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ABSTRACT

Geometric confinements play an important role in many physical and biological processes and significantly affect the rheology and behavior
of colloidal suspensions at low Reynolds numbers. On the basis of the linear Stokes equations, we investigate theoretically and
computationally the viscous azimuthal flow induced by the slow rotation of a small spherical particle located in the vicinity of a rigid no-slip
disk or inside a gap between two coaxially positioned rigid no-slip disks of the same radius. We formulate the solution of the hydrodynamic
problem as a mixed-boundary-value problem in the whole fluid domain, which we subsequently transform into a system of dual integral
equations. Near a stationary disk, we show that the resulting integral equation can be reduced into an elementary Abel integral equation that
admits a unique analytical solution. Between two coaxially positioned stationary disks, we demonstrate that the flow problem can be trans-
formed into a system of two Fredholm integral equations of the first kind. The latter are solved by means of numerical approaches. Using
our solution, we further investigate the effect of the disks on the slow rotational motion of a colloidal particle and provide expressions of the
hydrodynamic mobility as a function of the system geometry. We compare our results with corresponding finite-element simulations and
observe very good agreement.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062688

I. INTRODUCTION

Hydrodynamic interactions in viscous flows are ubiquitous
in nature and find numerous applications in various industrial
and environmental processes. Simultaneously, confinements play
a pivotal role in a wide range of biological and biotechnological
processes, including the dynamics of polymer solutions and melts
in microfluidic devices,1–4 DNA translocation through pores,5,6

transport and rheology of red blood cell suspensions in microcir-
culation,7–12 colloidal gelation,13 biofilm formation in microchan-
nels,14–17 and swimming behavior of active self-propelled agents
in viscous media.18–23

Fluid flows at small length scales are characterized by low
Reynolds numbers, where the viscous forces typically dominate the

inertial forces. Under such conditions, the fluid dynamics can well be
described by the linear Stokes equations.24 Over the past few decades,
there has been mounting interest in the theoretical and experimental
characterization of the behavior of hydrodynamically interacting par-
ticles near confining interfaces.25 These include, for instance, a flat
rigid wall,26–35 a planar surface with partial slip,29 a flat interface sepa-
rating two immiscible fluids,36–39 an interface covered with a surfac-
tant,40,41 a rough boundary characterized by random surface
textures,42 or a soft deformable membrane possessing elastic and
bending properties.43–57 Thanks to the advent of new particle tracking
and measurement techniques, the field has benefited from important
recent advances in the characterization of the behavior of colloidal
particles near confinement at small scales.58–62
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From a chronological standpoint, one of the first attempts to
address the creeping flow induced by a spherical particle confined
between two infinitely extended planar walls dates back to Fax�en.63

One century ago, Fax�en provided in his doctoral dissertation a few
approximate analytical expressions of the hydrodynamic mobility
function for parallel translational motion in a channel bounded by two
flat plates. Later, using the method of images, Liron and Mochon64

obtained in a pioneering work an exact solution of the Stokes flow
induced by a point-force singularity acting between two parallel no-
slip walls. The problem of fluid motion in a channel bounded by two
no-slip walls has further been addressed using the multipole expansion
technique65,66 and a strong interaction theory.67,68

In the present article, we proceed a step further by examining the
low-Reynolds-number flow induced by a point-like particle rotating
near a rigid finite-sized no-slip disk or between two coaxially posi-
tioned rigid finite-sized no-slip disks of the same radius.
Mathematically, we model the situation using a rotlet (also called a
point-torque or point-couple) singularity acting on the surrounding
fluid medium. We formulate the flow problem at hand as a mixed-
boundary-value problem which we subsequently transform into a sys-
tem of dual integral equations on the domain boundary. For their
solution, we employ conventional procedures outlined by Sneddon
and Copson so as to express the solutions of the flow problems in
terms of convergent definite integrals. Moreover, we quantify the effect
of the confining finite-sized disks on the rotational motion by calculat-
ing the effect on the corresponding hydrodynamic mobility function.

The remainder of this article is organized as follows. In Sec. II, we
derive the solution of the hydrodynamic equations for a rotlet singu-
larity acting near a fixed no-slip disk. We show that the induced veloc-
ity field can be presented in a compact analytical form in terms of a
definite one-dimensional integral. Afterwards, we obtain in Sec. III a
semi-analytical solution of the flow problem inside a gap between two
coaxially positioned rigid no-slip disks. We demonstrate that the solu-
tion can be reduced into a system of two Fredholm equations of the
first kind that can be solved by means of standard numerical
approaches. Finally, concluding remarks are contained in Sec. IV.
Technical aspects and simulation details regarding the finite-element
method we employ to compare our theory with are shifted to the
Appendixes.

II. SOLUTION NEAR A SINGLE DISK
A. Problem formulation

First, we examine the low-Reynolds-number dynamics of a
point-like particle undergoing rotational motion near one fixed finite-
sized disk of radius R. We assume a no-slip boundary condition to
hold at the surface of the disk. In addition, we suppose that the disk is
located within the plane z¼ 0 and that the center of the disk coincides
with the origin of our coordinate frame; see Fig. 1 for an illustration of
the system setup. In addition, we assume that the fluid is incompress-
ible and Newtonian with constant shear viscosity g.

At low Reynolds numbers, the fluid dynamics is thus governed
by the steady Stokes equations,69

g$2v� $pþ FB ¼ 0 ; $ � v ¼ 0; (1)

wherein v and p denote the hydrodynamic velocity and pressure fields,
respectively. In addition, FB represents an arbitrary bulk force density
acting on the fluid at position r0 ¼ hez with ez denoting the unit

vector directed along the z direction. The torque L on the particle is
transmitted to the fluid and linked to the surface force density F acting
on the fluid via the surface of the spherical particle

L ¼
þ
A

r � r0ð Þ � F dS; (2)

with A denoting the surface area of the tiny particle. In the point-
particle approximation, the asymmetric dipolar term in the multipole
expansion is associated with the flow field induced by a rotlet singular-
ity of strength L acting above the disk at position r0. Here, we consider
the case in which the point torque is directed along the axis of symme-
try of the disk and set L ¼ Lez .

