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Active carpets drive non-equilibrium diffusion and
enhanced molecular fluxes
Francisca Guzmán-Lastra1,2,5✉, Hartmut Löwen3 & Arnold J. T. M. Mathijssen 4,5✉

Biological activity is often highly concentrated on surfaces, across the scales from molecular

motors and ciliary arrays to sessile and motile organisms. These ‘active carpets’ locally inject

energy into their surrounding fluid. Whereas Fick’s laws of diffusion are established near

equilibrium, it is unclear how to solve non-equilibrium transport driven by such boundary-

actuated fluctuations. Here, we derive the enhanced diffusivity of molecules or passive

particles as a function of distance from an active carpet. Following Schnitzer’s telegraph

model, we then cast these results into generalised Fick’s laws. Two archetypal problems are

solved using these laws: First, considering sedimentation towards an active carpet, we find a

self-cleaning effect where surface-driven fluctuations can repel particles. Second, considering

diffusion from a source to an active sink, say nutrient capture by suspension feeders, we find

a large molecular flux compared to thermal diffusion. Hence, our results could elucidate

certain non-equilibrium properties of active coating materials and life at interfaces.
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Imagine a particle floating in outer space, surrounded by uni-
formly distributed stars that all exert a gravitational force on it.
On average, the total force is zero, by symmetry, but its var-

iance is infinite, as described by the Holtsmark distribution1.
Microscopically, a similar situation occurs when molecular
motors or swimming cells generate long-ranged flows and fluc-
tuations in ‘living fluids’2–12. These active suspensions operate far
from thermal equilibrium where surprising effects emerge that
fundamentally impact biological processes, including enhanced
diffusion of enzymes13–15, viscous and chaotic mixing by
motility16–23, viral infections24, bioconvection25–27, oxygen
redistribution28, nutrient uptake29–32 and communication via
hydrodynamic trigger waves33.

Besides active suspensions, biological activity is commonly
concentrated on surfaces. Hence, ‘active carpets’ can form that
drive systems out of equilibrium by injecting energy from
boundaries. These carpets exist across the length scales: Inside
cells, cytoskeletal motors generate cytoplasmic streaming while
membranes host catalysing enzymes and transport proteins, all
producing non-equilibrium fluctuations and active stresses34–40.
Outside cells, ciliary arrays create globally directed flows across
entire organs but locally also facilitate mixing41–47, which toge-
ther may enhance pathogen clearance48. Cells themselves accu-
mulate on surfaces too, driving flows to replenish nutrients,
including biofilms or microbial colonies49–53 and sessile suspen-
sion feeders54–58. Multicellular organisms also drive feeding
currents from walls, including sponges, reef corals59,60, carpets of
upside-down Cassiopea jellyfish61 and other macrobenthos62 at
larger Reynolds numbers. Beyond biological hotspots, synthetic
active carpets have been developed, including artificial cilia63,64,
self-propelled droplets and colloids9,10,65,66, engineered bacterial
carpets67,68, molecular motility assays69, light-controlled micro-
fluidic flow networks70, hydrogel actuators, liquid crystal elasto-
mers and other responsive materials71–73.

In this article, the properties of non-equilibrium diffusion of
molecules or passive particles are examined near such active
carpets that generate long-ranged flows. We distinguish between
various types of carpets that inject energy into the surrounding
medium in different ways: We consider actuators that exert a net
force on the liquid (like pumping cilia or sessile suspension fee-
ders), a net torque (like mixing rotors), or a net stress (like
swimming bacteria). First, we show how the resulting active
fluctuations decay with distance from the surface. Next, we derive
the space-dependent diffusivities for the different carpet types,
verified by hydrodynamic simulations, and the corresponding
generalised Fick’s laws are written out. These laws are then used
to solve the active analogue of two classic problems: We first
examine sedimentation of particles towards an active carpet.
Instead of following the Boltzmann distribution, the particles can
be repelled by the fluctuations close to the surface, so the surface
features an active self-cleaning effect. We then consider the dif-
fusion of molecules (or particles) from a source to an active sink,
such as a surface covered with sessile suspension feeders. The
nutrient flux (or particle capture rate) is found to scale quad-
ratically with the active forcing, so it can be significantly larger
than the flux due to thermal diffusion. Overall, these problems
can be described by relatively simple equations, even if the
resulting dynamics feature unexpected solutions.

Results
Active carpet definition. We consider an active carpet made of
actuators that generate flows at low Reynolds numbers near a
planar no-slip surface (Fig. 1a–d). The surface is located at z= 0.
The actuators have position ra ¼ ðxa; ya; hÞ and orientation unit
vector pa. Each actuator a drives an individual flow, uðr; ra; paÞ,

evaluated at position r. In general, this flow can be written in
terms of the Blake tensor Bðr; raÞ74 and a multipole expansion
thereof (see ‘Methods: Individual flow fields’).

For example, molecular motors walking or cells crawling along
a substrate can entrain the surrounding fluid (Fig. 1a)34–37,39,40.
This can be described by a ‘parallel Stokeslet’, a point force f∥
oriented parallel to the surface, giving rise to the flow
uk ¼ f kB � pa. At a larger scale, sessile suspension feeders like
Vorticella cells generate nutrient currents (Fig. 1b)54,55, which can
be described by a point force f⊥ oriented perpendicular towards
the surface, u? ¼ f ?B � ez . Similarly, the flow generated by an E.
coli bacterium swimming parallel to a wall (Fig. 1c) is described
well50 by a ‘Stokes dipole’ flow, given by uD ¼ κðpa � ∇aÞðB � paÞ,
with dipole moment κ. Finally, a torque-generating actuator can
be described by a Stokes rotlet (Fig. 1d), given by
uR ¼ ϱððex � ∇aÞðB � eyÞ � ðey � ∇aÞðB � exÞÞ=2, with strength ϱ.
This could represent rotors on a surface, such as bacteria with
tethered flagella, or a carpet of nodal cilia45 that move around in
circles in the xy plane. A more complex example could be (non-
nodal) airway cilia, beating almost perfectly in a plane but with
some off-plane fluctuations48,75. For such situations, to establish a
more realistic description, one can combine terms from this
multipole expansion, using Stokeslets, rotlets, dipoles and high-
order terms as needed.

To be explicit, we have written out the full expressions of these
first multipoles in ‘Methods: Individual flow fields’, and their
corresponding flow fields are illustrated in Fig. 1e–h. Also note,
throughout this paper we consider non-dimensional quantities in
our simulations and figures, but all results can be predicted by
analytical expressions, into which dimensional values can be
inserted. Hence, we will discuss our results for typical numbers in
biology.

Once the individual flows u are established, the total flow v ¼
∑au due to all Na actuators is probed by a passive tracer particle
as a function of its distance from the surface. For a given carpet
architecture, which is defined by the probability density Fðra; paÞ
of finding an actuator at position ra and orientation pa, the
average total flow evaluated at position r is hvðrÞi ¼ R uFdradpa,
where 〈…〉 denotes averaging over a statistical ensemble of
independent active carpet configurations. If there are any spatial
or orientational gradients in the distribution F, for example due to
bacterial clustering, or topological defect patterns, then long-
ranged flows can emerge52. However, in this paper we will
consider cases where the actuators are uniformly distributed, so F
is equal to a constant. Then the mean drift cancels out, so hvi ¼ 0
in the absence of gradients in the carpet architecture.

Active fluctuations. Even if the mean flow generated by the
actuators is equal to zero, its variance at any one time is not.
Hence, the flows can lead to ‘active fluctuations’ that push and
pull on particles near the carpet. We first determine the strength
of these fluctuations numerically. A carpet is simulated by placing
Na actuators that are randomly distributed with a uniform surface
density n within the xy plane. We then evaluate the total flow v
evaluated at particle position r0 ¼ ð0; 0; z0Þ. By repeating this for
a large ensemble of Ne independent carpet configurations, we
evaluate the distribution of the total flow, PDF ðvÞ, analogous to
the Holtsmark distribution1. Subsequently, the moments of this
total flow distribution (the mean, variance, skewness and kurto-
sis) are found as a function of distance from the surface, for
different carpet types (see ‘Methods: Characterising fluctuations:
simulation details’).

We first focus on carpets made of Stokeslets oriented parallel to
the surface, with uniformly distributed orientations, so pz= 0 and
F= n/2π. Figure 1i shows the resulting histogram of the total
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vertical flow, vz, for different values of z0. This distribution is an
even function, by symmetry of the parallel Stokeslet, so it is
immediately clear that the mean flow vanishes. However, the
width is finite and decays with distance from the surface, so the
active fluctuations are stronger closer to the carpet. This variance
can be calculated analytically,

V ij ¼ hvivji ¼
Z

uiujFdradpa; ð1Þ

for the directions i, j∈ x, y, z, as detailed in ‘Methods:
Characterising fluctuations: theory details’. For the vertical
component, for instance, this integral yields the variance

hv2zi ¼ 6πnh2f 2k=z
2
0: ð2Þ

Physically, this expression represents how deeply the active
boundary can influence the passive bulk fluid. This theoretical
result is listed in Table 1 (row 4, column 3), and it is compared
with simulations in Fig. 1m (magenta line). The decay with
distance is 1=z20 for all diagonal components, but the off-diagonal
components are zero. Interestingly, the variance in the vertical
direction (purple stars) is twice as strong as in the horizontal
directions (green points, blue triangles), so hv2xi ¼ hv2yi ¼ 1

2 hv2zi
for parallel Stokeslets.

Moreover, when repeating this algebra for Stokeslets oriented
perpendicular to the surface, we find that hv2zi is five times
stronger than hv2xi (Table 1, fourth column) and the decay is now

1=z40. This scaling also holds for the dipole flows (fifth column)
and the rotlets (sixth column). Note that rotlets only generate
flows in the xy plane, so their resulting variance only has
horizontal components. This fact could be exploited to tune the
relative magnitude of hv2xi and hv2zi. For example, one could use
an active carpet made of both Stokeslets and rotlets and vary their
relative prefactors f⊥ and ϱ, or vary their relative densities n⊥ and
nϱ. Therefore, as we discuss next, the diffusion anisotropy may
become a tunable.

