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Particle-resolved topological defects of smectic
colloidal liquid crystals in extreme confinement
René Wittmann 1,4✉, Louis B. G. Cortes 2,3,4, Hartmut Löwen1✉ & Dirk G. A. L. Aarts2✉

Confined samples of liquid crystals are characterized by a variety of topological defects and

can be exposed to external constraints such as extreme confinements with nontrivial

topology. Here we explore the intrinsic structure of smectic colloidal layers dictated by the

interplay between entropy and an imposed external topology. Considering an annular con-

finement as a basic example, a plethora of competing states is found with nontrivial defect

structures ranging from laminar states to multiple smectic domains and arrays of edge

dislocations, which we refer to as Shubnikov states in formal analogy to the characteristic of

type-II superconductors. Our particle-resolved results, gained by a combination of real-space

microscopy of thermal colloidal rods and fundamental-measure-based density functional

theory of hard anisotropic bodies, agree on a quantitative level.
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Liquid crystals consist of particles that possess both transla-
tional and orientational degrees of freedom and exhibit a
wealth of mesophases with partial orientational or positional

order such as nematic, smectic and columnar states1. As such,
these phases are highly susceptible to external topological and
geometrical influences2. This opens a fascinating new research
realm on the internal structural response to such externally
imposed constraints with various highly relevant applications in
technology and material science3,4. While these perspectives have
been extensively exploited for spatially homogeneous meso-
phases, such as nematics, there is much yet undisclosed potential
stemming from the complex interplay between external con-
straints and internal order emerging in more complex meso-
phases, such as the layered smectic phase.

One of the main research goals in liquid crystals is focused on
topological defects. These not only represent fingerprints of sin-
gularities and discontinuities in the ordering but also naturally
link topology to condensed matter physics. The general impor-
tance of defects of liquid crystals is further fueled by the possi-
bility to directly visualize the inherent orientational frustration on
the macroscopic scale through the schlieren texture between two
crossed polarizers1. Different orientational defect structures have
therefore been explored a lot in the homogeneous nematic
phase5–19 with recent digressions to active systems20–22. Due to
their simultaneous orientational and positional ordering, defects
in the smectic phase naturally exhibit an even higher degree of
complexity. The main emphasis has been put hitherto on the
positional layering23–27 or orientational textures19,28,29 alone, as
well as, on coarse-grained calculations1,19,25,29–32 and computer
simulation of particle models33–36.

Here we approach the defect structure of smectic liquid crystals
from the most fundamental particle-resolved scale and quantify
both their positional and orientational disorder simultaneously in
theory and experiment. In doing so we study two-dimensional
smectics composed of lyotropic colloidal rods whose size enables
a direct observation37–39, while they have the advantage over
granulates40,41 that they are fully thermally equilibrated. The
colloidal samples are exposed to extreme confinements possessing
an annular shape and dimensions of a few particle lengths. This
combination of curved geometry and nontrivial topology is
triggering certain characteristic defect patterns. In our study we
uniquely combine real-space microscopy of colloidal samples
with modern first-principles density functional theory (DFT)42

based on geometric fundamental measures43 which provides a full
microscopic description of inhomogeneous and orientationally
disordered smectics44,45. A plethora of different states with
characteristic defect topologies is observed in perfect agreement
between theory and experiment up to the microscopic nuances in
the defect shape and wall alignment.

Our study explores the intriguing competition between the
internal liquid crystal properties and the extrinsic topological and
geometrical constraints. In annular confinement this gives rise to
three essential types of smectic defect configurations. Each of
these defects is characteristic for a unique state with a discrete
rotational symmetry in the orientation field, which we refer to as
follows. In the laminar states, the smectic layers in a large
defect-free domain (bounded by two parallel disclination lines)
resemble the flow lines around a circular obstacle (inclusion). The
domain states are governed by individual smectic domains,
separated by radially oriented disclination lines, in three sectors
of the annulus. Finally, there are the Shubnikov states, named30

in the formal analogy between the typical arrays of edge dis-
locations and the flux quantization in type-II superconductors.
In addition, we observe peculiar symmetry-breaking composite
states which unite different types of defects in a single structure.
A locally adaptable layer spacing is found here to play the key

role regarding the stability and distribution of defect structures in
extreme confinement.