In an unbounded (infinite) fluid medium, the flow field induced
by a rotlet singularity is given by

v1ðrÞ ¼ 1
8pg

L� s
s3

; (3)

wherein s ¼ r � r0 and s ¼ jsj is the distance from the singularity
position. Using cylindrical coordinates ðr;/; zÞ, the azimuthal compo-
nent of the flow velocity field induced by a free-space rotlet oriented
along the z direction reads

v1/ ðr; zÞ ¼
Kr

r2 þ z � hð Þ2
� �3

2

; (4)

where we have defined, for convenience, the abbreviation K
¼ L=ð8pgÞ of dimension (length)3 (time)�1.

The solution of the flow problem in the presence of the confining
disk can generally be expressed as a linear superposition of the solution
in an unbounded fluid medium, given by Eq. (4), and a complemen-
tary solution that is required to satisfy the underlying regularity and
boundary conditions for the total induced flow field. Specifically,

v/ ¼ v1/ þ v�/; (5)

with v�/ standing for the complementary solution for the azimuthal
flow velocity, also sometimes called the image solution.70

FIG. 1. Graphical illustration of the system setup. A point-like particle undergoing
slow rotational motion near a rigid no-slip disk of radius R sets the fluid into motion.
The center of the particle is located at a distance h above the center of the disk,
while the surrounding viscous fluid medium is characterized by a dynamic shear
viscosity g. L ¼ Lêz sets the torque acting via the particle at the particle position
on the fluid.
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The solution of the homogeneous equations governing the fluid
motion can be expressed in our case in terms of a single harmonic
function as v�/ ¼ �@X=@r [cf. Ref. 69, Eq. (3–3.58), or Ref. 71, Eq. (5),
and references therein for the expression of the complete solution]
with X satisfying the Laplace equation $2X ¼ 0. Then, the harmonic
function X can be written in the general form in terms of a
Fourier–Bessel integral of the form

Xðr; zÞ ¼ K
ð1
0

xðkÞJ0ðkrÞe�kjzj dk; (6)

wherein xðkÞ is an unknown wavenumber-dependent function to be
subsequently determined from the prescribed boundary conditions. In
addition, J� denotes the Bessel function

72 of the first kind of order �.
The image solution for the azimuthal component of the velocity field
is then obtained as

v�/ðr; zÞ ¼ K
ð1
0

kxðkÞJ1ðkrÞe�kjzj dk: (7)

Evidently, the solution form given by Eq. (7) satisfies the natural conti-
nuity of the azimuthal velocity field at the plane z¼ 0. We note that
the rotlet singularity does not induce a pressure gradient and that the
radial and axial components of the fluid velocity vanish. Therefore, the
solution of the flow problem reduces to the search for the azimuthal
component of the velocity field only.

B. Boundary conditions and dual integral equations

We require no-slip boundary conditions on the surface of the
disk and assume the continuity of the azimuthal component of the
normal stress vector on the plane z¼ 0 outside the disk. Specifically,

v1/ þ v�/jz¼0 ¼ 0 for r < R; (8a)

g
@v�/
@z

����
z¼0þ
� g

@v�/
@z

����
z¼0�
¼ 0 for r > R: (8b)

By inserting the expressions of the free-space and image fields
given by Eqs. (4) and (7), respectively, into Eq. (8), we obtain the
mixed-boundary-value problem on the inner and outer domain
boundaries. Specifically,ð1

0
kxðkÞJ1ðkrÞ dk ¼ f ðrÞ ðr < RÞ; (9a)ð1

0
k2xðkÞJ1ðkrÞ dk ¼ 0 ðr > RÞ; (9b)

with the radial function

f ðrÞ ¼ � r

r2 þ h2ð Þ
3
2

; (10)

stemming from the free-space rotlet field.
The solution of the type of dual integral equations stated by Eq.

(9) can generally be obtained using the theory of Mellin trans-
forms.73,74 We will follow in the present article a different route based
on the analytical approach outlined by Sneddon75 and Copson.76 In
the sequel, we will show that the present dual integral equations prob-
lem with Bessel function kernels can conveniently be reduced to an
elementary Abel integral equation that may readily be inverted. This

solution strategy has previously been employed to examine the low-
Reynolds-number flow induced by nonrotational force singularities
near a finite-sized elastic disk possessing shear and bending proper-
ties,77,78 the flow field near a no-slip disk,79,80 or the axisymmetric flow
due to a Stokeslet acting between two coaxially positioned rigid no-slip
disks.81

We search a solution for the unknown wavenumber-dependent
function xðkÞ of the integral form

xðkÞ ¼ k�
1
2

ðR
0

x̂ðtÞJ1
2
ðktÞ dt; (11)

wherein x̂ðtÞ, with t 2 ½0;R�, is an unknown function later to be
determined. We will show in the sequel that the equation for the outer
problem (9b) is indeed satisfied using this form of solution.