The distributions of the active fluctuations, PDF ðvÞ, are not
purely Gaussian. They feature skewness and kurtosis (Table 1;
bottom rows), but they still obey the central limit theorem
because the variance is finite for z0 > 0. Otherwise, Lévy flights
must be considered12,16,76,77. Additionally, these higher-order
moments also decay with z0, so far away from the active carpet
the profiles are more Gaussian (Fig. 1i–l; insets).

Space-dependent diffusivity. To understand how these active
fluctuations may lead to particle diffusion, it is important to
realise how exactly they vary over time. Most systems in nature
are dynamic, such as bacteria (or synthetic self-propelled parti-
cles) that swim over a surface, with some source of stochasticity.
As the bacteria move and reorient, the flows they produce change
dynamically. Therefore, a particle advected by these flows will
trace out a path that is eventually diffusive. As opposed to
Brownian motion, though, this diffusion process is not the sum of

Fig. 1 Flows driven by different types of active carpets. Diagrams of a few examples: a Molecular motors walking along a surface, described by parallel
Stokeslets. b Sessile suspension feeders that draw in feeding currents, described by perpendicular Stokeslets. c E. coli bacteria swimming along a surface,
described by Stokes dipoles. d Actuators that rotate about the z-axis, such as nodal cilia, described by Stokes rotlets. e–h Flow fields generated by these
different actuator types, shown in the xy plane at z0= 2h. i–l Probability distribution functions, PDF(vz), of the total flow velocity due to Na= 105 actuators, at
different heights z0. Insets show rescaled histograms that highlight skewness and kurtosis, especially for small z0 values. m–p The variance of these
distributions, hv2i i, corresponding to the strength of active fluctuations in different directions i, as a function of distance z0 from the active carpet. Insets show
the skewness for n and o, but this is zero for m and p. Symbols show simulation results and the lines are the theoretical predictions of Eq. (1) and Table 1.
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random kicks that are instantaneous. Instead, the active fluctua-
tions are correlated in time. They have a memory based on the
history of the active carpet configuration.

Therefore, we first focus on a simple case with only one
memory time scale, τ. Consider a carpet of sessile suspension
feeders like Vorticella convallaria, tethered organisms that
produce time-varying nutrient currents (Fig. 2a). These are
modelled as Na perpendicular Stokeslets that are again uniformly
distributed in space, and fixed because they are non-motile. Each
organism generates a flow with its own time-varying strength f⊥
= f(t), which is independent of the other organisms. These Na

forces fluctuate according to an Ornstein–Uhlenbeck process,
df
dt ¼ �f =τ þ σηðtÞ, with relaxation time τ and strength σ. These
behavioural quantities are set by the cells’ intrinsic properties,
such as the internal biochemistry and biophysics. Supplementary
Movie 1 depicts these actuator dynamics as well as the evolution
of the total flow vðtÞ they produce. We then simulate the motion
of tracer particles that do not diffuse because of Brownian
thermal fluctuations, but because of the fluctuating flows
generated by the active carpet (see ‘Methods: Simulating the
diffusivity of particles near carpets made of fluctuating forces’).

The resulting velocity correlation function (VCF) and mean-
squared displacement (MSD) are shown in Fig. 2b and c,
respectively. The tracer dynamics are ballistic at short times, t≪
τ, called the Holtsmark regime. However, at long times they are
diffusive with a linear relation 〈Δx2〉= 2Dxxt, and similarly in the
other directions. Hence, we determine the components of the
diffusion tensor as a function of z0 (Fig. 2d). Like the flow
variances, the vertical component Dzz is five times stronger than
the horizontal components, leading to anisotropic diffusion, and
they all decay as 1=z40 in all three directions.

This system can be solved analytically when considering the
limit of small displacements, hΔr2i � r20, when the noise
amplitude is small. This ensures that we determine the local
diffusivity, Dij(z) with small variations in z. Using information
from the variance of the active fluctuations and their temporal
correlations, the motion can then be integrated (see ‘Methods:
Derivation of the mean-squared displacement and space-
dependent diffusivity’). This gives the MSD,

hΔriΔrji ¼ 2V ijτ t þ τðe�t=τ � 1Þ
� �

; ð3Þ

Table 1 Properties of fluctuations driven by an active carpet.

γ Parallel Stokeslets Perpendicular Stokeslets Parallel dipoles Rotlets

uðr; ra; paÞ uk, Eq. (14) u?, Eq. (15) uD, Eq. (16) uR, Eq. (17)
Mean 1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
Variance 2 ð1; 1; 2Þ 3πnh

2 f2k
z20

ð1; 1; 5Þ 3πnh4 f2?
z40

ð7; 7; 30Þ 3πnh2κ24z40
ð1; 1;0Þ 3πnh2ρ2

2z40

Skewness 3 (0, 0, 0) ð0;0; 4838404199 Þ πnh6 f3?z70
ð0;0;� 552960

4199 Þ πnh3κ3z70
(0, 0, 0)

Kurtosis 4 ð3; 3; 20Þ 54πnh
4 f4k

35z60
ð267; 267; 12; 880Þ 81πnh8 f4?

1001z100
ð2797; 2797; 107;680Þ 27πnh4κ4

2288z100
ð1; 1;0Þ 27πnh4ρ4

14z100

The columns correspond to different types of hydrodynamic actuators: we consider point forces (Stokeslets) oriented parallel to the surface, perpendicular Stokeslets, parallel dipoles, and rotlets. The
rows correspond to different moments of the total flow velocity: we consider the mean, the variance, the skewness, and the kurtosis of these flows, presented as ðhvγx i; hvγyi; hvγz iÞ using the exponent γ= 1,
2, 3, 4 respectively, as a function of distance from the carpet, z0. Note that the off-diagonal components are equal to zero in all cases.

Fig. 2 Diffusion driven by an active carpet. For a–d the surface is covered with sessile perpendicular Stokeslets with independent random forces. Also see
Supplementary Movie 1. For e–h the surface is covered by parallel Stokeslets moving along a surface with a constant velocity V and rotational diffusion Dr.
For both cases we simulate the motion of tracer particles subject to these active fluctuations, ensemble-averaged over Ne= 100 independent tracer
trajectories, as a function of their initial distance from the surface, z0. a Diagram and typical time course of a random force f(t) described by an
Ornstein–Uhlenbeck process. b Velocity correlation function (VCF) of the tracer velocity over time. Blue lines show different values of z0, each ensemble-
averaged, and the red dashed line is the prediction of Eq. (48). The inset shows that the resulting correlation time τ is independent of z0. c Mean-squared
displacement (MSD) for different values of z0, each ensemble-averaged, transitioning from ballistic to diffusive motion. The red dashed lines show the
theoretical approximation of Eq. (3) for z0= 2, 20. d Anisotropic diffusivity in the directions parallel (blue, green) and perpendicular (purple) to the surface.
The solid lines show the prediction of Eq. (4). e Diagram and typical time course of the orientation angle ϕa(t) described by rotational diffusion. f–h are
equivalent to b–d for moving actuators.
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which captures both the short-term ballistic motion and the
diffusivity after long times (Fig. 2c, dashed red lines). Thus, for
the vertical Stokeslets for example, we find the space-dependent
diffusion,

Dzzðz0Þ ¼ 15πnh4hf 2iτ=z40
¼ 5Dxx ¼ 5Dyy;

ð4Þ

which is compared with the simulations in Fig. 2d. Because our
theoretical approximation is formulated for small amplitudes of
active fluctuations, the expression only holds far from the surface,

when z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30πnh4hf 2iτ26

q
(Eq. (54)). Beyond this distance we

find a good agreement between the simulations and the theory.
Overall, we find that the diffusion driven by an active carpet

can be much stronger than Brownian thermal diffusion.
Considering a carpet of Vorticella with cell radius a ~25 μm, h
~150 μm, n ~1/(100 μm)2, τ ~1 s and 8πμf⊥ ~500 pN55, the active
diffusion can be dominant up to distances of

zth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15πnh4hf 2iτ=Dth

4

q
� 1 mm for small nutrient molecules

of Dth ~ 500 μm2/s. That is much larger than the cell size.
Moreover, for micron-sized prey of Dth ~0.5 μm2/s, we find zth
~7 mm, orders of magnitude larger than the organism itself.
Hence, we expect these results to be highly relevant across the
scales, for non-equilibrium transport from molecular to
organismic sizes.

Diffusion due to motile actuators. These concepts can be
extended to a more complex system with motile actuators
(Fig. 2e–h). We consider Stokeslets that move with a constant
velocity V along the surface, subject to rotational diffusion Dr,
which exert on the liquid a constant force f∥ that is aligned with
the direction of motion (see ‘Methods: Simulating the diffusivity
of particles near carpets made of moving actuators’). Importantly,
this system features multiple time scales: The reorientation time,
τr ~ 1/Dr, and the time taken to move underneath a particle, τu ~
z0/V. The corresponding tracer dynamics are therefore more
complicated to solve in general, but for slow actuators the dec-
orrelation of the carpet memory is primarily controlled by the
rotational diffusion, since τr≪ τu for small V. Indeed, as shown in
Fig. 2f, in that case the VCF simulated for different positions z0
(green lines) closely follows the actuators’ rotational correlation
function (red dashed). Then the same theory as before can be
applied to predict the MSD (Fig. 2g) and the diffusivity (Fig. 2h).
In particular, we can approximate the space-dependent diffusion
for parallel Stokeslets as

Dzzðz0Þ ¼ 6πnh2f 2k=Drz
2
0

¼ 2Dxx ¼ 2Dyy;
ð5Þ

and similarly for other actuator types following Table 1. In the
remainder of this paper we stay in the small V limit, but future
work should also address the case of faster actuators.

Again, the active diffusion is significant compared to thermal
diffusion. Inserting some typical values into Eq. (5), say h ~ 1 μm,

n ~ 1 μm−2, Dr ~ 1 s−1 and 8πμf ~ 1 pN, we have zth ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πnh2f 2k=DrDth

q
� 7:7 μm for molecules of Dth ~ 500 μm2/s.