Results
Overview. Our complementary experimental and theoretical
strategies (see methods section and Supplementary Note 1 for
more details) to study smectic liquid crystals on the particle scale
are illustrated in Fig. 1. Experimentally, we directly observe fully
equilibrated silica rods at the bottom of customized confinement
chambers (Fig. 1a) through particle-resolved bright-field micro-
scopy (Fig. 1b). On the theoretical side, we analyze the micro-
scopic density profiles, obtained from a free minimization of our
geometrical DFT for two-dimensional hard discorectangles
(Fig. 1c). We strive a direct comparison of experimental snap-
shots and theoretical density profiles, as illustrated for the bulk
case in Fig. 1d, where the DFT is minimized by the optimal layer
spacing λ0 (Fig. 1e). To create the required overlapping parameter
space, we employ both precise lithography to create robust con-
finement chambers with dimensions of only a few rodlengths and
an efficient hard-rod density functional to tackle these system
sizes. The theoretical aspect ratio p= 10 is chosen to closely
match the effective value peff= 10.6 in the experiment and the
density of rods is chosen to be slightly above the bulk
nematic–smectic transition in each case.

The main results of our joint experimental and theoretical
study of colloidal liquid crystals in annular confinement (see
Fig. 1b for the relevant geometrical parameters) are summarized
as follows. First, we identify a plethora of distinct smectic states
(laminar, domain, Shubnikov and composite), shown in Fig. 2,
which possess a unique defect structure, layer arrangement and
director topology. Second, we predict in Fig. 3 a transition from
the laminar state for small inclusion sizes to the Shubnikov state
for large inclusion sizes, which nonmonotonically depends on the
total confinement size. Third, analyzing the characteristic
microscopic (Fig. 4) and topological (Fig. 5) details of each state
explains the stability of the observed structures. Finally, we
illustrate in Fig. 6 the full microscopic variety of different
structures, including a stable composite state. We further argue
with the aid of Fig. 7 how the state diagram changes with varying
density and rod length.

Smectic states. Figure 2 illustrates our central observation of
different competing smectic states, each coping with the externally
imposed constraints in a distinct way. For each experimental
structure in a given geometry, we find a perfectly matching the-
oretical density profile. This depicted structural variety results
from a confinement with curved walls and a nontrivial topology,
represented here by an annular cavity (Fig. 1b) with Euler char-
acteristic χ= 0. The typical structure of these states is determined
by the arrangement of the smectic layers (see microscopic details
below) and the shape of topological defects with total charge of
Q= χ= 0 (see topological details below). A detailed classification
of the observed smectic states is given in Supplementary Note 2.

To demonstrate the plain behavior of smectics in simply
connected domains, we first remove the inclusion and consider
circular confinement. In this reference case, the only structure
observed is the bridge state (B). It is characterized by a large
domain of parallel layers spanning the system and frustration of
the orientational order at the domain boundary. The latter is
either due to the formation of two anti-radial disclination
lines34,39 or, if the layers are directly adjacent to the outer wall,
due to homeotropic (perpendicular to the wall) alignment33,
contrasting the preferred planar alignment at hard walls.

When adding a small inclusion, the layer arrangement
resembles a laminar flow field around an obstacle, which we refer
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to as the laminar state (L). The structure associated with the large
bridging domain is identical to that of the bridge state, but the
internal boundary may additionally disconnect some of the central
layers and induce orientational frustration in the two tangential
layers. The bridge state can thus be considered as a special
undeformed case of a laminar state in the limit b→ 0.

At intermediate inclusion sizes, we observe a smectic domain
state (D) with three radially oriented disclination lines, exhibiting
a characteristic zig-zag pattern on the particle scale.

