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We study a Langevin equation describing the stochastic motion of a particle in one dimension with coordinate
x, which is simultaneously exposed to a space-dependent friction coefficient y (x), a confining potential U (x)
and nonequilibrium (i.e., active) noise. Specifically, we consider frictions y(x) = y + y1|x|” and potentials
U (x) o |x|" with exponents p = 1,2 and n = 0, 1, 2. We provide analytical and numerical results for the particle
dynamics for short times and the stationary probability density functions (PDFs) for long times. The short-time
behavior displays diffusive and ballistic regimes while the stationary PDFs display unique characteristic features
depending on the exponent values (p, n). The PDFs interpolate between Laplacian, Gaussian, and bimodal
distributions, whereby a change between these different behaviors can be achieved by a tuning of the friction
strengths ratio yy/y;. Our model is relevant for molecular motors moving on a one-dimensional track and can
also be realized for confined self-propelled colloidal particles.
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I. INTRODUCTION

Particles moving under the influence of a stochastic driving
force in one dimension [1] are a fruitful laboratory for the
exploration of the statistical mechanics of active systems,
since they allow, in suitably chosen cases, for an analytic
treatment. Following the initial works on one-dimensional
active particles [2,3], the problem is currently receiving in-
creased attention, since the results can be of relevance for
various soft matter and biological systems in a larger sense
[4-8]. One-dimensional models for active particles, in spite
of their inherent simplicity, are indeed of relevance even for
the description of collective effects [9—12].

A standard type of model under scrutiny is the persistent
Brownian motion, the persistence being forced by activity.
Maybe the simplest model for an active particle in one dimen-
sion is a discrete run-and-tumble process where the direction
of self-propulsion discretely flips, i.e., the driving is assured
by a random directional velocity, see, e.g., Refs. [10,13-19].

It is defined by the Langevin equation

x(1) = voo (), (D

where the stochastic term 7(t) = vgo (¢) is a telegraphic noise
with values vy, with the sign flipped at a given tumbling rate.
In particular, this model has been explored for a single particle
in the presence of external potentials [20-22] and random
disorder [10,16].

On a second level of complexity, one can consider a Brow-
nian particle self-propelled along its orientation such that only
the projection on the x axis is contributing to the actual parti-
cle propulsion but the orientation diffuses on the unit circle or
unit spheres [23]. These models of active Brownian particles
were extensively discussed in the literature [7] and can be
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realized by self-propelled Janus colloids in channel-like con-
finement [24—-26]. For low activity, the fluctuation-dissipation
theorem which couples the strength of the Brownian noise
and the friction via the bath temperature should be fulfilled.
Hence, in the limit of vanishing activity, the stationary proba-
bility density function (PDF) is a Boltzmann distribution. Also
simpler variants of these models where the drive just enters via
colored noise, often called active Ornstein-Uhlenbeck parti-
cles, have been explored in one dimension [27-32].

A third complementary approach starts from Langevin
equations coupling an active white noise term to a spatially
dependent diffusion coefficient [33], or friction [34,35]. The
basic idea here is the gradient in the friction induces a drift
velocity which drives the particle at constant noise. In near-
equilibrium situations, a spatial dependence of the friction
enforces a spatial dependence of the noise strength according
to the fluctuation-dissipation theorem which guarantees a re-
laxation of the PDF to the stationary Boltzmann distribution.
Here we deliberately abandon the validity of the fluctuation-
dissipation theorem and therefore postulate a nonequilibrium
noise in the presence of a friction gradient to define a nonequi-
librium model with inherent activity. We refer to this kind of
noise as “active” noise in the sequel. The equilibrium limit
of a stationary Boltzmann distribution is reached if the fric-
tion gradient vanishes. Though these kind of nonequilibrium
noise models were proposed more than a decade ago [34,35]
and bear interesting descriptions for the biologically moti-
vated case of molecular motors moving on a one-dimensional
track [36-41] such as the action of chromatin remodeling
motors on nucleosomes [42], they have not yet been studied
systematically.

Here we propose a class of one-dimensional models
with active noise in different friction gradients and external
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confining potentials which we solve analytically. Our moti-
vation to do so is threefold: first, any exactly soluble model
in nonequilibrium is of fundamental importance for a basic
understanding of particle transport. Second, we obtain quali-
tatively different PDFs which can be categorized within these
active noise models. Third, our results are relevant for ap-
plications in the biological context and for artificial colloidal
particles.