Similarly, for micron-sized particles with Dth ~ 0.5 μm2/s we have
zth ~ 240 μm, so again much larger than h. Since nh2 remains
constant when scaling down in size, the enhanced transport can
be significant even for subcellular systems.

Generalised Fick’s laws. Once the local diffusivity is determined,
we can establish the generalised Fick’s laws (or Fokker-Planck

equations) that govern the global stochastic transport. For clarity,
we first revise the case of constant diffusion ~D. Fick’s first law
relates gradients in particle concentration φðr; tÞ and an external
drift flow vd to the total flux, J ¼ vdφ� ~D∇φ. Fick’s second law
describes how the particle concentration evolves in time,
∂tφ ¼ �∇ � ðvdφÞ þ ~D∇2φ. This follows directly from the first
law and the continuity equation, ∂tφ ¼ �∇ � J.

If the diffusivity is not constant, the spatial dependence may
either arise from gradients in the mean speed or an inhomoge-
neous mean free path78. Indeed, as we saw earlier (Eqs. (4) and
(5)), the diffusion tensor DijðzÞ ¼ V ijðzÞτðzÞ can be written in
terms of the variance of the active fluctuations V and the memory
time τ, which in general can both depend on position. As
described in ‘Methods: Generalised Fick’s laws’, the diffusion
driven by an active carpet can be analysed by constructing a
‘telegraph model’, following Schnitzer78. The particle flux is then
described by the first generalised Fick’s law,

JðrÞ ¼ vdφ� ðτV � ∇Þφ� φτ

2
∇ � V; ð6Þ

and the second generalised Fick’s law still follows from the
continuity equation. Interestingly, these laws can be used to
describe the active analogue of several classic problems, as we
discuss in the next sections.

Sedimentation towards an active carpet. As a first application,
we consider particles sedimenting towards an active carpet
(Fig. 3a, ‘Methods: Sedimentation towards an active carpet:
simulation details’). The fluctuations are driven by slowly moving
parallel Stokeslets, as before. Typical particle trajectories z(t) are
shown for different values of vg, the sedimentation velocity
(Fig. 3b). As expected, the particles with the smallest vg reach the
highest z positions (green track) but, surprisingly, they hover
above the active carpet at some finite height. This phenomenon is
somewhat reminiscent of the Leidenfrost effect, where droplets
hover above a hot plate. That is, far from the active carpet the
particles fall under gravity, but nearby they are repelled by strong
active fluctuations (also see Supplementary Movie 2). Because the
system is driven out of equilibrium, the sedimentation profile φ(z)
does not follow the Boltzmann distribution with an exponential
decay. Instead, it features a maximum value (Fig. 3c) with much
less particles close to the surface than expected.

To quantify this ‘self-cleaning’ effect, we solve the generalised
Fick’s laws for this system analytically. For active fluctuations that
scale algebraically with distance from the carpet, VðzÞ ¼ ~V=zα as
in Table 1, and similarly for the memory time, τðzÞ ¼ ~τ=zβ, the
vertical component of the generalised flux (Eq. (6)) becomes

JzðzÞ ¼ �vgφ�
~D

zαþβ

∂φ

∂z
þ α~D
2zαþβþ1

φ; ð7Þ

where the constant part of the vertical diffusivity is ~D ¼ ~Vzz~τ. We
require that Jz= 0 at steady state, which yields the non-
Boltzmannian sedimentation profile

φðzÞ
φ0

¼ zα=2 exp � vgz
αþβþ1

~Dðαþ βþ 1Þ

 !
; ð8Þ

where φ0 is a normalisation factor. To clarify, vg has standard
units of m/s and ~D has units of m2+α+β/s. In the limit of a
constant diffusivity (α= β= 0) we recover the Boltzmann
distribution, φðzÞ ¼ φ0e

�vgz=~D. A major different with the
sedimentation profile near an active carpet is the zα/2 factor in
Eq. (8), where α= 2 for parallel Stokeslets. Therefore, the
sedimentation profile features a maximum (Fig. 3c), which is
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located at

zmax ¼ α~D=2vg
� �1=ðαþβþ1Þ

: ð9Þ

These results agree with our simulations (Fig. 3c, d), for
different values of the sedimentation velocity.

The self-cleaning effect can be understood by analysing the
generalised flux more carefully (see ‘Methods: Self-cleaning
effect’). The first two terms are identical to the case of constant
diffusion. However, a third term emerges that represents a flux
toward regions where the speed is low. Since the active
fluctuations decay with distance, this flux term is always directed
away from the active carpet. Importantly, the self-cleaning effect
also persists when thermal fluctuations are included in the
analysis (see ‘Methods: Sedimentation with active and thermal
diffusion’).

Diffusion from a source to an active carpet sink. Next, we
consider particles diffusing from a source to an active carpet sink
(Fig. 4a, ‘Methods: Diffusion from a source to an active carpet
sink: simulation details’), which could represent particle capture
by sessile suspension feeders, or substrate molecules being cata-
lysed by a carpet of enzymes (also see Supplementary Movie 3).
Every time a simulated particle diffuses across the absorbing
boundary at zsink= h, we place it back at zsource=H. This way, a
diffusive flux emerges towards the carpet, which is equivalent to
the particle capture rate. Typical trajectories z(t) show that the
particles spend the majority of time close to the top surface
(Fig. 4a), which is also apparent in the concentration profiles φ(z)
that are peaked at the top surface (Fig. 4b). Moreover, the mean
first-passage time is much larger for distant sources, so the flux

decays rapidly with gap size (Fig. 4c), which may be important for
biology or applications in confined spaces.

This system can again be solved analytically (see ‘Methods:
Diffusion from a source to an active carpet sink: theory details’).
The flux is given by Eq. (7), with vg= 0 and with fixed particle
concentrations at the source and sink. Hence, we must solve the
continuity equation ∂zJz= 0 subject to the boundary conditions φ
(H)= φ+ and φ(h)= 0. This gives the solution

φðzÞ
φþ

¼ zαþβþ1 � hβþ1ðhzÞα=2
Hαþβþ1 � hβþ1ðhHÞα=2

; ð10Þ

for α ≥ 0 and β ≥−1, or a slightly more complex function for
other values. The corresponding solution for the flux, equivalent
to the particle capture rate, is

Jz
φþ

¼ � ðαþ 2βþ 2Þ~D
2 Hαþβþ1 � hβþ1ðhHÞα=2
� � : ð11Þ

In the limit of constant diffusion and h≪H, we recover the
profile φ(z) ≈ φ+z/H, which increases linearly from sink to source,
and the flux Jz � �φþ ~D=H. However, for an active carpet the
profile is more concentrated at the source, in agreement with the
simulations (Fig. 4b). Indeed, the flux also decays more rapidly
than thermal diffusion with the gap size (Fig. 4c). These
predictions (dashed lines) agree well with the simulations.

Finally, we also examine the effect of different force strengths f∥
on the diffusion to the active sink. Interestingly, we find that the
flux scales quadratically with the active fluctuations, so stronger
Stokeslets lead to a much larger capture rate (Fig. 4d). Inserting
the typical values written below Eq. (5) into Eq. (11), with source
concentration φ+ ~ 1 particle/μm and gap size H ~ 10 μm, we find

Fig. 3 Sedimentation towards an active carpet. Particles sink with velocity vg due to gravity, but are pushed up by the active fluctuations generated by
the carpet (dashed purple line), which in this case is composed of moving parallel Stokeslets. a Diagram showing the steady-state sedimentation profile.
b Typical trajectories z(t) for a range of sedimentation velocities vg. c Steady-state distributions of particle density for different vg. Histograms show
simulations and dashed lines are the prediction of Eq. (8). d Position of the maximum particle density as a function of vg. Markers show simulations and the
dashed line is Eq. (9).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22029-y

6 NATURE COMMUNICATIONS |         (2021) 12:1906 | https://doi.org/10.1038/s41467-021-22029-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


an active flux of ∣Jz∣ ~ 60 s−1. That is more than the thermal flux
for micron-sized and molecular particles, ∣Jz∣ ~ 0.05 and 50 s−1,
respectively. Interestingly, the thermal and active fluctuations can
co-operate to give an even larger flux of ~128 s−1 together
(‘Methods: Diffusion from a source to an active carpet sink:
comparison with thermal diffusion’). Hence, by enhancing the
local diffusivity, the active carpet may increase its nutrient uptake
significantly.

Advective and diffusive transport. Until now, we have con-
sidered active carpets that are spatially uniform, where Fðra; paÞ is
constant so the average flow vanishes, hvi ¼ 0. However, any
natural carpet is likely to feature some heterogeneity in its force
distribution that can drive local advection flows (see Methods:
Advective and di usive transport’). This imposes a constraint on
the generalised Fick’s laws we discussed so far: If the particles are
stuck in local advection currents, they cannot diffuse around
freely. Interestingly, this is also related to the occurrence of
quenched disorder (‘Methods: Quenched disorder’). The key
question is then how strong these advection flows are compared
to the actively driven diffusion.

To investigate this, we consider a carpet composed of a square
lattice of perpendicular Stokeslets that all fluctuate about a non-
zero mean force �f with variance Var(f). The actuators are located
at (iλ, jλ, h= 1) where i, j are integer numbers and λ is the lattice
spacing. The total flow driven by these actuators is then described
by an advective contribution and a diffusive contribution,
v ¼ vadv þ vdiff . As shown in Fig. 5, and described in detail in
‘Methods: Advective and diffusive transport’, the active diffusion
is stronger than the advection beyond a specific distance from the
carpet (Eq. (92)). As mentioned earlier, we also require z to be
large (Eq. (54)) in order for the time scale of diffusive transport to
be slow compared to the time scale of the active fluctuations

themselves. Indeed, this is the case in many biological and
engineered settings, but care should be taken that these
conditions are satisfied.

