers in an
unconfined environment, see Fig. 3b. The chord-length distribu-
tions, φLc

ð‘Þ (Fig. 1e), show a strong decay for densely packed
environments.

Furthermore, we have addressed the effect of run-and-tumble
motion on the overall spreading of active polymers, where, instead
of reversing, the swimming direction after the tumbling event is
random. Our results (Fig. 3c) demonstrate that our geometric
criterion remains valid. We observe that the overall diffusivities
increase for N= 1000 with respect to those of run-reverse polymers,
as 3D tumbling allows polymers to spread further. Most
importantly, in dense porous environments (N= 1200) the effective
diffusivities of run-and-tumble polymers collapse with those of run-
reverse polymers. This indicates that the overall spreading in dense
porous environments is characterized by hop-and-trap dynamics,
which are fully determined by the geometry, irrespective of the re-
orientation mechanism. It further emphasizes that indeed the
longest pore length of the environment is the characteristic length
scale dictating the transport behavior of active polymers and
furthermore confirms our geometric criterion.

In contrast to previous work36, we have also found non-
monotonic spreading of active agents in porous environments
with concave pore shapes (Fig. 5 in Methods). This highlights that
solely the interplay of length scales dictates this intricate behavior
and not the pore shape.

Our findings offer an interpretation for the observations of the
seminal experimental work by Wolfe and Berg1, who used
engineered strains of non-chemotactic E. coli. The tumbling rate
and thus the run length of these mutants can be tuned by varying
the concentration of an external inducer (isopropyl β-D-thiogalacto-
side (IPTG)) in the medium. Monitoring the flagella bundles of cells
tethered to a surface suggested an increase of the tumbling rate upon
increasing the concentration of IPTG. Qualitatively, the experiments

Fig. 3 Effective diffusivities of active polymers spreading in porous media. a Effective diffusivities, Dsim
eff , extracted from the simulations (filled symbols,

solid lines) as a function of the scaled path length Λ determined by the trade-off between the maximal chord length Lc;max and the run length of the polymer
ℓrun= vc/λ, for different Péclet numbers. Dashed lines correspond to the theoretical predictions [equation (5)] of the hop-and-trap model with parameters
extracted from individual trajectories. b Effective diffusivities, Dsim

eff , as a function of the reversal rate λτ0 for porous environments with different number of
obstacles N. c Rescaled effective diffusivities, Dsim

eff , of run-reverse (RR) and run-and-tumble (RT) polymers for Pe= 50 and different N. The data are
rescaled by the maximal pore length Lc;max extracted from the chord-length distributions in Fig. 1e. Source data are provided as a Source Data file.
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of Wolfe and Berg revealed that bacterial swarms that tumble at an
intermediate rate spread more than either incessantly tumbling cells
or smooth swimming, i.e., non-tumbling, strains. However, the
dynamical behavior of individual cells has not been quantified.
Therefore, we anticipate that our simulations, which qualitatively
confirm these experimental findings, enable us to elucidate the
physics of the non-monotonic behavior and provide predictions for
the optimal spreading.

Individual trajectories. To elucidate this non-monotonic beha-
vior of the diffusivities, we investigate individual trajectories for
Pe= 50 (Fig. 4a). For rarely reversing agents, λτ0= 5 · 10−4, the
trajectories in the xy plane indicate highly confined motion,
whereas the trajectories of a polymer reversing at higher rates,
λτ0= 0.5 and 15, cover significantly larger areas including many
pores [Fig. 4a (inset)]. By inspecting the associated time evolution
of the displacements, we observe that the motion of rarely
reversing polymers λτ0= 5 · 10−4, i.e., the black curve in Fig. 4, is
characterized by fast hopping events, at which the polymer moves
through the pore space, and long, extended phases of trapping,
where the polymer is trapped inside a pore. This motility pattern
agrees with experimental findings of wild-type E. coli moving in a
porous structure4,5. We further observe that upon increasing the
reversal rate the trapping events become shorter, see blue curve
for λτ0= 0.5 in Fig. 4a. In fact, they disappear for large reversal
rates, λτ0= 15, where the trajectory is dominated by hopping
events, i.e., the red curve in Fig. 4a.

Now, we explain the mechanism for the trapping and hopping,
which identifies the main features necessary for an active agent to
explore a porous medium. Suppose the active agent is exploring
the porous environment with an intrinsic run time τrun ~ 1/λ and
after a while it enters a dead-end pore at a time t. Consequently,
the agent will be trapped within the dead-end pore for the
remaining time interval [t, τrun]. This implies that the trapping
time of a self-propelled agent can potentially be reduced by
increasing the reversal rate λ. The exemplary trajectory for
λτ0= 0.5, which corresponds to the optimal reversal rate, exhibits
the largest displacements with few trapping events (Fig. 4a).
Moreover, we observe that despite the sparse and short trapping
events of frequently reversing polymers, λτ0 ¼ 15, their hops
become significantly shorter.

