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Order-preserving dynamics in one dimension – single-file diffusion and caging
from the perspective of dynamical density functional theory
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ABSTRACT
Dynamical density functional theory (DDFT) is a powerful variational framework to study the
nonequilibriumproperties of colloids by only considering a time-dependent one-body number den-
sity. Despite the large number of recent successes, properly modelling the long-time dynamics in
interacting systems within DDFT remains a notoriously difficult problem, since structural informa-
tion, accounting for temporary or permanent particle cages, gets lost. Herewe address such a caging
scenarioby reducing it to a cleanone-dimensional problem,where theparticles arenaturally ordered
(arranged on a line) by perfect cages created by their two next neighbours. In particular, we con-
struct aDDFTapproximationbasedonanequilibriumsystemwith anasymmetric pair potential, such
that the corresponding one-body densities still carry the footprint of particle order. Applied to a sys-
tem of confined hard rods, this order-preserving dynamics (OPD) yields exact results at the system
boundaries, in addition to the imprinted correct long-timebehaviour of density profiles representing
individual particles. In anopen system, our approach correctly reproduces the reduced long-timedif-
fusion coefficient and subdiffusion, characteristic for a single-file setup. These observations cannot
be made using current forms of DDFT without particle order.
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1. Introduction

Ever since Einstein’s seminal work on Brownian motion
[1], the dynamics of colloidal particles have been a topic
of broad interest [2,3]. The diffusion of an individual col-
loid is by now theoretically well understood and many
analytical results have been obtained under various exter-
nal conditions including (random) external potentials
[4,5], flowfields [6–10],magnetic fields [11–14], different
thermostats for each spatial coordinate [14,15], temper-
ature gradients [16] or self-motility [12,17–22]. How-
ever, accurately characterising the correlated dynamics of
many interacting particles is, in general, a highly non-
trivial and multilateral theoretical problem. One central
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aspect is the slowing down of the mean-square displace-
ment (MSD) of individual particles as a consequence
of the mutual volume exclusion [23–28]. This results in
the reduction of the long-time self-diffusion coefficient
accompanied by a subdiffusive regime at intermediate
time scales. Penultimately, at the glass transition den-
sity, it comes to a critical dynamical arrest, breaking the
ergodicity of the system: a particle cannot explore the full
available (phase) space as it is caged by its neighbours,
such that averaging over time does not reflect a full sta-
tistical ensemble average. This has some severe conse-
quences for theoretical descriptions relying on the ergod-
icity assumption.
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The excluded-volume interaction between the hard
cores of overdamped diffusing particles can be incor-
porated into the governing Fokker-Planck equation in
two ways: either implicitly through reflective boundary
conditions [29–35] or through an explicit interaction
force arising in this special case from a discontinuous
pair-wise interaction potential with values zero and infin-
ity [36]. While both strategies are formally exact, their
physical interpretation is fundamentally different. The
boundary conditions in the first case mimic the actual
collision events between otherwise freely diffusing par-
ticles, directly resembling the underlying Brownian
dynamics. The second strategy can be considered the
nonequilibrium generalisation of (canonical) statistical
mechanics, as it gives rise to exactly the same definition
of the joint probability distribution of the N particle
positions in the equilibrium limit. As such, it applies
to any type of pair interaction and can be embedded
in more versatile theoretical frameworks within which
controlled approximation schemes can be developed.
Most notably, the variational method of density func-
tional theory (DFT) [37], which is a cornerstone of mod-
ern liquid-state theory [36], can be exploited to effi-
ciently describe nonequilibrium dynamics in terms of
an ensemble-averaged one-body number density within
dynamical density functional theory (DDFT) [38–40].

Originally derived to describe overdamped Brownian
systems of spherical particles, the diversity of DDFT was
increased through various extensions towards, e.g. New-
tonian fluids [41], anisotropic particles [42,43], hydro-
dynamic interactions [44,45]. Thereby, this framework
has become an important tool to better understand spa-
tiotemporal aspects of a broad range of phenomena
[40], including quasicrystals [46], swimming organisms
[47,48], cellular dynamics [49], and epidemic spread-
ing [50]. Owing to further developments over the last
years, several intrinsic deficiencies of DDFT have been
overcome. First, more and more sophisticated equilib-
rium functionals became available, particularly for hard
interactions [51–54], which is a basic requirement for
accurate dynamics. Second, while the time-dependent
density profile provided by DDFT represents collective
motion, individual transport properties become accessi-
ble in the dynamical generalisation [55–60] of Percus’ test
particle theory [61]. Third, despite the inherently grand-
canonical nature of DFT [62,63] canonical information
is available through an inversion method [64], which can
also be exploited in the context of DDFT [65,66]. This
particle-conserving dynamics (PCD) is a crucial step
towards a realistic description of the Brownian reference
system. Finally, the way in which the interaction force
in DDFT is constructed from an equilibrium free-energy
functional implies that nonequilibrium correlations are

replaced by equilibrium ones, which is called an adia-
batic approximation. To include the missing superadi-
abatic forces [67,68], the formally exact framework of
power functional theory has been developed, which con-
tains (adiabatic) DDFT as a limiting case [69,70]. This
generalised variational approach also includes the one-
body current but still requires a workable free-energy
term in addition to the recently introduced approxima-
tions for the nonequilibrium corrections [71–73]. There-
fore, power functional theory also relies on the basic
suitability of the underlying DDFT for the problem of
interest. What remains to be better understood is the
failure of DDFT to intrinsically describe the slow-down
of the long-time self diffusion in general [56,58–60] and
the difficulty to model glassy states by DFT methods in
particular [40,55,56,74].

Sometimes perceived only as an oversimplified play-
ground, one-dimensional systems possess some out-
standing dynamical properties in their own right, emerg-
ing from their characteristic particle order (understood
in this context as fixed relative positions of particles
on a line, cf. Figure 1). Most prominently, the resulting
impossibility of particles confined to a narrow chan-
nel to overtake gives rise to unique transport properties
emerging in a broad range of systems [75–82]. For over-
damped Brownian systems, in particular, this so-called
single-file diffusion (SFD) is characterised by the univer-
sal subdiffusive exponent 1/2 of theMSD [83–86]. In this
setup, the exact tagged-particle dynamics for hard inter-
actions can be determined analytically [29–32,87–89].
More complex SFD scenarios with, e.g. different diffusiv-
ities [90], finite-ranged interactions [91] or an external
drive [92], are exactly solvable on the two-body level.
In addition, systems with external potentials [93], soft
interactions [94] or a tagged particle with significantly
larger mass [95] have been investigated by means of
computer simulations. A description of SFD by means
of DDFT, however, exposes some surprisingly deep prob-
lems. Despite being based on the exact Percus functional
[96,97] in the generalised version for mixtures [98], the
PCDof Ref. [66] only appropriately describes the dynam-
ics of individual particles for short times, which means

Figure 1. Sketch of the ordered one-dimensional system consid-
ered here. TheN = NL + 1 + NR hard rods of lengthσ distributed
on a line of length l are separated into three species ν whose
order is preserved. This means that the particle labelled p is con-
sidered as an individual tagged species ν = T with NT = 1, which
is always located in between the particles of the species ν = L on
the left and ν = R on the right.
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that the characteristic subdiffusive long-time behaviour
of SFD is not accessible from this theory. This behaviour
cannot be attributed to the adiabatic assumption alone,
which is best understood by considering the SFD of an
(ordered) ideal gas [29,30] (see also Figure 8 below). In
this case, PCD just predicts the ordinary diffusion of an
ideal gas, which is in fact the generic long-time limit
for self diffusion in DDFT [56–58], if no manual correc-
tions are performed on the diffusion coefficient [59,60].
Instead, the erroneous long-time behaviour from PCD
(and DDFT) can be explained [57,66] by the fundamen-
tal assumptions of the underlying statistical mechanics
in the equilibrium limit that the system is ergodic and
mixing. In other words, the DFT with the Percus func-
tional reproduces exactly all statistical mechanical results
in one dimension, whereas any dynamical theory based
on pair potentials and ensemble averages cannot pro-
duce exact behaviour of particles that are distinguish-
able by their order. A similar problem occurs [99] (and
persists in higher dimensions [100]) when mapping the
elastic energy in bead-spring models for ferrogels onto
a pair potential of indistinguishable particles for a DFT
implementation.

Here, we describe how SFD can be addressed from
the perspective of DDFT. To this end we introduce an
asymmetric interaction potential to keep the different
particles separated. This strategy breaks the ergodicity
at the heart of statistical mechanics in a generic way,
without manually reducing each particle’s phase space
by an a priori adaption of the configurational integrals.
Then we develop a variational framework to describe
ordered equilibrium systems by combining (canonical)
DFT for a conditional one-body density with a sub-
sequent computation of the remaining configurational
integral representing a tagged particle. Employing this
strategy togetherwith the adiabatic approximation allows
us to determine the order-preserving dynamics (OPD)
of interacting particles in a narrow channel and inter-
pret the resulting time-dependent density profiles and
mean-square displacement. Despite the availability of
exact results for the problem considered, our goal here
is to learn more about the fundamentals of DDFT. We
are particularly concerned with the possibility to repro-
duce caging effects in a variational framework, and with
assessing the reliability of the adiabatic approximation, in
order to provide a solid basis for employing the developed
approach within the more general power functional
theory.

The paper is arranged as follows. In Section 2 we lay
the static foundations and illustrate how the order of indi-
vidual particles in equilibrium can be formally accounted
for in the language of statistical mechanics. The busy
reader may skip this section at first glance and later get

back to the referenced content at will. Then we use the
obtained ordered distributions in Section 3 to construct
a dynamical theory with both conserved particle num-
ber and preserved order, and study the time evolution of
the density profiles of confined hard rods and the MSD
in open systems. Additional data are collected in some
Supplemental figures.1 We conclude in Section 4 on the
implications of our results on addressing the caging sce-
nario by variational theories. Although the mathematical
background of DFT is not explicitly required to under-
stand these calculations, our results are thoroughly inter-
preted in this context. The reader unfamiliar with DFT
methods is thus referred to Appendix 1.