Discussion
In summary, active carpets are ubiquitous in nature, from
molecular and cellular to organismic length scales. In this paper
we described how these active carpets can drive non-equilibrium
fluctuations by locally injecting energy into their surrounding
fluid. These fluctuations were quantified with a general theoretical
framework in terms of the fundamental solutions of the Stokes
equation. Hence, we derived the diffusivity as a function of dis-
tance from an active carpet, and we found the corresponding
generalised Fick’s laws. The predictive power of these laws was
demonstrated by solving them for two archetypal problems:
sedimentation and diffusion towards an active sink. Of course,
one could extend this straightforwardly to other problems like
diffusion away from an active source, potentially in combination
with sedimentation, or systems with multiple active boundary
conditions in one or more dimensions.

This framework can be applied to a much more general class of
problems. Until now we have considered non-interacting actua-
tors, where the fluctuating forces and associated time scales are
determined by their intrinsic properties. It would be interesting to
consider actuators featuring different types of collective
behaviours2–11, say swarming and clustering, so these forcing
properties might emerge collectively. This could lead to inter-
esting types of anomalous diffusion79.

Additionally, one could consider active transport and diffusion
in complex geometries (see ‘Methods: Extension to more complex
geometries’). Immediate extensions could be carpets on the out-
side of a sphere, such as cilia covering Volvox carteri30 and
microbes covering marine snow80,81, but also carpets on the

Fig. 4 Diffusion from a source to an active sink. Particles are spawned at a source (orange line) and subsequently diffuse to a sink (purple line) due to
active fluctuations generated by the carpet, which is composed in this case of moving parallel Stokeslets. a Typical trajectory z(t) of a particle. Every time it
hits the sink, we place it back at the source (events marked with *). b Steady-state distributions of the particle density for different source positions.
Histograms show simulations and dashed lines are Eq. (10). c Diffusive flux as a function of distance. d Diffusive flux as a function of active fluctuation
strength. For both c and d the markers show simulations and dashed lines show the prediction of Eq. (82).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22029-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1906 | https://doi.org/10.1038/s41467-021-22029-y | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


inside of a spherical cavity, such as motors on the cytoskeleton11.
Once these topologies are understood, one could consider more
complex curved spaces, like the highly folded active membranes
of the endoplasmic reticulum. Furthermore, besides translational
diffusion one could derive the rotational diffusion82,83, for
spherical but also for ellipsoidal particles and other shapes84.
Finally, flows with finite inertia could be modelled to describe
carpets with actuators that are large or perform rapid
motions33,85.

Besides hydrodynamic actuators, this framework could equally
be applied to different kinds of energy injection from surfaces.
For example, one could consider active carpets that generate
fluctuating electric or magnetic fields, or catalyse chemical reac-
tions. Conversely, there are also surface-driven thermo-osmotic
and acoustic fluctuations, or liquid interfaces with a variable
surface tension, which can all induce transport and diffusion.

The understanding of active carpets may therefore prove useful
in a wide range of applications. Recent advances in nano-
technology enable the design of artificial cilia63,64, origami
micromachines86,87, and four-dimensionally printed active
materials88. One may therefore think of ‘active coating materials’,

for example with self-cleaning properties based on the described
effect of boundary-actuated fluctuations repelling particles. One
could also consider biomolecular condensates89,90, including
phase-separated biopolymers, where chemical reactions are con-
centrated in one phase but the products are transported to the
other phase by mixing actuators at the interface. This idea of
interfacial mixing may also be applied to bacteria moving on
water–oil interfaces91,92 for bioremediation of oil spills93,94.

Methods
Individual flow fields. The flow generated by an individual actuator is written in
terms of the Blake tensor74, given by

Bijðr; raÞ ¼ ð�δjk þ 2hδkz ð∇aÞj þ h2Mjk∇
2
aÞJ ikðr; raÞ; ð12Þ

where the flow is evaluated at position r and the actuator is located at position
ra ¼ ðxa; ya; za ¼ hÞ and oriented along pa ¼ ðpx ; py ; pzÞ. The indices i, j, k∈ {x, y,
z} denote Cartesian components, the mirror matrix is Mjk= diag(1, 1, −1), and the
Oseen tensor is

J ijðr; raÞ ¼
1
jdj δij þ

didj
jdj2

� �
; ð13Þ

with distance d ¼ r � ra . All the derivatives ∇a of the Oseen tensor in Eq. (12) are

Fig. 5 Comparison of advective and diffusive transport. Here the active carpet is a square lattice of perpendicular Stokeslets. a, b Flows (Eq. (88))
produced by a carpet of λ= 10 (sparse) and λ= 2.5 (dense), respectively, in the plane y= 0. Colours shows the flow magnitude and black arrows are
streamlines. c The total advection flow, vadv,z (x, 0, 2.5), normalised by the flow of a single actuator, u⊥,z (0, 0, 2.5), for different lattice spacings: λ= 10
(blue), λ= 2.5 (green), λ= 1 (red). The flows vanish as λ decreases. d Comparison of advective and active diffusive transport. Black points show the
normalised advection flow, Φ(ζ) (see Eq. (89)). The dashed lines are the decaying functions e−ζ (dashed green) and e�ζ2 (dashed blue), so the advection
vanishes for dense carpets and large distances from the surface. However, the normalised diffusive transport (Eq. (90)) increases with ζ (red lines).
e Mean square displacement (MSD) of a particle near a carpet with very weak active fluctuations compared to a strong mean force, Var(f)= 10−6 and
�f ¼ �1. The other parameters used are density n= 1, h= 1, τ= 0.1. The red dashed lines show the prediction of Eq. (3). f Corresponding space-dependent
diffusivity. The solid lines show the prediction of Eq. (4). Despite the strong advection currents near the carpet, the theory still holds beyond a certain
distance from the surface.
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taken with respect to the actuator position ra . As described for example in ref. 51,
the individual flows can then be written as a multipole expansion of this Blake
tensor.

The flow due to a point force f∥ oriented parallel to the surface is given by

uk ¼ f kB � pa: ð14Þ
Similarly, the flow due to a point force f⊥ oriented perpendicular to the surface is

u? ¼ f ?B � ez : ð15Þ
Note, we have scaled the forces as f= fN/(8πμ), where μ ~ 10−3 Pa s is the

viscosity of water, so fN are in Newtons and f have units [m2/s]. The Stokes dipole
flow with prefactor κ in [m3/s] is found by taking the derivative along the pa
direction,

uD ¼ κðpa � ∇aÞðB � paÞ: ð16Þ
Finally, the Stokes rotlet describes an actuator that generates a torque about the

z-axis. Its flow with prefactor ϱ in [m3/s] is defined by

uR ¼ ϱ
ðex � ∇aÞðB � eyÞ � ðey � ∇aÞðB � exÞ

2
: ð17Þ

These flows fields are quite complex when evaluated algebraically. Therefore, to
make progress we approximate the flows as being evaluated far from the surface,
such that za= ϵz with ϵ≪ 1. For each of the individual actuator flows ((14)–(17))
we then perform a Taylor expansion,

uðr; ra; paÞ ¼ ujϵ¼0 þ
∂u
∂ϵ

����
0

ϵþ 1
2
∂2u
∂ϵ2

����
0

ϵ2 þO ϵ3
� 	

; ð18Þ

and we only keep the leading-order contribution.
To be explicit, for the parallel Stokeslets evaluated at r ¼ ð0; 0; z0Þ, and using

ra ¼ ðρa cos θa; ρa sin θa; hÞ and pa ¼ ðcos ϕa; sin ϕa; 0Þ, this gives the Cartesian
components

x̂ � uk
���
ρ¼0

¼ 12hz0ρ
2
a cos θað Þ cos θa � ϕa

� 	
ρ2a þ z20
� 	5=2 f k þ O ϵ2

� 	
; ð19Þ

ŷ � uk
���
ρ¼0

¼ 12hz0ρ
2
a sin θað Þ cos θa � ϕa

� 	
ρ2a þ z20
� 	5=2 f k þ O ϵ2

� 	
; ð20Þ

ẑ � uk
���
ρ¼0

¼ � 12hz20ρa cos θa � ϕa
� 	

ρ2a þ z20
� 	5=2 f k þ O ϵ2

� 	
: ð21Þ

Similarly, for the perpendicular Stokeslets with the same position and
orientation pa ¼ ð0; 0; 1Þ we have

x̂ � u?jρ¼0 ¼
6h2z0ρa cos θað Þ 2ρ2a � 3z20

� 	
ρ2a þ z20
� 	7=2 f ? þ O ϵ3

� 	
; ð22Þ

ŷ � u?jρ¼0 ¼
6h2z0ρa sin θað Þ 2ρ2a � 3z20

� 	
ρ2a þ z20
� 	7=2 f ? þ O ϵ3

� 	
; ð23Þ

ẑ � u?jρ¼0 ¼
6h2z20 2z20 � 3ρ2a

� 	
ρ2a þ z20
� 	7=2 f ? þ O ϵ3

� 	
: ð24Þ

For Stokes dipoles oriented parallel to the surface, with orientation
pa ¼ ðcos ϕa; sin ϕa; 0Þ, we have

x̂ � uDjρ¼0 ¼
3hz0ρa 2z20 cos 2ϕa � θa

� 	þ 3 cos θað Þ� 	� ρ2a 3 cos 2ϕa � θa
� 	þ 5 cos 2ϕa � 3θa

� 	þ 4 cos θað Þ� 	� 	
ρ2a þ z20
� 	7=2 κþO ϵ2

� 	
;

ð25Þ

ŷ � uDjρ¼0 ¼
3hz0ρa ρ2a �3 sin 2ϕa � θa

� 	þ 5 sin 2ϕa � 3θa
� 	� 4 sin θað Þ� 	þ 2z20 sin 2ϕa � θa

� 	þ 3 sin θað Þ� 	� 	
ρ2a þ z20
� 	7=2 κþO ϵ2

� 	
;

ð26Þ

ẑ � uDjρ¼0 ¼
6hz20 ρ2a 5 cos 2 ϕa � θa

� 	� 	þ 3
� 	� 2z20

� 	
ρ2a þ z20
� 	7=2 κþO ϵ2

� 	
; ð27Þ

Finally, for the rotlet dipoles we have

x̂ � uRjρ¼0 ¼
6hz0ρa sin θað Þ
ρ2a þ z20
� 	5=2 ϱþO ϵ3

� 	
; ð28Þ

ŷ � uRjρ¼0 ¼ � 6hz0ρa cos θað Þ
ρ2a þ z20
� 	5=2 ϱþO ϵ3

� 	
; ð29Þ

ẑ � uRjρ¼0 ¼ 0; ð30Þ
and so forth for higher-order multipole flows.

