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Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf

40225 Düsseldorf, Germany

received 22 March 2021; accepted in final form 27 May 2021
published online 28 July 2021

Abstract – The survival chance of a prey chased by a predator depends not only on their relative
speeds but importantly also on the local environment they have to face. Here, we propose a simple
predator-prey model for a situation in which both the escaping prey and the chasing predator have
to surmount an energetic barrier. Different barrier-assisted states of catching or final escaping are
classified and suitable scaling laws separating these two states are derived. We discuss the effect
of fluctuations on the catching times and determine states in which catching or escaping is more
likely. We further identify trapping or escaping states which are determined by hydrodynamics
and chemotactic interactions. Our results are of importance for both microbes and self-propelled
unanimate microparticles following each other by non-reciprocal interactions in inhomogeneous
landscapes.

Copyright c© 2021 EPLA

Introduction. – The survival chances of animals de-
pend crucially on their ability to find food and to es-
cape from predators. In the macroscopic world, there is
a plethora of examples where carnivores follow their prey
trying to catch it but the prey tries to escape: wolf and
deer, lion and wildebeest, shark and fish, etc. There are
also microscopic examples such a droplets chasing each
other [1], which will act as the central motivation for this
study. Aside from stamina, the crucial parameter which
determines the outcome of a chasing process are the two
speeds v1 and v2 of the prey and the predator. Ideally,
on the plane or in three-dimensional space, when the prey
flees straight away from the predator, there will be catch-
ing for v1 < v2 and escaping for v1 > v2. This will be
different, however, in an inhomogeneous landscape where
the local speed depends on the details of the environ-
ment [2–4]. In particular, an obstacle which will be felt in
a different manner by predator and prey will make the sit-
uation more complex such that the simple speed criterion
will break down. Imagine a wolf following a deer when
both come close to a river which can be jumped over by
the deer but not by the wolf (the wolf has to slowly swim).
Here the obstacle couples differently to predator and prey
and this can decide after all the outcome of the chasing.

While a lot of previous work has modelled predator-prey
coupling by coarse-grained density fields [5–9] or by ex-
plicit “particles” on a lattice [10–13], agent-based models

(a)E-mail: Fabian.Schwarzendahl@hhu.de (corresponding author)

with explicit interacting particles which follow each other
on continuous individual trajectories [14–17] were much
less considered. The latter models can particularly be de-
signed for the mesoscopic world of phagocytes, predatory
microbes moving in a fluid or other biological systems [18]
in an overdamped way such that inertial effects are ab-
sent. Recently there has been a lot of activity in unan-
imate predator-prey systems designed by using synthetic
colloidal particles which interact in a non-reciprocal way.
Different realizations involve ion exchange resins build-
ing so-called “modular microswimmers” [19–23], moving
droplets following each other [1,24], predator-prey–like en-
tities for active colloidal molecules [25–29], pairs of dust
particles in a complex plasma [30,31], and biomimetic ac-
tive micromotor systems [32]. Even details of the parti-
cle perception can be programmed in synthetic colloidal
model systems [33,34]. All of these systems naturally
experience an inhomogeneous environment (such as con-
finement, external light intensity, etc.) when exhibiting
predator-prey characteristics and are thus ideal test cases
to study the effect of an energetic barrier on predator-prey
dynamics.

In this letter we explore the effect of an energetic barrier
on the escape dynamics of a predator-prey system within
a simple model of two active particles in the presence of
a parabolic potential energy barrier. Both the prey and
the predator surmount the barrier but there are different
coupling coefficients which make it easier for the prey re-
spective to the predator to overcome the barrier. Here
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we propose a one-dimensional model which though simple
is general enough to provide an ideal framework to clas-
sify different characteristic states for escape and catch-
ing in the presence of an obstacle. This model involves
overdamped dynamics and is therefore likewise applicable
for animate predator-prey systems as well as to unani-
mate self-propelled colloidal pairs with non-reciprocal in-
teractions in the case they have to surmount an energetic
barrier. The model is partially analytically soluble but
flexibly extensible to more complicated couplings such as
hydrodynamic interactions and chemotactic sensing.
We calculate the state diagram of escaping and catch-

ing situations in the parameter space and identify scal-
ing laws for the catching time and catching position at
the transition between catching and escaping. Next, fluc-
tuations are included into the motion of both predator
and prey. We compute the state diagram and we discuss
the effect of noise strength. We then include hydrody-
namic and chemotactic couplings between predator and
prey and show their effect on the chasing outcome. We
finally discuss the relevance of our results for both ani-
mate and unanimate particles following each other at low
Reynolds number by non-reciprocal interactions.

