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Time-dependent inertia of self-propelled particles: The Langevin rocket
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Many self-propelled objects are large enough to exhibit inertial effects but still suffer from environmental
fluctuations. The corresponding basic equations of motion are governed by active Langevin dynamics, which
involve inertia, friction, and stochastic noise for both the translational and orientational degrees of freedom
coupled via the self-propulsion along the particle orientation. In this paper, we generalize the active Langevin
model to time-dependent parameters and explicitly discuss the effect of time-dependent inertia for achiral and
chiral particles. Realizations of this situation are manifold, ranging from minirockets (which are self-propelled
by burning their own mass), to dust particles in plasma (which lose mass by evaporating material), to walkers
with expiring activity. Here we present analytical solutions for several dynamical correlation functions, such
as mean-square displacement and orientational and velocity autocorrelation functions. If the parameters exhibit
a slow power law in time, we obtain anomalous superdiffusion with a nontrivial dynamical exponent. Finally,
we constitute the “Langevin rocket” model by including orientational fluctuations in the traditional Tsiolkovsky
rocket equation. We calculate the mean reach of the Langevin rocket and discuss different mass ejection strategies
to maximize it. Our results can be tested in experiments on macroscopic robotic or living particles or in self-
propelled mesoscopic objects moving in media of low viscosity, such as complex plasma.
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I. INTRODUCTION

The nonequilibrium dynamics of active Brownian
particles—also referred to as microswimmers—are typically
described in the overdamped limit, where inertial effects
are sufficiently small relative to viscous ones [1–4]. This is
an excellent approximation for micron-sized self-propelled
particles swimming in a viscous Newtonian liquid such as
water [5] at low Reynolds number. The standard model
of a single active Brownian particle [1,4,6] involves a
translational and an orientational degree of freedom and
includes Stokesian friction and fluctuations. These degrees
of freedom are coupled via self-propulsion along the particle
orientation, which is modeled in a simple averaged way by an
internal velocity, sometimes referred to as the particle activity.

However, inertial effects become relevant for larger
particle sizes or the motion in gaseous media of lower
viscosity. Though highly relevant for swimming and flying
organisms as well as for autonomous machines (e.g., flying
insect-drones, marine robots, etc.) [7], mesoscale active
matter at intermediate Reynolds number has been much less
studied. Aiming at a simple description of a single particle
first, one basic model is that of active Langevin motion [8–11]:
it generalizes the common overdamped model of active
Brownian motion [1,4,6] toward underdamped dynamics by
including the finite particle mass and the moment of inertia in
the equations of motion [12–20]. The inertial self-propelled
particles may therefore be called “microflyers” (rather
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than “microswimmers”); sometimes they are also termed
“runners,” “walkers,” or “hoppers” [21–23]. Examples of
inanimate inertial self-propelled particles modeled by active
Langevin dynamics are manifold. They include a complex
plasma consisting of mesoscopic dust particles in a weakly
ionized gas [24–29], vibration-driven granular particles
[22,30–39], autorotating seeds and fruits [40,41], camphor
surfers [42], hexbug crawlers [42], trapped aerosols [43], and
minirobots [44–48]. Moreover, there are numerous examples
of animals moving at intermediate Reynolds number, such as
swimming organisms (nematodes, brine shrimps, whirligig
beetles, etc.) [7,49] and flying insects and birds [50–56].

In this paper, we extend the active Langevin model to
time-dependent parameters such as time-dependent inertia,
self-propulsion, and friction. This is a situation frequently
encountered in nature and realizable in laboratory experi-
ments on artificial self-propelled objects. Let us mention some
examples: scallops move their shells and accelerate by jet
propulsion. Therefore, they become smaller in the course of
the motion such that their moment of inertia and their friction
coefficients become time-dependent. Moving animals typi-
cally have a finite energy reservoir [21] implying that their
self-propulsion velocity is getting slower as a function of time.
The maneuverability of animal motion is provided by changes
in the body shape [57,58], which implies a change in the mo-
ment of inertia at fixed total mass. Likewise, in the inanimate
world, minirockets, which are propelled by ejecting mass, are
getting lighter as a function of time [59,60]. Similarly, inflated
toy balloons [61,62] are self-propelled by jet propulsion and
strongly subject to random fluctuations in their orientation;
their body size shrinks as a function of time, and so does
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the mass, the moment of inertia, the friction coefficient, and
the self-propulsion speed. Granulate hoppers equipped with
an internal vibration motor (“hexbugs”) [39] will consume
energy such that the self-propulsion speed will slowly expire
and fade away as a function of time. Robots that pick up
or release objects also possess a mass variation [63], and a
time-dependent mass can bring about time-dependent friction
coefficients [64]. Last but not least, any prescribed time de-
pendence can be programed artificially for man-made robots,
artificial walkers, and microswimmers: the self-propulsion
speed can be made time-dependent by exposing particles to
external optical fields [65], the noise strength can be steered
by external fields [66,67], the damping by the solvent viscos-
ity [68,69], or both by the external vibration amplitude and
frequency [8,34,70,71].

For the active Langevin model with prescribed time-
dependent parameters, we present here analytical solutions
for several dynamical correlation functions, such as the ori-
entational and velocity autocorrelation function, the mean
displacement, the mean-square displacement, and the delay
function. Our results are as follows: First, we constitute a
model that we refer to as the Langevin rocket. In doing so, we
combine orientational fluctuations and mass loss described by
the traditional Tsiolkovsky rocket equation [72]. We calculate
the mean reach of the Langevin rocket and discuss differ-
ent mass ejection strategies to maximize it. For increasing
rotational noise, the optimal strategy to achieve a maximal
reach changes discontinuously from a complete mass ejec-
tion extended over a long time to an instantaneous ejection
of a mass fraction. Second, we compare different setups of
time-dependent inertia, such as directed and isotropic mass
ejection and isotropic shape changes with constant mass.
Last, we study the case of slow (“adiabatic”) variation of
system parameters. In particular, for a change in the system
parameters described by a power law in time, we predict a
superdiffusive anomalous diffusion involving a mean-square
displacement ∝ tα which scales as a power law in time t with a
nontrivial exponent α [73–81]. In particular, we discuss chiral
particles exposed to a torque that exhibit circling motion. This
generalizes earlier work for overdamped systems [82–84].
Our predictions can be tested in various experimental setups
ranging from macroscopic vibrated granular matter, robots,
or living systems to self-propelled micron particles that are
flying in a gaseous medium or in a plasma.

The paper is organized as follows: In Sec. II, we introduce
the theoretical model for active Langevin motion describ-
ing an inertial particle. In Sec. III, we recapitulate the case
of time-independent self-propulsion, inertia, damping, and
fluctuations found earlier [8,13], but we include also results
such as an analytical expression for the time-resolved mean
trajectory and mean-square displacement. In Sec. IV, we
demonstrate how time-dependent parameters change the dy-
namics of the system: in particular, we introduce the Langevin
rocket model and study slow temporal variations. Finally, we
conclude in Sec. V.

II. BASIC MODEL AND DIFFERENT SETUPS

In this section, we define the basic model of under-
damped Langevin motion for a self-propelled particle with
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FIG. 1. Self-propelled inertial particle with center position R(t )
at time t moving with its center in the two-dimensional xy plane.
The particle position is indicated as R(t ) (black arrow). Moreover,
the particle possesses an orientational degree of freedom that is
characterized by a unit vector n̂ = (cos φ, sin φ) with φ denoting
the angle relative to the x-axis. The particle self-propels along its
orientation with the velocity v0n̂ (red arrow). It may also experience
a torque M along the z-axis leading to rotational motion as indicated
by the blue arrow. The translational motion is further influenced by
a translational friction ξ and the noise strength D (as indicated by
the light red horizontal double arrow) while the rotational motion
is influenced by a rotational friction ξr and the orientational noise
strength Dr (as indicated by the light blue curved double arrow).

time-dependent inertia. We consider a self-propelled inertial
particle with a center-of-mass coordinate R(t ) at time t mov-
ing with its center in the two-dimensional xy-plane, see Fig. 1
for a sketch. The particle is polar such that it possesses an
orientational degree of freedom characterized by a unit vector
n̂(t ) = ( cos φ(t ), sin φ(t )), where φ(t ) is the angle relative to
the x-axis. The particle self-propels along its orientation with
the self-propulsion velocity v0n̂, also indicated in Fig. 1. It
may also additionally be exposed to an external or internal
torque M along the z-axis leading to an angular velocity as
shown by the blue arrow in Fig. 1. As the particle has inertia
in both translation and rotation, its configuration is fully spec-
ified by its center-of-mass coordinate R(t ), its center-of-mass
velocity Ṙ(t ) = dR(t )/dt , its orientational angle φ(t ), and its
angular velocity φ̇(t ).