2. Ordered one-body densities in statistical
mechanics

2.1. Conditional probabilities in the canonical
ensemble

Before dealing with the problem of particle order and
distinguishability in statisticalmechanics, we recapitulate
and extend an insightful classical interpretation of Percus’
test-particle limit [61] by Henderson [101], which helps
to put our later expressions into a broader context, partic-
ularly regarding the role played by (D)DFT. Consider in
any spatial dimension d a bulk fluid of N indistinguish-
able particles in a volume V and at temperature T, which
interact with a pairwise-additive potential

UN(rN) =
N∑

i,j=1
i<j

u
(|ri − rj|

)
(1)

with the isotropic pair potential u(r) and are subject to a
total external potential

VN(rN) =
N∑
i=1

V(i)
ext (ri) (2)

where each particle may by affected by a different one-
body field V(i)

ext(r).
Let us define a conditional canonical partition function

ZN−1(T,V ,N | r0) for a system of N physically identical
particles one of which (labelled p ∈ {1, . . . ,N}) is pinned
at some position r0 according to

e−βV(p)
ext (r0)ZN−1(r0) =

∫
drN e−βUN−βVN δ(rp − r0)

(N − 1)!�(N−1)d ,

(3)

where � denotes the thermal wavelength [36]. Here and
in the following, we omit the thermodynamic variables
in the argument of partition functions, when these are
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clear from the context. The ordinary canonical parti-
tion function ZN(T,V ,N) of the N freely moving par-
ticles then follows from integrating over the remaining
configurational variable in Equation (3) according to

ZN =
∫

dr0
ZN−1(r0)

�d e−βV(p)
ext (r0). (4)

In this system, the particle at r0 (with an arbitrary label p)
can be interpreted as a tagged particle, forwhichwe intro-
duce the superscript (T) and identify V(T)

ext ≡ V(p)
ext . The

one-body density ρ
(T)
N (r) of the tagged particle follows

from the average of the density operator ρ̂(T) = δ(r − r0)
as

ρ
(T)
N (r) = ZN−1(r)

�ZN
e−βV(T)

ext (r). (5)

Now consider the one-body density ρ
(H)
N (r) of the

remaining N−1 host particles (H) as the average of
ρ̂(H) = ∑

i�=p δ(r − ri). The result can be rearranged to
the instructive form

ρ
(H)
N (r) =

∫
dr0 ρ

(T)
N (r0) �

(H)
N (r | r0), (6)

where �
(H)
N (r | r0) is the conditional one-body density of

the N−1 particles given the tagged particle is located at
r = r0. In the ensemble determined by Equation (3), this
quantity can be defined as

�
(H)
N (r | r0)

=
∫
drN e−βUN−βVN δ(rp − r0) ρ̂(H)(r, rN−1)

(N − 1)!�(N−1)d e−βV(p)
ext (r0)ZN−1(r0)

. (7)

The analogy with probability theory becomes obvious
when identifying the expression under the integral in
Equation (6) as the two-body density

1
N

ρ
(2)
N (r, r0) = ρ

(T)
N (r0) �

(H)
N (r | r0), (8)

which is the joint probability to find the tagged parti-
cle at r0 and a host particle at r. Note that the densities
considered here are not probability densities, i.e. their
normalisation is related to the particle numbers of the
species considered [36]. The factor N in Equation (8)
is required since we made a particular choice for the
tagged particle. There also exist related grand-canonical
expressions, as further discussed in Section 2.3.

What we learn from this exercise, in particular regard-
ing (D)DFT, are the following four points. First, Equa-
tions (5) and (6) provide an indirect route to calculate
the density of a fluid by means of auxiliary conditional
quantities, which can be calculated in a theory assuming
that a pinned particle acts as an external potential, while

the remaining statistical integration is carried out by
hand. This conditional DFT is described in Appendix 1.
Following the argumentation in Ref. [102], such an
approach could improve the density profiles predicted by
an approximate functional. Second, Equation (8) consti-
tutes a generalisation of Percus’ test-particle approach,
which is recovered for equal external potentials V(1)

ext =
V(2)
ext = . . . = V(N)

ext . This can be easily shown for a homo-
geneous bulk fluid with constant density ρb = N/V and
isotropic radial distribution function g(r). Setting ρ

(2)
N =

ρ2
bg(r) and ρ

(T)
N = ρb/N yields the famous result [61]

ρb g(r) = �
(H)
N (r | r0), (9)

where the conditional density, Equation (7), on the right-
hand side is again interpreted as an inhomogeneous
density in the test system. Third, generalising this idea
to a dynamical test particle theory allows to explicitly
treat ρ

(T)
N (r0) as a canonical quantity, circumventing the

problem of self-interaction in DDFT [57–60]. Finally,
restricting the range of the tagged-particle distribution
through the interaction with the host particles allows to
model localisation effects. This strategy is particularly
insightful in one spatial dimension and serves as the basis
for the calculations in remainder of this work.

2.2. Ordered ensemble for nonergodic hard-body
mixtures

Now we turn to d = 1 dimension with the single spa-
tial coordinate x replacing r. In this case, illustrated in
Figure 1, theN hard rods of length σ are ordered on a line
of length l (or within an infinitely small channel), such
that they cannot overtake. For such a system, it has been
elaborated in Ref. [66] that a simple relabelling (distinc-
tion of particles only in terms of combinatorial factors) is
not sufficient to determine the proper equilibrium dis-
tributions of individual particles. To better understand
this crucial point, we discuss below in detail how it boils
down to the interpretation of Equation (6), focussing on
the extreme example of a system that cannot hold more
than N particles, cf. Figure 2.

In the case of completely indistinguishable but labelled
particles, the conditional density �

(H)
N (x | x0) carries

implicit information about the particle order, which is
lost in the final integration over x0. If the tagged particle
is fixed at x0, the numbers NL and NR of particles fitting
on its left and right are well defined, where NL + NR =
N − 1. However, the identity ρ

(H)
N (x) = (N − 1) ρ

(T)
N (x)

holds for the resulting one-body density profiles, if the
external potentials of each species are equal. This loss
of microscopic information directly reflects the fact that
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Figure 2. Schematic illustration of the introduced (con-
ditional) one-body densities ρ

(T)
N (x) (top left), ρ

(H)
N (x) �

ρ
(L)
N (x) + ρ

(R)
N (x) (top right) and �

(H)
N (x | x0) (bottom left for

x0 = 3σ/2 and right for x0 = 5σ/2) in one dimension. We
compare the ordered profiles for a tagged particle labelled
p = 2 (circles) and p = 3 (squares) to those without particle
order, where p is arbitrary (crosses) considering an idealised
packed system of N = 5 hard rods of length σ confined between
two walls of separation l = 5σ . The sharp density peaks at
x = σ/2 + nσ with n ∈ {0, 1, . . . , 4} are shown as single points
representing the value of their integral. If in OPD the Nα particles
do not fit into the respective subsystem, either ρ

(L)
N or ρ

(R)
N is

undefined and we set ρ(H)
N to zero. See text for further details.

the underlying statistical ensemble is ergodic and mix-
ing. This can be most directly seen in the symmetry of
the pairwise interaction potential

u(|xi − xj|) =
{
0 |xi − xj| > σ

∞ |xi − xj| < σ
, (10)

which only forbids particle overlaps, but gives an equal
statistical weight to one particular configuration of two
particles and the configuration with both positions inter-
changed.

The relation between the one-body densities and the
conditional densities is further illustrated in Figure 2 for
the case of N = 5 perfectly localised particles. Here, the
black crosses in the top row indicate the probabilities
1/5 and 4/5 that a particle at any given position is the
tagged particle or one of the host particles, respectively.
In contrast, the conditional densities in the bottom row
explicitly depend on the location of the tagged particle.
Here, the probability to find a host particle at the exact
position of the tagged particle is zero, while it is one at
the other possible positions.

To imprint the ordered property of the particles into
their one-body densities, there are two mathematically
equivalent possibilities, both with the same combina-
torial prefactors indicating distinguishable species. The
first way amounts to include the particle order explic-
itly in the boundaries of the statistical integrals used to
calculate the averages. In general, this implies that each
particle is truly distinguishable from the others by its

relative position and thus formally corresponds to an
individual species. Alternatively, these restricted integral
boundaries can be absorbed into the interaction poten-
tial between the different particles [66]. As this second
interpretation of the particle order can be directly trans-
ferred to the framework of DFT,2 we will adapt it in the
following presentation for the sake of providing a general
picture, although the calculations made in this paper do
not require such a particular choice. In addition, instead
of solving the fullN-body problem, we conveniently con-
sider a mixture of three species with one tagged parti-
cle (NT = 1) at x0 confined in the middle of the other
species holding NL and NR particles. Although our con-
siderations apply to any type of pair interaction (as long
as some mechanism explicitly forbids overtaking), we
restrict ourselves in the following to hard rods to keep
the notation compact.

We start by splitting the interaction potential UN(xN)

from Equation (1) into two independent parts. First we
consider only a partial interaction potential UNL + UNR

between N−1 particles by removing all pair potentials
which we associate with the coordinate xp of the tagged
particle (where p = NL + 1 = N − NR). Then we intro-
duce a new potential WN(xN) denoting the interaction
with the tagged particle, thereby taking the role of a
conditional external potential WN(xNL+NR | xp) acting
on the host particles. Instead of constructing WN in
terms of the symmetric pair potentials u(|x|), defined in
Equation (10), which would simply amount to a reinter-
pretation of the total interaction UN , we set

WN(xN) =
NL∑
i=1

wL(xi − xp) +
N∑

i=NL+2
wR(xi − xp).

(11)

Thereby, we define the order-preserving pair potentials

wα(xi − xp) =
{
0 sα(xi − xp) > σ

∞ sα(xi − xp) < σ
, (12)

where α ∈ {L, R} serves as a specific species label and the
sign function sα in the potential is sL = −1 or sR = +1.
With this choice, the modification

UN → UNL + UNR + WN (13)

of the standard statistical setup gives rise to an ordered
ensemble, ensuring that the intended configuration is
actually recovered in the process of statistical averaging.