We quantify this behavior by extracting the distributions (1)
φT(t) for the trapping time, i.e., the time the polymer spends

trapped inside a pore, and (2) φ‘H
ð‘Þ for the hop length, i.e., the

distance the polymer moves from one trapping event to another
or from one trapping event to the next reversal, from the
individual trajectories (see Methods).

Trapping time distribution. We find that the trapping time
distributions for active polymers with Pe= 50 exhibit a power-
law scaling at long times with an exponent that increases from 2
to 7/2 for increasing reversal rates λ (Fig. 4b). To rationalize this
behavior, we extend the concept of an ‘entropic trap’ model
introduced in the study of diffusing long polymers escaping small
outlets41 and recently for E. coli bacteria moving in a porous
medium4,5. In this model, the escape of an active polymer from
an obstruction in the porous medium is determined by the
number of orientations (Ωt) keeping it trapped inside the pore
and the number of orientations (Ωe) allowing the polymer to
leave it. In short (see Methods), our model predicts a power-law
trapping time distribution φT(t) ~ t−(1+β) at long times. Here, the
exponent β= X/C0 is related to the active energy X, which has
dimensions of FpL, and the average depth of the entropic trap C0,
which can be quantified by the average free energy difference
between the two states: C0 ¼ kBThln ðΩt=ΩeÞi, where the brackets
correspond to the ensemble average over all pores.

In accord with this phenomenological model, we find that the
exponent β increases for increasing reversal rate λ (Fig. 4b).
Specifically, at a fixed Pe (corresponding to X= const.), a larger
reversal rate increases the probability Ωe of leaving the (e.g., dead-
end) pores and leads to a relatively lower trap depth C0, and thus
a larger exponent β= X/C0. Further, we note that for β≤1,
corresponding to the case where the active energy becomes
smaller than the trap depth X ≤ C0, the entropic trap model
predicts a divergence of the mean trapping duration τT ~ (β−1)−1.
This becomes evident in the monotonic increase of the mean
trapping duration by orders of magnitude with decreasing reversal
rates (Fig. 4b (inset) open circles).

Hopping length distribution. We further extract the distribu-
tions of the hopping length of the agents φ‘H

ð‘Þ (Fig. 4c for
Pe= 50) and rationalize that the hop lengths are determined by
the interplay of the intrinsic run length of the active polymers
ℓrun≡ vc/λ and the pore geometry. In particular, we find that the
chord length distribution (Fig. 4c black solid line) is approached

Fig. 4 Polymer trajectories and distributions for the trapping time and hop length. a Representative (1D) displacements, Δxc(t), of polymers with
different reversal rates, λ, as a function of time for Pe= 50. Horizontal solid lines indicate the trapping phases for different λ. (Inset) Particle trajectories of
the center monomer of a rarely reversing polymer, λτ0= 5 · 10−4 (black ; magnified by a factor of 4), and moderately reversing polymers, λτ0= 0.5 and 15
(blue and red, respectively). The trajectories are shown in the xy plane, (Δxc(t), Δyc(t)). b Trapping time distribution φT(t) and c hop length distribution
φ‘H

ð‘Þ for Pe= 50 and different reversal rates, λ, extracted from individual trajectories. The inset in b shows the fraction of time spent hopping p= τH/
(τH+ τT) and the average trapping time τT/τ0 as a function of λτ0. The black solid line in panel c indicates the chord length distribution of the medium
φLc

ð‘Þ. The inset in c shows the average hopping length 〈ℓH〉 normalized by the average chord length 〈Lc〉 of the porous medium. Source data are provided
as a Source Data file.
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by the hopping length distribution of rarely reversing polymers,
λτ0= 5 · 10−4 (and 5 · 10−3). These agents have an intrinsic run
length of ℓrun≳ 103σ (and 102σ), which is much longer than the
longest available straight pathways, Lc;max ’ 20σ, and therefore
their hopping motion is fully determined by the chord lengths of
the porous medium (Fig. 4c). The distributions also show longer
hops, however, the probabilities are rather low. Further, the
average hop length is comparable to the average chord length for
small λ, h‘Hi � hLci [Fig. 4c (inset)]. For large reversal rates
λτ0≳ 5 the distribution decays faster than that of polymers with
an intermediate reversal rate λτ0= 0.5 and the average hop length
approaches the run length of the polymer, 〈ℓH〉→ ℓrun.

Our findings further show that polymers with an intermediate
reversal rate, e.g., λτ0= 0.5, can follow the straight path available
in the porous structure and continue to explore another
successive pore without getting trapped, which leads to hopping
lengths longer than the longest chord length. Furthermore, we
find that the probability for longer hops becomes larger at an
intermediate reversal rate than the chord-length distribution,
which indicates that the polymer explores these more often than
the shorter pores of the medium.