Ideal predator-prey model. – We consider a one-
dimensional model of predator and prey which are cross-
ing a potential barrier. Figure 1(i) shows a schematic of
prey x1(t) and predator x2(t) in the presence of their re-
spective potential barrier U(x1,2), where both are moving
into the positive x-direction. Since we are motivated by
microswimmers we are working in the low Reynolds num-
ber limit and assume the motion of predator and prey to
be overdamped. The equations of motion for the position
of the prey and the position of the predator are given by

ẋ1 = v1 + α1x1, (1)

ẋ2 = v2 + α2x2, (2)

where v1, v2 are the self-propulsion speeds, and α1, α2

are coupling constants to the respective potential barrier.
Equations (1), (2) have the solutions

x1(t) =
1

α1
((v1 + α1x1(0))e

α1t − v1), (3)

x2(t) =
1

α2
((v2 + α2x2(0))e

α2t − v2), (4)

with initial conditions x1,2(0). We use τ = 1/α2 as a
natural unit of time and ξ = v2/α2 as a natural length
scale, which are the physical time and length scales related
to the predator.
Single active particles similar to our equation (1) which

are crossing a barrier have been studied theoretically in
one-dimensional landscapes [35–39]. An experimentally
realizeable system that is expected to have similar dynam-
ics to our equations (1), (2) consists of two self-propelled
droplets that chase each other such as in [1], and are con-
fined into a one-dimensional microfluidic channel [24,40].

Fig. 1: Ideal predator-prey model. (i) Schematic of the prey
(x1) and predator (x2) in the presence of a potential barrier
U(x) as a function of the reduced one-dimensional coordinate
x/ξ. The black solid line shows the barrier of the prey and the
blue dashed line shows the barrier of the predator. (ii) State di-
agram with initial conditions x1(0) = −ξ/3 and x2(0) = −ξ/2
showing catching and escaping regions for varying v1/v2 and
α1/α2. For classification see table 1. (iii)–(v) State diagrams
for different initial conditions. ((iii) x1(0) = −ξ/3, x2(0) =
−3ξ/2; (iv) x1(0) = ξ/4, x2(0) = −ξ/4; (v) x1(0) = ξ/2,
x2(0) = ξ/4).)

Additionally, the microfluidic channel has a physical bar-
rier, that the droplets have to overcome, this physical bar-
rier acts as potential barrier by means of the gravitational
force. Here, the self-propulsion velocities can be tuned by
the chemical compositions of the surrounding medium [41]
and the coupling constants of the potential barrier can be
tuned via the droplets’ size. A barrier can also be realized
by viscosity gradients in a surrounding fluid medium or
external flow fields created in a microfluidic device [42].

In the following we want to distinguish the scenarios in
which the predator can catch the prey and where it can
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Table 1: Classification of catch (Ca.) and escape (Es.) cases, where x1 is the prey and x2 is the predator.

Case Description Initial conditions Catching condition

Ca. I Caught while summiting the barrier x1(0) < 0, x2(0) < x1(0) x∗ > x1(0)

Ca. II Caught after summiting the barrier x1(0) < 0, x2(0) < x1(0) x∗ > 0

Ca. III Caught after prey summits x1(0) > 0, x2(0) ≤ 0 x∗ > 0

Ca. IV Caught descending barrier x1(0) > 0, x2(0) ≥ 0 x∗ > 0

Ca. V Caught descending barrier x1(0) < 0, x2(0) < x1(0) x∗ < x1(0)
without summiting

Es. I Both are summiting the barrier x1(0) < 0, x2(0) < x1(0) x1(∞) = x2(∞) = ∞

Es. II Both descending in positive direction x1(0) > 0, 0 < x2(0) < x1(0) x1(∞) = x2(∞) = ∞

