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Strategic spatiotemporal vaccine 
distribution increases the survival 
rate in an infectious disease 
like Covid‑19
Jens Grauer1, Hartmut Löwen1 & Benno Liebchen2*

Present hopes to conquer the Covid‑19 epidemic are largely based on the expectation of a rapid 
availability of vaccines. However, once vaccine production starts, it will probably take time before 
there is enough vaccine for everyone, evoking the question how to distribute it best. While present 
vaccination guidelines largely focus on individual‑based factors, i.e. on the question to whom vaccines 
should be provided first, e.g. to risk groups or to individuals with a strong social‑mixing tendency, 
here we ask if a strategic spatiotemporal distribution of vaccines, e.g. to prioritize certain cities, can 
help to increase the overall survival rate of a population subject to an epidemic disease. To this end, 
we propose a strategy for the distribution of vaccines in time and space, which sequentially prioritizes 
regions with the most new cases of infection during a certain time frame and compare it with the 
standard practice of distributing vaccines demographically. Using a simple statistical model we find 
that, for a locally well‑mixed population, the proposed strategy strongly reduces the number of 
deaths (by about a factor of two for basic reproduction numbers of R

0
∼ 1.5− 4 and by about 35% for 

R
0
∼ 1 ). The proposed vaccine distribution strategy establishes the idea that prioritizing individuals 

not only regarding individual factors, such as their risk of spreading the disease, but also according to 
the region in which they live can help saving lives. The suggested vaccine distribution strategy can be 
tested in more detailed models in the future and might inspire discussions regarding the importance of 
spatiotemporal distribution rules for vaccination guidelines.

The Covid-19 pandemic 2019/20201–5 has led to more than 40 million infections and 1 million deaths worldwide 
(October 2020)6,7 and an unprecedented social and economic cost which comprises a sudden rise of the number 
of unemployments by more than 20 million in the USA alone, and a damage of trillions of dollars at the stock 
market and in the worldwide real  economy8. This situation challenges politicians to decide on suitable measures 
and researchers to explore their efficiency, based on models allowing to forecast and compare the evolution of 
infectious diseases (like Covid-19) when taking one or the other action.

Available measures to efficiently deal with epidemic outbreaks at low infection numbers include a rig-
orous contact-tracing (e.g. based on “Corona-Apps”9) and -testing combined with quarantine of infected 
 individuals10–13. Strict travel restrictions preventing an infectious disease from entering disease-free regions (or 
to die out  locally14) present an alternative  measure15,16, whereas travel reductions by less than ∼ 99%17 slow down 
the spreading of the disease only  slightly17–19.

At higher infection numbers, the only way to avoid an explosion of contagions is to reduce the contact rate 
through measures that largely influence the everyday life of the population, such as social  distancing11,13,20–23 and 
lock-down13,24. If a population does not persistently reduce the contact rate to the point where infection rates 
decrease (this requires a contact reduction of > 60% for a basic reproduction number of R0 = 2.522), the majority 
of its members must endure the disease—until it finally reaches herd  immunity25.

The main hope which remains at such stages rests on the rapid discovery and admission of  vaccine26,27 (or 
 antibodies28) to accelerate reaching herd immunity. However, while every day where an infectious disease like 
Covid-19 is active may cause thousands of additional deaths, even after admission, it may take months until suf-
ficient vaccine is available to overcome an infectious disease. Therefore it is important to strategically distribute 
the available vaccines such that the number of deaths remains as small as possible. Surprisingly, both official 
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vaccination guidelines, e.g. for pandemic  influenza29,30, and previous works on vaccine  distribution31–33, focus 
on the question to whom vaccine should be mainly provided, e.g. to prioritize individuals by age or disease 
risk, and leave the quest for a suitable spatial and temporal vaccine distribution aside. (Other works  like34 ask 
for the optimal vaccine production rate.) This results in the common practice of simply distributing vaccines 
proportionally to the population  density35.