The model we discuss is based on a Langevin equation
of a particle with nonequilibrium noise and space-dependent
friction in one dimension with a spatial coordinate x. The
particle is exposed to a space-dependent friction coefficient
y(x) = Yo + v1|x|? and an external potential U (x) o< |x|" with
exponents p = 1,2 and n = 0, 1, 2. For short times, we pro-
vide analytical results for the mean displacement and the
mean-squared displacement. Depending on the parameters,
we find a crossover from an initial diffusive to a ballistic
regime for p=1,2 and n # 0 as typical for any model of
a single free active particle. For long times and n > 0, we
obtain the stationary PDFs from the corresponding Fokker-
Planck equation. The PDFs are non-Boltzmannian and display
arich variety of behaviors: from Gaussian-like to Laplace-like
distributions, and variants of bimodal-Gaussian-like distribu-
tions. A change between these different behaviors can be
achieved by a tuning of the ratio of the friction parameters
10/ y1. To test the robustness of our results, we evaluate the
effect of additional thermal noise [34,35].

As already mentioned, our proposed model is relevant for
molecular motors moving on a one-dimensional track and can
also be realized for confined self-propelled colloidal particles.
In fact, colloids can be exposed to almost any arbitrary ex-
ternal potential by using optical fields [43—45] and almost
any kind of noise can externally be programed by external
fields [46,47]. A space-dependent friction can be imposed be
a viscosity gradient in the suspending medium on the particle
scale, a situation typically encountered for viscotaxis [48-51].

II. A PARTICLE UNDER NONEQUILIBRIUM
NOISE: THE MODEL

Following Ref. [35], the model Langevin equation of a
single active particle on a one-dimensional trajectory x(¢), we
use in this work is given by the expression

y(@)i(r) = —U'(x) + VAE(@), 2)

in which U (x) is the confining potential, and £(¢) a Gaussian
random noise with

@) =0, E@EC)) =680 —1), 3)

and A > 0 characterizes the noise strength. The brackets (...)
denote a noise average. The Langevin equation (2) can be
rewritten in the standard multiplicative noise form as

U’ A
= YO VAL 4
yx) yx)

which we will interpret in the Stratonovich sense.

The factor y(x) in Eqgs. (2) and (4) is a space—dependent
friction force. It has been introduced in models for molecular
motors in [34] and been modeled by an expression y(x) =
1 + 6 tanh(xB) with parameters 8, 8 (0 < § < 1), a function

w(x) /

v(X)

X

FIG. 1. Sketch of the confining potential U (x) = «|x|, a linear
friction gradient y(x) = Y + yi|x| in arbitrary units.The particle,
shown by a blue dot on the x axis, is activated by noise (indicated
in red), under the influence of the potential and the friction gradient.

saturating at both large positive and negative values of the ar-
gument displaying a linear crossover zone. Aiming at analytic
results, in this work we use an algebraic expression

Y =y +nkl’ (&)

for the friction term with two parameters yy > 0 and y; > 0
and an integer exponent p > 0, which, although unbounded,
will allow us to uncover interesting properties of the sta-
tionary probability density functions. These arise when we
consider the particle in low-order polynomial confining po-
tentials which we take to be of the general form

Ux) = %|x|” (6)

with ¢ > 0 and another integer exponent n > 0 An illustration
of the situation we address is given for the case p=n =1
corresponding to a wedgelike potential U (x) = k|x| with a
friction term y (x) = yo + y1|x|, see Fig. 1.

III. SHORT-TIME BEHAVIOR

We start our discussion by determining the short-time be-
havior of the active-noise driven particle and compute the
short-time mean displacement (MD) and the mean-square
displacement (MSD) for the Langevin equation (2), as done
previously [52]. Specifically, we address the cases of a freely
moving particle, U’(x) = 0 (i.e., n = 0) and a particle moving
in the potential U (x) = (k /n)|x|" for n = 1, 2, which, respec-
tively, correspond to a particle on a (double) ramp (or, under
gravity) and in a harmonic oscillator potential.

