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Hydrodynamics can determine the optimal route
for microswimmer navigation
Abdallah Daddi-Moussa-Ider 1, Hartmut Löwen 1 & Benno Liebchen 2✉

As compared to the well explored problem of how to steer a macroscopic agent, like an

airplane or a moon lander, to optimally reach a target, optimal navigation strategies for

microswimmers experiencing hydrodynamic interactions with walls and obstacles are far-less

understood. Here, we systematically explore this problem and show that the characteristic

microswimmer-flow-field crucially influences the navigation strategy required to reach a

target in the fastest way. The resulting optimal trajectories can have remarkable and non-

intuitive shapes, which qualitatively differ from those of dry active particles or motile mac-

roagents. Our results provide insights into the role of hydrodynamics and fluctuations on

optimal navigation at the microscale, and suggest that microorganisms might have survival

advantages when strategically controlling their distance to remote walls.
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The quest on how to navigate or steer to optimally reach a
target is important, e.g., for airplanes to save fuel while
facing complex wind patterns on their way to a remote

destination, or for the coordination of the motion of the parts of a
space-agent to safely land on the moon. These classical problems
are well-explored and are usually solved using optimal control
theory1. Likewise, navigation and search strategies are frequently
encountered in a plethora of biological systems, including the
foraging of animals for food2, or of T cells searching for targets to
mount an immune response3. Very recently there is a growing
interest also in optimal navigation problems and search strate-
gies4–9 of microswimmers10–13 and “dry” active Brownian par-
ticles14–18. These active agents can self-propel in a low-Reynolds-
number solvent, and might play a key role in tomorrow’s nano-
medicine as recently popularized, e.g. in ref. 19. In particular, they
might become useful for the targeted delivery of genes20 or
drugs21,22 and other cargo23,24 to a certain target (e.g. a cancer
cell) through our blood vessels, requiring them to find a good, or
ideally optimal, path toward the target avoiding, e.g., obstacles
and unfortunate flow field regions. In the following, we refer to
the general problem regarding the optimal trajectory of a
microswimmer which can freely steer but cannot control its speed
toward a predefined target (point-to-point navigation) as “the
optimal microswimmer navigation problem”.

The characteristic differences between the optimal micro-
swimmer navigation problem and conventional optimal control
problems for macroagents like airplanes, cruise-ships, or moon-
landers root in the presence of a low-Reynolds-number solvent in
the former problem only. They comprise (i) overdamped
dynamics, (ii) thermal fluctuations, and (iii) long-ranged fluid-
mediated hydrodynamic interactions with interfaces, walls, and
obstacles, all of which are characteristic for microswimmers15.
Notice in particular that the non-conservative hydrodynamic
forces which microswimmers experience call for a distinct navi-
gation strategy than the conservative gravitational forces acting,
e.g. on space vehicles. Recent work has explored optimal navi-
gation problems of dry active particles (and particles in external
flow fields) accounting for (i) and partly also for (ii): Specifically,
the very recent works4,5,8,9,25–33 have pioneered the usage of
reinforcement learning34–36, e.g. to determine optimal steering
strategies of active particles to optimally navigate toward a target
position4,5,8,9 or to exploit external flow fields to avoid getting
trapped in certain flow structures by learning smart gravitaxis25.
Meanwhile, refs. 5,6,37 have used (deep) reinforcement learning to
explore microswimmer navigation problems in mazes and
obstacle arrays assuming global5 or only local6 knowledge of the
environment. Very recent analytical approaches7,8 to optimal
active particle navigation complement these works and allow
testing machine-learned results8,9. (In addition, note that a sig-
nificant knowledge exists on the complementary problem of
optimizing body-shape deformation of deformable swimmers
with optimal control theory; see e.g. refs. 38–40.) Despite this
remarkable progress in recent years, (iii), and its interplay with
(ii), remains an important open problem to understand the
optimal microswimmer navigation strategy.

To fill this gap, in the present work, we systematically explore
the optimal microswimmer navigation problem in the presence of
walls or obstacles, where hydrodynamic microswimmer–wall
interactions are well known to occur41–49, but whose impact on
optimal microswimmer navigation is essentially unknown.
Combining an analytical approach with numerical simulations,
we find that in the presence of remote obstacles or walls, the
shortest path is not fastest for microswimmers, even in the
complete absence of external force or flow fields. Thus, unlike dry
active particles (or light rays following Fermat’s princple), in the
presence of remote obstacles microswimmers generically have to

take excursions to reach their target fastest. In the presence of
fluctuations, the “optimal” navigation strategy also protects
microswimmers from fluctutions and can drastically decrease the
traveling time as compared to cases where microswimmers head
straight toward the target. This offers a promising perspective on
the motion of microorganisms near surfaces or interfaces: it
suggests that microorganisms might have a survival advantage
when actively regulating their distance to remote walls in order to
approach a food source via a strategic detour, rather than directly
heading toward it. Besides their possible biological implications,
our findings might provide a benchmark for future research on
optimal navigation strategies of active particles.

Results and discussion
Before introducing our detailed model, let us illustrate the con-
sequences of the finding that the shortest path is not fastest for
microswimmers: Consider a microswimmer which can freely
control its swimming direction (but not its speed) and aims to
reach a predefined target in the presence of two obstacles (Fig. 1):
While in the absence of hydrodynamics (dry active particle), the
shortest path is optimal (blue), an actual microswimmer takes a
qualitatively different path to reach its target fastest (red and
green curves) because it produces a flow field which is reflected by
the obstacles and changes its speed. In particular, “source dipole”
microswimmers (specified below) which produce a flow field
which slows them down near walls (Fig. 1b), take an excursion
(red curve in Fig. 1a) to avoid the obstacles. Other source dipole
microswimmers which produce an analogous but sign-reversed
flow field (Fig. 1c), which speeds them up near walls, take a
qualitatively different excursion to benefit from the proximity of
both obstacles (green curve in Fig. 1a). More generally, we find
that the role of hydrodynamics on optimal microswimmer routes
can be subtle and lead to counterintuitive trajectory-shapes: while
for source dipole swimmers the direction of the flow field plays a
decisive role for the resulting trajectory-shapes, as have just seen
(Fig. 1), for force-dipole swimmers, we will see that pushers and
pullers lead to identical optimal trajectories.