Our results also demonstrate that the probability for long hops
and also the average hop length 〈ℓH〉 [Fig. 4c (inset)] vary non-
monotonically with λτ0: they are lowest for λτ0= 5 · 10−4 and
λτ0= 15 and highest for λτ0= 0.5. This strong non-monotonic
variation of the average hop length could explain the optimal
spreading and thus the maximal long-time effective diffusivity of
run-reverse polymers in porous media (Fig. 3a). In particular,
agents with Péclet number Pe= 50 and reversal rate λτ0= 0.5
have an intrinsic run length of ℓrun= 20σ, comparable to the
longest pore length Lc;max. Our findings reveal that the active
polymer continuously explores the pore space without getting
trapped too often (Fig. 4a), which suggests the qualitative picture:
the agent moves through the pores until it reaches an obstruction,
where subsequent reversals allow it to continue to explore the
pore space.

Coarse-grained dynamics. To quantitatively characterize the
long-time effective diffusivities, we develop a coarse-grained
model for the 3D dynamics of the alternating hopping and
trapping phases. During the hopping phase the agent, modeled as
a point particle, moves straight at effective velocity v and reverses
its swimming direction at rate λ with propagator PHðΔr; tÞ,
which denotes the probability that the particle displaces Δr dur-
ing time t while hopping. During the trapping phase the particle
cannot move and after the trapping event it hops along a new,
random direction. The time the particle spends in a hopping or
trapping phase is determined by the hopping and trapping time
distributions extracted from the simulations (Fig. 4b, c). As the
swim speed of the polymer during the hopping events remains
roughly constant, the hopping time, i.e., the duration of a hop-
ping phase of length ℓ, t ~ ℓ/v, also follows an exponential dis-
tribution φHðtÞ ¼ expð�t=τHÞ=τH with mean duration τH. The
trapping time distribution obeys a power-law behavior
φT(t)= β(1+t/τ)−1−β/τ with mean duration τT= τ(β−1)−1,
where τ is a characteristic time scale for trapping. This power-law
behavior suggests that the dynamics are non-Markovian and
therefore we use a renewal theory42,43.

The probability density P(Δr, t) for the particle to have
displaced Δr during lag time t is the sum of the probability
densities for the particle to be in a hopping or a trapping phase:
P(Δr, t)= PH(Δr, t)+ PT(Δr, t). We further introduce the prob-
ability densities (per time) for the particle to start a hopping phase
and a trapping phase at displacement Δr and at lag time t by
H(Δr, t) and T(Δr, t), respectively. Then the probability PT(Δr, t)

that the particle is trapped at Δr for lag time t is obtained as the
sum of the probability of never having hopped before Pð0Þ

T ðΔr; tÞ
and the probability of having hopped at least once before getting
trapped at Δr and at an arbitrary earlier time t � t0:

PT ðΔr; tÞ ¼ Pð0Þ
T ðΔr; tÞ þ

Z t

0
dt0TðΔr; t � t0Þφð0Þ

T ðt0Þ: ð3Þ

Here, φð0Þ
T ðtÞ ¼ R1t dt0 φT ðt0Þ ¼ ½τ=ðτ þ tÞ�β denotes the probabil-

ity that the trapping time exceeds t. The probability to become
trapped at Δr and time t reads

TðΔr; tÞ ¼ T ð1ÞðΔr; tÞ

þ
Z
R3

dℓ
Z t

0
dt0HðΔr� ℓ; t � t0ÞPHðℓ; t0ÞφHðt0Þ;

ð4Þ

where T(1)(Δr, t) denotes the probability for the first trapping event.
The second term corresponds to the sum over the probabilities that
the agent has escaped a trap and started to hop at Δr− ℓ at an
earlier time, t � t0, until it gets trapped again at Δr and t. Similar
equations hold for PH(Δr, t) and H(Δr, t) (see equations (11)–(12)
in Methods). We can derive an analytic solution for the probability
density in Fourier–Laplace space, Pðk; sÞ ¼ R10 dt e�st

R
R3 dΔr

e�ik�Δr PðΔr; tÞ � R10 dt e�sthe�ik�Δri42. By isotropy, it can be
expanded for small wave numbers k up to Oðk4Þ via Pðk; sÞ ’R1
0 dt e�st 1� k2hjΔrðtÞj2i=3!� � ¼ s�1 � k2hjΔrðsÞj2i=3!; which
allows for an analytical derivation of the Laplace transform of the
mean-square displacement hjΔrðsÞj2i:

Finally, we obtain the long-time transport behavior by taking
the limit of hjΔrðsÞj2i for s→ 0. We find lim

s!0
hjΔrðsÞj2i ’

6Dtheo
eff s�2, which corresponds to a long-time diffusive behavior

hjΔrðtÞj2i ’ 6Dtheo
eff t for t→∞ with effective diffusivity:

Dtheo
eff ¼ v2τ2H

3ðτH þ τT Þ 1þ ð1� cos ϑ0ÞλτH
� � : ð5Þ

It is determined by the fraction of time spent hopping between
traps, τH/(τH+ τT), the hopping time, τH, the effective velocity, v,
and the tumbling rate λ. The tumbling angle for run-reverse
motion, as employed here, is9 ϑ0=− π. The expression [equation
(5)] depends on the exponent β of the trapping time distribution
via the average trapping time τT. We note that for a power-law
distribution truncated at rate γ, φT ðtÞ � expð�γtÞð1þ t=γÞ�1�β,
which may be more appropriate to describe our data (Fig. 4b), the
effective diffusivity assumes the same form as in equation (5) with
average trapping time τT≡ τT(γ, τ, β) depending on the para-
meters γ, τ, and β (see Methods).