In the ordered ensemble for three components of uni-
form hard rods in d = 1 dimension specified above, the
conditional canonical partition function, defined analo-
gously to Equation (3), can be written in the factorised
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form

ZN−1(x0) = Z(L)
NL

(x0)Z(R)
NR

(x0),

Z(L)
NL

(x0) =
∫ x0−σ

−∞
dxNL

e−βUNL−βVNL

NL!�NL
,

Z(R)
NR

(x0) =
∫ ∞

x0+σ

dxNR
e−βUNR−βVNR

NR!�NR
,

(14)

where the relevant order-preserving potentials

W (α)
Nα

(xp,xNα ) :=
Nα∑
i=1

wα(xi − xp) (15)

have been absorbed into the respective integral bound-
aries. As in Equation (4), the canonical partition function
ZN ofN indistinguishable particles is recovered upon car-
rying out the final configurational integral. This result
is not surprising, since reverting to ordered particles is
just a mathematical trick to calculate the N integrals in
a one-component system [96,97], but it nicely illustrates
that the information about order, uncovered on the con-
ditional level, is hidden in the full averaging process. We
further stress that the canonical partition function for
a true mixture of actually indistinguishable (but mixed)
particles is different fromZN , whichwe explicitly evaluate
in Appendix 2 for point particles.

Apart from the form of ZN−1, the difference between
the ordered ensemble and an ergodic system becomes
apparent (See endnote 2) on the level of the one-body
densities

ρ
(ν)
N (x) =

∫
dx0

ZN−1(x0)
�ZN

e−βV(T)
ext (x0) �

(ν)
N (x | x0),

(16)

where ν ∈ {L, T, R}. The conditional densities in the two
subsystems left (α = L) and right (α = R) of the tagged
particle read

�
(α)
N (x | x0) =

∫
dxNα e−βUNα −βVNα −βW(α)

Nα ρ̂(α)(x, xNα )

Nα!�Nα Z(L)
NL

(x0)
(17)

and we formally define �
(T)
N (x | x0) := δ(x − x0). In this

ordered setup, ρ(T)
N obviously depends on the chosen par-

ticle index p (and thus on the predetermined numbersNL

andNR). Hence, there is no simple relation ρ
(L)
N + ρ

(R)
N �=

(N − 1) ρ
(T)
N between the density profiles as in standard

canonical treatment allowing for the intermixing of par-
ticles. However, the general identity

∑
ν

ρ
(ν)
N =

N∑
p=1

ρ
(T)
N = ρN (18)

holds in both cases.

Returning to the example system of perfectly localised
particles from Figure 2, the interpretation of the con-
ditional densities from Equation (17) is the following.
Fixing x0 such that there are NL and NR particles at the
sides of the tagged particle, the probability to find the
tagged particle with label p = NL + 1 at position x = x0
is one, while it is zero at x = x0 for the host particles (see,
e.g. the blue squares in the top row for p = 3 and x0 =
5σ/2). The corresponding conditional partition function
and densities for a tagged particle at x = x0 are the same
as if W (α)

Nα
would be made of symmetric pair potentials,

compare the blue squares to the black crosses on the bot-
tom right. However, for other positions, say x0 = 3σ/2,
of the same tagged particle we haveZN−1 = 0, such that
ρ

(T)
N is zero at this point. Moreover, also �

(L)
N (x | 3σ/2) is

then undefined, as theNL particles do not fit into the sub-
system, and we set �

(H)
N (x | 3σ/2) = 0 (blue squares on

the bottom left). In contrast, for symmetric pair poten-
tials (black crosses) there would be a finite contribution
with other numbers of neighbours. Such a contribution,
in turn, could be associated with another tagged parti-
cle in the ordered ensemble for a different label p (cyan
circles in the bottom row for p = 2).

2.3. Ordered ensembles with fluctuating particle
numbers

Having established an ensemble which provides ordered
distributions with a fixed particle number, we ask the
question of what is (are) the corresponding grand
canonical ensemble(s), in which the particle numbers
can fluctuate. While the canonical partition function
ZN(T,V ,N = NL + NT + NR) of the ordered ensemble
is equal to that of indistinguishable particles (only the
ensemble averages of nontrivial operators may be differ-
ent), it turns out that the corresponding grand partition
function is neither unique (there are different sensible
ways to introduce such a quantity) nor equivalent to the
grand partition function


(T,V ,μ) =
∞∑

N=0
eβμN ZN (19)

of a single component with the chemical potential μ.
To see this, we will first define below the two possi-
ble partition functions 
gcg(T,V ,NT = 1,μL,μR) and

ggg(T,V ,μL,μT,μR) corresponding to our ordered
three-component mixture, assuming that the particle
number fluctuates in two and three species, respectively
(as indicated by the subscripts ‘c’ for canonical and ‘g’ for
grand canonical treatment of a species). A third possibil-
ity, 
cgc(T,V ,NL,NR,μT), with one fluctuating species
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could also be considered but does not turn out to be use-
ful in the present context. Recall that up to this point
the particle number NT of the species holding the tagged
particle has been fixed as NT ≡ 1.

Now let us properly define the ordered ensembles of
interest by calculating


gcg =
∞∑

NL=0

∞∑
NR=0

eβμLNL eβμRNR ZN , (20)


ggg =
∞∑

NL=0

∞∑
NT=0

∞∑
NR=0

eβμLNL eβμTNT eβμRNR ZN .

(21)

The common starting point ZN , which differs from the
partition function

∏
ν ZNν of a true mixture, reflects that

we are dealing with an ordered system. Although the
sequence of the three ordered components (L on the left,
T in the middle and R on the right) is not apparent from
these functions, it is implied at this point by the label
of the chemical potentials. In Appendix 2, we explicitly
show for ordered point particles that, even if all chemical
potentials are equal,
(μ) �= 
1(μ,μ) �= 
(μ,μ,μ) are
indeed different functions.

The explicit particle order in the fluctuating ensem-
bles is reflected by the one-body densities, which
can be obtained from the ordered canonical ones in
Equation (16) according to

ρ(ν)
gcg(x) =

∞∑
NL=0

∞∑
NR=0

pgcg ρ
(ν)
N (x), (22)

ρ(ν)
ggg(x) =

∞∑
NL=0

∞∑
NT=0

∞∑
NR=0

pggg ρ
(ν)
N (x), (23)

where

pgcg({Nα}, {μα}) = eβμLNL eβμRNR
ZN

gcg

, (24)

pggg({Nν}, {μν}) = eβμLNL eβμTNT eβμRNR
ZN


ggg
(25)

are the probabilities to find {Nα} and {Nν} particles
at given chemical potentials {μα} or {μν}, respectively,
recalling that α ∈ {L, R} and ν ∈ {L, T, R}. We stress
that for ordered point particles in a box, we obtain in
Appendix 2 closed expressions for ρ

(α)
gcg and ρ

(α)
ggg, while

the canonical counterpart ρ(α)
N can only be cast in a series

representation similar to Equation (18).
While the ordered canonical (in the present nota-

tion the ‘ccc’) ensemble provides the exact equilibrium
limit for dynamics with conserved particle numbers, this

grand-canonical generalisation constitutes a crucial step
towards the description of (semi-) infinite systems and
provides the connection to the framework of DFT. In
detail, treating the tagged-particle problem in the gcg
ensemble appears to be a convenient approach for sys-
tems with large particle numbers, particularly, when we
are also interested in the distributions of the host parti-
cles. Moreover, it bridges the gap between the proposed
treatment and a conditional DFT, which outputs grand-
canonical conditional densities �(α)(x | x0) and partition
functionsΞ(α)(x0), as detailed in Appendix 1. To rewrite
Equations (20) and (22) in terms of these quantities, we
can proceed analogously to the canonical formalism in
Sections 2.1 and 2.2, which yields


gcg =
∫

dx0
Ξ(L)(x0)Ξ(R)(x0)

�
e−βV(T)

ext (x0) (26)

and

ρ(T)
gcg (x) = Ξ(L)(x)Ξ(R)(x)

�
gcg
e−βV(T)

ext (x), (27)

ρ(α)
gcg(x) =

∫
dx0 ρ(T)

gcg (x0) �(α)(x | x0). (28)

Intriguingly, if the same external potential acts on all par-
ticles, the total density in an ordinary grand-canonical
fluid (with partition function 
) is equal to the ordered
density ρ

(T)
gcg of the tagged particle (up to the different

normalisation). This becomes evident from comparing
the representation of the former given in Ref. [97] to
Equation (27). Finally, the ggg ensemble constitutes the
basis for a full DFT treatment of the ordering problem.
To achieve this, it is necessary to properly account for the
order-preserving potential, Equation (11) in a functional
on the many-body level. In such an ensemble it is, how-
ever, not possible to define conditional densities in the
spirit of the above considerations.

2.4. Ordered distributions of point particles in
different ensembles

Comparing the analytical density profiles of point par-
ticles in a slit of length l, calculated in Appendix 2, we
illustrate in Figure 3 the relation between the different
ensembles and argue in how far there exists a ‘thermo-
dynamic limit’, in which the ensembles would become
equivalent. For this reason, we restrict ourselves to sym-
metric systems with an equal number Nα ≡ NL ≡ NR
of host particles at each side of the tagged particle. As
we here consider point particles, the density of each
species ν is nonzero at any point in the slit. Note that
without imposing the particle order at this stage, such a
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Figure 3. Comparison of normalised equilibrium density profiles
for ordered point particles in the different ensembles defined in
Sections 2.2 and 2.3. Shown are the density profiles lρ(ν)(x)/Nν

of the three components ν in a slit of arbitrary unit length l nor-
malised by the particle numbers Nν (understood as an average
value if ν is treated grand-canonically). The tagged species (ν =
T) and the species to its left (ν = L) and right (ν = R) are shown as
solid red, long-dashed black and dashed blue lines, respectively.
top: Canonical (ccc) ensemble (white background) for intrinsically
fixedNT = 1 and different NL = NR as labelled and gcg ensemble
(on the right, gray background) for intrinsically fixed NT = 1 and
arbitrary NL = NR = (N − 1)/2, which all collapse on the same
curves. The additional labels with the brown background indicate
the limits in the ggg ensemble, for which the same density pro-
files are recovered, cf. Appendix 2.bottom: ggg ensemble (brown
background) for different Nν as labelled.

setup would represent three independent ideal-gas sys-
tems in a slit, such that all curves would simply reduce to
horizontal lines with lρ(ν)(x)/Nν ≡ 1.