Following de Gennes30, we refer to the smectic structure at
large inclusions as the Shubnikov state (S). It is characterized by
layers spanning between the two disconnected system boundaries
and an array of edge dislocations, which stabilizes the uniform
orientational bend deformation imposed here by the confining
geometry. This structural response is mathematically analogous
to the magnetic vortices emerging in superconductors of type II
subject to an external magnetic field1,30.

All smectic states introduced so far possess a discrete rotational
symmetry. In addition, composite states (CLD, CDS or CLS) with
two distinct regions, displaying characteristic order phenomena
of either laminar, domain or Shubnikov states emerge at
intermediate inclusion sizes. A key paradigmatic example shown
in Fig. 2 is the laminar–Shubnikov composite state CLS .

State diagram. To answer the question about the stability of each
state, we illustrate in Fig. 3 the probability of its occurrence in our
experiments. For all state points considered, laminar states and
Shubnikov states clearly dominate for b≲ 0.25 and b≳ 0.35,
respectively. This provides compelling experimental evidence for the
existence of a topological laminar–Shubnikov (LS) transition around
b≈ 0.3. The state diagram is complemented by the intermediate

domain state and several composite states. We observe that upon
shrinking the system for a fixed intermediate inclusion size ratio b≈
0.3, both the laminar state and the Shubnikov state become less
stable, while the probability to find the domain state drops for larger
systems.

The described state diagram can be qualitatively understood in
terms of a minimalistic phenomenological model (see Supple-
mentary Note 3), accounting solely for the length of the
disclination lines (L and D) or the number of edge dislocations
(S), cf. Fig. 2. Only in the domain state the length of the
disclination lines depends on the inclusion size ratio b, such
that the laminar–domain transition can be located at a fixed b=
1/3, independently of the unknown defect energy δ per unit
length. The energy of the Shubnikov state also depends on the
inclusion size ratio b, which is required to estimate for the total
number of edge dislocations of energy ued. The model thus
predicts an alternative laminar-Shubnikov transition, depending
on the ratio of ued and δ. This fit parameter can be estimated by
localizing the transition at the observed b= 0.3, which gives rise
to the scenario depicted in Fig. 3a, where the domain state is only
metastable.

To corroborate our experimental findings in full depth, we
compute the free energies corresponding to the microscopic density
profiles as a direct measure for their stability. Focusing on the
precise localization of the LS transition, we observe in Fig. 3 a clear
trend that the transition line shifts to larger inclusions for smaller
Rout in the experimentally accessible range of this parameter. This
agrees well with the distribution of the observed structures in our
experiments. For even more extreme confinements with Rout ≤ 2.1L
we locate the LS transition close to the maximal inclusion size
where a laminar state can form. Hence, the inclusion size ratio b of
the transition becomes smaller upon further decreasing Rout below

Fig. 1 Overview of experimental and theoretical methods. a Schematic illustration of the experimental cell. b Particle-resolved bright-field microscopy
snapshot imaged in the direct vicinity of the cavity bottom wall. The annular geometry is determined by the outer radius Rout and the inclusion size ratio
b= Rin/Rout with the inner radius Rin. c A discorectangle of rectangular length L, circular diameter D, total length W= L+ D and area a= LD+ D2π/4 used
as the theoretical model particle. d Smectic bulk phase. Left: experimental snapshot showing individual particles. Right: theoretical density profile ρ(r, ϕ)
represented by a heat map of the orientationally averaged center-of-mass density �ρ ¼ a

2π

R 2π
0 dϕ ρðr;ϕÞ and green arrows indicating the average local

director orientation. The large black arrow marks the spacing λ0 between two layers. e Bulk smectic free energy F as a function of the layer spacing λ,
determined by density functional theory (DFT). The minimum at F ¼ F0 corresponds to the optimal bulk layer spacing λ0 in equilibrium.
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that threshold. For large confinements, the transition seems to
approach the continuum limit with b ≈ 0.27.

