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Abstract: Ohm’s law is one of the most central transport rules
stating that the total resistance of sequential single resistances
is additive. While this rule is most commonly applied to elec-
tronic circuits, it also applies to other transport phenomena
such as the flow of colloids or nanoparticles through channels
containing multiple obstacles, as long as these obstacles are suf-
ficiently far apart. Here we explore the breakdown of Ohm’s law
for fluids of repulsive colloids driven over two energetic barriers
in a microchannel, using real-space microscopy experiments,
particle-resolved simulations, and dynamical density functional
theory. If the barrier separation is comparable to the particle
correlation length, the resistance is highly non-additive, such
that the resistance added by the second barrier can be signif-
icantly higher or lower than that of the first. Surprisingly, in
some cases the second barrier can even add a negative resis-
tance, such that two identical barriers are easier to cross than
a single one. We explain this counterintuitive observation in
terms of the structuring of particles trapped between the bar-
riers.

One of the basic characteristics of any transport situa-
tion is the resistance, commonly known from electric circuits,
which is in general defined as the ratio of the transport flux
and the driving force, typically in the linear-response regime
of small drives. For both electric circuits and classical trans-
port, Ohm’s law states that when resistors are put in series,
their resistances simply add up. However, this macroscopic
law is expected to break down on the microscopic scale, in
particular when the distance between the two obstacles ap-
proaches the correlation length of the transported particles.

Knowing and controlling flow resistance is of particular
importance when tuning the transport of solutes through
channels. This type of transport is the basic situation in
microfluidics,1 where the transported objects are typically
micron-sized colloidal solutes, such that thermal fluctuations
play a significant role.2 Similar transport scenarios include
the collective migration of bacteria through channels,3–5 the
transport of nanoparticles through porous media,6,7 and the
transport of ions through membranes via nanopores.8 On
the macroscopic scale, the flow of e.g. cars or pedastrians9

or animals10 through crowded environments can lead to sim-
ilar physics. Obstacles in such channels naturally inhibit
the overall steady-state rate at which the particles are able
to traverse the channel, providing an effective resistance to
the flow. In channels with multiple obstacles, we expect

Ohmic (i.e. additive) behavior of the corresponding resis-
tances when the separation between the obstacles is large,
and a breakdown of Ohm’s law for smaller distances. The
crossover between these regimes is determined by the corre-
lation length in the system, i.e. the length scale associated
with local structure in the fluid of transported particles. De-
tailed knowledge of these non-additive effects is of vital im-
portance for the design of efficient microfluidic devices, as
well as for our broader understanding of constricted flow
phenomena.

Here, we explore the additivity of resistances in meso-
scopic colloidal suspensions driven through a microchan-
nel.11 First, as a proof of concept, we perform an experi-
ment on repulsive colloidal particles confined to microchan-
nels containing two step-like barriers on the substrate, and
measure the current through the channels as a function of
the strength of the gravitational driving force. Our results
show that step-like barriers in a microchannel can indeed
be interpreted as resistors. We then further explore this
concept using Brownian dynamics simulations and dynam-
ical density functional theory and map out the interplay
between the two barriers by varying their height and sep-
aration. We find strong deviations from additivity for the
resistance of two barriers when the separation between the
two obstacles is comparable to the correlation length of the
system, which is on the order of several interparticle spac-
ings. Amazingly, if the barrier separation is comparable to
the interaction range, the resistance contributed by the sec-
ond barrier can even be negative such that climbing two hills
is faster than one. We explain this counterintuitive effect of
negative resistance via the long-ranged particle interactions
and the ordering of the particles trapped between the two
barriers. When these particles are disordered, they exhibit
spontaneous fluctuations which modulate their interactions
with particles crossing the barriers, significantly enhancing
barrier crossing rates.12,13 This surprising phenomenon pro-
vides a route for tuning and enhancing particle flow over an
obstacle by the inclusion of additional barriers, reminiscent
of the use of geometric obstacles to assist e.g. the flow of
panicked crowds.14