In the canonical case, cf. Equation (16), the distribu-
tion of the tagged particle is clearly peaked in the middle
of the slit. The peak becomes sharper for increasing N
as the distribution of the host particles develops a pro-
nounced plateau. For an infinite system, the variance
of the tagged-particle profile scales like l2/N. In stark
contrast, the tagged-particle profile in the gcg ensemble,
cf. Equation (22) or Equations (27) and (28), is both con-
stant and independent of N, such that the variance scales
like l2/12. The distribution of the other species is always
a linear function with N as a multiplicative factor. This
means that there is no limit in which this ensemble with
fluctuating particle numbers reduces to the canonical
one.

Turning now to the ggg ensemble, cf. Equation (23),
and generalising the notion of a tagged particle to a
species holding on averageNT particles, several scenarios
can occur. Assuming first an equal value of the number
Nν ≡ Nα ≡ NT of particles in each species (which does

not mean that the chemical potentials μν are equal), we
find that the densities per particle in the many-particle
case Nν � 1 are the same as in the ccc ensemble with
Nα = 1. In turn, the low-density case Nν 	 1 resembles
the gcg situation. The gcg densities per particle are more
generally recovered whenever Nα � NT, which implies
that in the limit Nα → ∞ (while NT = 1 is fixed) the
gcg and ggg ensembles are equivalent. Finally, in the
opposite caseNα 	 NT, the density of the tagged species
becomes again constant, while the other particles are
trapped close to the boundary. The (rather unappealing)
limitNT → ∞ andNα = 1 limit is now equivalent to the
ordered canonical ensemble (and would also be equiva-
lent to a cgc ensemble not considered here). These trends
are apparent from the bottom plots in Figure 3 and are
explicitly evaluated in Appendix 2.

3. Adiabatic dynamics of ordered particles

Having understood the implications of an ordered equi-
librium in statistical mechanics, we exploit this frame-
work in a more general context to explore the tagged-
particle dynamics in an overdamped single-file system.
To be able to do so, we employ the infamous adiabatic
approximation, assuming that the density profiles at any
time can be written in the form of Equation (16), i.e. as if
the system was in equilibrium.

3.1. From particle-conserving dynamics (PCD) to
order-preserving dynamics (OPD)

The fundamental idea behind PCD [65,66] is to replace
the grand-canonical expression of the underlying intrin-
sic Helmholtz free energy functional F[{ρ(ν)(x)}] in the
standard (adiabatic) DDFT equation [38,39]

∂ρ(ν)(x, t)
∂t

= βD0
∂

∂x
ρ(ν) ∂

∂x

(
δF

δρ(ν)
+ V(ν)

ext (x)
)

(29)

for the time-dependent one-body density ρ(ν)(x, t) with
a canonical one, where D0 is the short-time Brownian
diffusion coefficient. While the particle numbers Nν of
the different components, i.e. the integral of the den-
sities, always remain the same for all times t, the key
difference between DDFT and PCD is the interpretation
and explicit form of ρ(ν)(x, t). For a grand-canonical free
energy, this quantity has to be understood as an average
over the canonical densities ρ

(ν)
N (x, t) of different systems

with fixed integer values of Nν .
The required canonical functional

βFN
[{ρ(ν)

N }] = − lnZN −
∑
ν

∫
dx ρ

(ν)
N (x)βV(ν)(x)

(30)
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can be formally defined by subtracting the extrinsic con-
tribution from the total free energy − lnZN of an equi-
librium system in the given external potentials V(ν)

ext (x).
Here, ρ

(ν)
N (x) are understood as the one-body densi-

ties, which are in canonical equilibrium in an imaginary
system with the generating external potentials V(ν)(x)
replacing the actual ones V(ν)

ext (x). Equation (30) is thus
to be interpreted as the defining equation of the gener-
ating potentials, since we formally search the value of
FN for the given target densities ρ

(ν)
N (x). If and only

if all V(ν)(x) = V(ν)
ext (x), then the true equilibrium den-

sities ρ
(ν)
N (x) = ρ

(ν)
N,eq(x) are considered for which FN

becomes minimal. Note that ZN is thus a functional of
ρ

(ν)
N,eq(x) only and not of the general target densities. Sub-

stituting now Equation (30) into Equation (29) yields the
particle-conserving evolution equation

∂ρ
(ν)
N (x, t)
∂t

= βD0
∂

∂x
ρ

(ν)
N

∂

∂x

(
V(ν)
ext (x) − V(ν)

ad (x, t)
)
(31)

for the canonical densities ρ
(ν)
N (x, t), where V(ν)

ad (x, t) is
identified with the generating potential of ρ

(ν)
N (x, t) at

a given time t, such that limt→∞ V(ν)

ad (x, t) = Vext(x).
What is now left to be specified is how we conceive the
notion of an equilibrium system, which defines V(ν)(x)
and V(ν)

ad (x, t).
ThemodifiedDDFT equation, Equation (31), is gener-

ically valid for any rule by which the generating external
potentials are constructed. To see this, we consider the
iteration scheme [65,66]

βV(ν)
n (x) = βV(ν)

n−1(x) − ln ρ
(ν)
N (x) + ln ρ

(ν)
n−1(x), (32)

where the potentials V(ν)
n (x) are updated in each step

n. After a sufficient number of steps, V(ν)
n (x) have con-

verged to the potentials V(ν)(x) generating the given .
Strictly speaking, it is not necessary to associate these
target densities with any statistical ensemble. The crucial
point that specifies the nature and explicit formofV(ν)(x)
is rather how, i.e. with respect to which ensemble, in
iteration step n, the densities ρ

(ν)
n−1(x) are obtained from

V(ν)
n−1(x) of the previous step. For example, if ρ(ν)

n−1(x)was
determined from the minimisation of a grand-canonical
DFT, then Equation (31) would be based on a grand-
canonical rule and thus be equivalent to the DDFT from
Equation (29).3

Turning now to a canonical system, we have dis-
cussed in Section 2 that we can distinguish between
ordinary and ordered canonical equilibriumdensities, for
which the canonical partition function ZN is identical.

This means that Equation (32) will converge to a dif-
ferent generating potential, if particle order is enforced
by using the ordered densities given by Equation (16)
or, more generally, by inverting the conditional DFT
described in Appendix 1. As a result, also the functional
dependence of the free energy on the density, implicit in
Equation (30), is different in an ordered system. There-
fore, the corresponding PCD based on Equation (31)
evolves into OPD, a theory, which preserves the parti-
cle order between the different species in one dimension.
As already pointed out in Ref. [66], the main distinction
between these two approaches is their different equilib-
rium limit. In the remainder of this work, we explore the
further differences in the dynamical behaviour.

3.2. PCD vs. OPD for hard rods

In the following, we discuss the dynamics of N = 2
and N = 3 hard rods of length σ confined to a slit of
length l = 4.9σ , for which the ordered densities from
Equation (16) can be efficiently calculated. Note that for
N = 2 it does not matter, whether the left or right parti-
cle is interpreted as the tagged particle. Moreover, setting
in general, e.g. NL = N and NT = NR = 0, all informa-
tion about order is sacrificed and OPD corresponds to
PCD for a single species [65]. An intriguing result from
Ref. [66] is that this collective version of PCD is not
generally recovered upon constructing a total density∑

ν ρ
(ν)
N (x, t) by adding up the individual profiles found

in the particle-resolved version of PCD.
Having introduced OPD which overcomes the funda-

mental drawback of missing particle order in PCD, we
now seek an answer to the three remaining questions. In
how far does OPD constitute an improvement over the
PCD results for single particles fromRef. [66]? Is the total
density of both theories equivalent? How are the predic-
tions of OPD affected if one species holds more than one
particle?

To answer these questions, we also compare our results
to Brownian dynamics (BD) simulations. We choose
similar setups as in Ref. [66], where the particles are
initially equilibrated in harmonic potentials V(ν)

ad (x, 0) =
k(ν)(x − x(ν)

h )2/2 centred at x(ν)

h with the constants k(ν)

and then released at t = 0. At all times, the particles are
confined between two hard walls at x = 0 and x = l.
Recall that on the single-particle level, the initial pro-
files of PCD, do not exactly match those from BD and
OPD, which both accurately represent the ordered equi-
librium in given V(ν)

ad (x, 0). Time is measured in terms of
the Brownian time τB = σ 2/D0.
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Figure 4. Individual density profilesρ(ν)
N (x, t) ofN = 2 hard rods

of length σ on a line of length l = 4.9σ for distinguished initial
trapping with k(L) = k(T) = 5/(βσ 2), x(T)h = l/4 and x(T)h = 3l/4
(species ν = L and ν = T as labelled). We compare BD and PCD
results as in Ref. [66] to OPD at times t = 0.1τB and t = 0.4τB (as
labelled). The common initial (t = 0) and final (t = ∞) profiles
of OPD and BCD are drawn as a reference. A more detailed figure
for this setup, including different time steps, is available online as
Supplemental material (See endnote 1).

3.2.1. Individual profiles for distinguished initial
trapping
For two particles starting at distinct locations, as shown
in Figure 4, the initial PCD profiles of each particle are
highly accurate [66].Hence, at short times, there is no sig-
nificant difference between the considered approaches.
Both the decrease of the maximal density at the cen-
tral peaks and the increase of the contact density at the
wall occur slightly faster for OPD than for PCD. Com-
pared to the exact BD, the decay of the peaks is too
fast in both theories, a known consequence of the adi-
abatic assumption [38,103]. In turn, there is a perfect
match between OPD and BD, regarding the accumula-
tion at the system boundary, while PCD falls slightly
behind for larger times. The superiority of OPD com-
pared to PCD becomes most apparent when equilibrium
is approached, as anticipated from the ordered ensem-
ble underlying OPD. In particular, the points beyond
which the density profiles in OPD constantly vanish
fully agree with the BD result, while this happens in
PCD only at the system boundaries due to unphysical
particle mixing.

A similar situation occurs for three particles, as shown
in Figure 5. The peaks of the OPD profiles decay faster
than for the reference BD results, but the behaviour at
the boundary is again the same. In this case, the disor-
dered nature of PCD is already evident upon initialisation

Figure 5. Individual density profiles as in Figure 4 but for N = 3
hard rods with k(T) = 20/(βσ 2), x(T)h = l/2 and k(L) = k(R) = 0
(species ν = L and ν = R are joined to a single species ν = H).
Shown are the data at time t = 0.1τB. A more detailed figure for
this setup, including different time steps, is available online as
Supplemental material (See endnote 1).

through the deviations from the exact BD and OPD pro-
files at t = 0 [66] and, since the system is more densely
packed, the mixing of the profiles over time happens
much faster.