Further theoretical analysis shows that the composite state CLS
is globally stable in a small but distinct region around the
predicted LS transition, which we can understand on a
microscopic level.

Microscopic details. The entropically optimal equilibrium
structure of each state emerges from a complex balance between
several competing driving forces which aim to (i) remove all sorts
of defects, (ii) achieve planar wall alignment, (iii) minimize the
deformation energy and (iv) maintain the intrinsic layer spacing
λ0 in bulk. Our particle-resolved methods naturally provide an

Fig. 2 Defects structures in smectic colloidal liquid crystals. The columns represent the different states (as labeled), arranged from left to right by their
occurrence in circular (Euler characteristic χ= 1) and annular (χ= 0) confinement with increasing inclusion size ratio b= Rin/Rout. First row: idealized
schematic representation of the mesoscopic arrangement of smectic layers (solid gray lines) and defects (red squares and lines as labeled). Rows
2–4: local packing fraction with marked defects, density profiles with orientational director field (as in Fig. 1d) and local order parameter from theory. Rows
5–7: typical particle-resolved snapshots with defects or color denoting the orientation relative to the nearest wall and local order parameter from
experiment.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20842-5

4 NATURE COMMUNICATIONS |          (2021) 12:623 | https://doi.org/10.1038/s41467-020-20842-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


optimal account of points (i)–(iv) in the course of equilibration.
The quantitative agreement of the experimental and theoretical
density profiles, both generated by the subtle interplay of these
fundamental principles, allows us to unveil in Fig. 4 the char-
acteristic microscopic structural details of each state.

From our microscopic insights, detailed below and further
elaborated in Supplementary Note 4, we draw the following
conclusions regarding the state diagram in Fig. 3. Increasing the
wall curvature (by decreasing Rout) increasingly distorts the layer
spacing in the Shubnikov state, such that it becomes destabilized
compared to the laminar state, for which the relative energy
penalty arising from homeotropic wall alignment decreases. The
nonmonotonic behavior of the resulting LS transition line is
related to the varying compatibility of each state with the
particular confining geometry. The indirect LS transition via an
intermediate composite state CLS can be explained by the
increased number of possibilities, compared to the L and S
states, to relax the geometrical constraints.

In detail, we observe that the layers and defect lines
surrounding the inclusion in the observed laminar states are
typically deformed according to the shape of the inner wall, where
the wall alignment is homeotropic, see Fig. 4a. In contrast, due to
the planar alignment at the outer wall, the disclination lines end
on point defects, recognizable by the modulation of the adjacent
layer, see Fig. 4b. This has not been reported for straight
walls34,39. The optimal numbers of layers depends nonmonoto-
nically on the geometric parameters (see Supplementary Fig. 1).

The particularly deformed microstructure of the domain states
is due to the competing angles 2π/3 between the domain
boundaries and π/2 between the intersecting layers. The
positional order is most frustrated in the vicinity to the inclusion,
as reflected by some dilute regions, shown in Fig. 4c, in which the
rods try to align with the wall. Taking a closer look at the outer
boundary, however, we observe in Fig. 4d some additional layers
and edge dislocations between two adjacent domains, ensuring
again an overall planar wall alignment.

The layers in the Shubnikov states are deformed in the vicinity
of edge dislocations, see Fig. 4e. Although an overall planar wall
alignment is generally possible, we frequently observe in small

systems that one or more layers are tilted with respect to the inner
wall, as in Fig. 4f. This reflects a strongly position-dependent layer
spacing (see Supplementary Fig. 2), which further distinguishes
the Shubnikov from the laminar and domain states. In fact, the
deviations in the local layer spacing reduce the number of point
defects, such that we even observe some extreme structures
without any defects for sufficiently small distances between the
walls (see Supplementary Figs. 9 and 11 for some examples).