Model. Let us consider a self-propelling active particle interacting
with a 3D fluctuating environment. The particle’s center of mass
evolves as _rðtÞ ¼ ðvxðr;ψ; tÞ; vyðr;ψ; tÞ; vzðr;ψ; tÞÞ þ

ffiffiffiffiffiffi
2D

p
ηðtÞ,

wherein vx, vy, and vz are the components of the deterministic
swimming velocity in Cartesian coordinates, which depend on the
hydrodynamic swimmer–wall interactions as well as on the pro-
pulsion direction of the swimmer ðcosψ cos ϕ; cosψ sin ϕ; sinψÞ.
Here, D is the diffusion coefficient which determines the strength
of thermal fluctuations; for now, we choose D= 0 and consider a
two-dimensional motion in the xz-plane and thus set ϕ= 0. We
will discuss the effect of fluctuations later. Given a predefined
initial r(t= 0)= rA and terminal point r(t= T)= rB in the xz-
plane, we ask for the optimal connecting trajectory minimizing the
travel time T, when the swimmer is allowed to steer freely. (This
may represent, e.g., biological swimmers which steer through body
shape deformations or synthetic swimmers controlled by external
feedback.) That is, ψ(t) can be freely chosen so as to minimize the
travel time of the swimmer. This is a well-defined optimal control
problem determining the optimal trajectory, the navigation pro-
tocol {ψ(t)∣t∈ [0, T]}, and T. It resembles classical navigation
problems, e.g., of an airplane, which can steer freely and move at a
speed which is determined by the wind (assuming some favorable
constant engine power). Interestingly, however, while for such
macroagents or dry active particles in constant external fields the
shortest path is optimal7,50, for microswimmers excursions can
pay off, as we will see in the following. Note that the considered
model can be tested with programmed active colloids51–53 but
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should also be relevant for biological microswimmers which often
swim at an almost constant speed and are able to control their
self-propulsion direction on demand. These swimmers are often in
contact with (remote) walls or interfaces which drastically influ-
ence their overall swimming speed and direction of motion.

As a model microswimmer, in the following, we employ the
multipole description of swimming microorganisms. Accordingly,
the self-generated flow field is decomposed in the far-field limit,
to a good approximation, into a superposition of higher-order
singularities of the Stokes equations. This model has favorably
been verified experimentally for swimming Escherichia coli54 and
Chlamydomonas algae55. Even though the theory is based on a
far-field description of the hydrodynamic flow, it has been
demonstrated using boundary integral simulations that, in some
cases, the far-field approximation is surprisingly accurate, all the
way down to a microswimmer–wall distance of one-tenth of a
swimmer length56.

Source dipole swimmers. To develop an elementary understanding
of optimal microswimmer navigation, let us first consider a
source dipole microswimmer (e.g. Paramecium or active colloids
with uniform surface mobility) aiming to reach a target in the
presence of a distant hard wall infinitely extended in the xy-plane,
for an initial and target position in the xz-plane, yielding56

vx ¼ v0 � σ= 4z3ð Þ½ � cosψ, vy= 0, and vz ¼ v0 � σ=z3ð Þ sinψ
wherein the deviation from v0 is due to hydrodynamic
swimmer–wall interactions.

To reduce the parameter space to its essential dimensions, we
choose the length unit as ‘ ¼ ð σj j=v0Þ1=3, which represents the
swimmer–wall distance at which the swimmer displacement per
time due to hydrodynamic interactions and due to self-
propulsion become comparable. For the time unit, we chose the

associated time scale τ ¼ σj j1=3=v4=30 . In reduced units, the noise-

free equations of motion for a source dipole swimmer then read,

_x� ¼ 1� s
4z�3

� �
cosψ; ð1Þ

_z� ¼ 1� s
z�3

� �
sinψ; ð2Þ

where x*= x/ℓ, z*= z/ℓ, and s= sgn(σ). Accordingly, by expres-
sing the equations of motion together with the underlying
boundary conditions in reduced units, the optimal microswim-
mer trajectories only depend on the sign of the source dipole
parameter, but not on its strength or on the swimmer speed. For
microswimmers achieving self propulsion through surface activity
(ciliated microorganisms like Paramecium, active colloidal
particles with uniform surface mobility), one expects σ > 0, i.e.
s= 1 whereas σ < 0 (s=−1) applies to some non-ciliated
microswimmers with flagella57.

To solve the optimal navigation problem, we first eliminate
ψ from the equations of motion (“Methods”). We then obtain
the travel time as T� ¼ R x�Bx�A j _x�j�1 dx� ¼ R x�Bx�A LSD x�; z�ðx�Þ;ð
z�0ðx�ÞÞdx�, wherein z*(x*) represents the path which we
optimize and _z� ¼ z�

0
_x� with z�

0 ¼ ∂z�=∂x�. To find the optimal
path which minimizes T*, we now determine the Lagrangian as
(see “Methods” for details)

L�
SD :¼ _x�j j�1 ¼ 1

1� s
4z�3

� �2 þ z�0

1� s
z�3

� �2
 !1=2

ð3Þ

and then numerically solve the Euler–Lagrange equation for L�
SD

as a boundary value problem, with the boundary conditions
z�ðx�AÞ ¼ z�A and z�ðx�BÞ ¼ z�B, using shooting methods.