First, it can readily be checked that Eq. (11) can further be
expressed in the form

xðkÞ ¼ k�
3
2

ðR
0

x̂ðtÞ t�3
2
d
dt

t
3
2J3

2
ðktÞ

� �
dt: (12)

By defining

F̂ðtÞ ¼ t
3
2
d
dt

t�
3
2x̂ðtÞ

� �
; (13)

and assuming that t
3
2 x̂ðtÞ ! 0 as t ! 0þ, Eq. (12) can be rewritten

upon integration by parts as

xðkÞ ¼ k�
3
2 x̂ðRÞJ3

2
ðkRÞ �

ðR
0
F̂ðtÞJ3

2
ðktÞ dt

 !
: (14)

Then, by substituting the modified form of solution given by Eq.
(14) into Eq. (9b), the integral equation for the outer problem can be
expressed as

Kþðr;RÞ x̂ðRÞ �
ðR
0
Kþðr; tÞF̂ðtÞ dt ¼ 0 ðr > RÞ: (15)

In this context, we define the kernel functions

K6ðr; tÞ ¼
ð1
0

k
1
2J161

2
ðktÞJ1ðkrÞ dk: (16)

It turned out that the latter improper (infinite) integral can be evalu-
ated analytically as

Kþðr; tÞ ¼
2
pt

� �1
2 r
t

Hðt � rÞ
t2 � r2ð Þ

1
2

; (17)

with Hð�Þ denoting the Heaviside step function (or the unit step func-
tion). Since r>R, it can readily be perceived that the transformed inte-
gral equation for the outer problem stated by Eq. (15) is trivially
satisfied.

Thereafter, substituting Eq. (11) into the integral equation for the
inner problem given by Eq. (9a) yieldsðR

0
K�ðr; tÞ x̂ðtÞ dt ¼ f ðrÞ ðr < RÞ: (18)

By noting that
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K�ðr; tÞ ¼
2t
p

� �1
2 1
r

Hðr � tÞ
r2 � t2ð Þ

1
2

: (19)

Equation (18) can subsequently be rewritten in a much simplified
form as

ðr
0

t
1
2x̂ðtÞ

r2 � t2ð Þ
1
2

dt ¼ p
2

� �1
2

rf ðrÞ ðr < RÞ: (20)

Equation (20) is a classical Abel integral equation which consti-
tutes a special form of the linear Volterra equation of the first kind
having a weakly singular kernel.82–84 It admits a unique solution if and
only if f(r) is a continuously differentiable function.85–87 Its solution is
formally given in an integral form as (cf. Appendix A for further
details)

x̂ðtÞ ¼ 2
pt

� �1
2 d
dt

ðt
0

v2f ðvÞ dv
t2 � v2ð Þ

1
2

: (21)

Inserting the expression of f(r) stated by Eq. (10) into Eq. (21) and per-
forming the resulting integration yields

x̂ðtÞ ¼ �2 2t
p

� �1
2 ht

t2 þ h2ð Þ2
: (22)

Evidently, the condition t
3
2 x̂ðtÞ ! 0 as t ! 0þ assumed above

upon integrating by parts is well satisfied.
Next, by substituting Eq. (22) into Eq. (11) upon noting that

J1
2

ktð Þ ¼ 2
p

� �1
2

ktð Þ�
1
2 sin ktð Þ; (23)

the unknown wavenumber-dependent function xðkÞ can be written
in a compact integral form as

xðkÞ ¼ � 4h
pk

ðR
0

t sin ðktÞ dt
t2 þ h2ð Þ2

: (24)

The latter integral can be expressed in a general way in terms of hyper-
bolic functions and trigonometric integrals. However, choosing the
integral form is more convenient for later treatment. In particular, it
follows that xðkÞ ¼ �e�kh as R!1. Finally, by inserting Eq. (24)
into Eq. (7) and interchanging the order of integration with respect to
the variables k and t, the solution for the image azimuthal velocity field
follows as

v�/ðr; zÞ ¼ �
4Kh
p

ðR
0

tQðr; z; tÞ dt
t2 þ h2ð Þ2

; (25)

where we have defined the kernel function

Qðr; z; tÞ ¼
ð1
0
J1ðkrÞ sin ðktÞ e�kjzj dk: (26)

To obtain an analytical expression for Q, we proceed by making
use of Euler’s formula in complex analysis88 and write sin ðktÞ
¼ Im eiktf g, with Im denoting the imaginary part of the argument. By
using the change of variable u ¼ kr, Eq. (26) can be rewritten in the
form

Qðr; z; tÞ ¼ 1
r
Im

ð1
0
J1ðuÞ e�su du

	 

; (27)

with s ¼ ðjzj � itÞ=r. By invoking the Laplace transform89 of J1ðuÞ
given as 1� sð1þ s2Þ�

1
2, Eq. (27) can then be evaluated as

Qðr; z; tÞ ¼ � 1
r
Im

jzj � it

r2 þ jzj � itð Þ2
� �1

2

( )
: (28)

The latter can further be cast in the final form as

Qðr; z; tÞ ¼ 2
1
2

2rU
t U þ Vð Þ

1
2 � jzj U � Vð Þ

1
2

� �
; (29)

where we have defined

U ¼ q2 þ t2
� �2 � 4r2t2
� �1

2

; V ¼ q2 � t2; (30)

where q2 ¼ r2 þ z2. It can be shown that Q is always well defined
except when U¼ 0, for which z¼ 0 and t¼ r. In this case,
Qðr; z; tÞ � ðr � tÞ�

1
2Hðr � tÞ. We note that Qðr; z; tÞ ! 0 as

r ! 0.
An analytical integration of Eq. (25) is delicate, if not downright

impossible. Therefore, recourse to numerical procedures is necessary.
To this end, we approximate the integral by a standard middle
Riemann sum using the partition t1;…; tN , where ti ¼ ði� 1=2Þd,
with i ¼ 1;…;N and d ¼ R=N . Here, N denotes the number of dis-
cretization points. Throughout this work, we consistently set
N ¼ 10 000.

In Fig. 2, we show contour plots of the scaled azimuthal flow
velocity induced by a rotlet singularity positioned at different distances
along the axis of the disk. The analytical predictions [(a), (b), and (c)]
are in good agreement with the results from finite-element simulations
[(d), (e), and (f); see Appendix B for technical details regarding the
simulation method].

The magnitude of the scaled velocity field is shown on a logarith-
mic scale to emphasize the difference between the different regions.
Similarly, as in the bulk, the flow velocity is decaying faster along the z
direction (or axis of rotation) compared to the radial direction.
However, near the disk, the azimuthal flow velocity becomes asym-
metric with respect to the rotlet position, and for z< 0 the total flow
field almost vanishes completely. Last, we remark that the overall mag-
nitude of the flow field reduces as the rotlet gets closer to the disk.