3.2.2. Total profile for common initial trapping
As a second step, we compare OPD and PCD on the
level of the total density of all particles. We thus switch
to an unbiased setting with the initial trapping poten-
tial Vad(x, 0) ≡ V(ν)

ad (x, 0) acting on all particles of any
species ν in the same way. This setup allows us to test
both theories against BD for more extreme initial condi-
tionswith stronger correlations and a lower probability to
find any particle close to the wall. Note that the species-
resolved PCD consistently yields he same result ρ

(ν)
N ∝

ρN as PCD for a single species at all times. Therefore, both
the initial profile ρN(x, 0) and the long-time equilibrium
limit ρN(x,∞) of the total density are exact in PCD (as
they are always in OPD).

From the symmetric setups in Figures 6 and 7, we
deduce the general behaviour that OPD predicts a slower
decay of the density peaks compared to BD. This obser-
vation stands in contrast to the case depicted in Figures 4
and 5, where a larger separation of the particles in the ini-
tial state constitutes the main difference. PCD predicts a
similar behaviour forN = 3 in Figure 7, while forN = 2
in Figure 6 this is only the case in the early dynamics and
PCD overtakes BD after a short time. This means that
not only the time evolutions of the total density predicted
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Figure 6. Total density profiles ρN(x, t) of N = 2 hard rods of
length σ on a line of length l = 4.9σ for common initial trapping
with k(ν) = 5/(βσ 2) and x(ν)

h = l/2 using different approaches
according to the legend. The numbers (NLNTNR) in brackets indi-
cate the numbers Nν of particles in each component ν of OPD,
where PCD is formally equal to OPD if all particles belong to
the same species. The common initial (t = 0) and final (t = ∞)
profiles of all approaches are drawn as a reference and the inter-
mediate steps are at t = 0.05τB and t = 0.15τB (as labelled). A
more detailed figure for this setup, including different time steps,
is available online as Supplemental material (See endnote 1).

by OPD and PCD differ, but they also do so in a quali-
tatively different way when compared with the reference
BD scenario. The most striking observation discussed in
Section 3.2.1 turns out to be, in fact, a general result: OPD
predicts the correct contact value of the density at the sys-
tem boundary, while there are strong deviations in the
case of PCD.

Considering further in Figure 7 a partial version of
OPD for N = 3 particles but with only two different
species, we observe a dynamical behaviour interpolat-
ing between PCD and three-species OPD. As the first
species holds NT = 1 particles and the second one NR =
2, the total density is not symmetric with respect to x =
l/2 and its values on the left-hand side are closer to
those of full OPD than on the right-hand side. Treating
two (or more) particles as members of the same species
thus amounts, in general, to an additional approxima-
tion. Tagging, however, the central particle and formally
joining the other two host particles to one component
by calculating ρ

(H)
N = ρ

(L)
N + ρ

(R)
N does not make a dif-

ference in Figure 7, since ρ
(H)
N (l/2, t) ≡ 0 for the sys-

tem length considered here. Increasing l by σ , this is no
longer the case, but still does not result in any noticeable
deviation from the full OPD data. This point and fur-
ther conclusions for such a larger system are detailed in
Appendix 3.

Figure 7. Total density profiles as in Figure 6 but for N = 3 hard
rods. One additional set of OPD data is included considering the
two particles on the right as members of a single species. Join-
ing the left and right particle to a new host species with ρ

(H)
N =

ρ
(L)
N + ρ

(R)
N yields the same result as for full OPD with three

species. Shown are the data at time t = 0.1τB. A more detailed
figure for this setup, including different time steps, is available
online as Supplemental material (See endnote 1).

3.3. Single-file diffusion (SFD) of point particles

We have seen that, leaving the effects of the adiabatic
approximation aside, OPD provides an excellent account
of the dynamics in small confined systems, but also
that it makes a difference if some particles are grouped
together within the same species. Now we push this
three-component approach for OPD to more complex
nonequilibrium scenarios by gradually taking the lim-
its of an infinite system and an infinite number of host
particles. In particular, we wish to clarify whether we can
predict some universal long-time behaviour, carrying the
footprints of single-file diffusion (SFD), when tagging the
central particle in a larger system. Recall that, in a con-
fined system, the exact equilibrium limit is recovered by
construction, while for a more general diffusion prob-
lem in an infinite system equilibrium is practically never
reached.

As we are particularly interested in the time evolu-
tion of themean-square displacement (MSD)�x2(t), the
size of the particles is only of minor importance. We
thus restrict ourselves in this study to point particles,
whose tagged-particle distributions are exactly known
for a conserved number of particles [29,30]. Here, we
also consider an OPD scenario based on the gcg ensem-
ble, where the (equal) numbers Nα = ∫

dx ρ
(α)
gcg (x, t) of

host particles are fixed on a grand-canonical-type aver-
age. There are two main reasons to do so. First, we can
explore the relation between the different ensembles in a
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Figure 8. Summary of the results for the mean-square dis-
placement (MSD) of a tagged particle, calculated according to
Equation (33), in single-file diffusion (SFD) of point particles. Here
σ denotes the same arbitrary unit length as used in Brownian
time τB = σ 2/D0. OPD predicts (i) the correct maximal MSD in a
finite slit, cf. Section 3.3.1, (ii) the correct reduced long-time self
diffusion coefficient for a finite number of host particles in an
infinite channel, cf. Section 3.3.2, and (iii) subdiffusive behaviour
for an infinite number of host particles with the exponent 2/3,
cf. Section 3.3.3. For comparison, the exact subdiffusive behaviour
with exponent 1/2, extracted from the density profiles calculated
in Ref. [29], and the ideal diffusion law�x2(t) = 2D0t in an open
system are shown. The latter also corresponds to the generic pre-
diction of PCD (or DDFT) for an ideal gas without particle order.
The concentration of host particles is c = 8/σ in all cases and
Nα = 4 if not taken to infinity.

more general (dynamical) setup than in Section 2.4. Sec-
ond, this rather artificial ensemble seems more natural
from a DDFT point of view, since more general calcula-
tions of this type for a large number of interacting par-
ticles usually require grand-canonical DDFT methods.
We distinguish between the two scenarios considered by
explicitly speaking of an OPD with fluctuating particle
numbers (or fluctuating OPD) if we do not mean the
(canonical) OPD exclusively used hitherto.

Similar to previous implementations of the dynami-
cal test-particle approach, we initialise the system in a
state, identified with the time t = 10−5τB by choosing a
harmonic trap with k(T) = 5 · 104/(βσ 2) and x(T)

h = 0.
At this early stage, the exact density of the tagged parti-
cle is still nearly Gaussian and follows the ideal diffusion
law for the chosen concentrations [29]. To be able to
swipe throughmany different time regimes, we gradually
decrease the spatial and temporal resolution, as all func-
tions become smoother with increasing time. We always
assume an initial state where the host particles are homo-
geneously distributed with the concentration c = 2Nα/l.
Within any approach, the MSD

�x2(t) =
∫

dx x2ρ(T)(x, t) (33)

follows as the secondmoment of the tagged-particle den-
sity.

Figure 9. MSDof a taggedpoint particle in a confined system.We
compare the OPD based on the ordered canonical ensemble and
the fluctuatingOPDbased on the gcg ensemble to the diffusion of
a single (ideal) particle and exact results. According to the labels,
we show two sets of data for box length l, numberNα of host parti-
cles and concentration c = 2Nα/l. A more detailed figure for this
setup, including further values of these parameters, is available
online as Supplemental material (See endnote 1).

The results for different approaches and setups are
summarised in Figure 8 and compared in the following
for their dependence on the numberNα and (initial) con-
centration c of the host particles, as well as, the role of
the adiabatic approximation and chosen ensemble. Our
key observations are that OPD correctly reproduces the
long-time self-diffusion coefficient for a finite number of
particles and gives rise to subdiffusive behaviour in the
limit of infinite particle number and system size. In the
latter case, theMSD from both OPD scenarios appears to
converge to the same curve, which behaves like

�x2(t) = √
2
(
D0t
c

)2/3
(34)

for long times, i.e. we find a universal SFD exponent 2/3.
The deviation from the exact exponent 1/2 is presumably
a consequence of the involved approximations. However,
our results demonstrate that it is possible to predict devi-
ations from the ideal diffusion law in the long-time limit
using DDFT methods without empirical input.

3.3.1. Finite system
We start our detailed discussion by comparing the MSD
in Figure 9 for a setup similar to the one considered
in Figure 5, but with a practically perfect initial loca-
tion of the tagged particle. The plateau value reached at
large times is always determined by the equilibrium dis-
tribution for the given system size l = 2Nα/c. For that
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Figure 10. MSDof a taggedpointparticle as in Figure 9, but for an
open system with the host particles initially distributed homoge-
neously in a finite interval of length l = 2Nα/c. Notice the differ-
ent normalisation of the vertical axis by theMSD 2D0t of an ideally
diffusing free particle (brown horizontal line at unity) to better
resolve the differences at intermediate times. The insets show the
symmetric distribution ρ(H)(x, t) = ρ(L)(x, t) + ρ(R)(x, t) of host
particles (representing the distinct part of the van Hove function
[56])withρ(H)(±∞, t) = 0 andaxes as in Figures 4–A1with spac-
ing 0.5 between major ticks. The data points for t ≈ 0.00032τB,
t ≈ 0.0026τB and t ≈ 2.62τB considered from left to right are
marked by magenta crosses. A more detailed figure for this setup
is available online as Supplemental material (See endnote 1).

reason, the OPD with fluctuating particle numbers, gen-
erally reaches a larger maximal MSD, cf. the different
profiles in Figure 3. In fact, this limit is the same as for
a single particle, which means that the fluctuating OPD
does not improve much over PCD in this respect. Com-
pared to the ideal diffusion (and PCD), the presence of
host particles is, however, reflected in fluctuating OPD by
the longer time it takes to reach the raised plateau.

For Nα = 1 host particle at each side, the MSD
predicted by canonical OPD is barely distinguishable
from the exact curve, as the equilibrium limit matches
perfectly. Only the transition from the ideal diffusive
behaviour to the plateau value of theMSD occurs slightly
slower, which is consistent with the observation, made in
Figure 5, of a faster decrease of the central peak in OPD
compared to BD. Increasing Nα , the deviations in the
transient regime become more and more pronounced.