While previous work [8,11,19] has considered constant
particle mass and moment of inertia, here we generalize the
model toward time-dependent parameters with a particular
focus on a time-dependent particle mass m(t ) and a time-
dependent moment of inertia J (t ), which we define with
respect to the center-of-mass to describe the rotation around
the z-axis. It turns out that the corresponding equations of
motion need to be discussed with care as they depend on the
physical origin of the change in inertia. To do this system-
atically step by step, we first consider four different setups,
which are outlined in Fig. 2 and which are actually realizable
in nature. We then give the most general model equation,
which accommodates all these setups as special cases.

A. Time-independent inertia

First of all, as a reference, the special case of time-
independent inertia is considered. This setup is sketched in

042601-2



TIME-DEPENDENT INERTIA OF SELF-PROPELLED … PHYSICAL REVIEW E 103, 042601 (2021)

(a) time-independent
inertia

m, J

(b) directed mass
ejection

m(t),

J

(c) isotropic mass
evaporation

m(t),
J(t)

(d) isotropic shape
change

m,

J(t)

FIG. 2. Schematic illustration of the different special setups for
an active inertial particle. The particle is shown as a dark-gray sphere
and its inertia is characterized by the particle mass m and its moment
of inertia J . (a) Time-independent inertia with constant m and J as a
reference situation (gray background). (b) Directed mass ejection:
Per unit time, the mass ṁ(t ) is ejected centrally with a velocity
−un̂(t ) along the particle orientation n̂(t ) which leads to a change
−un̂ṁ(t ) in the translational momentum of the particle and a time-
dependent particle mass m(t ) but a constant moment of inertia J (red
background). (c) Isotropic mass evaporation. Here the translational
and the angular momentum of the particle are both conserved, but
the particle mass m(t ) and moment of inertia J (t ) are time-dependent
(green background). (d) Isotropic change in the particle shape. Here
again the linear and the angular momentum of the particle are both
conserved, the particle mass m is constant, but the moment of inertia
J (t ) is time-dependent (blue background).

Fig. 2(a) (gray background). The particle has a constant mass
m and a constant moment of inertia J . In this case, the
Langevin equation of motion reads

m R̈(t ) = ξ v0 n̂(t ) − ξ Ṙ(t ) + ξ
√

2D f st (t ), (1)

J φ̈(t ) = M − ξr φ̇(t ) + ξr

√
2Dr τst (t ). (2)

As far as the translational dynamics is concerned, there is
a frictional damping force −ξ Ṙ(t ) and a self-propelling ef-
fective force along the particle orientation ξ v0 n̂(t ), which
gives rise to the particle self-propulsion velocity v0 [85]. The
latter does not stem from mass ejection but is of another
origin, such as diffusiophoresis or photophoresis. This self-
propulsion force couples the orientational and translational
degrees of freedom. Furthermore, there is a stochastic force
(“noise”) ξ

√
2D f st (t ), where the effective translational diffu-

sion coefficient D quantifies the noise strength. We describe
the stochastic term f st (t ) as zero-mean Gaussian white noise
with unit variance,

f st (t ) ⊗ f st (t ′) = δ(t − t ′)I, (3)

where · · · indicates a noise average and I is the unit ma-
trix. Likewise, the rotational dynamics in Eq. (2) involves a
frictional torque −ξr φ̇ and an imposed torque M plus the

stochastic torque ξr
√

2Dr τst (t ), where the effective rotational
diffusion coefficient Dr now quantifies the rotational noise
strength, and the Gaussian noise τst (t ) has zero-mean and unit
variance

τst (t )τst (t ′) = δ(t − t ′). (4)

One of the best experimental realizations of active
Langevin motion [see Eqs. (1) and (2)] can be found in self-
propelled granular particles. These particles are capable of
transferring the energy of a vibrating surface or an internal
motor to translational or rotational motion. Asymmetry in
the particle design causes them to jump forward or to rotate
when lifted from the ground. From a recent experiment on
these active granular particles [8], we list exemplary orders of
magnitude for our model parameters m = 1 g, J = 10 g mm2,
ξ = 10 g/s, ξr = 100 g mm2/s, D = 100 mm2/s, Dr = 1/s,
v0 = 10–100 mm/s, and M = 10−7 N m.

We shall revisit this standard situation again in Sec. III. In
the absence of any inertial effects, i.e., when m = J = 0, the
equations of motion are overdamped and lead to the standard
picture of active Brownian motion [1,4,6].

B. Directed mass ejection

A rocket is self-propelled by directed mass ejection, so it
establishes a fundamental setup of time-dependent inertia. In
the typical geometry assumed here and shown in Fig. 2(b) (red
background), the direction of the mass ejection is centrally
outward opposite to the particle orientation. For simplicity,
the mass ejection occurs with a constant velocity u relative
to the moving rocket (u > 0) and the outlet coincides with
the center of mass as indicated by a wedge in Fig. 2(b). The
general case in which the ejection occurs not from the center
but from a point distant to the center leads to additional terms
that complicate the analysis, thus it is left for future studies.

We assume, however, for more generality here that the
rocket also has an internal motor, which leads to an addi-
tional self-propulsion of velocity v0. In typical descriptions
of macroscopic rockets, translational and rotational fluctua-
tions are ignored. While this is a reasonable assumption for
macroscopic rockets, it breaks down for minirockets. The
characteristic equations of motion for a self-propelled particle
with directed mass ejection are

d

dt
(m(t ) Ṙ(t )) = ξ v0 n̂(t ) − ξ Ṙ(t ) + ξ

√
2D f st (t )

− ṁ(t )(u n̂(t ) − Ṙ(t )), (5)

and the orientational equation of motion is given by (2).
In discussing the basic physics of Eq. (5), we use Newton’s

second postulate, which states that the total change in transla-
tional momentum is the total force, which is in this case the
sum of friction, translational stochastic, and self-propulsion
forces. But even in the force-free case, the ejected mass carries
away the momentum ṁ(t )(u n̂(t ) − Ṙ(t )) per unit time, which
needs to be included in the balance of (5) with a minus sign
due to the conservation of total momentum; see also [86–88].
This constitutes in fact the thrust force which accelerates the
rocket. It is important to note here that the special case of
the traditional Tsiolkovsky rocket equation is obtained as a
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special limit of no fluctuations, no frictions, no additional self-
propulsion, no external torque, and a vanishing initial angular
velocity, i.e., for D = Dr = ξ = ξr = v0 = M = φ̇(t = 0) =
0 [72].

Since we assume that the outlet/tank of the particle coin-
cides with the center-of-mass, the moment of inertia is not
affected by the mass ejection and remains constant. Hence
the orientational motion is identical to the case of time-
independent inertia. Clearly, via the mass ejection, the two
equations (5) and (2) are coupled.

Realizations of the rocketlike self-propelled objects can
in principle be found for self-propelled Janus particles in
a complex plasma, which are laser-heated such that they
evaporate mass in a certain direction [29,59,60], or even
for inflated toy balloons [61,62] or active granular particles
equipped with compressed air tanks. For the latter, we would
expect the particle loss mass at a rate of approximately ṁ =
−1 g/s by exhausting air at a velocity u = 100 mm/s. The
initial mass and moment of inertia are m0 = 10 g and J =
100 g mm2. The remaining parameters are of the order of
ξ = 10 g/s, ξr = 100 g mm2/s, D = 100 mm2/s, Dr = 1/s,
v0 = 10–100 mm/s, and M = 10−7 N m. We finally remark
that there is some overdamped counterpart of rocketlike mo-
tion in the osmotophoresis of semipermeable vesicles [89]
where the ejection of molecules out of the vesicle body leads
to self-propulsion driven by the osmotic pressure difference
[90] and for Janus-particles and nanorockets driven by reac-
tive momentum transfer [91,92].