C. Exact solution for R!1
The solution for a rotlet oriented normal to a hard wall can be

obtained using the image system technique noted by Blake.70 For com-
pleteness, we here derive this solution in a different way using our for-
malism. For an infinitely large disk located at z¼ 0, the integral
equations (9a) for the inner domain hold for all positive r, and thus we
can directly apply a Hankel transform90 on both sides of this equation.
Here, we make use of the orthogonality property of Bessel functions,72ð1

0
rJ�ðkrÞJ�ðk0rÞ dr ¼ k�1dðk� k0Þ; (31)

and obtain the solution for
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xðkÞ ¼
ð1
0
rf ðrÞJ1ðkrÞ dr ¼ �e�kh: (32)

Inserting the latter result into Eq. (7) yields

v�/Blakeðr; zÞ ¼ �
Kr

r2 þ jzj þ hð Þ2
� �3

2

: (33)

The image solution for the azimuthal component in the limit R!1
can alternatively be calculated analytically from Eq. (25).
Consequently, the total flow field vanishes underneath the disk, i.e., for
z< 0.

Figure 3 shows the variation of the percentage relative error in
the flow velocity field as obtained using Blake’s solution given by Eq.
(33) in comparison with the exact solution derived in the present work
for a finite-sized disk given in an integral form by Eq. (25). Here, the
flow field is evaluated at five different axial distances z/h, while keeping
the radial position r=R ¼ 0:2. We observe that the error is vanishingly
small for h� R and increases monotonically as the ratio h/R gets
larger. In addition, the error amounts to small values in the fluid
domain close to the singularity position in which the flow velocity is
primarily determined by the infinite-space rotlet. Upon increasing z/h,
the maximum percentage relative error (MPRE) increases and it was
found to be as high as approximately 55% for z=h ¼ 10 and
h=R ¼ 102. We have systematically checked that the MPRE is, in gen-
eral, less sensitive to variations in the radial position.

D. Hydrodynamic rotational mobility

Having derived the solution of the flow problem for a point-
torque singularity acting near a finite-sized disk, we next investigate

how the presence of the nearby disk affects the rotational mobility. For
this purpose, we think of the rotlet generated by a small colloidal parti-
cle of radius a. By restricting ourselves to the situation in which
a� h, the leading-order correction to the particle rotational mobility
can be obtained by evaluating the image angular velocity of the fluid,

FIG. 2. Contour plot of the amplitude of the scaled azimuthal flow velocity as obtained theoretically [first row, (a), (b), and (c)] and using finite-element simulations [second row,
(d), (e), and (f)]. The flows are induced by a rotlet singularity positioned at h=R ¼ 4 [(a) and (d)], h=R ¼ 1 [(b) and (e)] and h=R ¼ 0:25 [(c) and (f)] on the axis of a no-slip
disk of radius R (red). The scaled azimuthal velocity is defined as V/ ¼ v/=ðL=ð8pgR2ÞÞ. The results are presented on a decimal logarithmic scale.

FIG. 3. Percentage relative error in the flow field as obtained using Blake’s solution
for an infinitely extended disk in comparison with the exact solution for a disk of
finite size, as a function of increasing vertical distance h/R of the rotlet from the
disk. The flow field is evaluated at five different values of z/h while keeping
r=R ¼ 0:2.
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1
2 $� v�, at the singularity position.30 In a scaled form, it can be pre-
sented as

Dl
l0
¼ a3

K
lim

ðr;zÞ!ð0;hÞ

1
2r
@

@r
rv�/
� �

; (34)

wherein l0 ¼ ð8pga3Þ�1 is the bulk rotational mobility, i.e., in the
absence of the disk.

Following the notation employed in our previous consider-
ations,77–79 we define the positive dimensionless number k1 to be the
scaled correction factor to the mobility near a no-slip disk as

k1 ¼ �
Dl
l0

�
a
h

� �3

; (35)

and substituting Eq. (7) expressing the image azimuthal velocity into
Eq. (34), we obtain

k1 ¼ �
h3

2

ð1
0

k2xðkÞe�kh dk: (36)

Next, by inserting the expression of xðkÞ stated by Eq. (24) into
Eq. (36) and using the changes of variables u ¼ kh and v ¼ t=R, the
scaled correction factor can be presented as an integral over the inter-
val ½0; 1� as

k1ðnÞ ¼
2
p

n2
ð1
0

vGðv; nÞ dv
v2 þ n2
� �2 ; (37)

with the dimensionless number n ¼ h=R. Here,

Gðv; nÞ ¼
ð1
0
u sin

uv
n

� �
e�u du ¼ 2vn3

v2 þ n2
� �2 : (38)

Finally, evaluating the definite integral in Eq. (37) yields the
expression of the scaled correction factor as

k1ðnÞ ¼
1
8
� 1
4p

arctannþ n n2 � 3
� �

1þ 3n2
� �

3 1þ n2
� �3

 !
: (39)

In particular, for n� 1 (or h� R), we obtain

k1ðnÞ ¼
1
8
� 4
5p

n5 þO n7
� �

: (40)

Notably, the familiar correction factor k1 ¼ 1=8 near an infinitely
extended hard wall is recovered in the limit n! 0. For n	 1, we get

k1ðnÞ ¼
4
3p

n�3 þO n�5
� �

: (41)

Interestingly, the correction factor takes a particularly simple expres-
sion when n ¼

ffiffiffi
3
p

, for which k1 ¼ 1=24.
In Fig. 4, we present the variation of the scaled correction factor

given by Eq. (39) as a function of the dimensionless number n ¼ h=R.
We observe that the scaled correction factor is a monotonically decay-
ing function of n. On a semilogarithmic scale (main plot), the curve
exhibits an inverse logistic-like (sigmoid) evolution between two pla-
teau values. The scaled correction factor undergoes a cubic decay with
n while vanishing in the limit n!1.