A. Constant friction gradient

Free particle. First we consider the case of p =1, i.e.,, a
constant friction gradient acting on a free particle. Due to the
spatial dependence of the friction term, the choice of initial
position xy = x(t = 0) is important. In the immediate vicinity
of the origin, the initial motion will be that of a free Brownian
particle since yy > y1|xo|. In order to see an effect of the x de-
pendence of the friction term, we place the particle initially far
away from the origin with |xp| 3> 0 to prevent the particle to
traverse from the positive sector xop > 0 to the negative sector
xp < 0 or vice versa, so that we ignore the nonanalyticity of
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y (x) at the origin. We can then consider the case xy > 0, drop
the modulus and use separation of the variables in Eq. (2) to
find
t
4
o) = a0) + 2 (a0 ) = VA [ areay @
0

resulting in

x) =y (= v+ v +e®) (8)

c(rt) =2n (%xé + Yoxo + N/Z/ dl/é:(t/)) 9
0

with

The resulting MD (x(¢#) — xo) can then be obtained by an
expansion of the square root as

_;_ > _1yn—1
(x(1) — xo) = )/0+V1x0§(t)+m§2( 1

@m-3)!  y"'E0
X I 2mim = 21 o + et (O
where
£m(t) = <<JZ / dz/g(ﬁ) >
0
= {#M(At)m/z m even an
0 m odd,

such that the final expression for the MD, after reintroducing
the left side of the plane by symmetry, is
(x(r) — xo)

3 —  (4m—3)! v
= —sen(0) ) Ty Y (o)1

m=1

(AtY". (12)

The details of how we obtained Eq. (10) can be found in the
Appendix.

Let us now discuss this result for the MD in more detail:
first of all, if the friction gradient vanishes (i.e., in the case
y1 = 0), there is no drift at all as ensured by left-right sym-
metry. Second, for positive friction gradients y; the leading
term for short times in the MD is linear in time and in the
friction gradient —sgn(xp)y14z/2y (xo) + O(t?) resulting in a
drift velocity of —sgn(xg)y1A4/2y (xo). Interestingly the parti-
cle drift is along the negative gradient of the friction implying
that the particle migrates on average to the place where the
friction is small. This is plausible since at positions with
smaller friction there are stronger fluctuations which promote
the particle to the position of even lower friction on average.
A similar qualitative argument was put forward for col-
loids moving under hydrodynamic interactions (see Ref. [53],
p. 54), which represent another case of multiplicative noise,
see also Ref. [54]. Third, in a more mathematical sense, the
series in Eq. (13) is an asymptotic series which strictly speak-
ing does not converge for m — oo but nevertheless gives a
good approximation to the MD to any finite order in time. This
asymptotic expansion even holds if the cusp in the friction at
x = 0 were to be included as any corrections do not contribute
to the short-time expansion in powers of time.

Similarly, one can calculate the MSD, which we define as
A() = {(x(t) = x0)°). (13)
One obtains a simple relation to the MD as follows:
2y (xo)
1

A(t) = —sgn(xo) (x(1) — xo). (14)

Taking the asymptotic series as an approximation for finite
times, we can now discuss for both the MD and the MSD the
crossing times t,,_, 11, defined as the ratios A,, /A,,+1 between
two consecutive regimes scaling with A,,t™ and Am+]t’”+1.
These crossing times define the moments at which the (m +
1)""* terms of the time series start to dominate over the previous
ones [52]. In this case, the crossing times of both the MD and
MSD are given by

4(m+ 1)(2Zm — 1) ¥ (x0)*

ot = e T Dm — Dam—2) ayz )

The sequence of crossing times is monotonously decreasing,
i.e., crossing times between larger regimes always occur be-
fore those of smaller ones. This in turn means that the only
real regime for the free particle is the first one, linear in time.
The same reasoning applies to the MSD, as it is proportional
to the MD.

Generally, we characterize these regimes with time-
dependent scaling exponents

d(log;o({x(t) — x0)))
d(log,,(1))

B) = (16)

and
_ d(logy(AG))
) = d(log,o (1)

If these exponents are constant over a certain regime of time
they indicate that the MD (or the MSD) are a power-law in
time proportional to t# (or 1%).

Finally, we define a typical passage time for the particle
to reach the origin and cross the cusp in the friction at x = 0.
Beyond such a passage time our theory should not be appli-
cable any longer, as we ignored the presence of the cusp in
the friction. We decided to run the simulations for longer than
this time in order to show how the theory breaks down. Such
a typical passage time f{ is set by requiring

(x(trf)) =0, (18)

which means that on average the particle has reached the
origin. Of course this is only an estimate. The definition of
a passage time can be improved by requiring that the particle
is one standard deviation away from the origin on average

A7)

(6() +y/a5) =0 (19)

for xo > 0. This defines a second typical passage time t;
which is in general smaller than #{. Taken together, the two
passage times f{ and tz5 provide a rough estimate for the
validity of our theory.