We measure the particle current in the channel as a func-
tion of the gravitational driving force, controlled by the tilt
angle of the setup, for channels with zero, one, and two
barriers. In the absence of barriers, the current shows the
expected linear dependence on the driving force, shown by
the red line in Fig. 1d. For a single barrier (blue line in
Fig. 1d), we observe a crossover from a zero-flow regime at
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Figure 1. Experimental proof-of-concept. a) Schematic setup of the experiment: two particle reservoirs are connected by a mi-
crofluidic channel through which particles are flowing due to gravity. b) Top view of the experimental system. c) Snapshots of a two
barrier system at different times. The position of the barriers is indicated by a red vertical line. Two particles are highlighted in red and
green. d) Particle flux (top) and the effective resistance of the second barrier (bottom) as a function of the tilt angle in a system with
no barriers (red), single barrier (blue) and double barriers (orange). The initial density was ρ0 = (7.23 ± 0.5) × 10−3µm−2, the external
field strength was 0.6 mT, and the separation between the two barriers was 30µm.

small driving forces (where the driving force is too weak to
push particles across the barrier) to an approximately linear
regime for large driving forces.11 Hence, the barrier provides
a resistance to the flow, which reduces the particle current.
Adding a second barrier to the channel clearly results in a
further decrease of the current, as one would expect (or-
ange line in Fig. 1d). In order to examine the possibility
of non-additive resistance, we also plot in Fig. 1d the total
resistance of the channel, defined as the current divided by
the driving force. Here, we only consider tilt angles where
the channels do not get fully blocked. For an empty chan-
nel, we find a well-defined constant resistance, consistent
with the linear behavior of the current as a function of the
tilt angle. The single barrier increases this background re-
sistance. For sufficiently large driving forces, this increase
is essentially constant, indicating that we can indeed inter-
pret it as a simple additional resistor added to the channel.
For low driving forces, the effective resistance added by the
barrier is significantly higher, which we attribute to inter-
mittent blocking of the channel: in this regime, the driving
force is not always capable of pushing the particles across
the barrier, and thermal fluctuations likely play a role in
enabling the flow. Finally, adding a second barrier adds an-
other contribution to the total resistance. Interestingly, this
additional resistance is not simply equal to the resistance of
the first barrier, even though we are in the regime where the
particles flow through the channel without blockage. In par-
ticular, the total flux in the two-barrier system at the highest
tilt angle is on the same order as the flux in the single-barrier
case when its resistance has reached its plateau value (see
Fig. 1d). Hence, we conclude that the two resistors interact
non-additively in this case, indicating a breakdown of Ohm’s
law. As the barriers in this experiment are separated only by
a distance of approximately 2.5 times the typical interparti-

cle distance, which is shorter than the correlation length in
the fluid, this breakdown could be the result of microscopic
structuring of the fluid between the two barriers. Indeed, as
shown by the snapshots in Fig. 1c, we consistently find two
layers of particles in between the barriers. To explore this
concept of non-additivity further, we now turn to a numer-
ical treatment of the problem, where we can more readily
explore a wide range of conditions.

We make use of overdamped Brownian dynamics simula-
tions and dynamical density functional theory (DDFT) cal-
culations. We consider a two-dimensional system with pe-
riodic boundary conditions along the channel (x-direction),
containing N particles interacting via a dipolar repulsion

βVint(r) = Γ
(a
r

)3

, (1)

where β = 1/kBT with kB Boltzmann’s constant and T
the temperature, Γ is the dimensionless interaction strength,
and a = ρ

−1/2
0 sets the length scale of a typical interparticle

spacing of a given mean number density ρ0. The particles
additionally experience a constant driving force F x̂ pushing
the particles along the channel.

The confining channel and barriers are modeled as an ex-
ternal potential Vext(x, y) = Vchannel(y) + Vbarrier(x). The
first term here is a steep repulsive wall potential confining
the particles in one direction. Vbarrier represents one or two
parabola-shaped potential barriers with width a and height
V0 = 10 kBT , see Fig. 2b inset and Methods. We choose the
channel width Ly = 4.65a, and the channel length Lx such
that the total number density ρ0 = N/(LxLy) = 1/a2 for a
given particle number N .

In our DDFT calculations,15,16 we choose the
Ramakrishnan–Yussouff functional17 to model interacting
particles in a fluid state (Γ = 5). In addition to DDFT,
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we perform Brownian Dynamics simulations of particles
experiencing the same potentials and external driving force.
As a reference we provide an analytical solution for non-
interacting particles (Γ = 0). See Methods for details.