Recapitulating, we have presented a dual integral equation
approach to determine the solution of the hydrodynamic equations

for a point-torque singularity acting near a rigid disk. In the following,
we will employ a similar technique to obtain the corresponding solu-
tion of the flow problem in the presence of two coaxially positioned
rigid disks.

III. SOLUTION FOR TWO COAXIALLY POSITIONED
DISKS
A. Problem formulation

We now assume that two parallel coaxially positioned rigid disks
are located within the planes at z ¼ �H=2 and z ¼ H=2, where H
represents the distance separating the two disks. The z axis passes
through the centers of the coaxially positioned disks. We suppose that
the rotlet is acting between the disks at position r0 ¼ hez , where
�H=2 < h < H=2; see Fig. 5 for a graphical illustration of the setup.

To find a solution to the flow problem, we partition the fluid
medium into three distinct parts. We label by the superscript 1 the
flow velocity field in the fluid domain beneath the plane z ¼ �H=2
containing the lower disk, subscript 2 the fluid region delimited by the
planes at z ¼ �H=2 and z ¼ H=2, and we designate by the subscript
3 the fluid domain above the plane z ¼ H=2 containing the top disk.
In the remainder of this article, we choose, for convenience, to scale all
lengths by the gap widthH.

We now express the solution for the azimuthal velocity field in
each region of the fluid domain as

v�/1 ¼ K
ð1
0
AðkÞekzJ1ðkrÞ dk; (42a)

v�/2 ¼ K
ð1
0

BðkÞe�kz þ CðkÞekz
� �

J1ðkrÞ dk; (42b)

v�/3 ¼ K
ð1
0
DðkÞe�kzJ1ðkrÞ dk; (42c)

where AðkÞ; BðkÞ; CðkÞ, and DðkÞ are unknown functions to be
determined from the underlying boundary conditions. It can readily

FIG. 4. Scaled correction factor k1 to the rotational hydrodynamic mobility near a
rigid no-slip disk, Eq. (39), vs the dimensionless number n ¼ h=R plotted on a
semilogarithmic scale. The same curve is shown in the inset on a log –log scale,
where the scaling law n�3 is displayed in the range n	 1 (gray).
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be checked that the regularity condition of a finite velocity field is
inherently satisfied in the whole domain.

B. Boundary conditions and dual integral equations

Requiring the natural continuity of the velocity field at the planes
z ¼ 61=2 yields the expressions of the functions associated with the
intermediate fluid domain in terms of those related to the lower and
upper domains. Specifically,

BðkÞ ¼ 1
2

AðkÞ � DðkÞe�k
� �

cschðkÞ; (43a)

CðkÞ ¼ 1
2

DðkÞ � AðkÞe�k
� �

cschðkÞ; (43b)

with csch denoting the hyperbolic cosecant function, defined as
cschðkÞ ¼ 1=sinhk ¼ 2=ðek � e�kÞ.

By imposing the no-slip boundary condition at the surfaces of the
two disks, we obtain the equations for the inner problem for r<R asð1

0
AðkÞe�k

2J1ðkrÞ dk ¼ wþðrÞ; (44a)ð1
0
DðkÞe�k

2J1ðkrÞ dk ¼ w�ðrÞ; (44b)

where we have defined the radially symmetric functions

w6ðrÞ ¼ �
r

r2 þ h6
1
2

� �2
 !3

2

: (45)

In addition, the continuity of the azimuthal stress vector outside
the regions containing the disk yields the equations for the outer prob-
lem for r>R. Specifically,ð1

0
k AðkÞek

2 � DðkÞe�k
2

� �
cschðkÞJ1ðkrÞ dk ¼ 0; (46a)

ð1
0

k AðkÞe�k
2 � DðkÞek

2

� �
cschðkÞJ1ðkrÞ dk ¼ 0: (46b)

Equations (44) and (46) constitute a system of dual integral equa-
tions for the unknown functions AðkÞ and DðkÞ. For its solution, we
employ the standard solution approach outlined by Sneddon75 and
Copson76 and set

1
2

AðkÞek
2 � DðkÞe�k

2

� �
cschðkÞ ¼ k

1
2f1ðkÞ; (47a)

1
2

AðkÞe�k
2 � DðkÞek

2

� �
cschðkÞ ¼ k

1
2f2ðkÞ; (47b)

where

fiðkÞ ¼
ðR
0
f̂ iðtÞJ12ðktÞ dt; (48)

with f̂ iðtÞ; i 2 f1; 2g are two unknown functions defined on the inter-
val ½0;R� to be subsequently determined. In this way, the equations for
the outer problem are automatically satisfied following the same rea-
soning in Sec. II. Solving Eq. (47) for AðkÞ andDðkÞ yields

AðkÞ ¼ k
1
2 f1ðkÞe

k
2 � f2ðkÞe�

k
2

� �
; (49a)

DðkÞ ¼ k
1
2 f1ðkÞe�

k
2 � f2ðkÞe

k
2

� �
: (49b)

Upon substitution of Eq. (49) into Eq. (44), the inner problem
can be expressed in the formðR

0
K�ðr; tÞf̂ 1ðtÞ � Sðr; tÞf̂ 2ðtÞ
� �

dt ¼ wþðrÞ; (50a)

ðR
0
Sðr; tÞf̂ 1ðtÞ � K�ðr; tÞf̂ 2ðtÞ
� �

dt ¼ w�ðrÞ: (50b)

Here, we have defined the kernel function

Sðr; tÞ ¼ 2
pt

� �1
2

Qðr; 1; tÞ; (51)

whereQ has been defined earlier by Eq. (27). We note that the expres-
sion of the kernel function K� has previously been given by Eq. (19)
and can further be expressed in term ofQ as

K�ðr; tÞ ¼
2
pt

� �1
2

Qðr; 0; tÞ: (52)

Equation (50) represent a system of Fredholm integral equations
of the first kind.91 Due to the complicated expressions of their kernel
functions, exact analytical expressions for the unknown functions
f̂ 1ðtÞ and f̂ 2ðtÞ are far from trivial. Following a computational
approach, we partition the integration intervals ½0;R� intoN subinterv-
als, approximating the integrals by the standard middle Riemann sum.
We then evaluate the two resulting equations at N discrete values of r
that are distributed uniformly over the interval ½0;R�. Inverting the
resulting linear system of 2N independent equations, we obtain accu-
rate values of f̂ 1ðtÞ and f̂ 2ðtÞ at each discretization point.