To compare the simulation data with our coarse-grained
theory, we extract the average hopping and trapping times, τH
and τT, from the individual trajectories and obtain the effective
diffusivity from the hop-and-trap model [equation (5)]. We
observe that our model captures the non-monotonic trend of the
simulation results, Dsim

eff �Dtheo
eff (Fig. 3a dashed lines). It is

interesting that the hopping and trapping times, used as inputs
for the model, can semi-quantitatively predict the non-monotonic
trend of the effective diffusivities of a complex system. The
deviations at small reversal rates, corresponding to the scaled path
length Λ≲ 10−1, are expected because at such small reversal rates
the polymers remain trapped most of the time. Therefore, the
extracted mean trapping times may be underestimated and even
longer simulations would be required.

We rationalize the non-monotonic behavior by inspecting the
fraction of time spent hopping, p= τH/(τH+ τT) (Fig. 4b inset).
As expected, for rare reversal events the fraction of time spent
hopping is small p≪ 1/2. This corresponds to τH≪ τT and
therefore equation (5) reduces to Dtheo

eff ¼ v2τ2H=ð3τT Þ ! 0, as

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26942-0

6 NATURE COMMUNICATIONS |         (2021) 12:7088 | https://doi.org/10.1038/s41467-021-26942-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


large trapping times suppress transport. In contrast, the trapping
times for frequently reversing polymers are negligible compared
to the hopping times, τT≪ τH as p≫ 1/2. Therefore, the behavior
of the effective diffusivity is dominated by the reversal rate and
equation (5) simplifies to Dtheo

eff � v2=λ ! 0, which vanishes as
the reversal rate increases. Hence, maximal transport occurs at an
intermediate reversal rate λ, in agreement with our simulation
results for the long-time effective diffusivities and the average
hopping lengths.

Our results indicate that the non-monotonic behavior of the
effective diffusivities is a clear signature of hop-and-trap
dynamics. This behavior vanishes for dilute environments, where
the dynamics are solely determined by the run-reverse motion of
the polymers. The transition between both motility modes is
shown in Fig. 3b.

Discussion
To rationalize the seminal experiments of Wolfe and Berg1, which
characterized spreading in a porous environment of bacteria with
different tumbling rates, we have performed Brownian dynamics
simulations of run-reverse stiff polymers in a porous environment
and find a non-monotonic transport behavior as a function of the
reversal rate. We introduce, for the first time, a geometric cri-
terion for the optimal spreading of active agents in a porous
environment, which occurs when the intrinsic run length is
comparable to the longest straight path available in the envir-
onment. In particular, we demonstrate that this criterion remains
valid in dense environments for different reorientation mechan-
isms of the active polymers. We further show that individual
polymer trajectories exhibit a hop-and-trap mechanism, in accord
with recent experiments of E. coli4,5. Our results suggest that
optimal transport at an intermediate reversal rate is characterized
by a maximal average hop length. In contrast, the motion of
rarely and frequently reversing polymers is set by the pore length
or the run-length, respectively. We corroborate these findings
using a renewal theory for the coarse-grained hop-and-trap
dynamics.

Our results demonstrate that this non-monotonic transport
behavior of active agents in a porous environment persists irre-
spective of the details of the re-orientation mechanism and the
shape of the pores. These findings indicate that the ‘size of the
pores, not their shape, matters’ for this large-scale spreading and
we therefore anticipate that this behavior is universal for densely
packed environments. Nevertheless, this non-monotonic behavior
fades for low packing fraction, which corroborates earlier pre-
dictions for dilute 2D porous environments with concave pore
shapes36.

In the future, it will be interesting to study the effect of
swimmer shape anisotropy on active transport in a porous
environment. In particular, recent work has shown that the non-
monotonic behavior persists even for point particles on a 2D
lattice with obstacles32. However, the interplay between pore
geometry and run length remains to be explored. Most impor-
tantly, our study and recent experiments4,5 predict power-law
distributions for the trapping times, which could be amplified by
particle shape. Taking into account this memory dependence in a
coarse-grained description goes beyond earlier theoretical
predictions32,35.

We anticipate that our theoretical findings can be tested in
various biological systems, such as bacteria3,8–10, algae11, or
archaea12. This could shed light on fundamental microbiological
processes, which include the adaption of the tumbling behavior
under varying environmental conditions. Experimental observa-
tions of Bacillus subtilis44 have shown that these cells can reverse
their swimming direction once they encounter an obstacle and,

similarly, Spirochetes45 display an increase of reversal rate while
invading a heterogeneous fibrous medium. It would be interesting
to elucidate if these spatially varying reversal mechanisms allow
them to optimize their motion in a 3D porous medium. Similarly,
our results could guide the design of future synthetic swimmers
with, e.g., specific magnetic properties46. Their spreading could be
enhanced by reorienting them via externally applied magnetic
fields. On the macroscale, our findings could find application in
instructing robots during search and rescue operations in disaster
zones36.