Es. III Both descending in opposite directions x1(0) > 0, x2(0) < 0 x1(∞) = ∞, x2(∞) = −∞

Es. IV Both descending in negative direction x1(0) < 0, x2(0) < x1(0) x1(∞) = x2(∞) = −∞

Es. V Only prey is summiting the barrier x1(0) < 0, x2(0) < 0 x1(∞) = ∞, x2(∞) = −∞

not. In order to determine catching we use the catching
time t∗ given by the condition

x1(t
∗) = x2(t

∗). (5)

Additionally, we use the catching position x∗ = x1,2(t
∗),

which shows where the prey is caught. By considering the
initial conditions and long-time limits of eqs. (3), (4) we
can categorise five different catching cases and five differ-
ent escaping cases which are summarized in table 1.
Figure 1(ii) shows the catching and escaping states for

varying α1/α2 and v1/v2 with initial conditions x1(0) =
−ξ/3 < 0 and x2(0) = −ξ/2 < 0 (here the condition in
eq. (5) was solved numerically). We find three different
catching states, where in Ca. I the prey is caught while
summiting the barrier, in Ca. II the prey is caught after
summiting the barrier and in Ca. V the prey is caught de-
scending the barrier without summiting it. Furthermore,
we find one escaping region (Es. I), where both are sum-
miting the barrier.
We continue by analyzing the lines dividing the respec-

tive regions in fig. 1(ii). The line separating the regions
Ca. I and Ca. II is determined by the fact that catching
happens on top of the barrier, meaning that x∗ = 0. In
region Ca. I the prey can cross the barrier, while in Ca. V
it cannot. Therefore, the line separating regions Ca. I and
Ca. V can be determined from the long-time limits which
gives v1

v2

= −x1(0)
α1

α2

.
The transition from the escape region Es. I and the

catching regions was determined numerically. When we
approach Es. I from below while increasing v1/v2, we
find that at the transition line the catching time stays
finite. For large α1/α2 this can be rationalized since
we are going from Ca. I to Es. I. Here, the dividing
line between catching and escaping approaches the line
at which x∗ = 0, meaning that catching happens before
the barrier, or the prey escapes. Hence, the catching

time stays finite since t(x∗ = 0) is finite. This can
also be seen when we solve eq. (5) for the special case
α1 = 2α2 = 2α which stays finite (see Supplementary
Material Supplementarymaterial.pdf (SM)).

On the other hand, as we approach the escape region
from the left (from Ca. II), we find that catching time
and position both diverge. To obtain an understanding
of the scaling of the divergence, we approximate our so-
lutions (eqs. (1), (2)) for barrier-dominated motion (see
SM). We find that as we approach α1 → α2, the catching
time scales as t∗ ∼ 1/(α1 − α2). Intuitively, for α1 > α2

the self-propulsion velocity of the predator is not suffi-
cient anymore to catch the prey since the motion of both
predator and prey is dominated by them descending the
barrier. Similarly, as we come closer to from Ca. II to
Es. I the catching dynamics becomes dominated by the
potential barrier and the importance of the self-propulsion
decreases. Here, it is interesting to see what happens at
α1 = α2 = α when it is approached from below. This
case can be solved exactly (see SM) where we find that t∗

diverges as α → v2−v1

x1(0)−x2(0)
. Going along the line divid-

ing the regions Ca. II and Es. I the point α1 = α2 = α
is where the catching time starts to diverge and is thus
consistent with the previous analysis.
Furthermore, we analysed the scaling of the relative dis-

tance, which to first order reads

x1(t)− x2(t) ≈ A(t− t∗) + . . . . (6)

The prefactor A scales in the limit α1 → α2 as lnA ∼
1/(α1 − α2) (see SM for details). Similar to the catching
time, the relative position of predator and prey diverges,
since their dynamics is dominated by them descending the
potential barrier.
We continue by analyzing different initial condi-

tions, that lead to other catching and escape scenarios.