Characterising fluctuations: simulation details. To characterise the strength of
the active fluctuations, we simulate the distribution PDF ðvÞ of the total flow
evaluated at particle position r0 ¼ ð0; 0; z0Þ. The carpet consists of Na= 4nL2

actuators that are randomly distributed with uniform surface density n within x,
y∈ [− L, L], with carpet size L and vertical position za= h. Once the carpet
configuration is sampled with standard random number generators, we evaluate
the total flow v ¼ ∑au due to all Na actuators. We repeat this simulation to obtain
an ensemble of Ne total flow velocities, each due to an independent carpet rea-
lisation. Hence, we evaluate the distribution PDF ðvÞ and its moments as a function
of distance from the carpet, z0. In non-dimensionalised simulation units, we use the
parameters h= 1, n= 0.1, Ne= 104, and L= 500 so Na= 105. We have verified
that L is large enough to avoid edge effects. The actuator strengths used for the four
types are f k ¼ f? ¼ 3

4 and κ= ϱ= 30, respectively. These simulations are pre-
sented in Fig. 1. Note the results are shown in simulation units in order to keep the
description general. However, for any specific application, dimensional quantities
(with standard SI units) can be inserted in all the equations throughout the paper.

Characterising fluctuations: theory details. We consider active carpets made of
uniformly distributed actuators, so the average flow vanishes in the absence of
gradients, hvi ¼ 0. This may be demonstrated by integrating any of the expressions
Eqs. (19)–(30) with a constant carpet distribution, F= n/2π, which yields the
average total flow

hvðrÞi ¼
Z

uðr; ra; paÞFðra; paÞdradpa; ð31Þ

¼
Z 1

0

Z π

�π

Z π

�π
u
n
2π

ρadρadθadϕa ¼ 0: ð32Þ

The variance tensor of the active fluctuations is calculated in the same way, by
evaluating the integral

V ij ¼ hvivji ¼
Z

uiujFdradpa: ð33Þ
To give an explicit example, the vertical component of the variance for parallel

Stokeslets is given by

hv2zi ¼
Z

12hz20ρa cos θa � ϕa
� 	

ρ2a þ z20
� 	5=2 f k

 !2
n
2π

ρadρadθadϕa ð34Þ

¼
Z 144πnh2f 2kz

4
0ρ

2
a

ρ2a þ z20
� 	5 ρadρa ð35Þ

¼ 6πnh2f 2k
z20

: ð36Þ

This result corresponds to Eq. (2) in the main text, and is compared with
simulations in Fig. 1m. We repeat this calculation for the different actuator types,
and for the different components, i, j. Note that the off-diagonal components
vanish, so the only non-trivial results are i= j. These results are all listed in Table 1.

Besides variance, the distributions of the active fluctuations also feature
skewness

hvivjvki ¼
Z

uiujukFdradpa; ð37Þ

and kurtosis,

hvivjvkvli ¼
Z

uiujukulFdradpa: ð38Þ
For all these quantities, we find that the only non-zero results are diagonal,

where i= j= k= l. These results are listed in the bottom rows of Table 1 for all
actuator types, and plotted in the insets of Fig. 1i–l.

Simulating the diffusivity of particles near carpets made of fluctuating forces.
We first consider the motion of a tracer particle above a carpet of fluctuating forces,
composed of Na perpendicular Stokeslets (Eq. (22)) that have a fixed position on
the wall. The point forces have vertical position h= 1 and horizontally they are
randomly distributed over the surface, with uniform density n= 0.1 per unit area,
and within a simulation box of dimensions x, y∈ [−L, L] with L= 500 so Na=
4nL= 105. We have verified that the simulation box is large enough to avoid edge
effects by testing that the results are independent of large L. The tracer is initially
located at (0, 0, z0). The forces do not interact with each other. Each perpendicular
Stokeslet force f⊥= fa(t) evolves dynamically in time following its own independent
Ornstein–Uhlenbeck process.
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This Ornstein–Uhlenbeck process is defined as

df
dt

¼ � f
τ
þ σηðtÞ; ð39Þ

where τ is a relaxation time, σ is a constant that relates to the force strength, and η
is Gaussian white noise with 〈η(t)〉= 0 and 〈η(t1)η(t2)〉= δ(t1− t2). The solution of
this stochastic differential equation is

f ðtÞ ¼ f ð0Þe�t=τ þ σ

Z t

0
e�ðt�t1Þ=τηðt1Þdt1: ð40Þ

This corresponds to an overdamped relaxation process driven by fluctuations,
which admits a Gaussian stationary distribution

PDF ðfÞ ¼
ffiffiffiffiffiffiffiffiffiffi
1

πσ2τ

r
exp � f 2

σ2τ

� �
; ð41Þ

with mean 〈f〉= 0 and force magnitude hf 2i ¼ σ2τ
2 . Importantly, the temporal

correlation function at steady state for this Ornstein–Uhlenbeck process is also
known exactly,

hf ðt0Þf ðt00Þi ¼ σ2τ

2
exp � jt0 � t00 j

τ

� �
: ð42Þ

In our simulations, we use an average force magnitude of 〈f 2〉= (3/4)2 and τ=
1/10 so that σ2= 2〈f 2〉/τ, and the initial force f(t= 0) for each actuator is drawn
randomly from the stationary distribution (Eq. (41)). Besides these active
fluctuations, we do not include additional Brownian thermal fluctuations here.

The tracer’s equation of motion is then given by

dr
dt

¼ vðrðtÞ; tÞ ¼ ∑
a
u rðtÞ; ra; f aðtÞ
� 	

; ð43Þ

which is integrated numerically, along with the Na Ornstein–Uhlenbeck processes
for all the actuators, using a fourth-order Runge–Kutta scheme. This gives one
tracer trajectory. We repeat this for an ensemble of Ne= 100 independent
trajectories, each with an independent carpet realisation composed of actuators that
are distributed at different random but fixed positions, and with independent
Ornstein–Uhlenbeck processes. We then repeat all this for each starting position z0.

By averaging over the ensemble of Ne trajectories we compute the VCFs,
Cðjt0 � t00 jÞ ¼ hviðr; t0Þvjðr; t00Þi, shown in Fig. 2b for different values of z0∈ [2,
20]. Similarly, we determine the ensemble-averaged mean-square displacements,
〈ΔriΔrj〉, shown in Fig. 2c. From the latter data we also determine the components
of the diffusion tensor, by statistical regression of the expression 2Dijt= 〈ΔriΔrj〉 in
the regime t≫ τ, the diffusive limit, which is shown in Fig. 2d.

Derivation of the MSD and space-dependent diffusivity. Analytical progress is
made by considering small tracer displacements,

hΔr2i � r20: ð44Þ
Then their equation of motion reduces to dr

dt � vðr0 ; tÞ, plus higher-order terms
that can be expanded as a power series in 1/z051. Consequently, the MSD is given
by

hΔriΔrji ¼
Z t

0
viðr0; t0Þdt0

Z t

0
vjðr0; t00Þdt00


 �
ð45Þ

¼
Z t

0

Z t

0
viðr0; t0Þvjðr0; t00Þ
D E

dt0dt00; ð46Þ

where we identify the VCF of the total flow at position r0, that is

C0ðjt0 � t00 jÞ ¼ hviðr0; t0Þvjðr0; t00Þi: ð47Þ
The relationship between this ensemble-averaged flow correlation and the

Ornstein–Uhlenbeck force correlations is given by

hvðt0Þvðt00Þi
hvð0Þvð0Þi ¼ hf ðt0Þf ðt00Þi

hf ð0Þf ð0Þi ¼ exp � jt0 � t00 j
τ

� �
; ð48Þ

where we used Eq. (42). This expression is shown as a red dashed line in Fig. 2b.
Hence, using the variance 〈v2〉= 〈v(0)v(0)〉 of the active fluctuations (Eq. (33)), for
example, for vertical displacements due to the perpendicular Stokeslets, the MSD
simplifies to

hΔz2i ¼ 15πnh4

z40

σ2τ

2

Z t

0

Z t

0
exp � jt0 � t00 j

τ

� �
dt0dt00; ð49Þ

and similarly for other actuator types. After performing the final integrals, we
obtain the MSD

hΔz2i ¼ 15πnh4

z40
t þ τðe�t=τ � 1Þ
� �

σ2τ2 ð50Þ

¼ v2z
� 


t2; if t � τ;

2 v2z
� 


τt; if t � τ;

(
ð51Þ

and similarly for the other directions 〈ΔriΔrj〉. This MSD transition from ballistic
to diffusive motion is compared with simulations in Fig. 2c (dashed line). The
corresponding anisotropic diffusivity is then given by

Dxxðz0Þ ¼ v2x
� 


τ ¼ 3πnh4hf 2i
z40

τ ¼ Dyyðz0Þ; ð52Þ

Dzzðz0Þ ¼ v2z
� 


τ ¼ 15πnh4hf 2i
z40

τ: ð53Þ

These expressions are shown in Fig. 2d. The same analysis can also be applied to
all other actuator types using the variances listed in Table 1.

Importantly, we should come back to the initial assumption of small
displacements (Eq. (44)) and analyse its consequences. Rewriting this condition as
z2≫ 2Dzzt= 30πnh4〈f 2〉τt/z4 using Eq. (53), we can rearrange this for a temporal
condition, t/τ≪ z6/(30πnh4〈f 2〉τ2). We also require that t≫ τ for the particle
motion to transition from ballistic to diffusive motion (see Eq. (51)). In other
words, the theory is only expected to hold when the time scale of diffusive transport
is slow compared to the time scale of the active fluctuations themselves. This is true
far from the surface, where

z � ð30πnh4hf 2iτ2Þ1=6; ð54Þ
and similarly for other actuator types. Inserting the values used for simulations in
Fig. 2a–d, being n= 0.1, h= 1, 〈f 2〉= (3/4)2, τ= 0.1, we find z≫ 0.61. This
condition ensures that we determine the local diffusivity, D(z) with small variations
in z. Once this local diffusivity is determined from the MSDs within this limit, the
global stochastic dynamics of particles leaving this local area (with large variations
in z) can be solved using the space-dependent Fick’s laws, as discussed in
‘Generalised Fick’s laws’.