Explicit data for the MD and MSD are shown in Figs. 2(a)
and 2(c), with the associated exponents 8(¢) and «(¢) given in
Figs. 2(b) and 2(d). The typical passage times #{ (in purple)
and #; (in orange) are also indicated by vertical lines. In the
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FIG. 2. Constant friction gradient and free particle (p,n) =
(1, 0). (a) mean displacement; (b) associated scaling exponent S(t);
(c) mean-squared displacement A(z); (d) associated scaling exponent
a(t). The length unit is [, = y,/y;, while the time unit is 7, = ll2 /A.
The initial position is xo = 5/;. Simulation data are shown with error
bars as red symbols. The theory is the solid line. The typical passage
times ¢{ and ¢ are indicated by purple and orange vertical lines.

figure we compare our analytic results (taken by summing up
the series up to a finite order of 5) with the full numerical
solution of the Langevin equation, Eq. (4), in Stratonovich
interpretation; details of the numerical method are discussed
in the Appendix.

First of all in the time regime ¢ < ¢35 the asymptotic theory
is in good agreement with the simulation data. Both theory
and simulations are dominated by the linear time dependence
in the MD and MSD as indicated by the slope of the MD
and MSD and likewise by the scaling exponents 8(¢) and «(t)
which are both close to unity. In both theory and simulation
the scaling exponents S(¢) and «(¢) first show a trend to
increase to transient values larger than unity, i.e., towards
superdiffusive behavior. Beyond #§ this trend weakens in the
simulations such that both exponents fall significantly below
unity. This is due to the fact that the particle has arrived at
the position of minimal friction at the origin and therefore
decelerates. However, in the theory there is an artificial mono-
tonic increase in the slope due to the fact that there is even
unphysical negative frictions for position smaller than y,/y,
(for the case xy > 0).

Linear confining potential. Now we consider the case n = 1
where U (x) = kx|, for p = 1. As before, we assume xy > 0
and drop the modulus in the potential. The force is then con-
stant U’(x) = —« and the equation of motion can be solved
by separation of variables as in the free case n = 0. The result
for the MD is

Kt 2. (2m—23)!
(x(1) — xo) = —sgn(xw[y = =)

X0) =

m—1  Lm/2] Ak em—2k

1
()2 kg; (m — 2K) 125k

tm—k:| , (20)

where the Gauss bracket |-] indicates the closest integer
from below and the case xp < 0 is reintroduced via left-right

symmetry. For short times, the MD is given by

A
+ U 3)z
2y (x0)

(x(@) — x0) = —Sgn(xo)[<

¥ (x0)
2 2 242
YiK 3yikA  15y7A ) 2i| 3

+ + + = |+0@”)

(2)/()60)3 2y (x0)° 8y (xo)’
2D

with an initial effective drift velocity
A
—sgn( >( ) 22)
O T 2 )

which is a superposition of two effects arising from: (i) the
direct force —sgn(xp)x already present in the equilibrium
noise case (where y; = 0), and (ii) the linear friction gradient.
As in the free particle case (n = 0), the MD and the MSD
fulfill a linear relationship given by

A — _
® v1 Ly (o)

such that the short-time expansion for the MSD is given by

A K2 3yikA  15y,A?
At) = 2t+( e N
¥ (Xo) y(x0)* " y(xo)* 4y (xo)

2
v (x0) [ KT + sgn(xo) (x(7) — x0>:|’ (23)

>t2+(9(t3).
(24)

Clearly, for k = 0, the free case is recovered.

We see from the MSD that we have first a diffusive and
later a ballistic regime while for the MD the dominating term
is the drift, as the particle feels the effects of the constant
force. In fact, the crossing time between these two regimes
in the MSD is

_ 4Ay (xo)*
A2y (xo)t + 12y (x0)2 kA + 15p2A2

) (25)
and can be made arbitrarily small by formally varying the
parameters A and «, meaning that one can, in principle, have
two wide regimes of initial diffusive and subsequent ballistic
dynamics. Two regimes with a crossover time ¢, already ex-
ist for equilibrium noise y; = 0 but the effect is persistent and
tunable via nonequilibrium noise as documented by Eq. (25).