Beyond porous media, our results lay the foundation for
studying transport of active semiflexible polymers in dynamically
re-arranging environments composed of other polymers, such as
the interior of cells40,47. The strongly interacting, crowded
environment could lead to a relaxation of the extended trapping
events of the active agents and entail complex entanglement
effects of the individual constituents.

Methods
Brownian dynamics simulations of a stiff, run-reverse polymer in a porous
environment. We model the active polymer chain in terms of the well-known
bead-spring model in 3D37. In particular, the polymer is a chain of contour length
L composed of Np spherical monomers with diameter σ that are connected by
springs (Fig. 1a). The monomers have positions ri and the distance between two
monomers is denoted by ri,j= ∣rj− ri∣, where i, j= 1,…Np. We further introduce
the tangent vector between two monomers by ti;iþ1 ¼ riþ1 � ri

� �
=ri;iþ1. The

dynamics of the semiflexible polymer are described by the equations of motion for
each monomer,

ζ
dri
dt

¼ �∇iU þ FðiÞp þ FðiÞr for i ¼ 1; ¼Np; ð6Þ

with friction coefficient ζ, active forces FðiÞp ¼ Fpðti�1;i þ ti;iþ1Þ, and stochastic

forces FðiÞr characterized by zero mean hFðiÞr i ¼ 0 and variance

hFðiÞ
r;jðtÞFðiÞ

r;kðt0Þi ¼ 2kBTζδjkδðt � t0Þ. The interaction energy, U, is characterized by
the interaction between neighboring beads and the interaction between non-
neighboring beads of the polymer chain itself and with the porous environment
(see later section on details about the porous environment).

The elasticity of the chain is characterized by the well-established wormlike
chain (WLC) model pioneered by Kratky and Porod48. The discretized interaction
energy is

UWLC

kBT
¼ � ‘pN

L
∑

Np�2

i¼1
1� ti;iþ1 � tiþ1;iþ2

� �
; ð7Þ

where we have introduced the persistence length ℓp of a semiflexible polymer. It is a
measure of the decay length of its tangent-tangent correlations and allows
distinguishing between flexible, ℓp/L≲ 1, semiflexible, ℓp/L ≃ 1, and stiff polymers,
ℓp/L ≳ 1.

Interactions between neighboring beads are modeled by the finitely extensible
non-linear elastic (FENE) potential,

UFENE

kBT
¼ �ϵFENE ∑

Np�1

i¼1
ln 1� ri;iþ1

δ
� L

Npδ

 !2" #
; ð8Þ

which ensures a finite, maximal distance between two monomers, L/Np+ δ with
δ= σ/4. For monomer–monomer distances larger than L/Np+ δ the interaction
potential diverges, UFENE=∞. Consequently, the entire polymer chain has a
maximal length of L+Npδ. The interactions between non-neighboring polymer
beads and the interactions between the polymer and the surrounding, porous
environment are modeled using the Weeks–Chandler–Anderson (WCA)
potential49,

UWCA
ij

kBT
¼ ϵWCA

4 d
rij

� �12
� d

rij

� �6	 

r < d

0; else :

8<
: ð9Þ

Here, d= σ for the interaction of two monomers and d= (σ+ σs)/2 for
the interaction between a monomer and an obstacle of the porous environment
with diameter σs (see later section on the Porous environment). The full
contribution is the sum over all monomers and beads of the porous environment
UWCA ¼ ∑i;j;i≠jU

WCA
ij .

The total interaction energy is then U=UWLC+UFENE+UWCA, which
includes (amongst others) three important dimensionless parameters: the
persistence length of the polymer chain relative to the contour length ℓp/L, and
ϵFENE and ϵWCA, which measure the relative importance of the interaction energies
with respect to thermal energy. In the present study, we simulate stiff polymers
with ℓp/L= 50. To assure minimal polymer extension and prevent overlap of
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monomers and the environment, we set ϵFENE= 103 and ϵWCA= 5, respectively.
Furthermore, we use a Brownian time step of τB= 10−6τ0 to integrate equation (6)
using a modified version of LAMMPS50 with τ0 the diffusive time scale of a
monomer and wait for 109τB before taking measurements.

In addition to self-propulsion, the polymer performs a pseudo run-reverse
motion, as sketched in Fig. 1b. The reversal events occur at randomly drawn times,
t, which follow an exponential distribution λ expð�λtÞ with reversal rate λ. At the
run-reverse event, the active forces, acting along the polymer chain, randomly
change sign, FðiÞp ! αFðiÞp with α randomly chosen from {− 1, 1}. In our framework
the reversal events occur instantaneously, so that the polymer does not stop before
moving into the new direction.