Using both DDFT and simulations, we explore the rela-
tion between the total steady-state particle current J along
the channel, the driving force F on the particles, and the
distance ∆x between the two barriers. The ratio of the
driving force and current characterizes the total resistance
of the system, Rtot = F

J
. In a channel without barri-

ers, the particles trivially adopt the average drift current
J0 = Fρ0Lyξ

−1, where ξ is the friction coefficient of the
background solvent, leading to an inherent background re-
sistance Rbg = ξ/(Lyρ0). In a single-barrier system, the re-
sistance R1 added by the barrier can be extracted from the
total resistance Rtot

s = Rbg + R1 by measuring the single-
barrier current Js:

R1 = Rtot
s −Rbg = F

(
1

Js
− 1

J0

)
. (2)

Similarly, in a double-barrier system (with current Jd), the
total resistance is Rtot

d = Rbg + R1 + R2, and the effective
resistance of the second barrier R2 can be written as

R2 = F

(
1

Jd
− 1

Js

)
. (3)

In the case of additivity, the resistance R2 of the second
barrier will be equal to R1 (the resistance of the first barrier),
while deviations from this rule will indicate non-additivity.

In Fig. 2, we plot R2/R1 for a range of barrier separations
∆x at different driving forces F , as obtained from analyt-
ical theory (see Methods) (a), DDFT calculations (b), and
computer simulations (c). For non-interacting particles R2

is lowest when the two barriers are touching (∆x = a) and
converges exponentially to R1 for larger distances. In con-
trast, for interacting particles and for all investigated F , the
resistance of the second barrier is highest at ∆x = a. At
this separation the resistance added by the second barrier
can be many times higher than R1, signaling strong non-
additivity. More interestingly, for slightly larger separations
(∆x ' 1.5a), R2 becomes smaller than R1, and even nega-
tive for sufficiently weak driving forces. In this regime, the
addition of the second barrier reduces the overall resistance
in the channel. At larger ∆x, R2 shows decaying oscilla-
tions, converging towards the additive case (R2 = R1), as
expected at sufficiently large distances.

We can understand this observation by considering the in-
teractions between the particles. Since these are dipolar in
nature, they are sufficiently long-ranged to span across the
barrier. Hence, a particle on top of the barrier experiences
forces from particles between the two barriers, which depend
on the density and structuring of those particles. In Fig. 3
we plot the density profile of the particles ρx(x), projected
onto the long axis of the channel, for various barrier separa-
tions ∆x, as well as for a single barrier. In the single-barrier
case, we always observe a high density peak in front of the
barrier, and a slightly lower peak just after the barrier (see
Fig. 3a). In the two-barrier cases, the additional peaks in
between the two barriers vary in height based on ∆x. For
very small separations (Fig. 3b), where the resistance of the
second barrier is high (R2 > R1), we find a single sharp den-
sity peak between the barriers, which is significantly higher
than the peak observed after a single barrier. Here, particles
between the barriers are arranged in a single line with little
room for fluctuations, and hence provide a strong and rel-

Figure 2. Effective resistance of a second barrier. Effective
resistance R2 of the second barrier relative to the resistance R1

of the first barrier, as a function of the barrier spacing ∆x, at
different driving forces. The dashed lines highlight special values
of R2: the gray line shows Ohmic additivity and the red line
marks the onset of negative effective resistance. Results are shown
for analytical theory at Γ = 0 (a), DDFT at Γ = 5 (b), and
simulations at Γ = 5 (c). A sketch of the barrier configuration is
shown in inset b.

atively constant force on particles crossing the first barrier,
pushing them back. In the regime where R2 < R1 (Fig. 3c),
we instead see two much lower peaks, indicating a structure
with two layers and significantly larger fluctuations. These
larger fluctuations not only provide space for particles enter-
ing via the first barrier, but also modulate the force exerted
on particles crossing the barriers, resulting in a fluctuat-
ing effective barrier height. For weak driving forces, barrier
crossings are rare events, whose rate depends exponentially
on the barrier height. Fluctuations in barrier height are
known to lead to significantly higher crossing rates12,13 and
hence higher currents. Finally, for larger separations, where
R2 > R1 again, we observe two higher peaks, indicating a
more structured pair of layers between the barriers.