Results for the MD and the MSD as well as the scaling
exponents and passage times #; and t5 are shown in Fig. 3,
obtained by both theory and simulation. The crossover be-
tween the initial diffusive and subsequent ballistic behavior
in the MSD is clearly visible, in particular in «(¢), which
shows a plateau around «(¢) = 2 for intermediate times. The
simulation data even reveal a transient subsequent superbal-
listic behavior, which then falls off once the particle arrives
at the origin, where it decelerates due to the opposed friction
gradient. Again, for times smaller than the passage duration,
theory and simulation are in very good agreement. Finally, the
reason why the agreement of theory and numerics in Fig. 3(b)
is much better than that of Fig. 2(b) is that the drift is now
dominated by the deterministic potential, while in the case of
the free particle it was completely noise driven.

Harmonic potential. Finally, for the harmonic oscillator:
Ukx)= %sz, or n = 2, separation of variables is no longer
possible and we therefore resort to a short-time expansion
gained by perturbation theory (see Ref. [52]). In doing so,
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FIG. 3. Same as Fig. 2, but now for n = 1. (a) mean displace-
ment; (b) scaling exponent B(¢); (c) mean-squared displacement
A(t); (d) scaling exponent «(¢). In (c) and (d) the crossing time
t1_, is indicated by a vertical green line. Parameter values are:
Kk = Yol /T1, xo = 1001,

first we take the solution of the (p, n) = (1, 1) system, with
a constant force of —kxy, and next we consider a harmonic
oscillator potential centered in x( as a perturbation. Following
this procedure, the short-time expansions of the MD and MSD
are

(x(t) —x) = —sgn(x0)<[

K| xo] V1A

¥ (x0) 2y(xo)3]
Ixolk?  yik?xy 3 KAy

[_2y(xo)2 2y(x)? 4 y(xo)

15 yfA2 } 2) 3
+ 3 (%) )+ O@)
(26)

3 xoleyPA
2 yxo)y

and
A xéicz KA
2l Tt 2 3
v (xo) ¥ (xo) y (x0)-
yik|xplA 15 ylez
Y (xo)* 4 y(xo)®
In this case, the MD only shows a linear behavior, while the

MSD displays two different regimes, diffusive and ballistic,
separated by the crossing time

Alt) =

}2 +0¢). @7

12
_ 4y (x0)*A
4y (x Yxdk2—dy (x0)3k A+12y1y (x0) 2k x0A+15y2A%
(28)

Figure 4 shows the comparison of the perturbation theory with
the full numerical simulations revealing very good agreement
for times smaller than a typical passage time. Clearly, for
larger times, the particles becomes confined by the harmonic
potential around the origin as signaled by a plateau arising in
the MD and MSD for times larger than the typical passage
time. Correspondingly, both scaling exponents B(¢) and «(t)
drop to zero.
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FIG. 4. Same as Fig. 2, but now for n = 2: (a) mean displace-
ment (x(t) — xo) and (b) scaling exponent B(¢); (c) mean-squared
displacement A(z), and (d) scaling exponent S(¢). The parameters
are k = Y/t and xo = 10/;.

B. Linear friction gradient

We now turn to a linear friction gradient, p = 2, where
there is no nonanalyticity in the spatial dependence of the
friction at the origin. Then Eq. (2) becomes

(Vo + y1xX°)i(1) = —U'(x) + VAE(@). (29)

Bearing in mind that the free case is a simple special case of
the n = 1 one (for k = 0), we directly show the results for
n =0, 1 for any « > 0. The MD is

<x(t) - XO> = Zam@‘m(l‘))
m=1
o Lm/2] 7 ok
= Zam Z m!AX( Sgn(XO):) a0
m=1 k=0 (m — 2k)!12%k!

where the factors a,, are straightforwardly obtained by Taylor
expanding the expression (x(¢#) — xp), calculated using sepa-
ration of variables, in powers of

t
¢(t) = —sgn(xo)kt + \/Z/ dr's(). (3D
0
Here a; = y(x)~!, but the expressions for the coefficients a,,

for m > 2 are quite involved so that we refrain from showing
them explicitly. In a similar way, the MSD is

A@) =) bu(¢"(1))

m=2
o Lm/2] 1AR(— m—2k

NI ( Sgn(xO)f " ek (32)
— — (m — 2k)12kk!

where b, = y(x9)~? and the coefficients b,, for m > 3 are
again quite involved. The behavior of both the MD and the
MSD are very similar to the ones for the p = 1 case, with a
simple diffusive behavior if x = 0 and both a diffusive and
ballistic behavior otherwise. A comparison between theory
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and simulations is shown in Fig. 5 for the free case and in
Fig. 6 forn = 1.