3.3.2. Infinite systemwith finite particle numbers
Now we remove the system walls and let the host parti-
cles freely diffuse to the left and right, while using exactly
the same homogeneous initial conditions within a finite
region of length 2Nα/c. In this open system, the long-
time behaviour is again diffusive and we see in Figure 10

Figure 11. MSD of a tagged point particle in the limit Nα → ∞
using two different normalisations. Here, we consider the results
from fluctuating OPD, which is equivalent to canonical OPD in
this limit. A figure detailing the equivalence is available online
as Supplemental material (See endnote 1). Considering different
concentrations c of host particles (legend with line styles), we
compare the OPD data (labels and legend with colour code) to
exact results and the diffusion of an ideal particle (no host parti-
cles) and illustrate the match with Equation (34) in the long-time
limit. The insets are as in Figure 10 with ρ(H)(±∞, t) = c and
additional data points for t ≈ 0.082τB and t ≈ 21.0τB).

that OPD reproduces the exact dependence of the cor-
responding self-diffusion coefficient on the numbers of
host particles. In particular, this diffusion coefficient does
not depend on the initial particle distribution, for exam-
ple, changing the concentration c would only affect the
crossover times between the different dynamical regimes
(See endnote 1). Again, the approach towards this limit
takes longer in OPD, which becomes more and more
apparent for a higher number of host particles.

Here, the dynamics with fluctuating particle numbers
are dramatically different. While the initial decrease of
the MSD for each given concentration is similar to that
in canonical OPD, the tagged particle obeys the ideal
diffusion law the long-time limit, which is approached
via a transient superdiffusive regime. Such an unphys-
ical behaviour has been previously reported for DDFT
in higher dimensions [56,58–60]. It was declared as an
intrinsic drawback of the theory that the predicted dis-
tinct part of the van Hove function (which corresponds
the total distribution ρ(H)(x, t) = ρ(L)(x, t) + ρ(R)(x, t)
of host particles in our case) tends to a constant bulk
profile [60]. Indeed, regarding the insets of Figure 10,
we make here a similar observation for fluctuating OPD,
also reflecting the distinct equilibrium distributions in
the underlying ensembles from Figure 3. The shape of
ρ(H) changes from bimodal to unimodal when the tagged
particle enters the superdiffusive regime and eventually



14 R. WITTMANN ET AL.

tends to aGaussian distribution of the samewidth asρ(T).
In case of canonical OPD, the host-particle distribution
remains bimodal for all times and thus never resembles
that of the tagged particle.

Interestingly, for a fixed concentration, all results of
fluctuating OPD collapse on the same curve until the
inflection point is reached (See endnote 1). This hap-
pens at later times for larger (average) numbers of host
particles, since the distribution of host particles does
not immediately decay towards the sides and remains
bimodal for a longer time. This implies that, if Nα is
also taken to infinity, the system will never enter the
unphysical subdiffusive regime, which we detail next.

3.3.3. Infinite systemwith infinitely many particles
As a final step, we study the limit l → ∞ and Nα → ∞,
such that the concentration c remains finite. Upon sub-
sequently increasing the number of host particles, the
qualitative behaviour of canonical OPD begins to slightly
deviate from the exact curves, which appear to converge
more rapidly. Hence, the dynamical slow-down in OPD
gets more and more delayed, but eventually a universal
subdiffusive long-time limit is approached. Intriguingly,
the OPD with fluctuating particle numbers converges to
the same curve despite the completely opposite behaviour
for finitely many particles (See endnote 1). As elaborated
in Section 3.3.2, this is reflected by a bimodal distribution
of host particles, whichmaintains the structural informa-
tion in the distinct part of the van Hove function for all
times.

In fact, taking the limit is computationallymuch easier
in the fluctuatingOPDapproach based on the gcg ensem-
ble, since it just amounts to extending the system at fixed
concentration (or chemical potential), while the particle
numbers Nα explicitly enter the calculation in canoni-
cal OPD, contrast Equation (14) with Equation (26) and
compare Appendix 2. Hence, we discuss in the follow-
ing the limiting curves of fluctuating OPD, shown in
Figure 11, which conveniently represent the generic OPD
results in this case.

As remarked for finite Nα , a decrease in the concen-
tration delays the onset of the subdiffusive behaviour,
in the exact case and for OPD alike. At short times
it even seems like the deviation due to the adiabatic
approximation can be absorbed in a renormalisation of
the concentration c by a factor of two. The long-time
behaviour of OPD is reflected nicely by the analytic for-
mula given by Equation (34). However, it quantitatively
deviates from the exact result with the subdiffusive expo-
nent 1/2. The larger exponent 2/3 ismost likely an artifact
of the adiabatic approximation,maybe togetherwith con-
sidering only three species. While the clarification of this

point requires further studies, we stress here that the
current DDFT approach is able to successfully describe
subdiffusive long-time behaviour without any empirical
input.

4. Conclusions

Ordered ensembles in statistical mechanics. The goal of
this work is to better understand under which condi-
tions a variational theory based on ensemble-averaged
one-body fields, like dynamical density functional theory
(DDFT) – and also the more general power functional
theory, are able to describe (dynamical) caging scenarios.
As a proof of principle, this problem is boiled down to a
clean study of one-dimensional single files. For all pur-
poses of describing an ergodic equilibrium system there
exists an exact equilibrium density functional in one
dimension. To properly tackle the nonergodic problem of
particle order, however, the whole underlying statistical
mechanics, which defines the notion of an exact den-
sity functional, needs to be revisited. This is done here
by introducing an asymmetric ordering potential within
three different statistical ensembles in a way such that
the expectation value of the appropriate density opera-
tors gives rise to ordered equilibrium density profiles of
different species.

Ordered ensembles in density functional theory. We
argue that for more complex problems than those con-
sidered here, the statistical integrals can be treated by
employing DFT methods on the level of conditional
densities, assuming fixed positions of the tagged parti-
cle. Given its similarity to Percus’ test-particle theory,
which can be used to get more accurate results out of
approximate (mean-field) functionals [102], our condi-
tional DFT approach might also be beneficial for prob-
lems inwhich one is not interested in individual particles.
One example might be the unphysical crystallisation pre-
dicted by an effective mean-field functional mimicking
elastic interactions [99]. Also our dynamical results from
Section 3.2.2 and Appendix 3 might point to such an
improvement, as further discussed below. Finally, we also
discuss the statistical mechanics in the ggg ensemble,
treating three ordered species in a grand-canonical fash-
ion. This provides a crucial first step towards a full DFT
treatment of the ordering problem,which is presently still
missing. A promising candidate for such an approach,
which requires an explicit implementation of the asym-
metric ordering potential, could be the fundamental-
measure functional for nonadditive mixtures [104].

Effect of the adiabatic approximation. One of the key
motivations of our work is to identify a dynamical the-
ory, which in one dimension overcomes the unphysical
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mixing of neighbouring particles over time and thus out-
puts qualitatively correct tagged-particle profiles. Owing
to the recent progress since the introduction of the
superadiabatic power functional theory [69], the adia-
batic approximation employed for this purpose can by
now be perceived as a controlled approximation. Hence,
the discussed quantitative deviations between this order-
preserving dynamics (OPD) and the exact reference
results are not a drawback of the underlying equilibrium
framework developed here. Our most intriguing obser-
vation is the different behaviour on the level of the total
density between OPD and particle-conserving dynamics
(PCD) without implicit particle order, despite equal ini-
tial conditions and long-time behaviour. The adiabatic
approximation thus seems to act in a different way on
different equilibrium functionals.

Relation to power functional theory. We stress here that
within power functional theory the superadiabatic forces
are distinguished from adiabatic ones by their additional
functional dependence on the one-body current [69]. In
this respect, it is interesting that OPD as an adiabatic the-
ory yields exact results at the systemwalls, where the total
contact current vanishes due to the zero-flux boundary
condition. We thus speculate that the remaining supera-
diabatic contributions to the respective power functional
might have a simpler structure if OPD with the particle
order already imprinted is used as the starting point to
tackle dynamical caging effects. To resolve this issue in
full detail, it will be enlightening to construct and add
the explicit superadiabatic terms to both PCD and OPD
[71] or to perform a more careful numerical analysis of
the relevant forces [68,105]. In particular, the exponent
in single-file diffusion (SFD) could be revisited within
the dynamical test-particle limit of power functional the-
ory [70], where the superadiabatic van Hove current is
expected to counteract the overestimated increase of the
MSD [106].

Long-time dynamical behaviour. Even within the adi-
abatic approximation, OPD yields some striking results
on the mean-square displacement (MSD), which are
not obvious for a variational theory. While all pre-
vious DDFT approaches revert to the standard diffu-
sive behaviour of an ideal gas after long times, OPD
can predict both density-dependent self diffusion and
subdiffusive behaviour. In particular, the latter sce-
nario illustrates the dynamical caging effects, responsi-
ble for the distinct part of the van Hove function to
never decay to the constant bulk value. This demon-
strates the striking importance to incorporate the par-
ticle order directly into the underlying equilibrium the-
ory. In the one-dimensional context of our study this is
conveniently achieved by an asymmetric ordering pair
potential.

Outlook. The findings of our study along with
Refs. [57,66] demonstrate that, even if the system is
ergodic, a DDFT based on symmetric pair potentials pro-
vides an unphysical mathematical shortcut to a tagged
particle, which amounts to randomly swapping position
with its host particles. This significantly speeds up the
dynamics beyond the effect of the adiabatic approxima-
tion. It thus remains a challenging task for future research
to properly address the caging scenario within DDFT in
higher dimensions. A first step in this direction could
consist of employing a DDFT based on Equation (5) and
Equation (6). Going beyond this extended test-particle
approach would, however, require the definition of a
many-body caging potential, as an appropriate gener-
alisation of Equation (11). Alternatively, some simple
nonergodic quasi-one-dimensional situations should be
addressed using conditional DFT andOPD to learnmore
about the approximations made in the density function-
als in higher dimensions. A more direct application of
our methods would be to treat the tagged particle as an
adiabatic piston separating two subsystems in any spa-
tial dimension [95,107–109]. Establishing a closer con-
nection between DDFT and alternative solution meth-
ods of the diffusion equation through boundary condi-
tions [33–35] could also prove fruitful in this context.
Finally, regarding the one-dimensional case, OPD can
be readily applied to some more general diffusion prob-
lems including particles with soft interactions [91,94],
external forcing [92,93], or SFD of models for active
particles [110].