We confirm this intuitive picture by plotting in Fig. 4
the relative height of the first peak after the first barrier
δρpeak = ρpeakd /ρpeaks , where ρpeaks is the height of the first

peak after a single barrier, and ρpeakd is the height of the
first peak after the first of two barriers. When plotted as
a function of ∆x, the peak height (blue in Fig. 4) indeed
strongly correlates with the particle current (red) in both
the DDFT framework and the simulations. In our particle-
resolved simulations, the additional fluctuations of the par-
ticles in between the two barriers are clearly visible. More-
over, examining simulation trajectories demonstrates that
for most barrier separations, whenever a particle crosses the
first barrier, the sudden increase in density between the bar-
riers typically leads to the rapid expulsion of a particle over
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the second barrier. This observation confirms that the first
of the two barriers can indeed be considered as the main bot-
tleneck for the overall flow process. However, for ∆x . 1.3,
the bottleneck is instead the crossing of the second barrier.
Here, particles form a single narrow layer between the two
barriers, which inhibits the possibility of collectively pushing
a particle across the second barrier. This may explain the
reduced correlation between δρpeak and R2/R1 for small ∆x
in Fig. 4.
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Figure 3. Density profiles near the barriers. Local density
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interaction strength (Γ = 5) and driving force F = 0.1kBT/a,
as obtained via DDFT. From top to bottom, we show a system
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Figure 4. Ordering between the barriers. Height of the first
density peak (in blue) after the first barrier (normalized by the
height of the peak after a single barrier) as a function of barrier
separation at fixed driving force F = 0.1kBT/a and interaction
strength Γ = 5, as obtained from DDFT (top) and simulations
(bottom). For comparison, we also plot the effective resistance of
the second barrier in red.

We have explored the effect of sequential potential energy
barriers on the flow of colloidal particles driven through mi-
crochannels. As our experiment shows, two barriers close to-
gether can result in drastically higher resistance than twice
the resistance of a single barrier. Moreover, via a detailed
investigation of this non-additivity using both simulations
and dynamical density functional theory, we discover that
depending on the barrier spacing, the second barrier can
add an effective resistance that is higher than the resistance
of a single barrier, lower, or even negative. In the negative
regime, the presence of the second barrier helps particles
cross the first barrier, contrary to what intuition would sug-

gest. We show that this enhanced barrier-crossing rate can
be attributed to the structuring of the layer of particles in
between the two barriers: weaker structuring (evidenced by
lower peaks in the density profile) increase the current. A vi-
tal component for this phenomenon is the requirement that
particles on top of the barriers can still interact with the
particles aggregated just before and after that barrier, ne-
cessitating sufficiently long-ranged interactions. Indeed, pre-
liminary simulations show a clear reduction of the observed
non-additivity when the barrier is wider in comparison to
the interaction range. Note, however, that the interaction
range in our setup is controlled directly via the applied ex-
ternal field, rather then by the inherent properties of the
colloidal particles. Such interactions can be induced in a
wide range of colloids or nanoparticles, as long as they are
susceptible to polarization by an external (electric or mag-
netic) field. As a second requirement, the density should
be high enough to enable significant ordering of particles.
In the confined region between the barriers, the ordering
will depend sensitively on the ratio of the barrier spacing
∆x and the preferred spacing between neighboring layers
of particles, as long as ∆x is small compared to the cor-
relation length in the system. Similar confinement effects
have shown to result in oscillatory behavior in forces be-
tween plates or spheres immersed in a background of smaller
particles.18 Interestingly, the effect of negative resistance is
reminiscent of the interplay between reflecting barriers in
quantum-mechanical systems, where interference is known
to lead to enhanced transmission for certain barrier spac-
ings, as used in e.g. Fabry-Perot interferometers.19

The sensitivity of the resistance to the barrier separation
and microscopic particle interactions provide a method to
tailor and control the flow of particles through complex envi-
ronments.20–24 Indeed, for colloids driven across disordered
energy landscapes,25–27 long-range interactions have been
shown to dramatically affect clogging behavior.27 For more
periodic energy landscapes, clever choices of the particle in-
teractions and external fields can lead to complex individual
or collective dynamics,28–31 including e.g. an effective neg-
ative particle mobility.32