Topological details. Having resolved the microscopic details of
the topological defects, emerging due to the rigidity of the smectic
layers, we are in a position to associate in Fig. 5 a topological
charge q with each occurring disclination line. We further identify
pairs of end-point defects to these lines, which formally carry
peculiar quarter-integer charges qe, such that q= ∑qe. Then one
can easily verify from the sketches in Fig. 2 that, in each state, the
total charge Q= ∑q equals the Euler characteristic of the con-
fining domain, as required by topology5,46. The topological pro-
tection due to charge conservation is discussed in Supplementary
Note 5.

The anti-radial disclination lines in the laminar (and CLS
composite) state, can be understood as an expanded q=+1/2
point defect with two qe=+1/4 charges at the end, see Fig. 5
(top). For the laminar structures without any disclination lines,
there exists an equivalent q=+1/2 defect attached to the
boundary, recognizable by the misalignment at the wall. Likewise,
misalignment near the inclusion implies a negatively charged
boundary defect with q=−1/2, see Fig. 5 (middle). Some
structures (compare, e.g., Supplementary Fig. 7 or the experi-
mental CLS in Fig. 2), display an explicit disclination line close to
the inclusion ending on two qe=−1/4 points.

The radial disclination lines are always in the interior of the
system carrying the opposite end-point charges qe=−1/4 and
qe=+1/4, close to the inner and outer end, respectively, see Fig. 5

Fig. 3 Topological state diagram. Shown are the stable states for different
outer radii Rout and inclusion size ratios b= Rin/Rout. The large pie charts
indicate the percentage at which each state occurs in the experiment
according to the legend. The small circles denote the theoretical laminar-
Shubnikov (LS) transition (the numerical error is of the order of the symbol
size; filled circles indicate that no laminar state can exist for larger
inclusions). The vertical lines represent a possible scenario (see labels)
predicted by a phenomenological model based on defect energies.
Theoretical source data are provided as a Source Data file.

Fig. 4 Structural details on the particle scale. According observations
from theory (left, density plots as in Fig. 1d) and experiment (right): a bent
layers adjacent to the inclusion and b deformed layer near curved outer wall
in the laminar state (L), and c gap between two domains close to the
inclusion in the domain state (D) and d planar alignment of rods at the
outer wall e deformed layers adjacent to an edge dislocation and f tilted
alignment of some layers at the inclusion in the Shubnikov state (S).
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Fig. 5 Topological defects in confined smectics. The anti-radial line disclinations at the outer (top row) and inner (middle row) wall are located in the
interior or attached to the boundary. The radial line disclinations are topologically equivalent to edge dislocations (bottom row) and can be interpreted as a
stretched or annihilated defect, respectively. Left column: schematic illustration as in Fig. 2. Middle column: orientational director field (blue lines/arrows)
around line defects (red) with topological charge q according to the drawn closed integration path (cyan circular arrow). The disclination lines can be
interpreted as stretched nematic point defects, shown for comparison. Right column: director field at the end-point defects (violet) of disclination lines with
charges qe. Here the integration path is not closed but rather begins and ends on two sides of the disclination.

Fig. 6 Stable and metastable structures for different inclusion sizes. Shown is the free energy F relative to that Fm of the global minimum for Rout= 6.3L
and different inclusion size ratios b close to the laminar-Shubnikov transition (red circle). The legend depicts the theoretical density profiles (as in Fig. 1d) of
different states (color) with different microscopic structure (symbols) for b= 0.3. The structures with alike symbols are created by subsequently
equilibrating the density for slightly smaller inclusions, where the solid lines serve as a guide to the eye and the dashed lines indicate a structural change
regarding the number of layers in contact with the inclusion. The numerical error is of the order of the symbol size. Source data are provided as a Source
Data file.
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(bottom). Hence this type of line defect is nothing more than an
expanded edge dislocation with topological charge q= 0, which
unveils the true topological nature of the domain states. They
possess the same orientational topology as the Shubnikov states
into which they can evolve upon pair annihilation (compare
Supplementary Fig. 3). The observation of domain states is thus
owed to packing effects.