For the case n = 2 we used perturbation theory to calculate
up to the first order in time for the MD and up to the second
order in time for the MSD:

(x(t) — x0) = <— 0 +a2A)t+O(tz), (33)
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A = At +|: szg B KA
Cy)?  Ly()?  y(x)?
—3b3Akxy + 3b4A2:|t2 + O, (34)
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ment (x(t) — xo) and (b) scaling exponent B(¢); (c) mean-squared
displacement A(z), (d) scaling exponent «(¢) and indicated crossing
time #,_,,. Parameter values: x = yyl5/12, xo = 10L,.
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FIG. 7. Same as Fig. 5, but now for n = 2: (a) mean displace-
ment {(x(t) — xo) and (b) scaling exponent B(¢); (c) mean-squared
displacement A(z), (d) scaling exponent «(¢) and indicated crossing
time #,_,,. Parameter values: x = /12, xo = 10/,.

where the a; and b; are the coefficients already used in
Egs. (30) and (32). We see again a linear behavior for the MD
while the MSD goes from diffusive to ballistic. In Fig. 7 we
compare these results with numerical simulations.

IV. LONG-TIME BEHAVIOR

We now consider the stationary long-time behavior. In
order to keep a normalized probability distribution function,
we confine the system in a potential (n = 1, 2). The stochastic
process then admits a stationary PDF on the infinite line in the
x coordinate which can be computed from the Fokker-Planck
equation corresponding to the process Eq. (2). We rewrite,
analogous to Eq. (4),

x(t) = a(x) + b(x)&(t) (35)
with
alx) = —m, b(x) = ﬁ (36)
y (%) y (%)

The Fokker-Planck equation for this case has been derived in
Refs. [35,55] and reads as

3 p(x, 1) = =B la(x)p(x, )] + 53, [bC)[B:[b(x)p(x, H]I],

(37
admitting a stationary solution at zero flux which is given by
N to2a(y)
px) = —ex [/ dy >—1|, (38)
b0 )

where N is a normalization factor. The integrand in the expo-
nential of Eq. (38), denoted by /(y), can be expressed in terms
of the confining potential and the friction term as

2
I(y) = —ZU’(y)J/(y), (39)

which shows that it is given by polynomial expressions for the
cases we address now.
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FIG. 8. Normalized PDF p(x) for y (x) = yp + y1|x| and U (x) =
Kk |x|, hence (p, n) = (1, 1). Shown are curves for three sets of values
of yp = 1 with all other parameters set to numerical values of one.
y1 = 0.1 blue curve, Laplace distribution; y; = 3; yellow curve,
Gaussian distribution. With y; = 4 one obtains a bimodal “mirrored”
Gaussian curve.

Taking y(x) = yo + y11x|? and U (x) = («/n)|x|", which
covers both our cases of interest for p =1,2, n =1, 2, one
obtains from Eq. (38)

(x) = i( + nilxl?)
p - \/X )/0 Vl

2k Yo n Y1 n+p
el (PN AR VTEV) B BPT)
<o | <25 (Lt L) | o)

We can now discuss the different cases as a function of the ex-
ponent pairs (p, n). For the lowest-order case (p, n) = (1, 1)
one has the superposition of the exponentials of a Laplace-
and a Gaussian distribution, as shown in Fig. 8. The resulting
PDF therefore interpolates between a Laplace-like distribu-
tion in the limit 3 >> y; and a Gaussian-like distribution up
to y1 = 2yga, where the coefficient a = k /A takes care of
the different physical dimensions of y and y;; we set a = 1.
For still larger values of y; > yy, the monomodal Gaussian
distribution splits in what we call a bimodal “mirrored” Gaus-
sian distribution. This name reflects the observation that the
resulting distribution looks like a Gaussian placed close to
a mirror, with the parts of the image behind the mirror cut
out. It is important to note that for the presence of these
different distribution forms the friction-dependent prefactor
is important; at x = 0 it is a constant, but within a range of
x-values around zero it reweights the distribution away from
that constant, before for large values of x the exponential
contribution becomes dominant.

The PDF in the case (p, n) = (2, 1) shows the same behav-
ior, which can be read off from the exponents. The leading
Laplacian terms is unaltered since n = 1, while the subse-
quent term now acquires a cubic nonlinearity. In the case
(p, n) = (1, 2) the leading order term is now a Gaussian term,
which therefore dominates at small values of y;. As in the
previous cases, for increasing values of y,, the distribution
immediately turns into a mirrored Gaussian-distribution, i.e.,
the maximum of the distribution splits into two maxima.