C. Isotropic mass evaporation

A different situation occurs if the mass ejection is not
directed but isotropic as sketched in Fig. 2(c) (green back-
ground). Imagine a particle coated with an isotropic layer that
evaporates likewise in all directions, as realizable in dusty
plasmas [29,59,60]. In this case, the ejected mass only carries
away the translational momentum given by −ṁ(t ) Ṙ(t ) such
that the translational equations of motion for this case coincide
with Eq. (5) for u = 0. However, the mass ejection is radial
only in the body frame, but for a rotating particle the angular
momentum J̇ (t ) φ̇(t ) is taken away in the laboratory frame
even in the absence of any torque. Therefore, the orientational
equation of motion reads as (2) with J replaced by J (t ), as
follows:

J (t ) φ̈(t ) = M − ξr φ̇(t ) + ξr

√
2Dr τst (t ). (6)

This setup could be realized in experiments by placing
a leaking water tank or evaporating material on an active
granular particle. The order of magnitude of the parameters
might be m0 = 10 g, ṁ = −1 g/s, J0 = 100 g mm2, ξ =
10 g/s, ξr = 100 g mm2/s, D = 100 mm2/s, Dr = 1/s, v0 =
10–100 mm/s, and M = 10−7 N m.

Finally, we remark that the inverse situation of mass ad-
sorption can be treated in a similar way with a positive sign of
ṁ(t ).

D. Isotropic shape change

The pirouette in figure skating is an example of a fourth
situation in which the total mass m of the body is time-
independent but the moment of inertia does change due to a

shape change of the body. In this special case, sketched in
Fig. 2(d) (blue background), the shape change does not carry
away angular momentum but the total angular momentum is
conserved. Consequently, while the translational equation of
motion is identical with Eq. (1), the orientational equation of
motion is given by

d

dt
(J (t ) φ̇(t )) = M − ξr φ̇(t ) + ξr

√
2Dr τst (t ). (7)

Lastly, this model could describe an active granular particle
with a stretched elastic material attached to it. In that way,
the initial moment of inertia could be increased by an order
of magnitude J0 = 100 g mm2, relaxing over a few seconds
to its equilibrium shape with J̇ = −1 g mm2/s. The order
of magnitude of the other parameters might be m = 1 g,
ξ = 10 g/s, ξr = 100 g mm2/s, D = 100 mm2/s, Dr = 1/s,
v0 = 10 − 100 mm/s, and M = 10−7 N m.

E. General model

The lesson to be learned from the previous examples is
that the equations of motion depend on the imposed setup of
mass change. To proceed in a general way, we now present a
general framework of equations of motion that accommodates
all previous special cases. To define this model as gener-
ally as possible, we also assume an effective time-dependent
self-propulsion speed v0(t ), a time-dependent internal torque
M(t ), a time-dependent translational ξ (t ) and rotational fric-
tion coefficient ξr (t ), as well as a time-dependent translational
D(t ) and rotational diffusion coefficient Dr (t ) and a time-
dependent mass ejection velocity u(t ).

We now consider the following general Langevin equations
governing the translational and the rotational motion for a
self-propelled particle:

d

dt
(m(t ) Ṙ(t )) = ξ (t )(v0(t ) n̂(t ) − Ṙ(t ) +

√
2D(t ) f st (t ))

− ṁ(t )(u(t ) n̂(t ) − Ṙ(t )), (8)

d

dt
(J (t ) φ̇(t )) = M(t ) − ξr (t ) φ̇(t ) + ξr (t )

√
2Dr (t ) τst (t )

+ ν J̇ (t ) φ̇(t ). (9)

Clearly, all situations discussed so far and shown in Fig. 2
are obtained from these equations as special cases: of course,
Fig. 2(a) is the special limit where the parameters m, J , ξ , ξr ,
D, Dr , v0, and M are constant. The rocket setup in Fig. 2(b)
coincides with the general equations (8) and (9) when the
parameters J , ξ , ξr , D, Dr , v0, M, and the relative velocity
u are constant. The isotropic mass evaporation [Fig. 2(c)] is
contained in (8) and (9) when the parameters ξ , ξr , D, Dr , v0,
and M are constant, the relative velocity vanishes, u = 0, and
ν = 1. Finally, the equations for an isotropic shape change
[Fig. 2(d)] follow when in (8) and (9) the parameters m, ξ , ξr ,
D, Dr , v0, and M are constant and ν = 0.

At this stage, we remark that more realistic situations can
also be accommodated in the general equations (8) and (9).
These include, for example, a rocket where the outlet of the
mass ejection does not coincide with the center-of-mass or
where the ejection direction is not parallel to the particle
orientation [93].
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From a mathematical point of view, the equations of mo-
tion (8) and (9) are stochastic differential equations with
Gaussian noise. The rotational equation (9) is linear so that
the distribution of the angle and angular velocity is Gaussian
for any time. We give the corresponding general solutions of
(8) and (9) in Appendix A.

III. TIME-INDEPENDENT INERTIA

We now turn to the special case of time-independent pa-
rameters defined by Eqs. (1) and (2). These equations of
motion were studied before in Refs. [8,11,19]. Here we
summarize essential known results, but we also provide ad-
ditional analytical results for the full time-resolved mean
displacement, velocity correlation function, and mean-square
displacement. In doing so, we first consider the noise-free case
and then we include the effects of noise.

A. Results for vanishing noise

For given initial orientations φ0 = φ(0) and angular veloc-
ities φ̇0 = φ̇(0) at time t = 0, the deterministic solution of the
general orientational equation of motion (2) in the absence of
noise is

φ(t ) = φ0 + ωt + φ̇0 − ω

γr
(1 − e−γr t ) (10)

with the spinning frequency ω = M/ξr and rotational damp-
ing rate γr = ξr/J . Plugging this solution into the noise-free
translational equation (1), we obtain for given initial positions
R0 = R(0) and velocities Ṙ0 = Ṙ(0) at time t = 0 the parti-
cle velocity

Ṙ(t ) = Ṙ0e−γ t + v0P̂[γ̃ (iθ )γ̃+iω̃ei(φ0+θ )

× �(−(γ̃ + iω̃), iθe−γr t , iθ )]e−γ t , (11)

where we introduced the translational damping rate γ = ξ/m
and the notations γ̃ = γ /γr , ω̃ = ω/γr , θ = (φ̇0 − ω)/γr .
Moreover, �(s, x1, x2) denotes the generalized Gamma func-
tion [94],

�(s, x1, x2) =
∫ x2

x1

dt t s−1e−t , (12)

and the operator P̂ formally transforms a complex number z
into its two-dimensional vector (Re z, Im z) in the complex
plane. This results in the particle trajectory

R(t ) = R0 + Ṙ0

γ
(1 − e−γ t )

+ v0

γr
P̂[(iθ )iω̃ei(φ0+θ )�(−iω̃, iθe−γr t , iθ )]

− v0

γr
P̂[(iθ )γ̃+iω̃ei(φ0+θ )�(−(γ̃ +iω̃), iθe−γr t , iθ )]e−γ t .

(13)

In the limit of long times, the angular velocity reaches the
spinning frequency, limt→∞ φ̇(t ) = ω, so that the particle is
rotating with this frequency around a circle of radius

r = v0

ω

√
γ 2

γ 2 + ω2
, (14)

centered at the position

Rc = R0 + Ṙ0

γ
+ v0

γr
P̂[(iθ )iω̃ei(φ0+θ )�(−iω̃, 0, iθ )]. (15)

Clearly, the spinning frequency ω does not depend on any
inertia. However, the circle radius r depends on the mass m via
the translational damping rate γ due to the centrifugal force,
but it is independent on the moment of inertia J . The center
of the circle depends on R0, Ṙ0, φ0, and φ̇0, demonstrating
that for vanishing noise even the long-time limit may depend
on the initial conditions. Finally, in the overdamped limit of
vanishing inertia, the results reduce to that of Brownian circle
swimmers [82,95].

B. Effect of Brownian noise

Subjected to Brownian noise, the particle will relax to
a steady state after a long time forgetting about its initial
conditions R0, Ṙ0, φ0, and φ̇0 at time t = 0. The static and
dynamical correlation in the steady state can be calculated as
a time average over a very long time window, which we shall
denote with angular brackets 〈· · · 〉. In the sequel, we shall
consider several of such dynamical correlations. In the steady
state, one can also calculate conditional averages. For exam-
ple, one can build dynamical averages in the steady state after
a lag time under the condition that the particle’s position and
orientation are prescribed at an initial time. We shall compile
analytical results for the different correlation functions first
and show examples for numerical evaluations of the analytical
formula.