Free energy landscape. As apparent from the multitude of
observed structures in some geometries, the system does not
always equilibrate towards the global energy minimum. It is thus
important to understand the full free energy landscape generated
by the described competing driving forces. To this end, we
additionally calculate the free energy associated with various
theoretical density profiles, to directly assess their stability. As a
representative example, we choose Rout= 6.3L and compare in
Fig. 6 seven sets of structures obtained by smoothly decreasing b
in the vicinity of the laminar–Shubnikov transition. We draw four
important conclusions.

First, we explicitly see that the laminar–Shubnikov transition is
not sharp. Instead, over a significant range Δb ≈ 0.015 of inclusion
size ratios, a composite state of both structures is energetically
favorable. Second, the free-energy differences between two
distinct structures are extremely small and the optimal micro-
scopic structure changes multiple times upon small modifications
of the confinement. These observations explain the large number
of different structures observed in the experiment for b ≈ 0.3.
Third, it is important to identify the optimal microscopic
structure of each state to make a proper statement about possible
topological transitions. For example, only considering for b = 0.3
the metastable Shubnikov structure with the largest energy would
lead to the false conclusion that the laminar state (or a composite
state) is more stable in this geometry. Finally, a smooth variation
of the inclusion size leaves laminar structures invariant
(topologically protected), while the Shubnikov structures gradu-
ally adapt to the change in geometry, sometimes following a small
hysteresis loop (see Supplementary Note 6).

Dependence on density and rod length. Apart from the external
topological and geometrical constraints, the formation and sta-
bility of the reported states also depend on different intrinsic
parameters (see Supplementary Note 7 for more details). The
effect of the preferred bulk layer spacing λ0 is illustrated in Fig. 7.

We see that increasing the density (Fig. 7a), resulting in a smaller
λ0, stabilizes laminar structures compared to Shubnikov struc-
tures, while decreasing the aspect ratio to p= 5 (Fig. 7b), resulting
in a larger relative λ0/p, has the opposite effect. Extending our
state diagram towards shorter rods at a fixed density, we further
anticipate the emergence of stable tetratic structures41, since
smectic order is generally destabilized47.

For long rods at lower densities, different nematic states Dn are
found9, classified by the number n of q= ±1/2 defect pairs. From
a topological point of view, the laminar and Shubnikov states can
be interpreted as the smectic analogy to D2 and D∞, respectively,
while possessing a distinct orientational director field (compare
Fig. 5), imprinted by the arrangement of smectic layers. The
smectic analogy to D3 (three-line disclination of charge q=+ 1/2
close to the outer wall) is not stable here as the curved geometry
requires too strong deformations (see Supplementary Fig. 4),
while there is no direct nematic analogy to domain and composite
states. In our experiment, we observe the formation of nematic
states at the bottom of our chambers in course of the
sedimentation process (see Supplementary Movie 1), which can
be mimicked in DFT by subsequently increasing the density.
From the latter approach, we predict that the onset of smectic
order depends on the underlying nematic state (see Supplemen-
tary Fig. 5). In turn, the nematic order in sedimentation
equilibrium is presumably dictated by the more rigid smectic
structure observed at the bottom.

Discussion
We have performed a complementary particle-resolved experi-
mental and theoretical study of hard colloidal rods in annular
confinement. Our observations emerge from the fundamental
principle of globally maximizing the entropy subject to the con-
straints arising from the external influences of the confinement
and the internal smectic layer structure, which depends on the
particle shape and density. All these competing driving forces are
accounted for explicitly by our DFT data for the equilibrated
structures.