Finally, (p, n) = (2, 2) the polynomial in the exponent is
even and of fourth order, with Gaussian behavior dominating

o.5i p(x) 1

.

o /

0.1+ 4

0.0 |- |
i L L d

-3 -2 -1 0 1 2 3

FIG. 9. Case (p, n) = (2, 2). Normalized PDF p(x) for U(x) =
kx? /2 for three sets of values of y; with all other parameters set to 1.
y1 = 0.1: Gauss-like distribution; y; = 1: flat-top distribution; y; =
2; bimodal Gaussian-like distribution.

at low values of y;. Going from small to large y;, one now
crosses over from a Gaussian-like to a bimodal Gaussian-like-
distribution, which now is smooth at x = 0 due to the absence
of modulus terms. This form is shown in Fig. 9. All behaviors
found are summarized in Table 1.

We end by considering the robustness of our results with
respect to thermal fluctuations. Following Baule et al. [35],
we consider the Langevin equation

y k(1) = —U'(X) + 2y ks Tn(1) + VAE(®),  (41)

where 7(¢) is a Gaussian white noise. The thermal and ac-
tive processes n(t) and £(¢) being uncorrelated, they can be

TABLE I. Graphic summary of the PDFs for the cases (p, n) for
p=1,2,n=1,2, varying only the friction strengths y, and y,. For
y; = 0, the distributions are either Laplacian (L) or Gaussian (G);
left-most points. Increasing y; leads to mirrored Gaussian behavior
(MG), passing via Gaussian behavior at y; = 2yfa, a = (k /A) = 1.
This applies to both (p, n) = (1, 1) and (p, n) = (2, 2). For (p, n) =
(1, 2), starting from a Gaussian at y; = 0, the PDF changes into a
mirrored Gaussian shape for finite positive y;. Finally, for (p, n) =
(2, 2), Gaussian behavior changes into bimodal Gaussian behavior
(BG), passing via a flat-top behavior (FT) at y; = yfa, with again
a=1.

(p,n)

o RE
(1,1)

ol Cq MG
(2,1) 71 =273
(1,2)| ® G MG
(2.2)| 6% FTy BG

=7
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superimposed to &7 (t) = n(t) + £(t), leading to

X(t) = ar(x) + br ()ér (1), (42)
with
1 , kgT y'(x)
ar(x) = —E<U (x) + Tm) (43)
and
bA(x) = L(szT + i). (44)
Y (x) y(x)

The integrand /(y) in the exponential of the PDF reads as

U@y )+ ksTy'(x)
A+ 2kgTy(x) ’

which can be compared with Eq. (39) in the purely active case.
As a robustness check it suffices to examine the behavior of
the integrand /(y) near the origin for small values of y and for
y — 00, for our four cases (p, n),n = 1,2, p = 1, 2. For the
behavior near the origin one finds that the dominator behaves
in a similar fashion as 7(y) of Eq. (39), generating a polyno-
mial with identical powers, since the temperature-dependent
term either contributes a sgn(x) for p = 1 or a linear term
for p = 2. The qualitative behavior of the PDFs remains thus
unaltered. For large arguments, one sees that generally I(y)
behaves as

I(y) = —2[ (45)

_U'w)
kT’
such that the tails of the distributions are determined by ther-
mal fluctuations and decay exponentially, i.e., Laplace-like for
n = 1 or Gaussian-like for n = 2; the active noise and the
friction term then only play a role in the prefactor of the PDF.

I(y) (46)

V. DISCUSSION AND CONCLUSIONS

In this work we have studied the stochastic dynamics of
an active-noise driven particle under the influence of a space-
dependent friction and confinement. In order to elucidate the
effect of the space dependence of the friction term, we start
the dynamics for large initial values, so that the friction term
dominates the dynamics. For the case of a free particle, a
particle running down a ramp and a harmonic potential we
have determined the mean displacement and mean-squared
displacement and the corresponding scaling exponents S(t)
and «(?) in a short-time expansion. The mean displacements
generally show diffusive behaviors, while a crossover to a bal-
listic regime is observed for the mean-squared displacement,
except for the free particle case.