1. Velocity correlation function

First we introduce the translational velocity correlation
function [96],

Z (t ) = 〈Ṙ(t ) · Ṙ(0)〉, (16)

where t now denotes a lag time and Ṙ(0) is taken from
the velocity distribution in the steady state. We remark that
the latter was computed recently for small inertia [97] and
for the formally equivalent model of an overdamped parti-
cle in a harmonic potential [98]. The velocity distribution is
non-Gaussian (i.e., non-Maxwellian), and its second moment,
Z (0) = 〈Ṙ(0) · Ṙ(0)〉, which is proportional to the mean ki-
netic energy, is known analytically [8] as

Z (0) = 2Dγ + v2
0 Re[γ̃ eD̃r D̃−�+

r �(�+, 0, D̃r )], (17)

where we introduced D̃r = Dr/γr and �± = (Dr ± (γ +
iω))/γr . For an active inertial particle considered here, we
have obtained the analytical result

Z (t ) = 2Dγ e−γ t + v0

2
(〈Ṙ(t ) · n̂(0)〉 + 〈Ṙ(0) · n̂(t )〉) (18)

with

〈Ṙ(t ) · n̂(0)〉 = v0 Re
[
γ̃ eD̃r

(
D̃−�−

r �(�−, D̃re−γr t , D̃r )

+ D̃−�+
r �(�+, 0, D̃r )

)
e−γ t

]
(19)

and

〈Ṙ(0) · n̂(t )〉 = v0 Re
[
γ̃ eD̃r D̃−�+

r �(�+, 0, D̃re−γr t )eγ t
]
,

(20)
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which implies that the long-time behavior of Z (t ) is exponen-
tial in time.

2. Orientation correlation function

Similarly, the dynamical orientational correlation function
C(t ) = 〈n̂(t ) · n̂(0)〉 in the steady state can be expressed ana-
lytically as a double exponential as

C(t ) = cos(ωt )e−Dr [t−γ −1
r (1−e−γr t )], (21)

which was found previously in another context by Ghosh and
co-workers [13] for ω = 0 and for general ω in Ref. [8]. Again
it decays exponentially in time for long times. A characteristic
orientational persistence time τp can be determined as

τp =
∫ ∞

0
C(t )dt = 1

Dr
Re

[
D̃reD̃r D̃−�

r �(�, 0, D̃r )
]
, (22)

with � = (Dr − iω)/γr . For vanishing inertia, we recover
the known result of the persistence time τp = Dr/(D2

r + ω2)
[82,95], which simplifies further to the standard result τp =
1/Dr for a linear swimmer [1].

3. Mean displacement

Next, we address the mean displacement 〈R(t )〉 =
〈R(t ) − R0〉 of the particle in the steady state as a function
of time t . The average is now taken in the steady state but
under the condition that for the initial time t = 0, the position
R(0) = R0 and the orientation n̂(0) [embodied in φ(0) = φ0]
are prescribed. Since the particle velocities and the orien-
tations are correlated in the steady state, the average over
the translational velocity 〈Ṙ(0)〉 is not vanishing due to the
prescribed orientation n̂(0). This average is given by

〈Ṙ(0)〉 = v0P̂
[
γ̃ eD̃r D̃−�+

r �(�+, 0, D̃r )eiφ0
]
. (23)

We obtain for the mean displacement

〈R(t )〉 = 〈Ṙ(0)〉
γ

(1 − e−γ t )

+ v0

Dr
P̂
[
D̃reD̃r

(
D̃−�

r �(�, D̃re−γr t , D̃r )

+ D̃−�−
r �(�−, D̃re−γr t , D̃r )e−γ t

)
eiφ0

]
. (24)

For short times t , the particle proceeds on average ballistically
(i.e., linearly in time) with

〈R(t )〉 = 〈Ṙ(0)〉t + O(t2). (25)

Then the rotational noise decorrelates the current orientation
from the initial orientation, and the mean displacement satu-
rates to a finite persistence length Lp = limt→∞〈R(t )〉 given
as

Lp = 〈Ṙ(0)〉
γ

+ v0

Dr
P̂
[
D̃reD̃r D̃−�

r �(�, 0, D̃r )eiφ0
]
. (26)

In the case of a vanishing spinning frequency (ω = 0), the per-
sistence length simplifies to Lp = 〈Ṙ(0)〉/γ + v0τpn̂0 with τp

given by (22). In the overdamped limit, we obtain the standard
results of the persistence length for linear microswimmers
Lp = v0n̂0/Dr (ω = 0) [1]. Moreover, for an overdamped cir-
cle swimmer, the full time-resolved mean displacement given
by (24) simplifies to a spira mirabilis [82,99]. The presence of

0 1 2

0

1

y
/l

p

x/lp

chiral particlespira
mirabilis

J = 0

m = 0

J = 0.1 ξr/Dr

m = 0.1 ξ/Dr

J = 1 ξr/Dr

m = 0.1 ξ/Dr

J = 10 ξr/Dr

m = 0.1 ξ/Dr

FIG. 3. Mean displacement 〈R(t )〉 in the xy-plane for a chi-
ral particle with initial orientation along the x-axis for different
moment of inertia, J = 0.1 ξr/Dr (orange), J = 1 ξr/Dr (red), and
J = 10 ξr/Dr (purple). Lengths are given in units of lp = v0/Dr . The
parameters are ω = 4 Dr , m = 0.1 ξ/Dr . The starting point at t = 0
is denoted by a black dot. The spira mirabilis of the overdamped
limit is plotted on the left (black) for comparison.

inertia will distort the ideal spira mirabilis and give rise to a
more complex mean trajectory. This is shown in Fig. 3, where
three shapes of the mean trajectory for increasing moment of
inertia J are compared to the overdamped case. Increasing
J reduces effectively the role of fluctuations such that there
are more turns until the particle reaches half of the distance
to its final fixpoint. Even though n̂(0) is oriented toward the
positive x-axis in all cases, the inertial mean trajectory first
“oversteers” the initial orientation due to the velocity average,
an effect that we shall elaborate on and quantify further in Sec.
III B 5.

4. Mean-square displacement

The full time-resolved mean-square displacement (MSD)
can be calculated as

〈R2(t )〉 = 4DLt + 2

γ 2
(Z (t ) − Z (0)) + 2

v2
0

γ 2
r

F (t ), (27)

with the long-time diffusion coefficient

DL = D + v2
0

2Dr
Re[D̃reD̃r D̃−�

r �(�, 0, D̃r )], (28)

and the function

F (t ) = Re

{
eD̃r

�2

(
2F2

[
�,�

� + 1,� + 1; −D̃r

]

− 2F2

[
�,�

� + 1,� + 1; −D̃re−γr t

]
e−γr�t

)}
, (29)

where pFq represents the generalized hypergeometric function
[100].

Figures 4(a)–4(d) compare the temporal behavior of the
mean-square displacement of an achiral particle to that of
a chiral particle for different masses and moments of iner-
tia J . All curves exhibit the characteristic crossover from a
short-time ballistic behavior

〈R2(t )〉 = Z (0) t2 + O(t3) (30)
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FIG. 4. Mean-square displacement as a function of time on a
double-logarithmic plot. (a) For an achiral particle with fixed mass
m and varied moment of inertia J . (b) For a chiral particle with fixed
mass m and varied moment of inertia J . The fixed parameters are
m = 0.1 ξ/Dr , D = 0 and the moment of inertia is J = 0.1 ξr/Dr (or-
ange), J = 1 ξr/Dr (red), or J = 10 ξr/Dr (purple). (c) For an achiral
particle with varied m and fixed J . (d) For a chiral particle with
varied m and fixed J . Here, the fixed parameters are J = 0.1 ξr/Dr ,
D = 0 and the mass is m = 0.1 ξ/Dr (orange), m = 1 ξ/Dr (red), or
m = 10 ξ/Dr (purple).

to the long-time diffusive behavior governed by

〈R2(t )〉 ∼ 4DLt . (31)

In the limit of small J , the short-time ballistic dynamics is

lim
J→0

〈R2(t )〉 =
(

2Dγ + v2
0

γ (γ + Dr )

(γ + Dr )2 + ω2

)
t2 + O(t3),

(32)
while for large J we have

lim
J→∞

〈R2(t )〉 =
(

2Dγ + v2
0

γ 2

γ 2 + ω2

)
t2 + O(t3). (33)

In general, the long-time diffusion coefficient DL [see
Eq. (28)] can be represented as

DL = D + v2
0

2
τp, (34)

where the first term in Eq. (22) captures the diffusive behavior
of a passive particle and the second is consistent with the
standard picture of a typical jump length of v0τp and a typical
jump time of τp, similar to the overdamped expression of mi-
croswimmers when ω = 0 [1]. It was emphasized in Ref. [8]
that DL depends on the moment of inertia J but not explicitly
on the mass m.