In the present work we propose alternative strategies for the spatiotemporal distribution of gradually produced 
vaccines, which hinge on the idea that the number of deaths due to a spreading infectious disease is controlled 
by the bi-linear incidence rate βSI36, which increases linearly in the number of susceptibles S and infections I, 
with β being the transmission coefficient, not by population density. With the “infection weighted strategy” 
(see Fig. 1b,e), the available vaccine is distributed proportionally to the calculated bi-linear incidence rate. 
This strategy can be further improved by sequentially prioritizing the regions (cities) with the highest bi-linear 
incidence rate, and correspondingly the highest number of new infections in a certain time frame (see Fig. 1c,f 
and the Supplementary Movie); that is by exclusively providing, or “focusing”, all available vaccines to those 
regions (“focusing strategy”). To compare the infection weighted and focusing strategy with the “demographic” 
vaccine distribution practice, we develop a simple statistical model describing the time-evolution of an epidemic 
outbreak (such as Covid-19) and its response to vaccination. As our central result, we find that the number of 
deaths resulting from infections occurring after the onset of vaccine production is generally lower, i.e. for the all 
considered initial reproduction numbers ( R0 ∼ 1− 4 ) and vaccine production rates as well as in the absence 
and in the presence of additional social distancing rules, when following the focusing strategy rather than the 
demographic distribution practice. In fact, for sufficiently inhomogeneous infection patterns, the focusing strat-
egy reduces the number of deaths by more than a factor of two, for a large range of basic reproduction numbers 
R0 and vaccine production rates. The difference is largest for R0 ∼ 2− 3 , i.e. it features a peak in this range, as 
might be typical for Covid-19 if no additional measures are in action, but even for R0 ∼ 1 the focusing strategy 
significantly increases the survival probability.

Figure 1.  Schematic illustration of the proposed spatiotemporal vaccine distribution strategies and of the 
simulation model. (a) shows the standard “demographic strategy”, where vaccines (dosage needles) are 
continuously distributed among all regions (e.g. cities) proportionally to their population density (dots 
represent groups of individuals). (b) shows the “infection weighted” strategy, where vaccines are distributed 
proportionally to the local bi-linear incidence rates (red and orange dots) and (c) shows the “focusing strategy” 
where at early times (clocks; transparent syringes show the vaccine distribution at later times) only the region 
with the largest bi-linear incidence rate receives vaccines, until the rate of a second region catches up and also 
receives vaccines. (d)–(f) show typical simulation snapshots for an inhomogeneously distributed population 
with a “city size distribution” following Zipf ’s law, taken 56 days after the onset of vaccination when following 
the demographic strategy, the infection weighted strategy or the focusing strategy, respectively. The legend below 
shows the states in our model.
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Model
To explore the impact of the spatiotemporal vaccine distribution on the disease-evolution in detail, we now intro-
duce a computational model, which is based on Brownian agents and allows deriving a (nonuniform) statistical 
mean-field model as we will discuss below. Both models are expected to apply to situations where the population 
is locally well-mixed. The model describes the dynamics of N agents moving randomly in continuous space in 
a box of size L× L with periodic boundary conditions. The agents represent groups of individuals and have an 
internal state variable, which is inspired by the SIR  model37–39 and its  variants40–44. We use colors (see legend 
in Fig. 1) to represent the possible states in our simulations, which refer to individuals which are “susceptible” 
(grey), “infected with weak symptoms” (orange), “infected with significant symptoms” (red), “recovered” (green) 
and “vaccinated” (blue). Infected agents (orange and red) have an inner clock; they remain symptom free for 
a latency time tL and then show mild (orange) or significant (red) symptoms for a duration tD − tL . After an 
overall disease duration of tD they either recover with a survival probability so,r (green) or die with probability 
1− so,r (black), where the indices refer to agents with mild (orange) and significant symptoms (red), respectively. 
To model the infection dynamics we describe the spatial motion of an agent with position ri(t) using Brown-
ian dynamics ṙi(t) =

√
2Dηi(t) , where D is the diffusion coefficient controlling how fast agents move and ηi(t) 

represents Gaussian white noise with zero mean and unit variance. We assume that all infected agents (orange 
and red) are infectious, both in the latent phase and afterwards (as for Covid-19) and infect a fraction of βo + βr 
of those susceptible agents (grey) which are closer than a distance Rc ; here, indices refer to mild (orange) and 
significant (red) symptoms. Agents showing significant symptoms (red) do not move but can infect “visitors” if 
actively approaching them.