Further, we have determined the effect of the friction term
in the presence of a confining potential U (x)  |x|" for n =
1, 2 for long times. We have analytically computed the sta-
tionary probability density functions from the Fokker-Planck
equation. These solutions can be classified according to the
exponent pairs (p, n) and the relative magnitude of the friction
coefficients yy and y;. One observes that the friction law and
the confinement potential conspire to generate a set of generic
behaviors: Laplace-like and Gaussian-like distributions for
n =1 and n = 2, respectively, if the spatially dependent fric-
tion term is small (y; < yp); this behavior crosses over for

Y= )/02 to Gaussian behavior for both p = 1, 2. In the case of
n = 2, Laplace-like behavior is absent. For all cases of (p, n)
with n =1,2p =1, 2, one observes that for y; > yp, the
stationary PDF displays a mirrored or bimodal Gaussian-like
behavior. Therefore, generally for all combinations of (p, n),
at sufficiently strong space-dependent friction, the PDF be-
comes a bimodal distribution with a symmetrically increased
weight off-center of the potential minimum.

To conclude, our study extends current studies on active
particles in one dimension by the inclusion of a space-
dependent friction and therefore links the problem to earlier
studies of molecular motors on linear tracks. Investigations of
the stationary probability density functions for the run-and-
tumble process have already generated an extended catalog of
distributions, see, e.g., Refs. [15], in which also bimodal-type
PDFs appear (see their Fig. 7), or Ref. [56]. Placed in this
context, the present study reveals a basic classification method
in which such complex distributions are categorized for the
case of a space-dependent friction. Our model system allows
us to extract the mechanism of shape change of the PDFs in a
particularly clear manner.

Our theory can be extended to active noise driven motion
in two spatial dimensions. A special two-dimensional example
is given by a radially symmetric situation, where the friction
y solely depends on the radial distance r = /x% + y2. This
case can be solved with similar methods as proposed in this
paper. Another possible extension of our model could treat full
viscosity landscapes [57-60]. Moreover inertial effects can be
included in the particle dynamics [61-64]. Finally, collective
effects for many active-noise driven particles such as motility-
induced phase separation should be explored [65,66].
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APPENDIX: ANALYTICAL AND NUMERICAL
CALCULATIONS

1. Calculation of the mean displacement
in the (p, n) = (1, 0) case

In this Appendix we show how we obtained Eq. (10) start-
ing from Eq. (8). First, we notice that Eq. (8) can be written
as

2y14/A !
xpy=-2 47 + X \/1 + VA 5 / dre(t’).
14 14 (Yo +x071)* Jo
(A1)
Given x(¢), we can write the equation for the MD:
(x(@) — xo) (A2)
21/ A !
_ Yot Xoy: \/1 n NVA 2/ ArE@)) — 1
Y1 (Yo + x011)* Jo
(A3)
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To calculate the average in this expression, we have to Taylor
expand the square root, using the following formula:

a4 = 2m — 3)!
Vita=1+-= 2O m (A4
ta=1+y +m§( T S LG
where we substitute
291/A '
a= ”1—‘/_2<f dt/é(t/)>. (A5)
(Yo +x0v1)* \Jo

Equation (10) follows directly.

2. Numerical treatment of the Langevin equation

The stochastic equation

x(t) = a(x) + b(x)§ (1) (A6)
is of the standard form
dx; = a(x,)dt + b(x;)dW,, (A7)

where W, represents a Wiener process. In order to solve this
equation numerically in the Stratonovich paradigm, we im-
plement a predictor-corrector scheme. In such a scheme, one

first performs a full time step evolution of the position of
the particle x(#;) using the same time coefficients a(x(#;)) and
b(x(t;)). This predicted position x,, is used to calculate a(x,)
and b(x,) and proceed to finally calculate the position at time
step #;+1 using the averages of the coefficients calculated for
x(t;) and x,. To implement the Stratonovich paradigm, using
this kind of average only for the stochastic part [and hence the
b(x)] is necessary, but we preferred to apply this procedure
as well to the deterministic part in order to improve stability
of the result. The method we decided to use for the time
evolution is thus a Milstein scheme, of order O(At) [67]. The
Milstein evolution of Eq. (A7) can be written as

x(lip1) = x(li) + a(x(t) At + b(x(1;) AW (1)

L1 b( ( ))db(X(tz))

where AW(t;) = W(l‘,'.;,.l
dom variable.

It should be noted that the Milstein scheme uses the deriva-
tive of the function b(x), which for our model is discontinuous
at x = 0 for the case p = 1. This can be treated by adopting
an algorithm developed in Ref. [68], employing colored noise
from the Ornstein-Uhlenbeck process.

(AW (@))* — A1), (A8)

— W (t;) is a normal-distributed ran-
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