Simulating the diffusivity of particles near carpets made of moving actuators.
Here, we consider the motion of a tracer particle above a carpet of Na parallel
Stokeslets (Eq. (19)) that each move with velocity V ¼ Vpa along their director, pa ,
with a constant speed V. They generate a flow with force f ¼ f kpa . The Stokeslets
move along the surface, so pz= 0, with an orientation angle ϕa= arctan(py/px) that

is subject to rotational diffusion. That is, dϕadt ¼ ffiffiffiffiffiffiffiffi
2Dr

p
ηðtÞ where η is white Gaussian

noise with 〈η(t)〉= 0 and 〈η(t1)η(t2)〉= δ(t1− t2). The parallel Stokeslets are all
independent of each other. We use the parameters V= 1, Dr= 10, and f∥= 3/4,
such that τr≪ τu for all z0∈ [2, 20]. As before, the actuators are distributed ran-
domly with uniform density n= 0.1 in a simulation box, x, y∈ [−L, L], with L=
500 and h= 1. Periodic boundary conditions are imposed so that the surface
density n= 0.1 of the actuators remains constant. Again, besides these active
fluctuations, we do not include additional Brownian thermal fluctuations here.

These Na+ 1 equations of motion, for the tracer and the actuators, are then
integrated as before over a time period t∈ [0, 10] for each tracer trajectory. We
repeat this simulation for an ensemble of Ne= 100 independent trajectories, each
with an independent carpet realisation with actuators that are initially distributed
at different random positions and orientations. Again, we repeat all this for ten
different initial positions z0∈ [2, 20]. The ensemble-averaged results are shown in
Fig. 2e–h.

Generalised Fick’s laws. For clarity, we first revise the case of constant diffusion ~D
in one spatial dimension, z. Then, Fick’s first law relates gradients in concentration
φ(z, t) and an external drift vd to the total flux,

Jz ¼ vdφ� ~D∂zφ: ð55Þ
Together with the continuity equation, ∂tφ=−∂zJz, this gives Fick’s second law,

∂φ

∂t
¼ � ∂

∂z
ðvdφÞ þ ~D

∂2φ

∂z2
; ð56Þ

which is also known as the Fokker–Planck equation. This is equivalent to motion

described by the following Langevin equation, dzdt ¼ vd þ
ffiffiffiffiffiffi
2~D

p
ηðtÞ, where η is

Gaussian white noise as defined below Eq. (39).
Rather than being constant in space, the diffusivity of tracers near an active

carpet depends continuously on position. Such stochastic processes can often be
described by an effective Smoluchowski equation78, rather than standard Langevin
methods which make no reference to individual collisions. Here, we follow this
approach as a foundation for the generalised Fick’s laws that describe the diffusion
of a tracer particle as a function of distance from an active carpet. Since we only
have gradients in the vertical direction, we use the short-hand notations D(z)=Dzz

for the vertical diffusivity and vðzÞ ¼ ffiffiffiffiffiffiffiffihv2z i
p ¼ ffiffiffiffiffiffiffiVzz

p
for the mean vertical speed.

With this spatial dependence, the question arises whether the second term in
Eq. (55) should be interpreted as D∂zφ or ∂z(Dφ), or something in between. This
question is not well posed, because it depends on the physical processes in
question. In other words, generalising this expression for macroscopic quantities
requires partial knowledge of the microscopic mechanism for diffusion. In
particular, information is needed about the spatial dependence of the memory time
τ(z), and of the mean vertical speed, v(z). The diffusivity can then be written as the
combination of these ingredients, D(z)= v2(z)τ(z), as shown in Eq. (53). Indeed,
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either a larger average speed or a longer time between reorientations can give rise
to a larger diffusivity. Note that for Ornstein–Uhlenbeck forcing the time scale τ
does not depend on position, but this need not be true in general. For example, for
rapidly moving actuators the smallest decorrelation time is τ ~ z/V. On the other
hand, for slowly moving actuators the rotational diffusion constant Dr sets the
smallest memory time.

Using this information about the microscopic interactions, a ‘telegraph model’78

can be constructed that describes the space-dependent diffusion process. Inspired
by this model, we consider two particle populations, with population densities
φup(z, t) and φdown(z, t), respectively, that either move up or down along z with
mean speed v(z) due to the active carpet fluctuations. The mean speed is the same
for the two populations at any given z since we consider a uniform carpet without
net drift, hvi ¼ 0, as shown in Eq. (32). The particles switch directions at a mean
rate of 12 τ

�1, set by the memory time of the active carpet. The total particle density
is then given by φ(z, t)= φup+ φdown, and the diffusive flux of particles is Jdiff(z, t)
= v(φup− φdown). Subsequently, using continuity of particle flow and conservation
of particle number, the up and down populations evolve according to

∂φup

∂t
¼ � ∂ðvφupÞ

∂z
� φup

2τ
þ φdown

2τ
; ð57Þ

∂φdown

∂t
¼ ∂ðvφdownÞ

∂z
þ φup

2τ
� φdown

2τ
: ð58Þ

In each equation, the first term describes spatial gradients in the moving
populations, while the last two terms describe the switching between particles
moving up and down, and vice versa. By adding and subtracting, the equations (57)
can be rewritten in terms of the total density and diffusive flux, giving

∂φ

∂t
¼ � ∂Jdiff

∂z
; ð59Þ

∂ðJdiff=vÞ
∂t

¼ � ∂ðvφÞ
∂z

� Jdiff
vτ

: ð60Þ
Taking the time derivative of the first expression and combining with the

second expression yields

∂2φ

∂t2
¼ ∂

∂z
v
∂ðvφÞ
∂z

� �
þ ∂

∂z
Jdiff
τ

� �
: ð61Þ

Then, we assume that the high-frequency behaviour of particle movements can
be neglected, so the second time derivative on the left-hand side vanishes,

0 ¼ ∂

∂z
v
∂ðvφÞ
∂z

þ Jdiff
τ

� �
: ð62Þ

Integrating this expression, we can solve for the diffusive flux Jdiff. The constant
of integration is set equal to zero to ensure that Jdiff vanishes when the variance of
the active fluctuations v2 are zero. If the particles are sedimenting with a constant
drift velocity vd, there is an additional flux Jdrift= vdφ, so the total flux is Jz= Jdiff+
Jdrift. Then, combining all this information gives the first generalised Fick’s law in
the vertical direction,

Jz ¼ vdφ� v2τ
∂φ

∂z
� vφτ

∂v
∂z

ð63Þ

¼ vdφ� Vzzτ
∂φ

∂z
� φτ

2
∂Vzz

∂z
ð64Þ

We find the other components of the flux by repeating the telegraph model
analysis in the x and y directions, which gives

Jx ¼ v d
x φ� Vxxτ

∂φ

∂x
� φτ

2
∂Vxx

∂x
; ð65Þ

Jy ¼ v d
y φ� Vyyτ

∂φ

∂y
� φτ

2

∂Vyy

∂y
: ð66Þ

Since the variance tensor only has diagonal components, we can write the
generalised flux in three dimensions as

JðrÞ ¼ vdφ� ðτV � ∇Þφ� φτ

2
∇ � V; ð67Þ

which is written in the main text as Eq. (6). Note that the last term only has a
vertical component for systems that obey translational invariance along the
horizontal directions, when the variance tensor only depends on z. Finally, using
the continuity equation we obtain the second generalised Fick’s law,

∂ϕ

∂t
¼ �∂iðv d

i φÞ þ ∂iðτVij∂jφÞ þ ∂i
φτ

2
∂jV ij

� �
; ð68Þ

where repeated indices are summed over.

Sedimentation towards an active carpet: simulation details. Here, we consider
the motion of a sedimenting tracer particle above a carpet of moving parallel
Stokeslets. For spherical particles, the sedimentation is described by a constant drift

velocity vd ¼ �vg ẑ ¼ d2Δρ
18μ g , in terms of the gravitational acceleration g , the

particle diameter d, its density difference with the medium Δρ, and the medium
viscosity μ. The equations of motion of the moving forces are as described in
‘Methods: Simulating the diffusivity of particles near carpets made of moving
actuators’, with the parameters V= 1, Dr= 10, n= 0.1, L= 500, h= 1 and f∥= 10.
For the tracer equation of motion we add the sedimentation, and we introduce a
reflecting boundary condition at z= h to prevent the particles from crossing the
active carpet. This system is integrated numerically for different sedimentation
velocities, vg∈ [10−2, 1]. We simulate over a long period of time, t∈ [0, 105], to
ensure that the sedimentation profile is well sampled. To clarify, we do not average
this sedimentation profile over a statistical ensemble of independent carpet con-
figurations. Therefore, since the only averaging is temporal, the results are infor-
mative about the dynamics of a given system. We then normalise this particle
concentration profile,

ΦðzÞ ¼ PDF ðzÞ ¼ φðzÞ=Np; ð69Þ
where Np= ∫φdz is the number of tracers in the system, so ∫Φ(z)dz= 1. From
these distributions we also evaluate the maximum zmax where

dφ
dz ¼ 0. These results

are shown and compared with our analytical predictions in Fig. 3.

Self-cleaning effect. These simulation results can be understood using the gen-
eralised Fick’s laws we discussed earlier. The first two terms on the RHS in Eq. (63)
are identical to the case of constant diffusion (Eq. (55)), describing a flux of
particles towards regions of low concentration. A third emerges, however, which
describes diffusion towards regions of low fluid speed. Since the active fluctuations
decay with distance (e.g. see Eq. (2)), this term leads to a flux directed away from
the carpet.