Force dipole and force quadrupole swimmers. Similarly, the
translational swimming velocities due to force dipolar

Fig. 1 Optimal microswimmer navigation near spherical obstacles. a Curves represent optimal trajectories for microswimmers (red and green) and for a
dry active particle (blue), i.e., in the absence of hydrodynamic interactions (HIs) with obstacles (shown in gray). The swimmers are micron sized and the
swimming trajectories are assumed to take place in the plane passing through the centers of the spherical obstacles. Here, σ is the source dipole coefficient
and x, z are spatial coordinates. Panels b, c show the flow field streamlines induced by a source dipole at position r= (−3, 3) μm in the presence of a
spherical obstacle with radius R= 3 μm. Black arrows indicate the orientation of the swimmers. The fluid-mediated hydrodynamic interactions with the
spherical boundary induce a deceleration of the swimming agent for σ > 0 leading to larger speeds as the swimmer gets away from the obstacle. In contrast
to that, hydrodynamic interactions cause an acceleration for σ < 0 yielding an increased speed near the obstacle.
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hydrodynamic interactions (E. coli, Chlamydomonas) with a
planar hard wall reads54,56 _x ¼ v0 cosψ þ 3α sinð2ψÞ=ð8z2Þ and
_z ¼ v0 sinψ þ 3α 1� 3 cosð2ψÞ½ �=ð16z2Þ where α is the force

dipole coefficient. In units of ‘ ¼ ðjαj=v0Þ1=2 and τ ¼ αj j1=2=v3=20 ,
the equations of motion read

_x� ¼ cosψ þ 3s sinð2ψÞ
8z�2

; ð4Þ

_z� ¼ sinψ þ 3s 1� 3 cosð2ψÞ½ �
16z�2

: ð5Þ

Here, s= sgn(α) is the sign of the singularity coefficient. After
some algebra, as detailed in the “Methods” section, the resulting
Lagrangian follows as

LFD ¼ 72z�2z�0

r2± � 16z�4 � 27

����
����; ð6Þ

where r± are the roots of a lengthy quartic polynomial, the
coefficients of which are explicitly known functions of z* and z�0

(see “Methods”). The optimal swimming trajectories then result
again from solving the Euler–Lagrange equation as a boundary
value problem using shooting methods. Interestingly, LFD is sign

invariant in the force dipole coefficient α, which means that
pushers and pullers show identical optimal trajectories, albeit they
require different navigation strategies for this. We will discuss this
further in the “Results” section.

Finally, we also calculate the Lagrangian for force quadrupole
microswimmers as detailed in the “Methods” section.

Optimal microswimmer trajectories
Flat walls. As shown in Fig. 2, in the presence of an infinitely
extended and distant flat wall, we find that all considered
swimmers (source and force dipole swimmers as well as force-
quadrupole swimmers) follow significant excursions to reach the
target fastest. That is, the shortest path is not fastest. For instance,
Fig. 2c shows that source dipoles with s= 1 (which slow down
when approaching the wall) follow a parabola bended away from
the wall, whereas those with s=−1 prefer reducing their distance
to the wall which speeds them up. The corresponding steering
angles required for the optimal navigation strategy are shown in
Fig. 2d. In contrast to source dipole swimmers, perhaps surpris-
ingly, for force dipole swimmers, the shape of the resulting
parabola depends only on the force dipole strength but not on the
sign of the flow field (Fig. 2a, b). This pusher–puller-identity is

Fig. 2 Optimal 2D microswimmer trajectories near a hard and infinitely extended wall. Exemplary trajectories minimizing traveling times between
r�A ¼ ð0;0; 3Þ and r�B ¼ ð10;0; 3Þ are presented together with the corresponding steering angles for force dipole swimmers (a and b), source dipole
swimmers (c and d), and force quadrupole swimmers (e and f). Lengths are made dimensionless by ℓ representing the distance at which the effect of
hydrodynamic interactions becomes important. The swimming trajectories take place in the xz-plane. Red solid and green dashed lines correspond to
positive (s= 1) and negative (s=−1) singularity coefficient, respectively.
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generic not only for planar walls but also applies for spherical
obstacles and obstacle landscapes, as can be directly seen from the
independence of the Lagrangian of s (Eq. (6)). Interestingly,
however, the required steering protocol, i.e. the temporal evolu-
tion of the optimal value of the control variable ψ(t), which the
swimmer has to choose to realize the optimal path is different for
pushers and for pullers (Fig. 2b). Force quadrupolar micro-
swimmers describing small microswimmers with elongated
flagella57,58, can also be solved using the Lagrangian approach;
their swimming trajectories and steering angles are presented in
Fig. 2e and f, respectively. The resulting parabolic curves are bent
toward or away from the wall depending on the sign of the force
quadrupole coefficient.

Spherical obstacles and complex landscapes. Based on these results,
we can now understand why hydrodynamic interactions with
obstacles can have a drastic impact on the required navigation
strategy to cross an obstacle field fastest. As shown in Fig. 1
without hydrodynamic interactions, the agent takes the shortest
path (blue curve), whereas a source dipole microswimmer takes
qualitatively different path, which depends on the sign of the
singularity coefficient. This is because source dipole swimmers
with s= 1 (σ > 0) tend to avoid flat walls (red solid lines in
Fig. 2c) as well as spherical obstacles (red solid lines in Fig. 3) and
are faster when staying at a certain distance to the obstacles. This
explains that the red path, which is longer than the blue one, is
faster than the blue one for s= 1-source dipole swimmers in
Fig. 1. Conversely, swimmers with s=−1 (σ < 0) speed up near
flat or spherical walls (green dashed lines in Figs. 2c and 3), which
explains why they manage to cross the obstacle field in Fig. 1
faster when following the green trajectory than the shorter blue
trajectory. These observations demonstrate that the optimal
microswimmer navigation strategy qualitatively differs from the
optimal strategy of dry active particles or macroagents.