48005-p3



Fabian Jan Schwarzendahl and Hartmut Löwen

Figure 1(iii) shows the state diagram for x1(0) = −ξ/3
and x2(0) = −3ξ/2, where we find the catching case Ca. V
in which we have catching while both are descending the
barrier without summiting and the escape cases Es. IV,
where both descend into the negative direction, as well
as the Es. V case where only the prey is able to summit
the barrier. Here, the dividing lines between all respec-
tive regions were determined from the long-time limits of
solutions in eqs. (3), (4).

Figure 1(iv) has initial conditions x1(0) = ξ/4 and
x2(0) = −ξ/4 where we have one catching case Ca. III
in which the prey is caught after summiting and escaping
case Es. III, where predator and prey descend into op-
posite directions. Here, the dividing line between Ca. III
and Es. III was determined numerically, however, the scal-
ing arguments described above are still valid. Similarly,
fig. 1(v) with initial condition x1(0) = ξ/2 and x2(0) = ξ/4
has one catching case Ca. IV, where the catching hap-
pens while descending the barrier and one escape scenario
Es. II, where both are descending in the positive direction
and the above scaling arguments still hold.

In the following we will extend our ideal predator-prey
model (eqs. (1), (2)) to account for fluctuations, chemo-
tactic and hydrodynamic interactions. Here, we will re-
strain ourselves to the initial conditions x1(0) = −ξ/3
and x2(0) = −ξ/2, since the essential phenomena of our
model are captured within these conditions.

Predator-prey model with fluctuations. – We now
extend our predator-prey model to account for fluctua-
tions of both predator and prey. Our equations of mo-
tion are

ẋ1 = v1 + α1x1 + f1, (7)

ẋ2 = v2 + α2x2 + f2, (8)

where f1 and f2 are Gaussian random forces with 〈fi(t)〉 =
0 and 〈fi(t)fi(t

′)〉 = 2Dδ(t − t′). Here, D is the noise
strength and δ(∗) is the Dirac-delta function. The ran-
dom forces introduced here can stem from fluctuations of
a surrounding fluid, however, they do not need to obey a
fluctuation dissipation theorem since they can also be in-
troduced by biological fluctuations (in the case of biologi-
cal predator and prey). For fluctuating predator and prey
the catching times and positions are now distributions by
means of the random forces, f1 and f2 such that we need
to use the mean catching time and the mean catching po-
sition to determine catching and escaping. By numerically
integrating eqs. (7), (8) and taking mean values for catch-
ing time and position, we find the state diagram shown in
fig. 2(i) where we used a fixed noise strength. The noisy
behavior at the transition between the respective regions
can be seen as an error bar on our numerical calculations.
Similar to the situation without noise (fig. 1(ii)), we find
three catching and one escape scenario, however, the rel-
ative size of the regions is changed by noise. Here, the
fluctuations can help the predator to catch the prey.

To further investigate the effect of fluctuations we nu-
merically solved eqs. (7), (8) and extracted the catching
time distributions shown in fig. 2(ii) where we show a
distribution for each catching or escaping case found in
fig. 2(i). For the catching case Ca. I we find a broad dis-
tribution that has its maximum at t∗/τ ≈ 0.1 and then
exhibits am shoulder towards higher catching times. In
the case of Ca. II we find a bimodal distribution, with
a maximum at t∗/τ ≈ 3 stemming from the determinis-
tic dynamics and at t∗/τ ≈ 0.1 induced by fluctuations,
which means that the prey is caught before summiting. In
the case of Ca. V the distribution only has a single max-
imum and is centered around t∗/τ ≈ 0.1. For Es. I we
find that fluctuations can cause catching for early times,
however, we find a large peak at t∗/τ ≈ 100, which corre-
sponds to escaping as this is our maximal simulation time.
Note, that for all four cases we find a peak at t∗/τ ≈ 100,
which should be categorised as escaping. For the catching
cases Ca. I, Ca. II and Ca. V this is a “lucky” fluctuation-
induced escaping of the prey.