In the case of small moments of inertia, the long-time
diffusion coefficient of the circle flyer asymptotically goes
to [8]

DL = D + v2
0

2

Dr

D2
r + ω2

(
1 + Dr

ξr
J

)
+ O(J2), (35)
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FIG. 5. Long-time diffusion coefficient DL as a function of the
moment of inertia J for different circling frequencies ω = 10Dr ,
ω = 1Dr , ω = 0.1Dr , and ω = 0. The translational diffusion coeffi-
cient was set to zero, D = 0. In the inset, the global maximum point
Jmax for a given circling frequency ω is depicted. The corresponding
maximal value DL (Jmax) is shown as a red dot in the main figure.

which grows dominantly in proportion to the moment of
inertia. The asymptotic behavior of the long-time diffusion
coefficient for large moments of inertia is [8]

DL ∼
{

v2
0

√
π

8Drξr

√
J (ω = 0),

D (ω �= 0).
(36)

As the moment of inertia grows for ω �= 0, the activity-
induced part of the long-time diffusion coefficient goes
asymptotically to zero [see Eq. (36)] since diffusion is ham-
pered by systematic circling motion, i.e., the particle gets
trapped in a circular path due to its huge moment of inertia.

Figures 4(a) and 4(c) show data for an achiral swimmer
with different moments of inertia J and different masses. The
short-time ballistic prefactor is somewhat independent of J
but decreases with increasing m. The latter trend follows from
the fact that for large m the particle cannot accelerate toward
its self-propulsion velocity v0. Conversely, the long-time dif-
fusivity is also increasing with J according to (35) and (36)
as the persistence in orientation increases with J but it is
independent of m. For a chiral particle, shown in Figs. 4(b)
and 4(d), the MSD exhibits wiggles due to the circling.

An immediate consequence of (35) and (36) is that the
long-time diffusivity behaves nonmonotonically in J . Explicit
data are presented in Fig. 5, which illustrates the nonmono-
tonic dependence of DL on the moment of inertia J for
different spinning frequencies ω for the special case D = 0.
There is an intermediate maximum in DL which is indicated
in Fig. 5 by a red point. This peak could be exploited for
an optimal exploration of an unknown territory by adapting
the moment of inertia accordingly. The associated optimal
moment of inertia is plotted as a function of the spinning
frequency ω in the inset of Fig. 5.
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5. Delay function

Contrary to the overdamped case, the velocity of an inertial
particle does not coincide with its self-propulsion direction,
and in Ref. [8] a dynamical correlation function, referred to
as a delay function d (t ), was introduced to quantify the delay
between the velocity and orientation dynamics,

d (t ) = 〈Ṙ(t ) · n̂(0)〉 − 〈Ṙ(0) · n̂(t )〉. (37)

The “mixed” difference ensures that this function is trivially
zero in the overdamped limit, but when nonzero its sign con-
tains valuable information about the delay process between
n̂(t ) and Ṙ(t ). If, for example, d (t ) is positive, this means
that—on average—first the particle orientation changes and
then the velocity will follow that change after a time t . A
positive d (t ) is the standard behavior exploited by the over-
steering of racing cars, which is also expected for achiral
particles. The full analytical result for d (t ) directly follows
from (19) and (20) and was given in Ref. [8]. Most notably,
for an achiral particle, d (t ) has a positive peak after a typical
delay time, while for a chiral particle, d (t ) oscillates due to
the systematic change in orientation. The latter oscillation was
recently observed in macroscopic whirligig beetles swimming
at the water surface [49].

Here we also provide analytical limits of small and large
moments of inertia J . For small J we get

d (t ) = 2v0A(t )

(
1 + Dr

ξr
J

)
+ O(J2), (38)

with

A(t ) = γ Dr
(
γ 2 − D2

r − ω2
)
[cos(ωt ) e−Drt − e−γ t ]

((γ + Dr )2 + ω2)((γ − Dr )2 + ω2)

+ γ ω
(
γ 2 + D2

r + ω2
)

sin(ωt ) e−Drt

((γ + Dr )2 + ω2)((γ − Dr )2 + ω2)
. (39)

Since A(t ) is positive for small times t , the delay effect is
enhanced for increasing J . Moreover, the oscillatory behavior
of a chiral particle can be seen here directly. In the opposite
limit of large moment of inertia, the inertial delay approaches

lim
J→∞

d (t ) = 2v0
γ ω

γ 2 + ω2
sin(ωt ), (40)

independent of the rotational diffusion coefficient Dr , which
documents again the oscillatory behavior for chiral particles.

IV. TIME-DEPENDENT INERTIA

Here we study the effect of time-dependent inertia on the
Langevin motion of an underdamped particle. We first intro-
duce a reduced Langevin rocket model in which the mass
of the particle gets burned to accelerate the particle giving
rise to a time-dependent mass and propulsion speed. Then we
compare the four different setups introduced in Sec. II. Last,
we consider the limiting case of slowly varying parameters
with respect to time.

A. Langevin rocket

We define the “Langevin rocket” model by including ori-
entational fluctuations in the traditional Tsiolkovsky rocket

equation [72]. The effect of noise on rocket motion has been
considered previously (see, e.g., [101]), but a simple basis
reference model for that is missing. We therefore simplify the
general Eqs. (5) and (2) for directed mass ejection and as-
sume a vanishing moment of inertia, torque, and translational
diffusion (J = 0, M = 0, and D = 0) The Langevin rocket
dynamics for a prescribed m(t ) is then given by

m(t ) R̈(t ) + ξ Ṙ(t ) = −u ṁ(t ) n(t ), (41)

φ̇(t ) =
√

2Dr τst (t ). (42)

This set of equations approaches the ideal Tsiolkovsky rocket
equation, m(t ) R̈(t ) = −u ṁ(t ) n0, in the limit of vanishing
damping (ξ = 0) and noise (Dr = 0) [72].

For the sake of simplicity, we assume that the rocket is
ejecting mass at a constant rate (m∞ − m0)/t , where m0

denotes the initial mass, m∞ is the final rest mass of the rocket,
and t is the total burn time. The ejection process happens in
the window 0 < t < t such that the time-dependent particle
mass is

m(t ) = m0 + (m∞ − m0)
min(t,t )

t
. (43)

In the following, we discuss the average reach of the rocket
(i.e., its mean displacement) as a function time. In particular,
we investigate the final reach for long times as a function of
the burn time t and the propellant mass fraction

ζ = m0 − m∞
m0

. (44)

1. Results for vanishing noise

In the absence of rotational noise, the displacement of the
rocket for a vanishing initial velocity at t = 0 is

R(t ) = u
min(t,t )

S1 + 1
n̂0 − u

γ0

m(t )

m0

1 − (m(t )
m0

)S1

S1 + 1
n̂0

+ u

γ0

m(t )

m0

1 − (m(t )
m0

)S1

S1
(1 − e−γ∞( max(t,t )−t ))n̂0,

(45)

with the initial damping rate γ0 = ξ/m0, the final damping
rate γ∞ = ξ/m∞, and the reduced burn time S1 = γ0t/ζ .

For short times, the rocket exhibits an acceleration by eject-
ing mass such that the displacement scales with t2,

R(t ) = uζ

2t
n̂0 t2 + O(t3). (46)

After the burn time t , the rocket reaches its maximal ve-
locity, which is subsequently exponentially damped with the
final damping rate γ∞ until the rocket comes to a standstill.
The total long-time displacement R∞ = limt→∞ |R(t )| is
given by

R∞ = ut

S1 + 1
+ u

γ0

(1 − ζ )(1 − (1 − ζ )S1 )

S1(S1 + 1)
. (47)

In Fig. 6, we show the long-time displacement R∞ as a
function of the propellant mass fraction ζ for different burn
times t . For long burn times t � 1/γ0, the ultimate dis-
placement increases linearly with the propellant mass fraction
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FIG. 6. Maximal reach R∞ as a function of the propellant mass
fraction ζ for several burn times t = 10−2/γ0, t = 1/γ0, and
t = 102/γ0. The inset depicts the optimal propellant mass fraction
ζmax for a given burn time t . The corresponding maximal value
R∞(ζmax) is shown as a red dot in the main figure.