Notes

1. Supplemental material for this article, containing extended
versions of Figures 4–7, 9–11 and A1, is available
online.

2. Describing particle order as a type of interaction is partic-
ularly convenient in DFT, since most explicit density func-
tionals are derived from a given pair-interaction potential
between two particles. In contrast, it is not possible to
incorporate particle order through boundary conditions
on the level of the one-body density profiles ρ

(ν)
N (x) of

individual particles, since working with ρ
(ν)
N (x) implies

that all configurational integrals have already been car-
ried out. The conditional densities �

(ν)
N (x | x0), however,

are not fully ensemble-averaged, such that a boundary con-
dition involving the field variable x and the remaining
configurational variable x0 can be properly included for the
three-component mixture considered here.

3. Note that the grand-canonical intrinsic free energy func-
tional F [{ρ(ν)(x)}] expressed in a form analogous to
Equation (30) contains additional terms including the
chemical potentials μν , which are linear in the densities
and thus vanish after taking the spatial derivative of the
functional derivative.
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Appendix 1. Some background on density
functional theory (DFT)

In this appendix we give a brief account of density func-
tional theory (DFT) [37,111] and describe how the calculations
from the main text can be redone by explicitly using DFT
methods.

A.1. DFT in a nutshell

Classical DFT is a versatile tool to determine the equilibrium
one-body density profile ρ0(r) of a fluid of interacting particles
in any given external potential Vext(r) acting on the centres of
each particle. It relies on the fundamental principle that, from
any given ρ0(r) and pair interaction u(r), the external poten-
tial can be uniquely inferred [112]. With this background, it
can be shown that for a given a density functional �[ρ(r)]
the equilibrium density profile follows from the variational
Euler-Lagrange equation

δ�[ρ(r′)]
δρ(r)

= 0, (A1)

where �[ρ0(r)] equals the grand potential � of the system
and �[ρ] > � if ρ �= ρ0. Hence, if �[ρ(r)] is known, all
structural and thermodynamical properties of a system can be
inferred. The explicit form of a density functional is discussed

in the following for the case of a conditional system required to
reproduce the definitions from Section 2.3 in the gcg ensemble.

A.2. Conditional DFT in one dimension

Assuming that, in a one-dimensional system, the tagged parti-
cle is fixed at position x0 we can formulate a conditional DFT
in terms of the conditional density �(α)(x | x0) to find a host
particle at position x ≤ x0 for α = L or x ≥ x0 for α = R. In
this case, all functionals receive an explicit dependence on the
position of the tagged particle and carry a species label α, while
there is otherwise no difference to standard DFT for a single
species.

The appropriate conditional density functional

Ω(α)[�(α)](x0) = Fid + Fex + Ω
(α)
ext (A2)

can be separated into three terms. The ideal part of the intrinsic
Helmholtz free energy functional is exactly given by the general
form

βFid[�(α)](x0) =
∫

dx �(α)(x | x0)
(
ln(��(α)(x | x0)) − 1

)
,

(A3)

which is the same in any spatial dimension. In one dimen-
sion, there is also an exact expression for the excess free energy
functional [96,97]

Fex[�(α)](x0) = −
∫

dx n0(x | x0) ln (1 − n1(x | x0)) , (A4)

indicating the contribution due to interparticle pair interac-
tions, cf. Equation (10). This hard-core potential is split into the
two weight functions ω(0)(x) = 1

2 (δ(R − x) + δ(R + x)) and
ω(1)(x) = �(R − |x|) with the Heaviside step function �(x),
used to construct the (conditional) weighted densities

ni(x | x0) =
∫

dx′ �(α)(x′ | x0) ω(i)(x − x′), (A5)

where i ∈ {0, 1}. Finally, the extrinsic part
Ω

(α)
ext [�

(α)](x0)

=
∫

dx �(α)(x | x0)
(
wα(x − x0) + V(α)

ext (x) − μα

)
(A6)

of the functional contains the standard contributions of exter-
nal potential V(α)

ext (x) and chemical potential μα together with
the additional order-preserving potential wα(x − x0) from
Equation (12), which formally takes the role of an additional
external potential, as discussed in Section 2.2. Note, however,
that this additional term is actually part of the intrinsic free
energy when regarding the system as a whole, since it rep-
resents an interparticle interaction. Therefore, in the context
of DDFT, there is no explicit contribution arising from wα in
Equation (29) of the main text.

Solution of the Euler-Lagrange equation, Equation (A1),
with the conditional functional from Equation (A2) yields the
conditional equilibrium densities �

(α)
0 (x | x0) and conditional

grand-canonical partition functions

Ξ(α)(x0) = exp
(
−βΩ(α)(x0)

)
, (A7)

where Ω(α)(x0) := Ω(α)[�(α)
0 ](x0) are the conditional grand

potentials. With the help of these two quantities and Equation
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(26) of the main text, the ordered density profiles ρ
(T)
gcg (x) and

ρ
(α)
gcg (x) in the gcg ensemble follow from Equation (27) and

Equation (28) of the main text, respectively. Note that in the
main text and in the following the index 0 denoting equilibrium
is dropped for convenience.

A.3. Canonical inversionmethod

The conditional density functional fromEquation (A2) can also
be used to calculate the densities in an ordered canonical sys-
tem. To this end, the inversion method introduced in Ref. [64]
can be directly applied, without requiring a generalisation to
mixtures as in Ref. [66].

Analogously to Equation (20) of the main text, the condi-
tional grand canonical partition functions

Ξ(α)(x0) =
∞∑

Nα=0
eβμαNαZ(α)

Nα
(x0), (A8)

can be obtained from an infinite sum over the canonical ones.
The same can be done for the conditional densities

�(α)(x | x0) =
∞∑

Nα=1
pNα (x0)�

(α)
N (x | x0) (A9)

with the position-dependent probability

pNα (x0) = eβμαNα
Z(α)
Nα

(x0)
Ξ(α)(x0)

(A10)

to find Nα particles in a subsystem for the given chemical
potential μα .

In a confined system, the sums in Equations (A8) and (A9)
can be truncated at the maximal particle numbers Mα , which,
in each case, yields a system of Mα equations for the Mα con-
ditional canonical partition functions and densities (removing
the trivial case of an empty system). Having extracted these
quantities for the desired Nα , we can calculate ρ

(T)
N (x) and

ρ
(α)
N (x) according Equation (16) of the main text. As all ingre-

dients to the one-dimensional DFT are exact, this procedure
is completely equivalent to defining the conditional quantities
from statistical integrals.

Appendix 2. Analytical results for point particles

Here we state and discuss the ordered equilibrium profiles of
point particles in the different ensembles, shown in Figure 3, To
this end, we use the definitions from Section 2.4 with vanish-
ing particle radius R = 0. Hence the pair potential u(|x|) from
Equation (10) becomes constantly zero, while this is not the
case for the ordering potential w(x) from Equation (12). The
external potentials V(ν)

ext (x) acting on all species ν alike model
hard walls at x = 0 and x = l, such that the Boltzmann factor
e−βV(ν)

ext (x) = �(x)�(l − x) sets the boundaries of the integrals.
This factor is common to all of the following densities and con-
ditional partition functions, such that we drop it for notational
convenience.

A.4. Ordered canonical ensemble

As defined in Equation (14), the conditional canonical partition
function

ZN−1(x0) = xNL
0

NL!�NL

(l − x0)NR

NR!�NR
(A11)

is a product of the contributionsZ(α)
NL

(x0) from the two subsys-
tems left and right to the tagged particle. Integration gives the
total canonical partition function ZN = lN/(N!�N), identical
to that of N ideal indistinguishable particles (without explicit
order).

As the conditional densities �
(L)
N (x | x0) = NL/x0 and

�
(R)
N (x | x0) = NR/(l − x0) of the two host-particle species are

simply constants (as a function of x) between the wall and the
tagged particle, we find from Equation (16),

ρ
(T)
N (x) = N!

lNNL!NR!
xNL(l − x)NR ,

ρ
(L)
N (x) =

NL−1∑
n= 0

ρ
(T)
N (x)

∣∣∣
NL=n,NR=N−1−n

,

ρ
(R)
N (x) =

N−1∑
n=NL+1

ρ
(T)
N (x)

∣∣∣
NL=n,NR=N−1−n

.

(A12)

From these series representations of the distributions of the
host particles, the relation in Equation (18) can be directly
inferred. Closed expressions can only be given for explicit
choices of NL and NR.

A.5. Ordered gcg ensemble

In the gcg ensemble with the tagged particle treated as a
canonical species and the numbers of host particles allowed to
fluctuate, we find the partition function


gcg = 1
�

elzL − elzR

zL − zR
μH−→ l

�
elzH , (A13)

introducing the activity

zν = eβμν

�
(A14)

of species ν, reflecting the bulk density of an ideal gas. The
second result indicated by the arrow denotes the symmetric
situation, considered here, of equal chemical potentials μH =
μL = μR (and thus average particle numbers) of the two host
species. The densities read

ρ(T)
gcg (x) = exzL e(l−x)zR

� 
gcg

μH−→ 1
l
,

ρ(L)
gcg(x) = elzL − e(l−x)zR+xzL

�(zL − zR) 
gcg

μH−→ l − x
l

zH,

ρ(R)
gcg (x) = e(l−x)zR+xzL − elzR

�(zL − zR) 
gcg

μH−→ x
l
zH.

(A15)

To illustrate the equivalence of the different methods, we dis-
cuss below three ways to obtain these universal formulas.