Next, we test the dependence of our results on the
strength of the noise D. Figure 2(iii) shows the catch-
ing time distribution for the case Ca. II (α1/α2 = 0.5,
v1/v2 = 1.5) at different noise strength. For small noise
strength (D = 0.002ξ2/τ) we find a sharp peak, and here
fluctuations have minor effects. Going to higher values
(D = 0.02ξ2/τ) the distribution becomes bimodal and
then (D = 0.2ξ2/τ , D = 2ξ2/τ) spreads out to very
low catching time values, with an approximate scaling
P (t∗) ∼ (t∗)−3/2. For the latter, the catching process
is dominated by fluctuations and the problem reduces to
finding the first hitting time of a one-dimensional Brow-
nian particle, which has the known scaling with an expo-
nent of −3/2 [43], consistent with out finding. Again, for
very large times (t∗/τ ≈ 100), all probability distributions
show a peak, which signals escaping by fluctuations.

Continuing, we study the mean catching time for vary-
ing coupling ratio in fig. 2(iv). In the small noise limit,
(D = 0.002ξ2/τ) the catching time diverges as we ap-
proach α1 → α2, as also seen in the deterministic case
(D = 0) (note that the plateau value for D = 0.002ξ2/τ
corresponds to the maximal simulation time). Going to
higher noise strength the catching time is still enhanced
for α1 → α2, however, we find that the plateau value of
mean catching time for α1 > α2 is decreased, represent-
ing the fact that fluctuations can lead to catching. Inter-
estingly, for D = 0.02ξ2/τ we find a small decay of the
plateau value of the catching time for (α1 − α2)/α2 → 1.
This is due to the fact that for larger α1 the prey needs a
longer time to overcome the barrier and thus there is an
enhancement of catching due to noise before crossing the
barrier.

Chemotactic and hydrodynamic interactions. –

To make a connection to microswimmers we study our
predator-prey system in the presence of chemotactic and
hydrodynamic interactions. Artificial droplet swimmers
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Fig. 2: Predator-prey model with fluctuations. (i) State diagram for different catching and escape cases for varying α1/α2

and v1/v2 (fixed D = 0.02ξ2/τ). The classification can be found in table 1. Stars show the values used for the representative
catching time distributions in (ii). (ii) Representative catching time distribution for one example of each catching and escape
case found in (i) (fixed D = 0.02ξ2/τ). (iii) Catching time distribution for different values of noise strength D. Black solid line
shows a P (t∗) ∼ (t∗)−3/2 scaling. (iv) Mean catching time as a function of the relative coupling parameters for different noise
strength D, at v1/v2 = 1.75.

Fig. 3: State diagrams for models including chemotaxis and hydrodynamic interactions for varying v1/v2 and α1/α2. (i) Chemo-
taxis. (ii) Force monopole. (iii) Pusher-type swimmer. (iv) Puller-type swimmer. State classification is according to table 1.

such as in [1,24,40] interact via chemotaxis and hydrody-
namic interactions have been shown to play an important
role in suspensions of microswimmers [41,44–49].

We consider the situation where predator and prey in-
teract through a chemical field. Both secrete a chemical
which induces a force on the respective other swimmer and
we neglect the effects of a confining channel (see SM for
details [14,25,50]). We assume that the forces are propor-
tional to the gradient of the chemical field which quickly
relaxes to its stationary distribution. This gives rise to the

following equations of motion:

ẋ1 = v1 + α1x1 +A1
1

(x1 − x2)2
, (9)

ẋ2 = v2 + α2x2 +A2
1

(x1 − x2)2
, (10)

where A1 and A2 control the strength of chemoattraction
or chemorepulsion.
Figure 3(i) shows the resulting state diagram for catch-

ing and escaping, where we used A1 = 0.001ξ3/τ and
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A2 = 0.02ξ3/τ . The catching and escaping regions that
we find are the same as for the ideal model (see fig. 1(ii)),
however, the relative sizes of the regions are changed
by chemotactic interactions. Specifically, chemotaxis en-
hances the Ca. I case and reduces the extend of the es-
caping region Es. I, due to effective attraction between
predator and prey.
Next, we consider the effect of a fluid surrounding preda-

tor and prey leading to hydrodynamic interactions. First,
we investigate the situation in which both predator and
prey act as a force monopole, leading us to the equations

ẋ1 = v1 + α1x1 +
β

4πη

(

α2sign(x1 − x2) +
v2

|x1 − x2|

)

,

(11)

ẋ2 = v2 + α2x2 +
β

4πη

(

α1sign(x2 − x1) +
v1

|x1 − x2|

)