R∞ ∼ u ζ/γ0. The rocket reaches the longest distance when
ζmax ∼ 1, a situation that can be called complete extended
mass ejection. Interestingly, however, there is a qualitatively
different behavior for burn times that are comparable to or
smaller than the characteristic damping time 1/γ0, where the
displacements behave nonmonotonically in the mass fraction
ζ . This can be intuitively understood as follows: for small
mass fractions, more ejection means more propulsion and
acceleration such that R∞ increases with ζ . Conversely for
ζ close to 1, the rocket becomes very light after the burn time
and therefore very quickly stops within an extremely short
damping time 1/γ∞, which reduces its reach relative to a
situation of smaller ζ . Consequently, the optimal value ζmax

for the mass ratio for which the reach is maximal is smaller
than 1. These corresponding optimal mass ratios are marked
by red points in Fig. 6 and plotted as a function of the reduced
burn time in the inset. For decreasing burn times the optimal
mass ratio ζmax exhibits a bifurcation-like behavior from com-
plete mass ejection to a finite fraction with the special limit of
ζmax ∼ 1 − e−1 ≈ 0.63 as t approaches zero.

The special limit of t � 1/γ0 deserves some more atten-
tion. In this case of fractional instantaneous mass ejection,
the particle ejects only a fraction of its propellant to gain
momentum very quickly. But it keeps a rest mass in order
to still proceed during the subsequent damping time. In this
limit, we obtain

R(t ) = − u

γ0
(1 − ζ ) ln(1 − ζ )(1 − e−γ∞t )n̂0, (48)

which scales for t � t � 1/γ0 linearly in time,

R(t ) = −u ln(1 − ζ ) n̂0 t + O(t2). (49)

For long times, t � 1/γ0, we obtain

R∞ = − u

γ0
(1 − ζ ) ln(1 − ζ ). (50)

We finally remark that one can consider a full optimization
problem with respect to both burn time t and the mass frac-
tion ζ by posing the following question: What is the maximal
reach of the rocket if the burn time t and the mass fraction
ζ can be varied freely and independently? The answer in the
fluctuation-free case is simple: the best strategy is to burn all
mass ζmax → 1 and do this over a very long time t → ∞.
Then one achieves the maximum

max(R∞) = u

γ0
, (51)

shown in the upper right corner of Fig. 6. In other terms, the
strategy of complete extended mass ejection always outper-
forms that of an fractional instantaneous mass ejection. This
simple answer will change if orientational noise is included, a
case that we shall address next.

2. Noise-averaged mean reach and noise-induced transition
between two mass ejection strategies

In the case of finite rotational noise (Dr > 0), we obtain
for the noise-averaged displacement of the Langevin rocket
the analytical result

R(t )

= u

Dr

1

S1 + 1
(1 − e−Dr min(t,t ) )n̂0

+ u

Dr
Re

[
eS2 (−S2)S1+1�

(
− S1,−S2

(m(t )
m0

)
,−S2

)]
n̂0

×
((m(t )

m0

)S1+1

S1 + 1
−

(m(t )
m0

)S1+1

S1
(1 − e−γ∞( max(t,t )−t ))

)
,

(52)

with S2 = Drt/ζ proportional to the rotational noise. Ori-
entational fluctuations do not contribute to the short-time
behavior as witnessed by the fact that in this limit the mean
displacement coincides with the noise-free acceleration be-
havior of Eq. (46). For long times, on the other hand, the mean
reach of the Langevin rocket is

R∞ = u

Dr

1

S1 + 1
(1 − e−Drt ) + u

Dr

(1 − ζ )S1+1

S1(S1 + 1)

× Re[eS2 (−S2)S1+1�(−S1,−S2(1 − ζ ),−S2)].
(53)

Returning to the previous optimization problem, we now max-
imize the mean reach as a function of burn time t and
mass fraction ζ for fixed prescribed noise strength Dr/γ0. In
Fig. 7(a), the resulting maximal reach max(R∞) is shown
for varied noise strength Dr/γ0 in units of its universal noise-
free limit u/γ0 of complete extended mass ejection. The
associated optimal burn time tmax and optimal mass fraction
ζmax are also presented [see Figs. 7(b) and 7(c)]. If rotational
noise is increased, the complete extended mass ejection is
still the best strategy, but it is optimal to burn the full mass
over a finite burn time. This strategy defies best the ultimate
orientational decorrelation, which reduces the mean reach. In
the opposite limit of very large orientational noise, the best
strategy is to get momentum quickly by ejecting part of the
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FIG. 7. (a) The optimal mean reach max (R∞) maximized with respect to the propellant mass fraction ζ and the burn time t as a
function of the rotational noise strength Dr/γ0. (b) Optimal burn time tmax as a function of the rotational noise strength Dr/γ0. (c) Optimal
propellant mass fraction ζmax as a function of the rotational noise strength Dr/γ0. The transition from the complete extended mass ejection
strategy to that of the fractional instantaneous mass ejection is marked by vertical black lines at Dr, crit ≈ 0.72 γ0 in all three figures.

mass and using it to proceed further within the characteristic
damping time. If one were to eject the mass completely, the
system would be overdamped after the burn time and would
stop immediately, lacking the additional benefit of the iner-
tia. Hence the fractional instantaneous mass ejection is the
optimal strategy. Interestingly, there is a sharp noise-induced
discontinuous transition between the two strategies for an
intermediate finite value

Dr,crit ≈ 0.72 γ0 (54)

of the orientational noise. The latter is signaled by a sharp
jump in the optimal burn time from 1.39 γ0 to 0 [see Fig. 7(b)].
The optimal propellant mass fraction jumps from 1 to the
universal value of 1 − e−1 ≈ 0.63 [see Fig. 7(c)] and can thus
be viewed as the “order parameter” of the transition.

B. Comparison between the different setups

We now compare the different setups for time-dependent
inertia as discussed in Sec. II in more detail (see again
Fig. 2). In the case of directed mass ejection or isotropic
mass evaporation [Figs. 2(b) and 2(c)], we assume a mass loss
exponentially in time t as

m(t ) = m∞ + (m0 − m∞)e−γmt , (55)

where m0 is the initial mass, m∞ is the rest mass, which
remains after the fuel is burned, and γm is the mass decay rate.
As outlined in Appendix B, an exponential mass loss occurs
in particular for a rocket that ejects gas molecules at constant
speed from a tank under isothermal and isochoric conditions.
In this case, the exponential mass reduction follows from the
reduction of the gas density in the tank. Accordingly, we also
assume an exponential decrease in the moment of inertia,

J (t ) = J∞ + (J0 − J∞)e−γJ t , (56)

where J0 is the initial and J∞ the final moment of inertia,
and γJ is the decay rate of the moment of inertia. For the
isotropic shape change [Fig. 2(d)], the mass is assumed to be
constant, and only an exponential loss in the moment of inertia
is prescribed.

The protocol is as follows. At time t = 0, we start from a
steady state achieved for constant parameters and then initiate
the mass loss and moment of inertia change (or in gen-
eral arbitrary time dependences). For the different dynamical
correlation functions, we correlate the system configuration
after a time t with the steady-state condition at time t = 0
(over which we perform the average). For the different dy-
namical correlation functions, we correlate the steady-state
condition at time t = 0 over which we perform the average
with the system configuration after a time t . Under these
conditions, we obtain general analytical results for arbitrary
time dependences. Since the system is relaxing or “aging,” the
two-point correlation functions now depend explicitly on two
times—t1, t2—not just on the time difference as in the steady
state.