To understand this better, we must quantify the contributions of the flux. Since
the variance of all the active fluctuations in Table 1 feature an algebraic decay, we
write

VðzÞ ¼ ~V=zα: ð70Þ
Similarly, for the memory time we write

τðzÞ ¼ ~τ=zβ; ð71Þ
because this algebraic form is common in natural systems. To name a few
examples: β= 0 corresponds to a constant memory time. β=−1 corresponds to
the time scale τ ~ z/va associated with an actuator moving underneath a tracer
particle. β=−2 corresponds to the time scale τ ~ z2/Da associated with actuators
diffusing underneath a tracer particle. Note that one could have inverted the
exponent to keep β positive, but this does not change anything physically. Hence,
we prefer to keep the expressions for α and β consistent.

Then the vertical diffusivity is DðzÞ ¼ ~D=zαþβ , where the constant part is
~D ¼ ~Vzz~τ. For example, for slowly moving parallel Stokeslets we have ~Vzz ¼
6πnh2f 2k and ~τ ¼ D�1

r with α= 2 and β= 0 from Eq. (5). Inserting the expressions
(70)–(71) into (63), one obtains

JzðzÞ ¼ vdφ�
~D

zαþβ

∂φ

∂z
þ α~D
2zαþβþ1

φ: ð72Þ

The first term is negative for sedimentation, and the second term still describes
ordinary diffusion towards regions of low concentration. But the third term is
always positive, repelling particles away from the carpet, which explains the self-
cleaning effect.

To solve the sedimentation profile, we require that Jz= 0 at steady state, which
yields

φðzÞ
φ0

¼ zα=2 exp � vgz
αþβþ1

~Dðαþ βþ 1Þ

 !
; ð73Þ

where φ0 is a normalisation factor. In the limit of a constant diffusivity (α= β= 0)

we recover the Boltzmann distribution, φðzÞ ¼ φ0e
�vgz=~D . This is no longer true for

active carpets with decaying fluctuations because of the zα/2 factor, where α= 2 for
parallel Stokeslets. Therefore, the sedimentation profile features a maximum
(Fig. 3c), which is located at

zmax ¼ α~D=2vg
� �1=ðαþβþ1Þ

: ð74Þ
These results agree with our simulations (Fig. 3c, d), for different values of the

sedimentation velocity.

Sedimentation with active and thermal diffusion. Besides the fluctuating flows
generated by the active carpet, the particles may also experience Brownian thermal
fluctuations. This thermal diffusion Dth can be included explicitly in the generalised
Fick’s law:

JzðzÞ ¼ �vgφ� Dth
∂φ

∂z
�

~D
zαþβ

∂φ

∂z
þ α~D

2zαþβþ1
φ: ð75Þ

Then, the expression Jz= 0 can still be solved analytically to determine the
steady-state sedimentation profile. For parallel Stokeslets, for example, with α= 2
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and β= 0, we find the solution

φðzÞ
φ0

¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Dþ Dthz2

q exp

ffiffiffiffiffiffiffiffi
~D

D3
th

s
vgtan

�1
ffiffiffiffiffiffiffi
Dth

p
zffiffiffiffi

~D
p

� �
� vgz

Dth

 !
: ð76Þ

It is important to note that this function has the same shape as the original
solution (Eq. (73)). Indeed, particles are still repelled from the active surface,
lim z!0φðzÞ ¼ 0, and the function has a maximum at the same location as before,

at zmax ¼ ð~D=vgÞ1=3 for all Dth ≥ 0. Thus, the self-cleaning effect is not affected by

thermal diffusion. Of course, when the surface activity vanishes, ~D ! 0, we recover
the Boltzmann distribution.

Diffusion from a source to an active carpet sink: simulation details. In this
section, we consider the dynamics of particles that are spawned at a source and
absorbed by an active sink. The particles are subject to active fluctuations due to a
carpet of slowly moving parallel Stokeslets. The equations of motion of the Na

actuators are as described in ‘Methods: Simulating the diffusivity of particles near
carpets made of moving actuators and Sedimentation towards an active carpet:
simulation details’. For the tracer equation of motion we remove the sedimentation,
we impose an absorbing boundary condition at zsink= h, and a reflecting boundary
condition at zsource=H. Whenever a particle is absorbed by the sink, we place it
back at the source, at x= y= 0, and we redistribute all the actuators with new
random positions and orientations to start a new fully independent trajectory. We
run two separate types of simulations: First, the gap size is varied with different
values of H∈ [2, 20] with constant force f∥= 10. Second, we vary f∥=∈ [1, 10]
with constant source height H= 5. For each of these forces we measure the flux Jz,
defined as the number of particles that diffuse from the source to the sink per unit
time, Jz=−Np/〈tmfp〉, where 〈tmfp〉 is the mean first-passage time and Np is the
number of particles. By symmetry, we expect the nutrient flux to scale quadratically
with the force, because the diffusion equations are invariant under the transfor-
mation f→−f. Indeed, this is also observed in the simulations, as shown in Fig. 4.

Diffusion from a source to an active carpet sink: theory details. To solve the
system of non-equilibrium diffusion from a source to an active sink, we again
consider the vertical flux given by Eq. (7). This time, the sedimentation velocity is
equal to zero and we seek the steady-state solution (∂tφ= 0) with fixed particle
concentrations at the source and the sink. Hence, we must solve the continuity
equation ∂zJz= 0 subject to the boundary conditions φ(H)= φ+ and φ(h)= 0. This
gives the solution

φðzÞ
φþ

¼ zαþβþ1 � hβþ1ðhzÞα=2
Hαþβþ1 � hβþ1ðhHÞα=2

; ð77Þ

for α ≥ 0 and β ≥−1, or a slightly more complex function for other values. The
corresponding solution for the flux, equivalent to the particle capture rate, is

Jz
φþ

¼ � ðαþ 2βþ 2Þ~D
2 Hαþβþ1 � hβþ1ðhHÞα=2
� � : ð78Þ

When comparing this prediction with the simulated flux, care should be taken
to account for the normalisation (Eq. (69)), because the number of particles Np is
coupled to concentration φ+ at the top boundary condition φ(H)= φ+. This
relationship can also be computed exactly,

Np

φþ
¼
Z

φðzÞ
φþ

dz ¼
Z H

h

zαþβþ1 � hβþ1ðhzÞα=2
Hαþβþ1 � hβþ1ðhHÞα=2

dz; ð79Þ

which depends on H, so the power-law of Jz(H) should be rescaled based on
whether Np or φ+ is kept constant. In the limit h≪H, this simplifies to

Np

φþ
�
Z H

0

zαþβþ1

Hαþβþ1
dz ¼ H

αþ βþ 2
: ð80Þ

Hence, using Eq. (78) for h≪H yields

JzðHÞ � �φþ
ðαþ 2βþ 2Þ~D

2Hαþβþ1
; ð81Þ

� �Np
ðαþ βþ 2Þðαþ 2βþ 2Þ~D

2Hαþβþ2
: ð82Þ

For slowly moving parallel Stokeslets (α= 2 and β= 0), we then have Jz ∝ z−3

for a constant φ+ concentration, or Jz∝ z−4 for a constant number of particles Np.
In Fig. 4c we show the latter.

Diffusion from a source to an active carpet sink: comparison with thermal
diffusion. We expect that the thermal diffusion will be more effective at trans-
porting the particles if the distance between the source and the sink is large,
because the thermal noise does not decay with z. To quantify this, we equate the

active carpet flux (Eq. (81)) with the thermal flux,

�φþ
ðαþ 2βþ 2Þ~D

2Hαþβþ1
¼ �φþ

Dth

H
: ð83Þ

The boundary concentration φ+ cancels out, so we find that the value of H for
which the two are equal is

H� ¼ ðαþ 2βþ 2Þ~D
2Dth

� �1=ðαþβÞ
: ð84Þ

Inserting ~D ¼ 6πnh2f 2k=Dr from Eq. (5) with α= 2 and β= 0 for parallel
Stokeslets, and using the typical values h ~ 1 μm, n ~ 1 μm−2, Dr ~ 1 s−1 and 8πμf∥ ~
1 pN, we find H* ~ 350 and 11 μm, respectively, for micron-sized and molecular
paxrticles of Dth ~ 0.5 and 500μm2/s.

The diffusive flux can also be computed in the presence of both thermal and
active fluctuations. As before, we solve ∂zJz= 0 using the generalised Fick’s law that
includes thermal diffusion (Eq. (75)) without gravity, with boundary conditions φ
(0)= 0 and φ(H)= φ+. For parallel Stokeslets this yields the concentration profile

φðzÞ
φþ

¼
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Dþ DthH

2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~D ~DþDthH

2ð Þ
~DþDthz2

r !

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Dþ DthH

2
q

�
ffiffiffiffi
~D

p� � ; ð85Þ

and the corresponding flux

Jz
φþ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~D
2 þ Dth

~DH2
q

þ ~Dþ DthH
2

� �
H�3: ð86Þ

As expected, in the limit ~D ! 0 we recover the thermal flux, Jz=−Dthφ+/H.
This corresponds to ~50 particles/second for molecular diffusion with Dth ~ 500
μm2/s, and using φ+ ~1 particle/μm and H ~ 10 μm. Conversely, in the limit Dth→

0 we recover the original solution, Jz ¼ �2~Dφþ=H
3. This gives a ‘bare’ active flux

of ~60 particles/second when inserting the same values as those below Eq. (84).
Interestingly, these fluxes do not just add up because there is also a cross term. In
fact, the total flux from Eq. (86) gives Jz ~ 128 particles/second. Therefore, the
thermal diffusion can actually enhance the active diffusive flux, and vice versa,
since they co-operate.

Advective and diffusive transport. To investigate the relative importance of local
advective and diffusive transport, we consider a carpet composed of perpendicular
Stokeslets that fluctuate about a non-zero mean. Then, the Ornstein–Uhlenbeck
process (Eq. (39)) becomes

df
dt

¼ � f � �f
τ

þ σηðtÞ; ð87Þ

where the mean force is hf i ¼ �f and its variance is Var(f)= σ2τ/2 as before. The
resulting flow is then described by an advective contribution, vadv due to the mean
force, �f , and a diffusive contribution, vdiff due to its variance, Var(f). The mean of
the diffusive contribution vanishes when averaging over the temporal noise but, at
any one location, the advection does not.