,

(12)

where η is the fluids’ viscosity, β is a parameter that de-
pends on the geometric details of the swimmer and sign(∗)
is the sign function (for a derivation of the interactions see
SM).
In fig. 3(ii) we show the resulting state diagram, where

we only find two cases Ca. II and Es. I (here β = 1/τ , η =
1/(τξ)). The hydrodynamic interaction between predator
and prey leads to an effective repulsion, such that it is
easier for the prey to escape, enhancing the Es. I region.
Similarly, the Ca. I and Ca. V regions vanish, since the
predator and prey are repelled, making it necessary to
first cross the border in order for predator and prey to
come close enough for catching.
In a second step predator and prey induce a hydrody-

namic flow field corresponding to a force dipole. Here, we
use the equations

ẋ1 = v1 + α1x1 +
βsign(x1 − x2)

4πη

(

α2 +
v2λ

(x1 − x2)2

)

,

(13)

ẋ2 = v2 + α2x2 +
βsign(x2 − x1)

4πη

(

α1 +
v1λ

(x1 − x2)2

)

,

(14)

where the sign of λ decides whether we have puller- (λ < 0)
or pusher-type (λ > 0) swimmers (for a derivation see
SM).
The state diagram for pusher-type swimmers (λ = 0.1ξ,

β = 1/τ , η = 1/(τξ)) is shown in fig. 3(iii). Here, the
situation is similar to the force monopole. We find one
catching region (Ca. II) and one escaping region (Es. I).
The pusher-type hydrodynamic interactions introduce an
effective repulsion between predator and prey, which gives
rise to larger catching times and subsequently the enhance-
ment of the Ca. II region. Similarly, the repulsion leads
to the fact that catching happens less often and thus an
increase of the Es. I region.
For puller-type swimmers (λ = −0.1ξ, β = 1/τ , η =

1/(τξ)) we find the state diagram shown in fig. 3(iv), which
has three catching and one escape regions, similar to the

ideal case (fig. 1(ii)). Here, the catching regions are en-
hanced since the puller-type hydrodynamic interactions
give an effective attraction between predator and prey [51].
Interestingly, the Ca. V region is larger than in the ideal
case, which shows that the attraction between predator
and prey enhances catching before the barrier.

Conclusions. – In conclusion, we have introduced a
one-dimensional predator-prey model in the presence of a
potential barrier. We classified different catching and es-
caping states, calculated state diagrams displaying the oc-
currence of these states and determined scaling laws. We
extended our model to account for fluctuations, computed
a state diagram and showed that it qualitatively agrees
with our ideal model. Here, the relative size of the catch-
ing regions is increased, since catching can be induced by
fluctuations. We varied the noise strength and discussed
the effect on catching times. Furthermore, we included
chemotactic and hydrodynamic interactions. Chemotac-
tic and puller-type swimmer interactions give a qualita-
tively similar state diagram as our ideal model, with an
enhancement on catching states due to effective attrac-
tive interactions. On the other hand, pusher-type swim-
mers and hydrodynamic monopoles decrease the catching
regions and enhance escaping, due to effective repulsion
between predator and prey.
Our model makes testable predictions about the out-

comes of predator-prey dynamics in the presence of a po-
tential barrier in one dimension. A possible experimental
realization of our model consists of two active droplets
chasing each other [1] and encountering a physical bar-
rier. Other realizations of barriers could be achieved by
flow fields using microfluidic devices or by means of viscos-
ity gradients. Furthermore, our model is relevant to mi-
crobial systems with predator-prey dynamics, that stem
from chemotactic interactions.
In future work we aim to extend our model to two-

dimensional landscapes [42,52,53], which might be realized
by viscosity gradients [54–56] or external flow fields [57]
and account for more realistic microswimmer models.
Also, we will include inertial effects [58–61] to make a con-
nection with macroscopic predator prey dynamics.
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[45] Zöttl A. and Stark H., J. Phys.: Condens. Matter, 28

(2016) 253001.
[46] Theers M., Westphal E., Qi K., Winkler R. G. and

Gompper G., Soft Matter, 14 (2018) 8590.
[47] Bechinger C., Di Leonardo R., Löwen H., Reich-
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