Fluctuating environments. In the world of microswimmers, fluc-
tuations often play an important role. Besides Brownian noise
which significantly displaces small biological microorganisms or
active colloids on their way to a target, steering errors (or delay

effects59) can effectively lead to fluctuations even in larger
microswimmers. We now exemplarically consider source dipole

microswimmers and set D� :¼ D= ‘2=τ
� � ¼ D=ðv2=30 jσj1=3Þ≠ 0

assuming that D* does not depend on space for simplicity. (Note
that accounting for rotational diffusion, e.g. to represent imperfect
steering, does not qualitatively change the following results.) Let us
now compare the following two different navigation strategies: The
first one, which we call the “straight swimming strategy” is to steer
straight toward the target at each instant of time. An alternative
strategy is to re-calculate the optimal path of the underlying noise-
free problem at each point in time, using the present position as a
starting point, and to steer in the correspondingly determined
direction. We refer to this as the “optimal swimming strategy”.
While the latter strategy is of course expected to be better at weak
noise, for strong noise, one might expect the opposite.

However, in our simulations we find that the optimal
swimming strategy notably outperforms the straight swimming
strategy over the entire considered noise regime (Fig. 4a), i.e.
from D*= 0 up to D* ≈ 0.15. Interestingly, the difference between
the two strategies increases with the noise strength, such that the
choice of the swimming strategy gets more and more important
for a microswimmer as fluctuations become important. This
finding might be relevant, e.g., for microswimmers when trying to
reach a food source: they do much better when seeking the
proximity of nearby walls first (or getting into some reasonable
distance), rather than greedily heading straight toward the target.

To understand these observations, let us first consider the case
s=−1 where optimal swimming tends to reduce the
microswimmer–wall distance and guides the swimmer to
locations where hydrodynamic interactions are comparatively
important and speed up the swimmer (Fig. 4d, e). Thus, for s=
−1, the swimmer can steadily approach the target for
comparatively large D*-values. In contrast, when following the
straight swimming strategy, nothing stops fluctuations from
transferring the swimmer to regions where it is very slow
(Fig. 4e). The swimmer is then dominated by noise at
comparatively low D*-values and might reach the target only
after following a long and winding path.

Let us now discuss the case s= 1, where optimal swimming
reduces traveling times over the whole range of explored D*-
values, although the above mechanism does not apply, because
swimmers slow down when they are close to the wall. To see the
strategic advantage of optimal swimming also here, note that
when following the straight swimming strategy, fluctuations may
accidentally displace the swimmer to locations close to the wall,
where it is slow. In contrast, the optimal swimming strategy
makes the swimmer stay away from the wall (Fig. 4b, c) and
prevents it from getting trapped in regions where it is slow and
dominated by noise.

Time-dependent microswimmers. We finally complement our dis-
cussion of the optimal microswimmer navigation problem by an
exploration of time-dependent cases. This is inspired by micro-
swimmers moving by body-shape deformations such as, e.g., the
algae Chlamydomona reinhardtii, which alternatively moves for-
ward (stroke) and backward (recovery stroke) and creates an
oscillatory flow field60. We exemplary consider a time-dependent
source dipole swimmer with _x ¼ ½vt � σt=ð4z3Þ� cosψ;
_z ¼ ½vt � σt=z

3� sinψ, where vt≔ v0g1(t) and σt≔ σg2(t) are expli-
citly time-dependent functions. Using again length- and time-units

‘ ¼ ð σj j=v0Þ1=3, τ ¼ σj j1=3=v4=30 , this translates to _x� ¼ ½g1 � sg2=
ð4z�3Þ� cosψ; _z� ¼ ½g1 � sg2=z

�3� sinψ. While the case g1= g2
yields the same trajectories as the time-independent case (not
shown), for g1 ≠ g2 nontrivial trajectories occur (Fig. 5a, b). Neces-
sary conditions for these trajectories can be determined based

Fig. 3 Zoom of optimal swimming trajectories close to a spherical
boundary. The trajectories are directed from (0,0,13) to (5,0,11) for source
dipole microswimmers near a spherical boundary of scaled radius R*= 10
positioned at the center of the system of coordinates. Here, lengths are
made dimensionless by ℓ and s= ±1 is the sign of the source dipole
coefficient. Physically, the singularity coefficients characterize the
hydrodynamic flow induced by microswimmers in the far-field description.
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on Pontryagin’s maximum principle from optimal control
theory1,61–63 as detailed in the “Methods” section. Choosing for
illustrative purposes e.g. g1 ¼ 1þ λ sinðωtÞ ¼ 1þ λ sinðω�t�Þ,
where ω*=ωτ, and g2 ¼ g21=2, leads to optimal trajectories
(Fig. 5a, b) which feature a characteristic step-plateau-like structure.
Following such a trajectory, the microswimmer mainly changes its
distance from the wall in phases where it is slow, essentially to
“improve” its distance from the wall for subsequent phases. When
ω* increases, the plateau length decreases and for ω*→∞ the
optimal trajectory approaches a parabola (purple curve in Fig. 5a)
which differs from the optimal trajectory for λ= 0, because we have
〈g2(t)〉 ≠ 〈g1(t)〉 for the time-averages of g1, g2.