For t1 < t2, the orientational correlation function
C(t1, t2) = 〈n̂(t1) · n̂(t2)〉 is given by

C(t1, t2) = cos(μ(t1, t2)) e− 1
2σ (t1, t2)

, (57)

with the mean angle difference

μ(t1, t2) =
∫ t2

t1

dt ′′
∫ t ′′

−∞
dt ′ ξr (t ′)

J (t ′)
ω(t ′)e−�r (t ′,t ′′ ), (58)

the corresponding variance

σ (t1, t2) = 4
∫ t2

t1

dt ′′′
∫ t ′′′

t1

dt ′′

×
( ∫ t ′′

−∞
dt ′

(
ξr (t ′)
J (t ′)

)2

Dr (t ′)e−2�r (t ′,t ′′ )
)

e−�r (t ′′,t ′′′ ),

(59)

and the rotational damping function

�r (t1, t2) =
∫ t2

t1

dt ′ ξr (t ′)
J (t ′)

+ (1 − ν) ln

(
J (t2)

J (t1)

)
. (60)

Here, ν = 0 in the case of isotropic shape change, and ν = 1
in the case of isotropic mass evaporation.
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TABLE I. Simulation parameter for the different setups.

Time-independent inertia Directed mass ejection Isotropic mass ejection Isotropic shape change

m(t ) m0 m∞ + (m0 − m∞)e−γmt m∞ + (m0 − m∞)e−γmt m0

γm 0.1 Dr 0.1 Dr

m∞/m0 0.1 0.1
u 1 v0

J (t ) J0 J0 J∞ + (J0 − J∞)e−γJ t J∞ + (J0 − J∞)e−γJ t

γJ 0.1 Dr 0.1 Dr

J∞/J0 0.1 0.1

Similarly, the velocity correlation function Z (t1, t2) =
〈Ṙ(t1) · Ṙ(t2)〉 for t1 < t2 is

Z (t1, t2)

= 4
∫ t1

−∞
dt ′

(
ξ (t ′)
m(t ′)

)2

D(t ′)e−�(t ′,t1 )e−�(t ′,t2 )

+
∫ t1

−∞
dt ′

∫ t2

−∞
dt ′′a(t ′)a(t ′′)〈n̂(t ′) · n̂(t ′′)〉e−�(t ′,t1 )

× e−�(t ′′,t2 ), (61)

with the acceleration

a(t ) = ξ (t )

m(t )
v0(t ) − ṁ(t )

m(t )
u(t ) (62)

and the translational damping function

�(t1, t2) =
∫ t2

t1

dt ′ ξ (t ′)
m(t ′)

. (63)

For the delay function d (t1, t2) = 〈Ṙ(t2) · n̂(t1)〉 − 〈Ṙ(t1) ·
n̂(t2)〉, we obtain

d (t1, t2) =
∫ t2

−∞
dt ′a(t ′) 〈n̂(t ′) · n̂(t1)〉 e−�(t ′,t2 )

−
∫ t1

−∞
dt ′a(t ′) 〈n̂(t ′) · n̂(t2)〉 e−�(t ′,t1 ). (64)

The general expression for the mean displacement
〈R(t1, t2)〉 = 〈R(t2) − R(t1)〉 is

〈R(t1, t2)〉 =
∫ t2

t1

dt ′
∫ t ′

−∞
dt ′′a(t ′′) 〈n̂(t ′′)|n̂(t1)〉e−�(t ′′,t ′ ),

(65)
where the conditional average

〈n̂(t2)|n̂(t1)〉

=
⎧⎨
⎩

P̂
[
e− 1

2σ (t2, t1) + i(φ1 + μ(t2, t1))
]

for t2 > t1,

P̂
[
e− 1

2σ (t1, t2) + i(φ1 + μ(t1, t2))
]

for t2 < t1,

(66)

denotes the mean orientation under the condition that the
particle has the angle φ(t1) = φ1 at time t1.

Last, the mean-square displacement 〈R2(t1, t2)〉 =
〈(R(t2) − R(t1))2〉 is

〈R2(t1, t2)〉 =
∫ t2

t1

dt ′
∫ t2

t1

dt ′′Z (t ′, t ′′). (67)

For time-independent parameters, we recover the results
discussed in Sec. III. In particular, we have C(t1, t2) = C(|t1 −
t2|) [see Eq. (21)], Z (t1, t2) = Z (|t1 − t2|) [see Eq. (18)],
d (t1, t2) = d (|t1 − t2|) [see Eq. (37)], 〈R(t1, t2)〉 =
〈R(|t1 − t2|)〉 [see Eq. (24)], and 〈R2(t1, t2)〉 =
〈R2(|t1 − t2|)〉 [see Eq. (27)].

Numerical data for the special case of an exponential mass
loss [see Eq. (55)] and/or an exponential decay of the moment
of inertia [see Eq. (56)] as summarized in Table I are presented
in Figs. 8 and 9. Figure 8 is for an achiral particle and Fig. 9 for
a chiral particle. The case of time-independent inertia (with
the parameters at time t = 0) is shown as a reference, too.
Equations (8) and (9) were discretized to perform Brownian
dynamics simulations. For these simulations, we chose the
time step t = 10−2/Dr and we performed 106 realizations
to calculate the respective ensemble averages.

We first discuss the case of an achiral particle. For isotropic
shape change, the orientational correlation function C(0, t )
decorrelates faster [see Fig. 8(a)], since the rotational noise
is amplified during the decay of the moment of inertia. The
velocity autocorrelation Z (0, t ) as well as the delay function
d (0, t ) decorrelate faster if the particle actually loses mass
[see Figs. 8(b) and 8(c)]. For the particle with directed mass
ejection, we see an increase in the velocity autocorrelation for
short times and a more pronounced peak in the delay function
due to the additional acceleration, which enhances the particle
velocity. The mean displacement along the initial displace-
ment 〈R(0, t )〉 · n̂0 is displayed in Fig. 8(d). Although the
particle with directed mass ejection is the fastest for short
times, it gets overtaken for long times by the particle with
time-independent inertia. Last, we discuss the mean-square
displacement 〈R2(0, t )〉. Besides the additional accelera-
tion for the particle with directed mass ejection for short
times, the long-time diffusivity is identical to the case of
time-independent inertia. In contrast, the cases of isotropic
mass evaporation and isotropic shape end up with a de-
creased long-time diffusion coefficient [see Fig. 8(e)] due
to a smaller persistence. The differences between the setups
become clearer by considering the logarithmic derivative of
the mean-square displacement

α(t1, t2) = d ln(〈R2(t1, t2)〉)

d ln(t2)
. (68)

If the mean-square displacement follows a power law
〈R2(t1, t2)〉 ∼ (t2 − t1)α , α(t1, t2) is equal to the power-law
exponent α. This scaling exponent is shown in Fig. 8(f). All
setups start in a ballistic regime (α = 2) for short times and
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FIG. 8. Comparison of the different special setups for an achiral
active particle (ω = 0) with time-dependent inertia: (a) orientation
autocorrelation function C(0, t ), (b) velocity autocorrelation func-
tion Z (0, t ), (c) delay function d (0, t ), (d) mean displacement along
the initial orientation 〈R(0, t )〉 · n̂0, (e) mean-square displacement
〈R2(0, t )〉, and (f) the corresponding scaling exponent α(0, t ) for
time-independent inertia (dashed black), directed mass ejection (red),
isotropic mass evaporation (green), and an isotropic change in the
particle shape (blue). Velocities are given in units of v0, times in
1/Dr , and lengths in lp = v0/Dr . The time dependencies of the
mass m(t ) and the moment of inertia J (t ) for the different setups
are summarized in Table I. The remaining parameters are D = 0,
γ0 = ξ/m0 = 0.1Dr , and γr,0 = ξr/J0 = 0.1Dr .

end up in a diffusive regime (α = 1) for long times. Again
for the particle with directed mass ejection we observe faster
motion for short times indicated by a superballistic scaling
α > 2 due to the acceleration. For times greater than the
inverse decay rate of the moment of inertia 1/γJ , the parti-
cles with isotropic mass evaporation and an isotropic shape
change behave subdiffusively with α < 1 since their effective
diffusivity decreases.