The mitigation of a flow-resisting barrier by placing an-
other barrier near it might have important implications in
the design of microfluidic devices, where clogging can be a
major issue.33–37 Moreover, this strategy may also be effec-
tive in aiding the flow of particles through geometric con-
strictions,38–40 where particles have to pass through a bot-
tleneck rather than over a potential energy barrier. In this
scenario additional geometric obstacles – typically placed
before the bottleneck – have already been shown to enhance
flow,41 as applied in e.g. the design of emergency exits.14,42

Hence, it seems likely that potential energy barriers, e.g. in-
duced by external fields, could accomplish the same thing.
The specificity of this approach to relatively long-ranged in-
teractions suggests an opportunity for separating different
particle species, or enhanced flow control via external fields
modifying the interactions or particle motion. Further ap-
plications include the directed transport of strongly charged
dust particles in a plasma43 and congestion in granulates,44

as well as jammed flow situations of colloids.45 An interest-
ing question for future research is whether the effective total
resistance could be further tuned by using a combination of
three, four, or an infinite number of obstacles46,47 (forming
e.g. a ratchet48,49), barriers of different heights or shapes,50

time-dependent barriers,51 or active particles.52
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Experimental setup: Our experiments are based on repulsive
microscopic particles, gravitationally driven through microchannels.
We use superparamagnetic colloidal particles (Dynal M-450, diame-

ter σ = 4.50(5) µm, ρm = 1500 kg m3) which are restricted to two-
dimensional in-plane motion due to gravity. The cell consists of two
rectangular reservoirs of side length 1 mm which are connected by
multiple channels. The dimensions of each channel is 2 mm in length,
30 µm in width and 8 µm in height. In the channels, U–shaped step-
like barrier structures are implemented along the channel, each of
them with width 3 µm and height 500 nm near the channel walls and
250 nm in the middle of the channel.

The applied magnetic field Bext induces a dipole-dipole repulsion
among the colloidal particles, and the strength of the dipole-dipole
interaction can be tuned by changing the magnitude of the magnetic
field. The repulsive in-plane interaction potential V (r) is11,53

V (r) =

{
µ0(χeffBext)2

4πr3
, for r ≥ σ,

∞, for r < σ,
(4)

where µ0 is the vacuum permeability and χeff = 7.88(8) ·
10−11Am2T−1 is the effective magnetic susceptibility of the par-
ticles. Note that for sufficiently high field strengths, the particles
never touch, such that the hard-core component of the interaction
potential can be neglected.

By tilting the whole experimental setup, gravity acts as an external
driving force, with a strength controlled by the tilt angle and the
buoyancy-corrected effective mass of the particles (m∗ = 2.385(80) ·
10−14 kg). Using video microscopy, we measure the total particle flux
through channels with zero, one, or two barriers as a function of the
strength of the driving force.

Channel model: The external potential Vext(x, y) is composed of
a confining channel contribution, Vchannel(y), and the barrier poten-
tial, Vbarrier(x).

The steep repulsive potential forming the channel walls is given by

Vchannel(y) = Vc

[
1−

1

2
erf

(
y +

Ly
2√

2w

)
+

1

2
erf

(
y − Ly

2√
2w

)]
, (5)

with channel width Ly and maximum channel potential height Vc =
1000kBT . The parameter w = 0.25a sets the softness of the walls.
We choose Ly = 4.65a. The channel length Lx = 25.79a is fixed by
the imposed number of particles N = 120.

A single barrier potential is given by

Vbarrier(x) =

V0

[
1−

(
x− x1

a/2

)2
]
, for |x− x1| < a/2

0, otherwise

, (6)

where x1 is the position of the barrier. The double barrier poten-
tial is simply the superposition of two non-overlapping single barrier
potentials at x1 and x2, where |x1 − x2| = ∆x ≥ a.