In the future, it will be interesting to have a closer look at the
position dependence of particle diffusion between the layers48 or
the formation dynamics of the different smectic structures, e.g.,
using dynamical DFT49,50. Drawing phase-stacking diagrams51

will provide vital information on how the coexistence of nematic
and smectic structures affects their stability in the experiment.
While some additional smectic states could become stable in

Fig. 7 Stable and metastable structures for different intrinsic parameters. The geometry is fixed by Rout= 6.3L and b= 0.3. a Dependence of the relative
free energy on the density. The data for area fraction η= 0.65 (at b= 0.3) and the estimated numerical error are the same as in Fig. 6. Here, alike symbols
denote the structures obtained by gradually increasing the area fraction in steps of 0.0125. b Stable structures (as in Fig. 1d) for shorter rods with p= 5
with inclusion size ratios b= 0.25 and b= 0.26. The laminar-Shubnikov transition is thus located in between. Source data are provided as a Source
Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20842-5 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:623 | https://doi.org/10.1038/s41467-020-20842-5 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


different geometries, an even larger structural variety can be
anticipated in more complex topologies, e.g., those with two
holes. The next level of geometrical and topological complexity
will be reached when immersing colloidal smectic liquid
crystals in random porous media52–55 and fractal confinement56.
On the other hand, there is also a high intrinsic potential for
finding novel structures when considering more exotic particle
shapes57–61.

In conclusion, we have shown that the topology and geometry
of an externally imposed confinement largely determine the
preferred internal structure of a smectic liquid crystal. Adjusting
these screws allows to create a protocol for a guided self-assembly
of a desired defect structure. Owing to their robustness and large
range of metastability, the described smectic states can then be
smoothly transferred to any desired confining geometry and, if
desired, solidified to unfold their potential for various micro-
technological applications3,4. These possibly include novel devices
for information storage, templates for functional microstructured
materials and channels for micro- or nanofluidics. Regarding the
recently flourishing research realm of living or self-motile parti-
cles, a challenging extension of the present work could consist of
systematically studying the influence of activity on the predicted
equilibrium state diagram62. Finally, a fascinating connection
with biology emerges from drawing the analogies between col-
loidal liquid crystals and growing colonies of rod-shaped bac-
teria63–66. Our results thus lay the foundation for a deeper
microscopic understanding of the structures emerging and
persisting along with the evolution dynamics when such living
systems are subjected to extreme topological confinement.

Methods
Sedimentation of silica rods. To experimentally create confined quasi-two-
dimensional smectic structures, we take advantage of the phase stacking of silica
rods37,38 in sedimentation equilibrium39. The bare dimensions of the rods are
measured directly from scanning electron microscopy images. The rods are dis-
persed into a 1 mM NaCl water solution to ensure stability through double-layer
repulsion. Introducing effective dimensions (see Supplementary Note 1) to account
for the Debye screening, our particles behave like hard rods of an effective aspect
ratio peff= 10.6.

The confining cavities (see Fig. 1a) in the shape of hollow cylinders are molded
on the bottom coverslip using home made Polydimethylsiloxane (PDMS) stamps
and Norland Optical Adhesive39. In practice, several chambers are fitted in a single
cell. After preparation, the rod solution is left in the tube to sediment for at least
12 h. During sedimentation, the concentration of particles gradually increases along
the direction of the gravity field leading to successive isotropic, nematic and
smectic order at the bottom (see Supplementary Movie 1). After a few hours,
sedimentation diffusion equilibrium is reached and the three phases coexist in the
cavities.

The smectic structures are observed by means of bright-field microscopy in the
direct vicinity of the bottom wall. We use a 1.42 numerical aperture apochromat oil
immersion objective mounted on an Olympus IX73 microscope and coupled
to a Ximea CMOS xiQ camera, which allows an optical resolution comparable
to the rod diameter. Due to degenerate planar anchoring at the bottom wall,
the system can be considered a quasi-two-dimensional fluid in annular
confinement. We choose the total amount of rods to obtain an effective volume
fraction ϕeff ≈ 45− 50% close to the bottom. This ensures that there is no
crystalline state and that the rods in direct contact with the bottom wall exhibit
smectic order. To create some statistics, we repeat the measurements in a given
geometry up to 12 times.