Inserting the expressions of AðkÞ and DðkÞ stated by Eq. (49)
into Eq. (42), the image solution for the azimuthal flow field every-
where in the fluid domain can be cast in the final compact form

FIG. 5. Slow rotational motion of a point-like particle confined between two coaxially
positioned rigid no-slip disks of identical radius R. The confining disks are located
within the planes z ¼ 6H=2 with H denoting the separation distance between the
parallel disks. The particle is located at a distance h from the origin of the system
of coordinates on the axis of the disks.
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v�/ðr; zÞ ¼ K
ðR
0

2
pt

� �1
2

ĝ ðr; z; tÞ dt; (53)

wherein

ĝ ðr; z; tÞ ¼ Q r; z þ 1
2
; t

� �
f̂ 1ðtÞ � Q r; z � 1

2
; t

� �
f̂ 2ðtÞ:

Notably, the system of Fredholm integral equations stated by Eq.
(50) is recovered when enforcing the no-slip condition at z ¼ 61=2.

Likewise, the definite integral given by Eq. (53) can be discretized
via the middle Riemann sum to yield an approximate solution for the
image velocity field at any point (r, z) in the entire fluid domain.

Figure 6 shows the contour plots of the amplitude of the scaled
azimuthal flow velocity for different positions on the axis of two coax-
ial disks, as obtained analytically and by means of finite-element simu-
lations. Again, the flow velocity is the highest in the near vicinity of the
rotlet and decays faster along the z direction compared to the radial
direction. Moreover, the magnitude is substantially smaller above and
below the disks. As the rotlet approaches one side of the confining
disks, the overall magnitude of the flow field becomes reduced and the
structure becomes more asymmetric. Good agreement is obtained
between the semi-analytical theory and the finite-element simulations.

C. Solution for R! ‘

For completeness, we additionally address by our approach the
solution for the flow field in a gap bounded by two infinitely extended
planar walls located at z ¼ 61=2. To this end, a Hankel transform is
applied on both sides of Eq. (44). We obtain

AðkÞ ¼ ke
k
2 �w
þðkÞ ¼ �ke�kh; (54a)

DðkÞ ¼ ke
k
2 �w
�ðkÞ ¼ �kekh; (54b)

with

�w
6ðkÞ ¼

ð1
0
rw6ðrÞJ1ðkrÞ dr ¼ �e�kð126hÞ; (55)

for jhj < 1=2. Then, it follows from Eq. (43) that the wavenumber-
dependent function associated with the fluid domain bounded by the
planes z ¼ 61=2 is given by

BðkÞ ¼ � k
2

e�kh � e�k 1�hð Þ
� �

cschðkÞ; (56a)

CðkÞ ¼ � k
2

ekh � e�k 1þhð Þð ÞcschðkÞ: (56b)

Finally, the corresponding solution of the image flow field can be
obtained by inserting Eqs. (54) and (56) into Eq. (42). As expected, the
total velocity in the lower and upper regions vanishes in the limit
R!1. Figure 7 illustrates exemplary contour plots of the azimuthal
flow field induced by a rotlet acting between two infinitely extended
no-slip walls for three different positions of the singularity.

D. Hydrodynamic rotational mobility

The scaled correction to the particle rotational mobility in the
point-particle approximation can be obtained from the image velocity
field via Eq. (34). Between two coaxially positioned disks, we alterna-
tively choose to define the scaled correction factor as

k2 ¼ �
Dl
l0

�
a3: (57)

Then, it follows from Eq. (53) that the scaled correction to leading
order can conveniently be expressed as

k2 ¼
1
2

2
p

� �1
2
ðR
0
t�

1
2ðv�ðtÞf̂ 2ðtÞ � vþðtÞf̂ 1ðtÞÞdt; (58)

where we have defined

FIG. 6. Contour plots of the amplitude of the scaled azimuthal velocity as obtained semi-analytically [first row, (a)–(d)] and by means of finite-element simulations [second row,
(e)–(h)]. The results are shown for a rotlet acting at h=H ¼ 0 [(a) and (e)], h=H ¼ 0:1 [(b) and (f)], h=H ¼ 0:2 [(c) and (g)], and h=H ¼ 0:3 [(d) and (h)] on the axis of two
coaxially positioned no-slip disks of radius R¼H (red). Here, the scaled azimuthal velocity is defined as V/ ¼ v/=ðL=ð8pgR2ÞÞ, and the results are presented on a decimal
logarithmic scale.
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v6ðtÞ ¼ Im
1
2

6h� it

� ��2( )
: (59)

Again, an approximate evaluation of the definite integral given by Eq.
(58) can be performed by numerical discretization via the standard
middle Riemann sum.

In the limit of an infinitely extended channel R!1, we obtain

k2 ¼
1
2

ð1
0

k2cschðkÞ cosh 2khð Þ � e�k
� �

dk: (60)

Using computer algebra systems such as Mathematica,92 the latter can
further be expressed as

k2 ¼
1
8

f 3;
1
2
þ h

� �
þ f 3;

1
2
� h

� �
� 2fð3Þ

� �
; (61)

wherein

f s; tð Þ ¼
X

n>m
1
n�sm�t; (62)

denotes the double zeta functions with s> 1 and t 
 0. Moreover, fðsÞ
is the Riemann zeta function with s> 1 defined as fðsÞ ¼

P
n
1 n

�s. In
particular, fð3Þ is an irrational number known as Ap�ery’s constant.93

We quote the famous identity derived by Euler fð3Þ ¼ fð2; 1Þ. In the
mid-plane of the channel, the correction factor reaches its minimum
value k2ðh ¼ 0Þ ¼ 3

2 fð3Þ � 1:8031. Performing a Taylor expansion
near the upper wall around h¼ 1/2, we obtain

k2 ¼
1
8
��3 þ 3

2
fð5Þ�2 þO �4ð Þ; (63)

where � ¼ 1
2� h.