Dynamical density functional theory: Within the DDFT
framework,15,16 the number density field ρ(r, t) of the colloidal par-
ticles is calculated by solving the differential equation

∂ρ(r, t)

∂t
= D∇

(
ρ(r, t)∇

δF [ρ(r, t)]

δρ(r, t)

)
, (7)

where D = kBT/ξ is the single particle diffusion constant, ξ the fric-
tion coefficient and F [ρ] = Fid[ρ] + Fext[ρ] + Fexc[ρ] is the total
Helmholtz free energy functional. This functional incorporates the
ideal gas contribution

Fid[ρ] = kBT

∫
dr ρ(r)

(
log(Λ

2
ρ(r))− 1

)
(8)

and the external potential term

Fext[ρ] =

∫
dr ρ(r)

(
Vext(r)− xF

)
, (9)

where Λ is the thermal de Broglie wavelength. As an approxi-
mation for the excess free energy functional Fexc[ρ] we chose the

Ramakrishnan–Yussouff functional17

Fexc[ρ] = Fref
exc(ρ0)−

kBT

2

∫
dr

∫
dr
′

∆ρ(r)∆ρ(r
′
)c

(2)
0 (|r− r

′|; ρ0,Γ). (10)

Here, Fref
exc(ρ0) is the excess free energy of an isotropic and homoge-

neous reference fluid at density ρ0, ∆ρ(r) = ρ(r) − ρ0 describes the

density difference to the reference density, and c
(2)
0 (r; ρ0,Γ) is a pair

(two-point) direct correlation function54 that has been calculated via

liquid integral theory with Rogers-Young closure.55

The DDFT is solved numerically by using finite volume difference
methods.56 In each run, we first compute the equilibrium configura-
tion of the system at a given barrier configuration in absence of a
driving force (F = 0). Then, we switch on the driving force and let
the system evolve towards its steady state.

Analytical prediction for non-interacting particles:
For non-interacting particles the excess free energy vanishes, i.e.

Fexc ≡ 0, and the DDFT in the steady state can be reduced to a single
variable x. The general solution for periodic boundary conditions and
tilted potential V (x) = Vbarrier(x)− Fx is57

J =
Dρ0LxLy(1− e−βFLx )

I+I− − (1− e−βFLx )
∫ Lx
0

x.e
−βV (x)

∫ x
0

x’. e
−βV (x′)

, (11)

with I± =
∫ Lx
0

x.e
±βV (x).

For single and double barrier potentials we can find an analytic
expression for J and therefore express the ratio of resistances as

R2

R1

= 1−K
(
e
−F (∆x−a)

+ e
−F (Lx−∆x−a)

)
. (12)

Here, the value K = P
Q does not dependent on ∆x and is determined

by the expressions

P = β
2
F

2
(A1(1− e−βFa)− A2)− (1− e−βFa)

2
, (13)

Q = β
2
F

2
(A1(1− e−βF (Lx−a)

) + A3 − A4)

− βFa(1− e−βFLx )− (1− e−βF (Lx−a)
)(1− e−βFa), (14)

with

γ =
a

4

√
π

βV0

, (15)

ζ± =
√
βV0

(
Fa

4βV0

± 1

)
, (16)

∆E = erf(ζ+)− erf(ζ−), (17)

∆I = erfi(ζ+)− erfi(ζ−), (18)

A1 = γ
(
e
−ζ2+∆I + e

ζ2−∆E
)
, (19)

A2 = γ
2
e
−βFa

∆E∆I, (20)

A3 = γ
2
∆I
(

erf(ζ+)− erf(ζ−)e
−βFLx

)
, (21)

A4 =
a2(1− e−βFLx )

8βV0

(
ζ

2
+Φ(ζ

2
+)− ζ2

−Φ(ζ
2
−)
)
, (22)

where erfi(x) is the imaginary error function, and Φ(x) =

2F2

(
1, 1; 3

2 , 2; x
)

is the generalized hypergeometric function.

Brownian dynamics simulations: In addition to DDFT, we per-
form overdamped Brownian Dynamics simulations of particles. Here,
we numerically solve the equations of motion for the particles, given
by

ṙi =
−∇iVtot

ξ
+
F x̂

ξ
+
√

2DR(t), (23)

where ri is the position of particle i, and Vtot is the total poten-
tial energy of the system, including particle-particle, particle-wall,
and particle-barrier interactions. Finally, R(t) is a delta-correlated
random variable with zero mean and unit variance. The dipolar in-
teractions were truncated and shifted at a distance of 5a.

Most simulations were performed using N = 120 particles, in a
channel with periodic boundary conditions along the x-axis. We have
confirmed that our results are qualitatively the same for larger sys-
tems of N = 600 particles.
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