The resulting travel time, monitored as a function of frequency
(Fig. 5c), features a sequence of extrema occurring at frequencies
where the swimmer reaches the target before completing a full
driving cycle. For example, the global minimum corresponds to
ω* ≈ π where the swimmer reaches the target at maximum speed

without experiencing a phase where the swimmer is slower than
its average speed. The travel time also depends non-
monotonously on λ (Fig. 5d); it features a local minimum around
λ= 0.5, where the time-average 〈g2(t)〉 is smallest, and a local
maximum at λ= 1. To understand the decrease of the travel time
for λ > 1, note that for λ > 1 the velocity temporarily changes sign.
Since the swimmer can freely steer, it immediately turns and
swims forward again with an effective speed of v0j1þ λ sinðωtÞj.
This leads to an average swimmer speed which increases with λ,
yielding the observed decrease of T. These exact results exemplify
the complexity of finding the optimal strategy in time-dependent
cases and might serve as useful reference calculations to challenge
corresponding machine-learning-based approaches.

Parameter regimes. Let us now briefly discuss the generic relevance
of our results for typical microswimmers. The force dipole coeffi-
cient of pushers and pullers is expected to scale as α ~ a2v064, where

Fig. 4 Competition of navigation strategies in a fluctuating environment. a Relative travel-time difference between the straight swimming strategy (travel
time T1) and the optimal swimming strategy (T2) for source dipole swimmers as a function of D*. Here, s is the sign of source dipole singularity. Lengths and
times are made dimensionless by ℓ and τ, respectively. In addition, D and D* denote the dimensional and dimensionless diffusion coefficients, respectively.
Panels b–e: Probability distribution (averaged over 5000 trajectories) of the coarse-grained position of a microswimmer navigating from rA= (0, 0, 1.2) to
rB= (1, 0, 1.2) for D*= 0.025 and s=+1 (b, c) or s=−1 (d, e). The target is counted as reached when the microswimmer enters a spherical domain
centered at the target point rB of dimensionless radius of r*= 0.025. Fluctuations are considered here in 3D.
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a is the body size of the microswimmer. Thus, for v0 ~ 10 μm/s we
have ℓ ≈ a. For instance, consider microswimmers which use beat-
ing elements (limbs) with an overall extension of ℓ to create a flow
field which advects the body of size a with a speed v0. If the
extension of the limbs is of the same order of magnitude as the
body size, i.e. ℓ ~ a, we obtain ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffijαj=v0

p � a and hence α ~ a2v0.
Following Figs. 2b and 3, this means that even at a wall distance of
2–3 body length, which commonly occurs in the life of many
microswimmers, the deviation of the optimal path from the shortest
one is significant. These estimates can be specified for E. coli bac-
teria where the force dipole coefficient has been measured in var-
ious experiments and amounts to α= 8− 75 μm3/s64 yielding
‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffijαj=v0

p � 0:5� 2μm for v0 ~ 20 μm/s, which again is com-
parable to the length scale of the swimmer and means that the
influence of hydrodynamic wall interactions on the required navi-
gation strategy to reach a target fastest is highly significant. A
similar discussion also applies to source dipole microswimmers,
where the source dipole coefficient is expected to scale as σ ~ a3v0.

Regarding the generic relevance of our findings in the presence

of noise, let us now estimate the typical value of D� ¼
D=ðjσj1=3v2=30 Þ for source dipole swimmers to compare with
Fig. 4a. Using σ ~ a3v0 as well as the Stokes–Einstein relation D=
kBT/(6πηa), where η ≈ 10−3 Pa s is the viscosity of water and kBT
is the thermal energy, at room temperature, we obtain D* ~ 10−2

− 10−1, depending on the size of the considered microswimmer.
This roughly coincides with the parameter regime shown in
Fig. 4a, which means that typical microswimmers can save a
significant fraction of their traveling time to reach a food source
or another target lying one or a few body lengths away from a
wall, when strategically regulating their distance to the wall rather
than greedily heading straight toward the target.

Conclusions
The message of this work is that, to reach their target fastest,
microswimmers require navigation strategies which qualitatively

differ from those used to optimize the motion of dry active
particles or motile macroagents like airplanes. This finding hinges
on hydrodynamic interactions between microswimmers and
remote boundaries, which oblige the swimmers to take significant
detours to reach their target fastest, even in the absence of
external fields. Such strategic detours are particularly useful in the
presence of (strong) fluctuations: they effectively protect micro-
swimmers against fluctuations and allow them to reach a food
source or another target up to twice faster than when greedily
heading straight toward it. This suggests that strategically con-
trolling their distance to remote walls might benefit the survival of
motile microorganisms—which serves as an alternative to the
common viewpoint, that the microswimmer–wall distance is a
direct (i.e. non-actively-regulated) consequence of hydrodynamic
interactions.

Our results might be relevant for future studies on micro-
swimmers in various complex environments involving hard walls
or obstacle landscapes65–67, penetrable boundaries68,69, or exter-
nal (viscosity) gradients70–72. For such scenarios, our results (or
generalizations based on the same framework) can be used as
reference calculations, e.g., to test machine-learning-based
approaches to optimal microswimmer navigation5,6 and per-
haps also to help programming navigation systems for future
microswimmer generations. They should also serve as a useful
ingredient for future works on microswimmer navigation pro-
blems in environments which are not globally known but sub-
sequently discovered by the microswimmers. Finally, for future
work, it would also be interesting to explicitly solve the Hamilton-
Jacobi-Bellman equation for the present problem with noise to
compare the discussed navigation strategies which are optimal in
the absence of noise and highly useful in the presence of noise,
with the optimal navigation strategy following from this equation.