Now we turn to the case of a chiral particle. First of
all, even for constant parameters, the presence of the torque
M yields systematic oscillations in the orientation and ve-
locity autocorrelations, and also in the delay function [see
Figs. 9(a)–9(c)]. Indeed, such oscillations in the delay func-
tion have been found recently in data for whirligig beetles
[49]. Turning to the time-dependent cases, similar to the
pirouette of figure skating, the particle with an isotropic shape
contraction is spinning with a higher frequency during the
decay of the moment of inertia. This is visible in the orien-
tational and velocity autocorrelation functions and the delay

chiral particle
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FIG. 9. Same as in Fig. 8 for a chiral particle with a spinning
frequency of ω = 0.1Dr .

function [see Figs. 9(a)–9(c)]. Also, when the particle loses
mass, the oscillation becomes more pronounced since the par-
ticle can adapt more easily to orientation changes. In contrast
to the achiral case, the long-time behavior of the mean-square
displacement increases for the time-dependent setups when
the moment of inertia J (t ) decreases [see Fig. 9(e)] in line
with the trend discussed previously in Fig. 5. This is marked
by a peak in the scaling exponent for times larger than 1/γJ

[see Fig. 9(f)].

C. Adiabatic approximation for slow variations

When the parameters [such as mass m(t ), moment of in-
ertia J (t ), friction coefficients ξ (t ) and ξr (t ), noise strengths
D(t ) and Dr (t ), and self-propulsion velocity v0(t )] change
very slowly in time, i.e., much slower than any other timescale
inherent in the model, the system can be analyzed using the
adiabatic approximation. In other words, one can take the ex-
pressions for the dynamical correlation function with constant
parameters (as discussed in Sec. III) and insert into these ex-
pressions the slowly varying time-dependent parameters. This
approximation becomes exact if the two time scales (largest
system timescale and fastest timescale governing the change
of all parameters) are separated completely.

Let us elaborate on the adiabatic approximation for the
MSD by considering an achiral active particle. Corresponding
analytical expressions for the MSD in the two limits of small
and high moments of inertia J are given by (35) and (36),
respectively. Using the long-time limit (31), we obtain within
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the adiabatic approximation for large J ,

〈R2(t )〉 ∼ 4

(
D(t ) + v2

0 (t )

4

√
2πJ (t )

Dr (t ) ξr (t )

)
t, (69)

when the moment of inertia J becomes sufficiently large, and

〈R2(t )〉 ∼ 4

(
D(t ) + v2

0 (t )

2Dr (t )
+ v2

0 (t )J (t )

2ξr (t )

)
t, (70)

in the case of a small moment of inertia J . Let us now as-
sume a slow power law in time for the moment of inertia,
the self-propulsion, the rotational friction, and the diffusion
coefficients,

v0(t ) ∼ tβ, J (t ) ∼ t δ, ξr (t ) ∼ t ε, Dr (t ) ∼ tη, (71)

with prescribed dynamical exponents β, δ, ε, and η. Plugging
this into the expressions (69) and (70), we obtain a power law
for the long-time MSD of the active particle,

〈R2(t )〉 ∼ tα, (72)

with

α = max(1, 1 + 2β − 1
2 (ε − δ + η)) (73)

for large J and

α = max (1, 1 + 2β − min(ε − δ, η)) (74)

for small J . If α > 1, the adiabatic term is dominated over-
whelmingly by the standard diffusion such that the particle
exhibits anomalous superdiffusion. If α = 1, the full MSD is
dominated by the translational diffusion. We finally remark
that simpler scaling laws were obtained earlier in the over-
damped limit [83].

V. CONCLUSIONS

To conclude, we have investigated the dynamics of an
inertia-dominated Brownian particle, referred to as active
Langevin dynamics. Dynamical correlations within a simple
model were calculated for a single “microflyer,” which is
simultaneously subjected to self-propulsion, inertia, damp-
ing, and fluctuations, and analytical results known for the
overdamped limit of microswimmers were generalized to the
inertial situation. In particular, we considered the case of
time-dependent inertia. Furthermore, we identified a basic
Langevin model for a rocketlike particle self-propelled by
the ejection of mass for which we calculated its mean reach
and found a noise-induced discontinuous transition in the
optimal propulsion strategy for reaching the furthest distance.
The case of chiral particles referred to as circle-flyers was
included. One characteristic dynamical correlation absent in
the overdamped case concerns the inertial delay between the
orientation variations and the subsequent changes in the ve-
locity direction. For achiral particles with vanishing spinning
frequency, the inertial delay decays to zero after a profound
peak at a typical delay time. Conversely, for chiral particles,
the inertial delay correlation may oscillate between positive
and negative values. Finally, we have also addressed the lim-
iting “adiabatic” case of very slow inertia variation, and we
have highlighted that a microflyer can undergo anomalous
diffusion if the parameters are varying as a power law in time.

Future work should generalize the present model to exter-
nal potentials such as optical fields, disorder, and confinement
[39,102–105], and to motion in noninertial rotating frames
[106,107]. Furthermore, anisotropic particles that show out-
of-plane orientations and positions relevant for active complex
plasmas [108] should be considered in the future. In this case,
the equations of motion are getting more complex involving
friction and inertia tensors significantly more complicated
than in the overdamped limit [109,110]. Next, the “rocketlike”
particles studied here should be realized in experiments; the
most promising way seems to be dust particles in the plasma
with evaporating mass. Moreover, it would be interesting to
study collective effects of inertia-dominated active particles
such as motility-induced phase separation [111–116] or pat-
tern formation in general [117]. Finally, it would be interesting
to generalize the more coarse-grained Ornstein-Uhlenbeck
model for inertial active particles [118,119] to the situation
of time-dependent parameters.
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APPENDIX A: GENERAL SOLUTION

For an analytical solution of the equations of motion, we
first consider the rotational part [see Eq. (9)]. For φ0 = φ(t =
0) and φ̇0 = φ̇(t = 0), the solution of Eq. (9) is

φ̇(t ) = φ̇0 e−�r (0,t )

+
∫ t

0
dt ′ ξr (t ′)

J (t ′)
ω(t ′) e−�r (t ′,t )

+
∫ t

0
dt ′ ξr (t ′)

J (t ′)

√
2Dr (t ′)τst (t

′) e−�r (t ′,t ), (A1)

and thus

φ(t ) = φ0 +
∫ t

0
dt ′φ̇0 e−�r (0,t ′ )

+
∫ t

0
dt ′

∫ t ′

0
dt ′′ ξr (t ′′)

J (t ′′)
ω(t ′′)e−�r (t ′′,t ′ )

+
∫ t

0
dt ′

∫ t ′

0
dt ′′ ξr (t ′′)

J (t ′′)

√
2Dr (t ′′)τst (t

′′)e−�r (t ′′,t ′ ),

(A2)

where

�r (t1, t2) =
∫ t2

t1

dt ′ ξr (t ′)
J (t ′)

+ (1 − ν) ln

(
J (t2)

J (t1)

)
. (A3)

The translational equation of motion yields for the particle
velocity

Ṙ(t ) = Ṙ0 e−�(0,t ) +
∫ t

0
dt ′a(t ′) n̂(t ′) e−�(t ′,t )

+
∫ t

0
dt ′ ξ (t ′)

m(t ′)

√
2D(t ′)f st (t

′) e−�(t ′,t ). (A4)
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Hence, the center-of-mass position is calculated as

R(t ) = R0 +
∫ t

0
dt ′Ṙ0 e−�(0,t ′ )

+
∫ t

0
dt ′

∫ t ′

0
dt ′′a(t ′′) n̂(t ′′)e−�(t ′′,t ′ )

+
∫ t

0
dt ′

∫ t ′

0
dt ′′ ξ (t ′′)

m(t ′′)

√
2D(t ′′)f st (t

′′)e−�(t ′′,t ′ ),

(A5)
where

a(t ) = ξ (t )

m(t )
v0(t ) − ṁ(t )

m(t )
u(t ) (A6)

and

�(t1, t2) =
∫ t2

t1

dt ′ ξ (t ′)
m(t ′)

. (A7)

Here R0 and Ṙ0 are the initial position and velocity at time
t = 0.

APPENDIX B: EXPONENTIAL MASS LOSS

In an isothermal environment of temperature T , the mass
loss through a small leak of cross section S in the rocket tank
of volume V in quasiequilibrium is governed by

ṁfuel(t ) = −1

6

S

V

√
3kBT

mmol
mfuel(t ) = −γm mfuel(t ), (B1)

where mmol is the mass of the ejected molecules and kB is
the Boltzmann constant. Equation (B1) implies an exponential
decay of the rocket fuel, i.e., mfuel(t ) = mfuel(0) e−γmt with the
mass decay rate γm and thus motivates Eq. (55).
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