Naturally, the advection is not significant in the limit of a small mean force,

when �f
2 � Var ðfÞ. Even when the mean force is comparatively large, however,

the active diffusion can still dominate far from the surface, depending on the
structure of Fðra; paÞ. This is explained in terms of the local heterogeneities
becoming less important when z≫ rnn, where the typical nearest-neighbour
distance between actuators is rnn � 1=

ffiffiffi
n

p
. To quantify this carefully, we consider a

square lattice of perpendicular Stokeslets with lattice spacing rnn= λ. That is, the
forces are located at position (iλ, jλ, h) where i and j are integer numbers, so the
number density n= 1/λ2. The total advection generated by this active carpet is
given by

vadvðx; y; zÞ ¼ ∑
1

i¼�1
∑
1

j¼�1
u?ðx � iλ; y � jλ; z; h;�f Þ; ð88Þ

where u? is given by Eq. (15). This total flow is shown in Fig. 5 for different lattice
spacings, where all Stokeslets have the same (negative) force �f . In all cases, there is
a down-welling region (downward flow) near the Stokeslets and, by
incompressibility, up-welling regions between the Stokeslets. Perhaps counter-
intuitively, at a given distance z from the surface, the sparse carpets (Fig. 5a, with
large λ) drive stronger flows than the dense carpets (Fig. 5b, with small λ). This is
highlighted in Fig. 5c, which plots the vertical flow velocity along the line y= 0 for
different values of λ. These curves show the down-welling regions around x= 0,
±λ, and up-welling regions around x= ±λ/2, ±3λ/2,… , but their amplitude
decreases strongly with decreasing λ, i.e. with increasing number density n. This is
quantified further in Fig. 5d, which shows the vertical flow directly above a
Stokeslet (x= y= 0). Using Eq. (22), we write the normalised total vertical flow as

ΦðζÞ ¼ vadv;z
u?;z

�����
0

¼ ∑
1

i;j¼�1
2� 3 i2 þ j2ð Þζ�2

2 1þ i2 þ i2ð Þζ�2� 	7=2 ; ð89Þ

where the dimensionless number ζ ¼ z=λ ¼ z
ffiffiffi
n

p
and the normalisation factor is
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uz?ð0; 0; zÞ ¼ 12h2�f =z3. Recall that �f has units m2/s because forces are scaled with
the fluid viscosity (see text under Eq. (15)). Then, in the limit ζ→ 0 we recover the
flow due to a single Stokeslet, Φ→ 1, as expected. However, in the limit ζ→∞ the
flow tends to zero because the spatial gradients in the actuator density disappear.
This decay is quite strong (Fig. 5d; black points), approximately like a Gaussian
function, ΦðζÞ � expð�ζ2Þ (dashed blue line). Thus, the normalised advective
transport decays rapidly with ζ, while the diffusive transport actually increases.
Specifically, using hv2diff ;zi ¼ 15πnh4 Var ðfÞ=z4, we can write the normalised
diffusive transport as ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hv2diff ;zi
q
ju?;z j

¼ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15π
48

Var ðfÞ
�f
2

s
; ð90Þ

which is shown in Fig. 5d as red lines. The relative importance of the diffusive and
the advective transport is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hv2diff ;zi
q
jvadv;zj

¼ ζ

ΦðζÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15π
48

Var ðfÞ
�f
2

s
: ð91Þ

Hence, the diffusion dominates over advection beyond a distance z� ¼ ζ�=
ffiffiffi
n

p
from the carpet, where

ζ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
W0

32�f
2

5πVar ðfÞ

 !vuut ; ð92Þ

in terms of the Lambert W0 function. This occurs at ζ* ≈ 0.85 for Var ðf Þ ¼ �f
2
,

which is fairly close to the active carpet. Even when their fluctuations are a

thousand times weaker (Fig. 5d; red dotted line), for �f
2 ¼ 106 Var ðfÞ, the

transition occurs at ζ* ≈ 2.55, which is still not that far from the carpet. This is
especially relevant for high actuator densities. Indeed, many organisms like
Vorticella colonies can grow fairly dense, approaching close packing.

Another point to note is that the advective flows can average out in time:
Consider a particle located in a down-welling region, slowly moving down towards
an actuator. If the particle is also subject to active and/or passive fluctuations, it can
diffuse horizontally into an up-welling region, so it can escape. To demonstrate
this, we repeat our diffusion simulations (cf. Fig. 2a–d) for a carpet of
perpendicular Stokeslets with very weak active fluctuations, Var(f)= 10−6,
compared to a strong mean force directed towards the carpet, �f ¼ �1. As shown in
Fig. 5e, the MSD still transitions to diffusive motion when t > τ, and the ballistic
advective motion disappears over time. Moreover, the resulting space-dependent
diffusivity (Fig. 5f) still agrees with the theoretical prediction (Eq. (4)) for z ≳ 3 for
all components of Dij.

The nutrient flux that individual organisms receive therefore depends strongly
on the distance of the nutrient source. If the source is located at H < z*, then the
flux to individual organisms can be large due to advection. If the source is located
at H > z*, then the flux is determined by diffusion. This spreads out the nutrients
horizontally before they reach the surface, so on average all organisms receive the
same global diffusive flux as discussed in ‘Methods: Diffusion from a source to an
active carpet sink: simulation details’.

The theory can also be extended for situations where the relation hv2diff i � v2adv
does not hold. This may be important for scenarios in biology or synthetic carpets
of intermediate actuator densities. As a first approximation, one could explicitly
insert the advection flow as vd ¼ vadvðrÞ into the three-dimensional generalised
flux (Eq. (67)), assuming that the fluctuations are still uniformly distributed on the
surface. This advection term could be written in terms of Stokeslets, or found with
any other hydrodynamic technique such as the boundary-element method, a
squirmer-like model, or computational fluid dynamics (CFD) simulations. The
disadvantage of this formulation is that it is inherently system specific. The
advantage is that any flow pattern of interest can be inserted (e.g. ciliary transport,
filter feeding, bacteria on surfaces), so the resulting advection-diffusion equations
can be solved accordingly.

Quenched disorder. The connection between advective and diffusive transport is
also related to quenched disorder, the notion that spatial heterogeneity can be
frozen in place so a spatial average would not be equal to a local temporal average.
In other words, a system features quenched disorder if it has random variables that
are quenched (frozen) in time, so their dynamics cannot evolve as fast as the other
time scales in the system. In general, active carpets can indeed feature quenched
disorder. In that case, it would not be appropriate to model the tracer dynamics
with the generalised Fick’s laws described here: This modelling approach is based
on averaging with respect to a large ensemble of active carpet configurations, so it
would not always be informative about the dynamics of a single specific system
configuration.

However, the disorder need not necessarily be quenched for active carpets. The
relevant random variables are the relative positions and orientations between the
actuators and the tracer particles. Therefore, there is no quenched disorder when
the actuators meander along the surface, like bacteria, as long as they move or turn
rapidly. Similarly, even if the actuators themselves are fixed, the tracers may still

diffuse in space under the right conditions, so the relative positions could still vary
freely. They key question is what these conditions are.

The first requirement is that the advective transport (due to individual actuators
locally) is much weaker than the diffusive transport (due all actuators together,
possibly aided by thermal noise). If a tracer is caught in a local actuator current,
then its dynamics are effectively quenched; however, if the particle can diffuse away
and escape, the ballistic motion disappears and the advection flows tend to average
out over time (Fig. 5e, f). Hence, as the particles explore space horizontally, their
spreading over time becomes equivalent to spatial averaging, so the dynamics
become annealed. As described in previous section, the diffusion dominates
advection if the particles are located far away from the active surface (see Eq. (91)).

The second requirement is that the time scale of diffusive transport is slow
compared to the time scale of the active fluctuations themselves. This ensures that
the tracer motion is diffusive over time and not ballistic according to a specific
carpet configuration. As described in ‘Methods: Derivation of the mean-squared
displacement and space-dependent diffusivity’, this requirement is satisfied when
Eq. (54) holds. Therefore, both requirements are fulfilled beyond a certain distance
from the surface.

To verify the generalised Fick’s laws, we compared their predictions with
detailed hydrodynamic simulations. These fully resolve all the actuator positions
and orientations throughout time, so any quenched disorder is explicitly
included. Importantly, all our main findings (enhanced diffusivities,
sedimentation profiles, nutrient fluxes) are supported by this data. Indeed, we
found that the simulations and the theory agree well with one another beyond a
certain distance from the surface, when both requirements described above are
fulfilled. Future theories could perhaps relax these conditions by taking the
effects of quenched disorder into account. We expect this could be an exciting
opportunity of further research in the field of non-equilibrium statistical
mechanics and active matter systems.

Extension to more complex geometries. In principle, our theory may be gen-
eralised for active carpets of more complex geometries by taking the following
steps: First, one should find the hydrodynamic Green’s function (cf. the Blake
tensor in Eq. (12)) that satisfies the Stokes equations and the boundary conditions
of the geometry in question. Once this flow solution is known, one can start
developing simulations to verify the following steps. Second, the mean flow hvðrÞi
should be determined by integrating this Green’s function over the carpet along
with its force distribution, as in Eq. (32). This may tend to zero for homogeneously
distributed carpets, depending on the surface shape and the distribution of actuator
positions and orientations, but not necessarily. Third, one should determine the
variance tensor V ijðrÞ ¼ hvivji as in Eq. (33), which may in general be dependent
on all three spatial coordinates. Fourth, the generalised flux may be extended by
revisiting the telegraph model, as in ‘Methods: Generalised Fick’s laws’. These
equations may then be solved numerically or analytically, but care should be taken
that the conditions for the theory to be accurate are correctly translated to the new
geometry.

Data availability
All simulation data used for this paper are available from the corresponding authors
upon request.

Code availability
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