Methods
Here we discuss details regarding the two approaches used to solve the optimal
microswimmer navigation problem based on a Lagrangian approach and on
Pontryagin’s maximum principle respectively. Both approaches lead to identical

Fig. 5 Time-dependent microswimmer navigation. Optimal trajectories and travel times of time-dependent source dipole microswimmers for fixed
amplitude λ= 1 and different dimensionless frequencies ω*=ωτ shown in the key (a, c) and for fixed ω*= 6π and different λ (b, d). The shown travel times,
T*= T/τ, for the optimal trajectory are always shorter than when choosing the shortest path to the target. Here, lengths and times are made dimensionless
by ℓ and τ, respectively.
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results but have been found to be advantageous in different situations: the
Lagrangian approach leads to a boundary value problem which is more immediate
to implement, numerically simpler, and more robust than the corresponding
higher-dimensional problem resulting from Pontryagin’s principle. The latter in
turn allows for solving more general problems applying e.g. also to explicitly time-
dependent microswimmers.

Lagrangian approach for source dipole microswimmers. To find the optimal
path, we write the path connecting the starting point (x�A; z

�
A) and the terminal

point (x�B; z
�
B) as a function z*(x*) and write the traveling time as

T� ¼ R x�Bx�A j _x�j�1 dx� ¼ R x�Bx�A L� x�; z�ðx�Þ; z�0ðx�Þð Þ dx�. Following the Lagrangian

optimization approach, a necessary condition for minimizing T* follows from the
Euler–Lagrange equation

d
dx�

∂L�

∂z�0
� ∂L�

∂z�
¼ 0; ð7Þ

where the Lagrangian, L� , depends on the microswimmer under consideration.
First, considering source-dipolar hydrodynamic interactions with a planar inter-
face, an explicit expression for the Lagrangian can readily be obtained. It follows
from Eqs. (1) and (2) that cosψ ¼ x�= 1� s= 4z�3

� �� �
and sinψ ¼ z�= 1� s=z�3

� �
.

By enforcing the relation cos2ψ þ sin2ψ ¼ 1 and using the fact that _z� ¼ z�
0
_x� with

z�
0 ¼ ∂z�=∂x� , the Lagrangian can explicitly be obtained as

L�
SD :¼ _x�j j�1 ¼ 1� s

4z�3
� ��2

þ z�02 1� s
z�3

� ��2
� 	1

2

: ð8Þ

Inserting this Langrangian into the Euler–Lagrange Eq. (7) shows that the optimal
swimming trajectory is governed by the following second-order differential equa-
tion

Aðz�Þz�00 ðx�Þ þ Bðz�Þz�0 ðx�Þ2 þ Cðz�Þ ¼ 0; ð9Þ
where we have defined the coefficients

Aðz�Þ ¼ z�ðx�Þ z�ðx�Þ3 � s
� �

4z�ðx�Þ3 � s
� �3

; ð10Þ

Bðz�Þ ¼ �3s 2z�ðx�Þ3 þ s
� �

4z�ðx�Þ3 � s
� �2

; ð11Þ

Cðz�Þ ¼ 48s z�ðx�Þ3 � s
� �3

: ð12Þ
Equations (9) through (12) subject to Dirichlet boundary condition of imposed

vertical distance at the start and end points can readily be solved numerically using
a computer algebra software by means of a standard shooting method.

Lagrangian approach for force dipole microswimmers. Next, for force-dipolar
hydrodynamic interactions, we first solve Eq. (5) for the orientation angle ψ, which
yields four distinct solutions. They are given by

ψ1;2 ¼ arctan Aþ; ±Bþ
� �

; ð13Þ

ψ3;4 ¼ arctan A�; ±B�ð Þ; ð14Þ
where we have defined the arguments

A± ¼ s
9

�4z�2 ±ϕ1
� �

; ð15Þ

B± ¼ s
9

ϕ2 ± 8z
�2ϕ1

� �1=2
; ð16Þ

with

ϕ1 ¼ 72sz�2 _z� þ 27þ 16z�4
� �1=2

; ð17Þ

ϕ2 ¼ 2 �36sz�2 _z� þ 27� 16z�4
� �

: ð18Þ
Note that, for a; b 2 R, the function arctanðb; aÞ returns the principal value of

the argument of the complex number c= a+ ib, i.e.73,

arctanðb; aÞ ¼ �iln
c
jcj
� 	

2 ð�π; π�; ð19Þ

where jcj ¼ a2 þ b2
� �1=2

. We note that only real values of the steering angle should
be considered. Now inserting Eqs. (13) and (14) into Eq. (4), setting _z� ¼ z�0 _x� ,
and solving the resulting equations for _x� , the Lagrangian is obtained as

LFD :¼ _x�j j�1 ¼ 72z�2z�0

r2± � 16z�4 � 27

����
����; ð20Þ

where r± are the roots of the quartic polynomial

P ± ðZÞ ¼ a0 ± a1Z þ a2Z
2 þ ± a3Z

3 þ a4Z
4; ð21Þ

the coefficients of which are explicitly given by

a0 ¼ 9 16z�4 þ 27
� �2 þ 256z�02z�4 16z�4 � 81

� �
;

a1 ¼ � 64z�02z�2 16z�4 þ 81
� �

;

a2 ¼ � 6 3þ 2z�02
� �

16z�4 þ 27
� �

;

a3 ¼ 32z�02z�2;

a4 ¼ 9þ 4z�02:

The nature of the roots of the quartic polynomial is primarily determined by the
sign of the discriminant74. Assuming that z* is a weakly-varying function about the
value h > 0, such that z*(x*)= h+ ϵf(x*), where ∣ϵ∣ ≪ h, the discriminants Δ± of the
polynomial function given by Eq. (21) can be expanded to leading order about ϵ=
0 as

Δ± � K 27þ 16h4
� �

3sþ 4h2
� �

3s� 4h2
� �

z�04;

where K is a positive real number. In the far-field limit, we expect that h2≫ 3/4,
and thus Δ± < 0. Accordingly, the polynomial functions has two distinct real roots
and two complex conjugate non-real roots75.