Porous environment. The porous structure of the environment is generated by
randomly distributed obstacles of diameter σs, which are allowed to overlap. By
varying the diameter of the obstacles, we tune the average pore diameter, σp, of the
medium, inspired by the experimental set-up of refs. 4,5. The porous environment
is characterized by the average pore diameter and the chord length. For ensemble
averaging, we use 20 statistically independent structures.

We extract the average pore diameter of the medium by monitoring the transport
behavior of Brownian particles with radius σB in the porous environment. Therefore,
we measure the mean-square displacement, hjΔrBðtÞj2i with ΔrB(t)= rB(t)− rB(0),
and calculate the local exponent, αðtÞ ¼ dln hjΔrBðtÞj2i

� �
=dln t, as a function of time.

The local exponent displays a minimum at an intermediate time τmin, which allows

introducing the pore diameter by σp ¼ σB þ hjΔrBðτminÞj2i1=2. For simplicity, we
choose σB= σ.

To measure the chord length distribution φLc
ð‘Þ, we image several two

dimensional planes randomly passing through the simulated porous medium
(Fig. 1d). These images provide a map of the pore space. We then binarize these
images where two phases represent solid obstacles and open pores, respectively. We
calculate the distribution of chords of length ℓ, which fit within each binarized pore
space image. This protocol yields a direct measurement of straight pathways
available in the pore space.

Effect of pore shape. We have addressed the effect of pore shape on the large-
scale spreading of active agents. In particular, we have replaced the WCA potential
[equation (9)], corresponding to pores with convex boundaries, and modeled the
interaction between the polymer and concave pores by the interaction potential:

UC
i

kBT
¼ �ϵCe

�ðRi=aÞ12 ; ð10Þ

where Ri is the distance between monomer i of the polymer and the nearest
obstacle. We choose ϵC= 100 and a= 3.7, corresponding to concave voids of
diameter ~ 7.4σ, as illustrated in Fig. 5c. We find that also for pores with concave
walls the long-time behavior of the mean-square displacement is diffusive, see
Fig. 5a. Extracting the long-time effective diffusivities shows that the non-
monotonic behavior persists as a function of the reversal rate (Fig. 5b). The
maximal diffusivity occurs at a reversal rate of λτ0= 0.5 and a run length of
ℓrun= 20σ. This optimal behavior agrees with the findings for a porous

environments with convex pore shapes, as discussed in the main text. Overall, the
effective diffusivities are smaller than for a convex environment, which may
indicate that the polymer explores the individual pores for a longer time and
should depend on the energy depth ϵC.

Effect of the re-orientation mechanism. We further study the effect of the re-
orientation mechanism of active polymers on their spreading in a porous envir-
onment. To complement our findings for run-reverse polymers, we consider a run-
and-tumble polymer, which randomly changes its swimming direction at expo-
nentially distributed tumbling events with tumbling rate λ (Fig. 6a). At the tum-
bling event the active forces may change sign Fp→ αFp with α randomly chosen
from {− 1, 1} and the polymer is subject to tumbling torques. In particular, only at
the tumbling event (hence during one time step) opposite forces F0;1t and F3;4t are
applied to the zeroth and first and third and forth monomers, respectively
(Fig. 6b), so that the polymer gets a random ‘kick’ leading to its re-orientation.

These ‘random’ tumbling forces are chosen (on average) perpendicular to the
backbone of the polymer: F0;1t ¼ Ftðn0;1 þ n1;2Þ=2 and F3;4t ¼ �Ftðn2;3 þ n3;4Þ=2,
where the force magnitude is Ft= 2 ⋅ 105kBT/σ≫ Fp. As the polymer is stiff, we
note that the forces approximately balance F0;1t þ F3;4t ’ 0.

To obtain the component of the force direction n0,1 (and similarly n1,2, n2,3,
n3,4), we first define the plane normal to the tangent vector t0,1, which is spanned
by the unit normal vectors nð1Þ0;1 and nð2Þ0;1 ¼ t0;1 ´n

ð1Þ
0;1 (Fig. 6b). Then we choose n0,1

as a random direction in this plane via n0;1 ¼ cosðβÞnð1Þ0;1 þ sinðβÞnð2Þ0;1 with β drawn
from a uniform distribution U ½0;2π�.

To illustrate our algorithm, we show typical trajectories for polymers with
vanishing translational diffusivity, D0= 0, and run-length ℓrun/σ= 20, in Fig. 6c.
The trajectories (solid lines) demonstrate that the polymer changes its swimming
direction randomly at tumbling events and tumbles in 3D. We note that in this case
reversing polymers only move back and forth along a straight line (dotted lines).