Density functional theory (DFT). We study by free minimization of a DFT42 in
two dimensions hard discorectangles (see Fig. 1c) with an aspect ratio p= 10 that
well reflects the experimental parameters. The interaction between these particles is
described by a free energy functional constructed as an extension of fundamental
measure theory43,67,68 to account for anisotropic particle shapes45,69. These geo-
metrical functionals derived from first principles are exact in the low-density limit
and have proven very reliable for highly packed systems. The annular confinement
is included as an external hard-wall potential.

The key quantity in our theory is the one-body density profile ρ(r, ϕ), providing
the probability to find a particle with the center-of-mass position r and its
symmetry axis oriented along an angle ϕ. Consider now a density functional
Ω½ρðr; ϕÞ� ¼ F½ρ� þ R

dr
R 2π
0

dϕ
2π ρðr;ϕÞðVextðr; ϕÞ � μÞ, where F½ρ� is the

intrinsic Helmholtz free energy functional, Vext(r, ϕ) is the external potential

and μ the chemical potential (more details can be found in Supplementary Note 1).
Then the density ρ(r, ϕ) of a (meta-) stable state is found by iteratively solving the
extremal condition δΩ[ρ]/δρ= 0 starting from a particular initial guess for the
density profile. The average area fraction η= 0.65 is kept fixed throughout the
iteration by adapting μ in each step. Then we compare the values of the free energy
F½ρ� of the different structures to identify the global minimum and quantify the
likelihood to observe a metastable local minimum ρ(r, ϕ) in a corresponding
experiment. Calculations are performed on a quadratic spatial grid with a high
enough resolution Δx= Δy= 0.2 and Nϕ= 96 discrete orientational angles. We
iterate until the free energy differences between different structures can be
sufficiently resolved.

Overlapping parameter space. Our experiment and theory are designed, such
that they can both tackle hard rods with a comparable anisotropy that is sufficiently
high to ensure that the smectic phase is stable over a large range of densities45,70.
Systems with variable inclusion size ratios b and the radii Rout of the circular outer
wall ranging between 1.9L ≤ Rout≤ 5.7L are covered by both approaches.

Data analysis and presentation. From the theoretical data, we determine a local
packing fraction by weighting the density with the local particle area to highlight
the particle resolution within our data (second row of Fig. 2). As a standard
representation of the full density field we use in the third row of Fig. 2 and for all
other illustrations a plot of the orientationally averaged density with the orienta-
tional director field, represented by green arrows of length given by the local order
parameter. Moreover, we also directly display the local order parameter field
(fourth row of Fig. 2). Note that the distorted appearance of the order parameter
close to the inclusion in the laminar state reflects the very low but nonvanishing
probability to find particles left and right of the symmetry axis that are perfectly
aligned with the wall. This underlines the similarity of interior and boundary
defects illustrated in Fig. 5. We compare the free energies of the different structures
in Figs. 3 and 6. Further details on numerical errors are given in Supplementary
Note 1.

The experimental snapshots (fifth row of Fig. 2) are inspected visually and
further processed using Wolfram Mathematica computing system. This allows us
to color each particle according to its orientation relative to the wall (sixth row of
Fig. 2). From the measured center-of-mass positions and orientations we further
extract a local field of the orientational order parameter (seventh row of Fig. 2).

The different smectic states and their microscopic structures are identified
according to the criteria described in Supplementary Note 2. Further details and a
collection of the raw data can be found in Supplementary Note 8.

Data availability
All theoretical structures from which some data were extracted and discussed in this
work are collected in Supplementary Figs. 6–15. The collected experimental bright-field
images before and after processing are shown in Supplementary Figs. 16–25. See
Supplementary Data 1 for full-size versions of these Supplementary Figures and
Supplementary Data 2 for the raw images and a manual for image processing.

Source data are provided with this paper. Further data supporting the findings of this
study are available from the corresponding authors upon reasonable request.

Code availability
An example program to minimize the density functional is provided as Supplementary
Software 1. Additional software used in this study is available from the corresponding
authors upon reasonable request.
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