In Fig. 8, we present on a log –log scale the variation of the scaled
correction factor to the rotational hydrodynamic mobility given by Eq.
(58) vs the scaled radius of the coaxially positioned rigid disks for vari-
ous values of the singularity position within the gap between the two
disks. The correction factor increases monotonically upon increasing
the size of the disks because the rotational motion of the confined par-
ticle becomes more restricted. In the limit of infinitely large disks, the
correction factor asymptotically tends to the value given by Eq. (61).

FIG. 7. Contour plots of the amplitude of the scaled azimuthal velocity induced by a
rotlet singularity acting between two infinitely extended no-slip walls. Again, the
scaled azimuthal velocity is defined as V/ ¼ v/=ðL=ð8pgR2ÞÞ.

FIG. 8. Scaled correction factor stated by Eq. (61) vs R/H for various singularity
positions along the axis of two coaxially positioned rigid no-slip disks. Horizontal
dashed lines correspond to the scaled correction factors inside an infinitely
extended channel. The lines shown in gray displays the scaling law k2 � ðR=HÞ3
in the range of small values of R� H (cf. Appendix C for the derivation of this
scaling relation).
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1. Superposition approximation

In the presence of two sufficiently separated confining bound-
aries, the correction to the hydrodynamic mobility can sometimes be
approximated by superimposing the individual contributions arising
from each boundary.94–100 This superposition approximation has orig-
inally been introduced by Oseen101 to estimate the translational hydro-
dynamic mobility in a channel bounded by two plates. In this
approach, the scaled correction factor can be approximated by

kSup2 ¼ R�3 n�3� k1 n�ð Þ þ n�3þ k1 nþð Þ
� �

; (64)

wherein n6 ¼ 1
2 6h
� �

=R with k1 representing the scaled correction
factor near a single disk given by Eq. (39). In particular, near the upper
wall, a Taylor expansion around h¼ 1/2 leads to

kSup2 ¼ 1
8
��3 þ k1 R�1ð Þ þ O �ð Þ: (65)

Figure 9 displays the evolution of the percentage relative error
committed by using Oseen’s superposition approximation. We observe
that the error increases monotonically with the system size and reaches
its maximum value in the limit R!1. In particular, the error attains
its extreme value in the mid-plane of the channel for h¼ 0, where the
MPRE amounts to about 11%. The latter value is remarkably lower
than the one previously obtained for axisymmetric translational motion
along the axis of two coaxially positioned rigid no-slip disks81 for which
the MPRE was found to be as high as 55% in the mid-plane.
Consequently, the superposition approximation can be employed to
estimate the rotational mobility between two confining disks without
significantly compromising the accuracy of the prediction.

IV. CONCLUSIONS

To summarize, we have presented an analytical and semi-
analytical theory to quantify the low-Reynolds-number flow induced
by a point-torque singularity acting near a single disk or between two

coaxially positioned rigid disks, respectively, satisfying no-slip bound-
ary conditions on the surfaces of the disks. The rotlet is assumed to be
located on the axis of symmetry of the disks with the torque directed
along that axis. We have formulated the solution of the hydrodynamic
equations as mixed-boundary-value problems, which we subsequently
reduced into systems of dual integral equations with Bessel-function
kernels. On the one hand, we have demonstrated that, near a single
disk, the resulting integral equation can appropriately be transformed
into a classical Abel integral equation that admits a unique solution.
On the other hand, we have shown that, between two coaxially posi-
tioned disks, a system of two Fredholm integral equations of the first
kind arises. For its solution, we have approximated the integral by
standard middle Riemann sums reducing the dual integral equations
into a linear system of equations amenable to immediate inversion
using standard numerical approaches.

Moreover, we have made use of the derived solution of the flow
problems to probe the effect of confinement on the rotational hydro-
dynamic mobility of a small colloidal particle through which the tor-
que is exerted on the fluid. More importantly, we have assessed the
accuracy and reliability of Oseen’s superposition approximation,
which is commonly employed to predict the rotational mobility in
confined geometries. We have found that the maximum percentage
relative error of Oseen’s approximation is only about 11% in the mid-
plane of the channel, suggesting that this simplistic approximation
could generally be employed to estimate the rotational mobility
between two finite-sized disks.

The systems addressed in the present study may find useful appli-
cations in various biologically and technologically relevant processes.
On the one hand, the solution of the flow problem for a rotlet singular-
ity acting near a finite-sized disk may be employed in the context of
micromixing, as a small-scale analog to a magnetic stir bar mixer
driven by an external rotating magnetic field. On the other hand, the
solution inside a gap bounded by two coaxially positioned disks may
prove to be useful, for instance, in the modeling of ionic transport in
small-scale capacitors.