The firstmethod is to take the canonical results fromSection
A.4 and employ Equations (20) and (22) of the main text. This
can be conveniently done by properly rearranging the sums.
The second method reverts to the conditional results in the
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gcg ensemble. Summation of the two factors in Equation (A11)
according to Equation (A8) yields

Ξ(x0) = Ξ(L)(x0) Ξ(R)(x0) = ex0zL e(l−x0)zR . (A16)

As in the canonical case, the conditional densities�(α)
gcg(x | x0) =

zα , obtained from Equation (A9), are simply the constant ideal-
gas results between the wall and the tagged particle. It is then
easy to see that Equations (26), (27) and (28) of the main
text give the same results as from the first method, where the
integral runs from x0 to l for α = L and from 0 to x0 for
α = R. Finally, using the conditional DFT from Section A.2,
the Euler-Lagrange equations corresponding to the function-
als from Equation (A2) read β−1 ln(��

(α)
gcg) − μα = 0 in the

region between the wall and the tagged particles, as Fex = 0
for ideal point particles. The other regions require �

(α)
gcg = 0,

since either wα(x − x0) or V(α)
ext (x) is infinite. We easily see

that �
(α)
gcg(x | x0) = zα solve these equations, as expected for

an ideal gas. Inserting these back into the functionals gives
Equation (A16), since Ξ(α)(x0) = exp(−βΩ(α)(x0)) with

βΩ(L)(x0) =
∫ x0

0
dx zL

(
ln(eβμ−) − 1 − βμ−

) = −x0zL

(A17)

and the same forΩ(R) = −(l − x0) zR. The remaining steps are
the same as for the second method.

Comparing the densities from Equations (A12) and (A15),
we see that increasing the system at fixed concentration c =
2Nα/l of host particles simply amounts to a change of l at con-
stant chemical potentials in the gcg ensemble, while, in the
canonical case, the particle numbers Nα need to be increased
proportionally. As mentioned in Section 3.3.3, the calculation
of ρ

(ν)
N is thus computationally more difficult than that of ρ

(ν)
gcg

for large systems.

A.6. Ordered ggg ensemble

The densities in the ggg ensemble, which treats all species
grand-canonically, can only be found by the first method dis-
cussed for the gcg ensemble, that by Equations (21) and (23)
of the main text. Restricting ourselves to the case μH = μL =
μR, such that ρ

(T)
ggg(x) = ρ

(T)
ggg(l − x) is generally symmetric and

ρ
(R)
ggg(x) = ρ

(L)
ggg(l − x), the results are

ρ(T)
ggg(x) = z2HzT e

lzH + z3T e
lzT

(zH − zT)2
ggg

− zHz2T(exzH+(l−x)zT + exzT+(l−x)zH)

(zH − zT)2
ggg
,

ρ(L)
ggg(x) = ((l − x)zH(zH − zT) − zT)zHzT elzH

(zH − zT)2
ggg

+ zHz2T e
xzH+(l−x)zT

(zH − zT)2
ggg
,

ρ(R)
ggg(x) = (xzH(zH − zT) − zT)zHzT elzH

(zH − zT)2
ggg

+ zHz2T e
(l−x)zH+xzT

(zH − zT)2
ggg

(A18)

with the partition function


ggg =
(
(lz2H + 2zH)(zH − zT) − z2H

)
elzH + z2T e

lzT

(zH − zT)2
. (A19)

Further equating all chemical potentials μ = μT = μH (and
z = zT = zH) yields

ρ(T)
ggg(x) = 2z(xz + 1)((l − x)z + 1)

(lz + 2)2 − 2
,

ρ(L)
ggg(x) = z2(l − x)((l − x)z + 2)

(lz + 2)2 − 2
,

ρ(R)
ggg(x) = z2x(xz + 2)

(lz + 2)2 − 2

(A20)

and


ggg = ((lz + 2)2 − 2) elz

2
. (A21)

A.7. Comparison of the ensembles in certain limits

The two ordered ensembles with fluctuating particle numbers
introduced in this work are, in general, different from the
generic grand canonical ensemble, whosewell-knownpartition
function


 = elz (A22)
follows from Equation (19) of the main text. For a true mix-
ture of three species without enforced particle order the parti-
tion function is just a product of different factors elzν . Appar-
ently, none of these functions is recovered when equating
all chemical potentials in the ordered gcg or ggg ensembles,
as in Equation (A13) and Equation (A21), respectively. The
only way to recover the grand-canonical single-species result,
Equation (A22), from Equation (A19) in the gcg ensemble is
by setting the chemical potentials μH of the host particles (or
in general of two arbitrary species) to minus infinity. Doing
the same to Equation (A13) in the gcg ensemble results int the
canonical partition function Z1 = l/� for a single particle with
NT = 1.

The more interesting question, addressed in Figure 3, con-
cerns the relations between the considered ordered ensem-
bles. To this end, we explicitly calculate the limiting behaviour
of the density profiles ρ

(ν)
ggg, given by Equation (A18) or

Equation (A20), in the gcg ensemble in four different cases.
Note that the average numbers Nν = ∫ l

0 dx ρ
(ν)
ggg(x) of parti-

cles in each species are monotonously increasing functions
Nν(zH, zT) of all activities (or chemical potentials), where
NL(zH, zT) = NR(zH, zT) �= NT(zH, zT).

We first realise that for large and equal particle numbers in
each species, the activities zH � zT approach each other.Hence,
we can take from Equation (A20) the many-particle limit

ρ(T)
ggg(x)

�z�1= 2x(l − x)z
l2

,

ρ(L)
ggg(x)

�z�1= 2(l − x)2z
l2

,

ρ(R)
ggg(x)

�z�1= 2x2z
l2

(A23)

of the densities, assuming that NL = NT = NR. These func-
tions have the same form as the density profiles in the canonical
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ensemble, Equation (A12), when choosing all particle numbers
Nν = 1 equal to one.

In the second case, we assume the opposite limit of very
small particle numbers through a Taylor expansion in the activ-
ities up to second order. The resulting expressions

ρ(T)
ggg(x)

�zν	1= (1 − lzH)zT, (1)

ρ(L)
ggg(x)

�zν	1= (l − x)zHzT, (A24)

ρ(R)
ggg(x)

�zν	1= xzHzT (2)

for the density profiles in this low-density expansion resem-
ble those in the gcg ensemble, Equation (A15). In this case,
integration shows that the particle numbers in the tagged and
host species are different. Taking into account just the terms
in Equation (A24) which are linear in the activities, amounts
to ignoring the pairwise order-preserving interaction. In this
case, the only nonvanishing contribution is from the constant
density ρ

(T)
ggg of the tagged particle.

As a slightlymore general scenario, we assume that there are
much more particles in the host species than in the tagged one,
yielding

ρ(T)
ggg(x)

zH�zT= zT
1 + lzH

, (3)

ρ(L)
ggg(x)

zH�zT= (l − x)zHzT
1 + lzH

, (A25)

ρ(R)
ggg(x)

zH�zT= xzHzT
1 + lzH

. (4)

Apparently, the above low-density expressions from Equation
(A24) simply follow from an expansion of the denominator.
Hence, the low-density limit implies NT 	 NH, which can be
understood by the appearance of the linear term in the activity
expansion of ρ(T)

ggg. It is also clear that, again, the density profiles
behave as in the gcg ensemble, Equation (A15).

Finally, in the opposite limit with much less particles in the
host species than in the tagged one, we find

ρ(T)
ggg(x)

zH	zT= zT, (5)

ρ(L)
ggg(x)

zH	zT= (e−xzT − e−lzT)zH, (A26)

ρ(R)
ggg(x)

zH	zT= (e−(l−x)zT − e−lzT)zH. (6)

While such an assumption is not of much use for the tagged-
particle problem, it is the only one that shows a clear equiv-
alence between the ggg and canonical ensembles, which we
understand as follows. Choosing the activities zH and zT such
that NL = NR = 1 and letting NT become very large, the den-
sity profiles of the host particles, whose functional form is
then given by Equation (A26), become completely equivalent
to those

ρ
(L)
N (x)

∣∣∣
NL=1

= N(l − x)N−1

lN
N�1= N

l
e−(N−1) xl , (7)

ρ
(R)
N (x)

∣∣∣
NR=1

= NxN−1

lN
N�1= N

l
e−(N−1) l−x

l (A27)

in the corresponding canonical case, where the second equal-
ities hold for large N = NT + 2. This scenario can thus be
called a proper thermodynamic limit, which, in this sense, does

not exist if the tagged species is restricted to holding a single
particle.

Appendix 3. Asymmetric initial trapping

In Figure 7 of the main text, we discussed the density profiles
of N = 3 hard rods of length σ in a slit of length l = 4.9σ , ini-
tialised using a common harmonic trapping potential for each
species centred at x(ν)

h = l/2 = 2.45σ in the middle of the slit.
In this appendix we elaborate on the observations for a larger
system with l = 5.9σ , where the initial trap is still located at
x(ν)

h = 2.45σ , which now lies to the left of the centre of the box.
Apart from the broken symmetry, this setup allows to deter-
mine how the particles move into the initially nearly depleted
region on the right. Moreover, the density profiles of the two
host species may now overlap.

Figure A1 illustrates that OPD closely captures the spread-
ing of the density to the right. In this region, there are only
very small differences to the exact BD for both the total den-
sity and the density of the central tagged particle. In particular,
the contact density at the right wall increases in exactly the
same fashion. Also the nonmonotonous behaviour over time of
the contact value at the left wall is perfectly reproduced, which
is consistent with the observations in the main text. Between
the walls, OPD is again somewhat slower than BD. In contrast,
regarding the decay of the rightmost density peak, PCD over-
takes BD as also observed for the smaller systemwithN = 2 in
Figure 6 of the main text but not with N = 3 in Figure 7 of the
main text. This points to some density-dependent effects.

With the given asymmetric initial conditions, it also
becomes important, which particle is chosen as the tagged par-
ticle. This is examined in Figure A1 by further comparing the
two partial versions of OPD with only two species holding

Figure A1. Total density profiles as in Figure 6 of the main text
but for N = 3 hard rods and l = 5.9σ . Three additional sets of
OPD data are included, each considering two different particles as
members of a single species (as labelled). The label (H1H) refers
to tagging the central particle but considering the host particles
as members of the same species, as ρ

(H)
N = ρ

(L)
N + ρ

(R)
N . A more

detailed figure for this setup, including different time steps, is
available online as Supplemental material (See endnote 1).
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NT = 1 and NR = 2 particles or NL = 2 and NT = 1 parti-
cles. For example, in the latter case, we tag the particle on the
right, which has the highest mobility at short times. This results
in the initial dynamics being very close to full OPD (except
for the region close to the left boundary). Finally, choosing

again the central particle as the tagged particle, but consid-
ering both host particles, left and right, as members of the
same species, results in some deviations compared to the full
OPD with three different species, which are, however, barely
noticeable.
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