If we denote by r1 and r2 the real roots of P+, then it can readily be noticed that
−r1 and −r2 are the real roots of P− since P−(−Z)= P+(Z). Consequently, the
system admits two possible Lagrangians, as can be inferred from Eq. (20).

The roots r1 and r2 can be obtained via computer algebra systems. They are not
listed here due to their complexity and lengthiness.

Physically, the Lagrangian yielding the shortest traveling time is the one that
needs to be considered7.

Lagrangian approach for force-quadrupolar microswimmers. Finally, we
investigate the optimal swimming due to force-quadrupolar hydrodynamic inter-
actions with the interface. In this case, the translational swimming velocities
read56,58

_x ¼ v0 cosψ þ ν cosψ
32z3

27 cos 2ψð Þ � 13½ �; ð22Þ

_z ¼ v0 sinψ þ ν sinψ
8z3

9 cos 2ψð Þ þ 5½ �; ð23Þ

where ν is the force quadrupolar coefficient. In units of ‘ ¼ ð νj j=v0Þ1=3 and

τ ¼ νj j1=3=v4=30 , Eqs. (22) and (23) can be expressed in a dimensionless form as

_x� ¼ cosψ þ s cosψ
32z�3

27 cos 2ψð Þ � 13½ �; ð24Þ

_z� ¼ sinψ þ s sinψ
8z�3

9 cos 2ψð Þ þ 5½ �; ð25Þ

where we have used the abbreviation s ¼ sgn ðνÞ.
Solving Eq. (24) for ψ yields three possible distinct values:

ψ1 ¼ arccos ϕþ
� �

; ð26Þ

ψ2 ¼ π � arccos
1
2
ϕþ � i

ffiffiffi
3

p

2
ϕ�

� 	
; ð27Þ

ψ3 ¼ π � arccos
1
2
ϕþ þ i

ffiffiffi
3

p

2
ϕ�

� 	
; ð28Þ

where we have defined for convenience the abbreviations Z ¼ z�3=s and

E ¼ 27 _x�Z þ f
1
2

� �1
3
. Moreover,

f ¼ 64Z3 þ 3 243 _x2 � 80
� �

Z2 þ 300Z � 125; ð29Þ
and

ϕ± ¼ 2
9

E ±
5� 4Z

E

� 	
: ð30Þ

Substituting the expression of ψ1 given by Eq. (26) into Eq. (25), using the fact
that _z� ¼ z�0 _x� , and solving the resulting equation for _x� yields the expression of
the Lagrangian

LFQ :¼ _x�j j�1 ¼ 54z�3

ρ3 � sρ�3 4z�3 � 5sð Þ3�� �� ; ð31Þ

where ρ denotes the roots of explicitly known polynomial of degree 12. In the
physical range of parameters, this polynomial admits either one real radical having
the order of multiplicity four or three distinct radicals also having the order of
multiplicity four.

It turned out that the same set of radicals are obtained when making
substitution with ψ2 of ψ3. Again, only real values of the steering angle should
physically be considered.
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In order to proceed further, we evaluate numerically the Lagrangians and
accurately fit the results using a standard nonlinear bivariate hypothesis of the form

Lðz�; z�0Þ ¼
XN
m¼0

XN
n¼0

aijz
�mz�0n; ð32Þ

where aij are fitting parameters. Here, we have taken N= 5 but checked that taking
larger values does not alter our results.

Hydrodynamic interactions near spherical boundaries. The translational
swimming velocities resulting from source dipolar hydrodynamic interactions with
a solid sphere of radius R positioned at the origin of coordinates (see Fig. 6) can be
decomposed into two terms

V ¼ êþ vHI; ð33Þ
with ê ¼ cos θ n̂þ sin θ t̂ denoting the instantaneous orientation angle of the
swimmer, and

vHI ¼ P sin θ t̂þ Q cos θ n̂; ð34Þ
quantifies the effect of hydrodynamic interactions with the spherical boundary.
This contribution can readily be determined from the Green’s function near a rigid
sphere76. Here, we have defined for convenience

P ¼ � σR 3h2 þ 6hRþ 8R2
� �
h3 hþ 2Rð Þ3 ; ð35Þ

Q ¼ σR 3h2 þ 6hRþ 4R2
� �

h2 þ 2hR� 2R2
� �

4h3 hþ 2Rð Þ3 hþ Rð Þ2 ; ð36Þ

where, again, we have scaled lengths by a characteristic length scale of the swimmer
L, and velocities by the bulk swimming speed v0.