Data analysis of the individual trajectories. We extract the distributions for the
trapping time, hopping time, and the hopping length from the individual trajec-
tories. We note that the hopping time is defined as the time between hopping from
one trap to the next or from one trapping event to the next reversal and the hopping
length is the length the polymer moved during this time. To extract these quantities,
we follow the approach from refs. 4,5 and first measure the average velocity of a non-
tumbling polymer in a free environment, 〈v〉. Then we calculate the instantaneous
velocities of the center monomer, vi= ∣rc(ti+1)− rc(ti)∣/(ti+1− ti), where ti corre-
sponds to the i-th time step, of individual particle trajectories. Thus, we can classify
a hopping phase by vi≥〈v〉/3 and a trapping phase by vi < 〈v〉/3, which allows
extracting the trapping and hopping time distributions, φT(t) and φH(t) with mean
durations, τT and τH. In addition, we keep track of the reversal times, which are
input to our simulations, and compare it with the hopping duration. This provides
the hopping length distribution, φ‘H

ðtÞ with mean hopping length 〈ℓH〉. In parti-
cular, if the reversal time since the last trapping event tλ is shorter than the hopping
phase thop, the hopping length corresponds to the length displaced until the reversal
event. For tλ > thop the hopping length is the displacement from one trapping event
to the next. For the comparison of the effective diffusivities extracted from simu-
lations, Dsim

eff , to the predictions of the hop-and-trap model [equation (5)], we
further use as effective velocity the cut-off velocity, v = 〈v〉/3. We can fully recover
the non-monotonic behavior and explain the simulation data up to a constant pre-
factor.

To test our approach, we have varied the cut-off velocity between 〈v〉/5 to 〈v〉/2
and found that it does not change our conclusions: the power-law behavior of the

Fig. 5 Active polymers in a porous environment with concave pore
shapes. a Mean-square displacements hjΔrcðtÞj2i of active polymers as a
function of time for different reversal rates, λτ0, and Péclet number Pe= 50.
b Effective diffusivities Dsim

eff as a function of Λ ¼ Lc;max=‘run. c Slice of the
3D porous environment. Red areas indicate 2D slices of the porous
structure and white areas correspond to the open pore space. Source data
are provided as a Source Data file.

Fig. 6 Run-and-tumble polymers in a dilute environment. Sketch of the a
run-and-tumble motion and b tumbling mechanism of a stiff polymer. Here,
the unit vectors nð1Þ0;1 and nð2Þ0;1 span the plane normal to the tangent t0,1. The
normal vector n0,1 lies in this plane. c Trajectories of three run-and-tumble
polymers (solid lines) and run-reverse polymers (dotted lines) with
vanishing translational diffusivity, D0= 0, and run-length ℓrun/σ= 20.
Source data are provided as a Source Data file.
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trapping time distributions, the behavior of the hopping length distributions, and
the semi-quantitative agreement of the effective diffusivities of the coarse-grained
model and the simulations remain preserved.

Entropic trap model for the trapping time distribution. Motivated by other
disordered media4,5,41, the probability for the entropic trap C is assumed to follow
PðCÞ ¼ C�1

0 expð�C=C0Þ with average trap depth C0. By analogy to equilibrium
physics, the probability of an active polymer to escape a trap of depth C is assumed
to obey an Arrhenius-like relation. Then the trapping duration is given by
t ¼ τðexpðC=XÞ � 1Þ, where X characterizes the active energy due to its swimming
motion and τ corresponds to a characteristic time scale for trapping. In particular,
the trapping duration vanishes, t→ 0, for small entropic traps, i.e., C/X→ 0. For a
passive polymer the active energy X is replaced by the thermal energy kBT. The
probability distribution of the trapping times can be obtained as φT(t)= P(C)(∂t/
∂C)−1= β(1+t/τ)−1−β/τ with β= X/C0.

Renewal theory for the hop-and-trap dynamics. The probability density for a
particle to be in a hopping phase follows:

PH ðΔr; tÞ ¼ Pð0Þ
H ðΔr; tÞ þ

Z
R3

dℓ
Z t

0
dt0HðΔr� ℓ; t � t0ÞPH ðℓ; t0Þφð0Þ

H ðt0Þ: ð11Þ

Here, Pð0Þ
H ðΔr; tÞ denotes the probability that the particle has never been trapped

before and the second term corresponds to the sum over all hopping phases, which
started after at least one trapping event. Further, φð0Þ

H ðtÞ ¼ R1t dt0 φHðt0Þ is the
probability that the hopping time exceeds t. The probability density (per time) that
a new hopping phase starts obeys the equation of

HðΔr; tÞ ¼ Hð1ÞðΔr; tÞ þ
Z t

0
dt0 TðΔr; t � t0ÞφT ðt0Þ; ð12Þ

where H(1)(Δr, t) is the probability that the particle starts the first hop. After a
Fourier transform of the probability densities, Δr→ k, and by the convolution
theorem, the renewal equations [Eqs. (3), (4), (11), (12)] simplify to