The present results may be extended to further explore the rota-
tional motion of a spherical particle of finite size, with a radius compa-
rable to the radii of the confining disks. For that purpose, the solution
of the flow problem could, in principle, be formulated in bipolar coor-
dinates. Another possible extension of the present work could be to
address the general problem of rotational motion near one or two no-
slip disks for arbitrary positioning of the singularity and arbitrary ori-
entation of the torque. These steps could be the subject of possible
future investigations.
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APPENDIX A: SOLUTION OF THE INTEGRAL
EQUATION (20)

In this Appendix, we show that the solution of the resulting
integral equation (20) can be cast in the form of solution of a

FIG. 9. Percentage relative error of the scaled correction factor of the rotational
hydrodynamic mobility between two coaxially positioned rigid no-slip disks as
obtained using the simplistic superposition approximation stated by Eq. (64) in com-
parison with the exact formula given by Eq. (58).
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classical Abel integral equation. The general form of an Abel inte-
gral equation can be presented as102ðx

0

/ðsÞ
x � sð Þ

1
2

ds ¼ gðxÞ; (A1)

the solution of which is given by

/ðxÞ ¼ 1
p
d
dx

ðx
0

gðuÞ
x � uð Þ

1
2

du: (A2)

Using the changes of variables s ¼ t2 and x ¼ r2, Eq. (20) can
be written as ðx

0

s�
1
4 x̂ s

1
2ð Þ

x � sð Þ
1
2

ds ¼ 2pð Þ
1
2x

1
2f x

1
2ð Þ: (A3)

By identification with Eq. (A1), we get /ðsÞ ¼ s�
1
4 x̂ s

1
2ð Þ and

gðxÞ ¼ ð2pÞ
1
2x

1
2f x

1
2ð Þ. Using the solution form given by Eq. (A2), we

then obtain

x�
1
4x̂ x

1
2ð Þ ¼ 2

p

� �1
2 d
dx

ðx
0

u
1
2f u

1
2ð Þ

x � uð Þ
1
2

du: (A4)

Next, applying the change of variable r ¼ x
1
2, the latter equa-

tion can readily be expressed as

x̂ðrÞ ¼ 1
2

2
pr

� �1
2 d
dr

ðr2
0

u
1
2f u

1
2ð Þ

r2 � uð Þ
1
2

du: (A5)

Finally, the change of variable v ¼ u
1
2 yields

x̂ðrÞ ¼ 2
pr

� �1
2 d
dr

ðr
0

v2f ðvÞ
r2 � v2ð Þ

1
2

dv; (A6)

which exactly corresponds to Eq. (21) rewriting r¼ t.

APPENDIX B: COMPARISON WITH NUMERICAL
CALCULATIONS USING THE FINITE-ELEMENT
METHOD

To confirm our analytical solutions, we perform numerical
simulations using the finite-element method. Formulated in cylin-
drical coordinates, v ¼ ðvr ; vh; vzÞ, we can take advantage of the
fact that the solution is constant in angular direction, @hv ¼ 0. This
reduces the problem to a two-dimensional equation formulated in
the r/z-plane for the angular component vh only. Since there is also
no coupling to the pressure field, the problem reduces to a scalar
one. In the following, we illustrate our approach for the two-disk
geometry and denote by

X ¼ ðð0;RmaxÞ � ð�Zmax;ZmaxÞÞn
ðð0;RÞ � fH=2g [ ð0;RÞ � f�H=2gÞ; (B1)

the numerical domain, artificially restricted to 0 < r < Rmax and
�Zmax < z < Zmax . To limit the impact of the artificial outer
boundaries, we set Rmax ¼ Zmax ¼ 6:625. We could not identify a
significant effect by further extending these limits.

The variational formulation of the problem is then given by103

ð
X
gr

@vh

@r
@/
@r
þ @vh

@z
@/
@z
þ 1

r
vh/

� �
dr dz ¼ Fð/Þ; (B2)

8/ 2 H1
0ðX;DÞ, where we denote by H1

0ðX;DÞ the space of square
integrable functions with weak derivatives that are zero on the two
disks D ¼ ð0;RÞ � f�H=2g [ ð0;RÞ � fH=2g. On the right-hand
side of Eq. (B2), the problem is driven by a Dirac form as

Fð/Þ ¼ /ðrhÞ; (B3)

centered in a point close to the z-axis rh ¼ ðr0; zhÞ, zh ¼ 1=128.
The equation is discretized with quadratic finite-elements

using piecewise quadratic elements on a quadrilateral mesh104 fea-
turing about 1 750 000 unknowns. All computations are performed
in the finite-element software library Gascoigne 3D.105

APPENDIX C: MOBILITY BETWEEN TWO DISKS
IN THE LIMIT R� 1

In the range of small values of R� 1, we attempt to find an
approximate expression of the scaled correction factor. For t � 1,
it follows from Eqs. (19) and (51) that K�ðtÞ � t

1
2 and SðtÞ � t�

1
2,

respectively. Therefore, to ensure the convergence of the system
of integral equations (50) at the lower limit t¼ 0, we require that
the unknown functions f̂ 1ðtÞ and f̂ 2ðtÞ scale (at least) as t

1
2 as

t ! 0.
We now use the ansatz f̂ 1ðtÞ ¼ a1t

1
2 and f̂ 2ðtÞ ¼ a2t

1
2, where a1

and a2 are two real numbers to be subsequently determined.
Inserting these expressions into Eq. (50) evaluated at r ¼ bR, with
b 2 ð0; 1Þ, performing analytically the integration, expanding the
resulting expressions into Taylor series of R, and solving for a1 and
a2 yield

a1 ¼ �
p
2

� �1
2 bR

1
2
þ h

� �3 ; a2 ¼
p
2

� �1
2 bR

1
2
� h

� �3 : (C1)

Next, by substituting the above expressions of f̂ 1ðtÞ and f̂ 2ðtÞ
into Eq. (58), evaluating the integral analytically and performing a
series expansion about R¼ 0, we obtain

k2 ’
R2

2
2
p

� �1
2 a2

1
2
� h

� �3 �
a1

1
2
þ h

� �3

0
B@

1
CA: (C2)

Finally, by inserting the expressions of a1 and a2 stated by Eq.
(C1) into Eq. (C2), the correction factor in the range R� 1 can be
obtained as

k2 ’
bR3

2
1
2
� h

� ��6
þ 1

2
þ h

� ��6 !
: (C3)

By setting b ¼ 5=6, the latter approximate expression is found to be
in good agreement with the numerical results.
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