Without loss of generality, we consider motion in the plane y= 0.
To obtain the translational swimming velocities near two obstacles, as

illustrated in Fig. 1a, we use the commonly employed superposition
approximation77–79. The latter conjectures that the solution for the Green’s
function near two widely separated obstacles can conveniently be approximated by
superimposing the contributions due to each obstacle independently. Accordingly,

V ¼ ê1 þ vHI
1 þ vHI

2 ; ð37Þ
where

vHI
i ¼ Pi sin θi t̂i þ Qi cos θi n̂i; i 2 f1; 2g: ð38Þ

In addition,

cos θ1 n̂1 þ sin θ1 t̂1 ¼: ê1 � ê2 :¼ cos θ2 n̂2 þ sin θ2 t̂2: ð39Þ
We then project Eq. (37) along the unit vectors t̂1 and n̂1 to obtain two scalar
equations. Next, we project Eq. (39) along the unit vectors t̂2 and n̂2 to obtain two
additional equations. Subsequently, the unknown quantities cos θ1, sin θ1, cos θ2,
and sin θ2 can be expressed in terms of x, z, and z0 by solving the resulting linear

system of four equations, upon using the fact that _z ¼ z0 _x. By solving the identity
cos2θ1 þ sin2θ1 ¼ 1 for _x, the Lagrangian can then be obtained explicitly as
LSD ¼ _xj j�1. The expression of the resulting Lagrangian is rather lengthy and
complicated and thus omitted here. Finally, the Euler–Lagrange equation can be
solved numerically in Matlab using the ode45 routine.

Optimal control theory for microswimmer navigation. We now use Pontryagin’s
principle from optimal control theory1,61–63 as an alterntive approach to solve the
optimal navigation problem for microswimmers. While the Lagrangian approach is
numerically rather convenient for the present set of problems, Pontryagin’s
approach provides a more general framework to determine optimal microswimmer
trajectories. In particular, it allows us to discuss optimal trajectories in higher
spatial dimensions or to calculate the optimal path for microswimmers with a time-
dependent propulsion speed as we discuss now.

Let us consider the cost J[r(t), p(t), ψ(t), t]= T which we want to minimize
subject to the equations of motion for microswimmers interacting with remote
walls (Eqs. (1) and (2)) and the boundary conditions r(t= 0)= rA and r(t= T)=
rB where r≔ (x, z). Here ψ is the control variable, p is the costate, and T is the
(unknown) traveling time corresponding to the fastest route. As the cost can be
determined from the endpoint (or the “endtime”) alone, it can be considered as a
pure endpoint cost, whereas the running cost is zero. Allowing for explicitly time-
dependent microswimmers with a time-dependent source dipole strength σt and/or
a time-dependent self-propulsion speed vt, this is a non-autonomous, fixed
endpoint, free endtime optimal control problem. To solve it, we first construct the
optimal control Hamiltonian as H(r, p, ψ, t)= F ⋅ p, where F is given by
_r ¼ ½vt � σt= 4z3ð Þ� cosψ; ½vt � σt=z

3� sinψð Þ ¼: F. We now minimize H with
respect to the (unconstrained) control variable ψ by solving ∂ψH= 0 yielding
tanψ� ¼ uz=ux where ψ* is the optimal control and where we have defined ux≔
px(vt− σt/(4z3)) and uz := pz(vt− σt/z3). Using Hðr; p; tÞ � Hðr; p;ψ�; tÞ, after a
few lines of straightforward algebra, we obtain the minimized (lower) Hamiltonian
as Hðr; p; tÞ ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2z

p
. In the following, we use only the plus–branch, as the

minus–branch does not seem to result in sensible trajectories. The optimal
trajectory now follows from the Hamilton equations of motion _r ¼ ∂pH and _p ¼
�∂rH which have to be solved as a boundary value problem, such that r(t= 0)=
rA and r(t= T)= rB where T is the unknown traveling time. Thus, up to now, we
have determined four first-order differential equations which are complemented by
four boundary conditions. Since this problem depends on the unknown T, we need
one additional boundary condition. This is given by the Hamiltonian endpoint
condition (or transversality condition) which determines the value of
HðrðTÞ; pðTÞ;TÞ. This condition can be determined from the endpoint Lagrangian
�L ¼ T þ ν � e where T is again the endpoint cost; ν is the (constant) endpoint
costate and e= (r(T)− rB) (such that e= 0 represents the boundary conditions in
standardized form). The Hamiltonian endpoint condition simply yields
HðrðTÞ; pðTÞ;TÞ ¼ �∂T�L ¼ �1 for the considerd minimal time problem. (The
remaining two transversality conditions for the costate, pðTÞ ¼ �∂rðTÞ�L, just relate
the two unknowns p(T) to two other unknowns v and hence do not provide any
additional information.)

To numerically solve the Hamilton equations together with r(0)= rA, r(T)= rB
and HðrðTÞ; pðTÞ;TÞ ¼ �1, it is convenient to rescale time via t ¼ Tt0 such that,
in primed units, the terminal time is T= 1 and the endpoint boundary conditions
are explicitly known as rðt0 ¼ 1Þ ¼ rB ; i.e. they no longer depend on the unknown
variable T, which instead shows up in the equations of motion. In addition, to ease
the usage of standard shooting methods to solve this boundary value problem, it is
convenient to treat T as a dynamical variable, i.e. we introduce T=: a(t), leading to
the additional equation of motion _a ¼ 0, which we solve together with the
Hamilton equations and the five mentioned boundary conditions. We have
compared the results from this approach for time-independent microswimmers in
the presence of flat walls with those from the Lagrangian approach and find the
same trajectories. For time-dependent microswimmers, corresponding results are
presented.

Let us finally mention that an alternative approach to treat the present non-
autonomous optimal control problem would be to first transform it to an
autonomous problem, by introducing an extra variable _τ ¼ 1 with τ(t= 0)=
0 such that τ(t)= t. The corresponding approach leads to the same numerical
results to those presented in Fig. 5.
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Fig. 6 Graphical illustration of a microswimmer moving near a spherical
boundary. Here, x̂0 and ẑ0 are the unit vectors of the system of Cartesian
coordinates, R denotes the radius of the spherical obstacle, ê is the
instantaneous orientation vector of the swimmer, n̂ and t̂ are unit vectors in
the microswimmer’s frame of reference, θ is an inclination angle, and h
defines the distance between the microswimmer and the obstacle.
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