PT ðk; tÞ ¼ Pð0Þ
T ðk; tÞ þ

Z t

0
dt0Tðk; t � t0Þφð0Þ

T ðt0Þ; ð13aÞ

PH ðk; tÞ ¼ Pð0Þ
H ðk; tÞ þ

Z t

0
dt0Hðk; t � t0ÞPH ðk; t0Þφð0Þ

H ðt0Þ; ð13bÞ

Tðk; tÞ ¼ T ð1Þðk; tÞ þ
Z t

0
dt0Hðk; t � t0ÞPHðk; t0ÞφH ðt0Þ; ð13cÞ

Hðk; tÞ ¼ Hð1Þðk; tÞ þ
Z t

0
dt0Tðk; t � t0ÞφT ðt0Þ: ð13dÞ

We further need to specify the probability densities

Pð0Þ
T ðk; tÞ ¼ ð1� pÞ

Z 1

t
dt0 φT ðt0Þðt0 � tÞ=τT ; ð14aÞ

Pð0Þ
H ðk; tÞ ¼ p PH ðk; tÞ

Z 1

t
dt0 φH ðt0Þðt0 � tÞ=τH ; ð14bÞ

with p= τH/(τH+ τT), which account for the fact that the system starts in a sta-
tionary state42. In particular, the probability to have never hopped before, Pð0Þ

T ðk; tÞ,
depends on the probability that the particle is in a trapped state, 1− p, and on the
time integral, which represents the probability that the trapping phase exceeds time
t. It can be rationalized as follows: The probability density that the trapping phase
is of length t0 is given by t0φT ðt0Þ=τT . The probability that after lag time t the
particle is still trapped is ðt0 � tÞΘðt0 � tÞ=t0 , where Θ( ⋅ ) denotes the Heaviside
function. Then the probability that the particle has not yet started a hopping phase
at time t is obtained by integrating over all durations t0 :

R1
t dt0 φT ðt0Þðt0 � tÞ=τT .

Similarly, we can derive Pð0Þ
H ðk; tÞ.

Moreover, the probability densities (per time) for the first trapping and hopping
event are

T ð1Þðk; tÞ ¼ p PHðk; tÞ
Z 1

t
dt0 φH ðt0Þ=τH ; ð15aÞ

Hð1Þðk; tÞ ¼ ð1� pÞ
Z 1

t
dt0 φT ðt0Þ=τT : ð15bÞ

Here, the probability for the first trapping event T(1)(k, t) depends on the
probability that the particle is in a hopping state p and has hopped for a time t with
propagator PHðk; tÞ. Further, the probability density for a hopping phase to be of
length t0 is given by t0φH ðt0Þ=τH . The probability for the lag time t= 0 to be in the
same interval is uniformly distributed, 1=t0 . Then the probability density that the
trapping phase starts at t given a hopping phase of length t0 is obtained by the
integral over all possible t0 ,

R1
t dt0 φH ðt0Þ=τH . Similar considerations hold for

H(1)(k, t).

Finally, we specify the propagator in the hopping phase PHðk; tÞ. Since we are
interested in terms up to Oðk2Þ, we expand it in k: PH ðk; tÞ ’ 1� k2hjΔrðtÞj2iRR=3!,
where the mean-square displacement of a run-reverse particle is hjΔrðtÞj2iRR ¼
2v2=~λ

2ðexpð�~λtÞ þ ~λt � 1Þ. The effective rate depends on the turning angle ϑ0 via
~λ ¼ λð1� cos ϑ0Þ9. Subsequently, we perform a Laplace transform, t→ s, of equation
(13a)–(13d) and use the convolution theorem to derive an analytical solution for the
renewal equations in Fourier–Laplace space42. The formal solution has been presented
elsewhere42. We insert the expansion of PH and the hop and trapping time
distributions, φH and φT, into the theoretical predictions in Fourier–Laplace space and
keep only terms up to Oðk4Þ. Using the expansion from the main text, we derive an
analytical solution for the mean-square displacement in Laplace space, 〈∣Δr(s)∣2〉. An
analytical backtransform to time space is not possible, however, we can extract the
long-time (corresponding to s→ 0) behavior, see main text.

We further note that the long-time effective diffusivity can also be derived
analytically for a truncated power-law distribution, φT ðtÞ ¼
expð�γtÞð1þ t=τÞ�1�βf ðγτ; βÞ with f ðγτ; βÞ ¼ eγτβExpIntEð1þ β; γτÞ� ��1

, where
ExpIntE( ⋅ , ⋅ ) denotes the generalized exponential integral function51. It assumes
the same form as equation (5) with average trapping time
τT ¼ R10 tφT ðtÞ dt ¼ τ ExpIntEðβ; γτÞ=ExpIntEð1þ β; γτÞ � 1

� �
. We note that the

average trapping time of the truncated power-law distribution reduces for γ= 0 to
that of the power-law distribution used in our manuscript. Details of the
distribution become apparent in the short-time behavior of the mean-square
displacement, but do not affect our data analysis for the long-time effective
diffusivities.

Data availability
Source data are provided with this paper in the Source Data file
(Source_Data.zip). Source data are provided with this paper.

Code availability
The computer code used for simulations is available from the corresponding authors
upon reasonable request.
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