To connect the suggested model with standard mean-field descriptions for infectious diseases, we now deduce 
a continuum model from the Langevin equations describing the agent dynamics. The resulting model can be 
viewed as a generalization of standard mean-field models such as the SIR and the SEIR model to inhomogeneous 
situations and cases where mild and strong infections coexist (as for Covid-19). Let us now consider continuous 
variables (fields) representing the local mean number density of susceptible agents S(r, t) , exposed agents E(r, t) 
(infected but not yet diseased), infected agents which are free of symptoms (or have mild symptoms) F(r, t) , 
infected agents with symptoms I(r, t) , recovered (immune) agents R(r, t) and victims V(r, t) . In the absence of 
social forces (pair attractions, social distancing), the following equations follow by translating Langevin equa-
tions to Smoluchowski  equations45 and coupling them via suitable reaction terms:

Note here that the exposed state explicitly shows up as a dynamical variable at the continuum level, but only 
implicitly in our agent-based simulations where infected agents have an inner clock and are in the latent phase 
before showing (mild) symptoms. In the above equations, β ′ is the effective contact rate, i.e. 1/β ′ is the mean 
time between infectious contacts; α = 1/tL is the rate to switch from the exposed (latent) state to the infected 
state, δ = 1/(tD − tL) is the recovery rate and ν′(r, t) is the spatiotemporal vaccination rate which is linked to the 
constant total vaccination rate in the agent-based model via ν =

∫

dr ν′(r, t) . The number r is the ratio of infec-
tions proceeding symptom free (or with mild symptoms) and ρ0 = N/L2 is the mean agent density. Finally, D is 
the diffusion coefficient and f(r) = −∇rU/γ is the reduced force due to the external potential which we use to 
create a density profile mimicking a typical city size distribution. The overall density converges to a Boltzmann 
distribution S + E + F + I + R + V = Nexp[−U(r)/(kT)]/

∫

exp[−U(r)/(kT)]dr , yielding the conservation 
law 

∫

(S + E + F + I + R + V) dr = N which can be viewed as an expression of the conservation of the overall 
number density (or the number of agents) in the coarse of the dynamics.

Numerically solving this model by using finite difference simulations now allows us to further test the 
spatiotemporal vaccination strategies. In our simulations we start with the initial state E = F = R = V = 0 
and S = 1− ǫ , I = ǫ where ǫ(r, t) represents a small perturbation of the unstable steady state (e.g. 
E = F = I = R = V = 0, S = 1 for U = 0 ), which represents the population before the emergence of the dis-
ease. The results of these simulations confirm that the spatiotemporal distribution of continously distributed 
vaccines plays an important role; also here, the infection-weighted strategy and the focusing strategy strongly 
increase the number of survivors as compared to the demographic distribution.

Results
We now perform numerical simulations of both the proposed agent based model and the statistical mean-
field model which both lead to consistent results. For the agent based model we perform Brownian dynamics 
 simulations46–51 starting with 2× 10−3N  randomly distributed initial infections and an initial reproduction 
number R0 = 2.5 such that infection numbers exponentially increase over time. Let us assume that vaccine pro-
duction starts after some initial transient and then allows to transfer ν individuals per day from the susceptible to 
the immune state. (Note that the duration of the initial transient is unimportant in our simulations, if vaccination 
starts long before herd immunity is reached.) Now considering the time-evolution of the percentage of infected, 
dead and recovered individuals of a given population, and distributing the available vaccines proportionally to 

Ṡ(r, t) = −β ′(E + F + I)S/ρ0 + D∇2S −∇ · (Sf)− ν′

Ė(r, t) = β ′(E + F + I)S/ρ0 − αE + D∇2E −∇ · (Ef)
Ḟ(r, t) = αrE − δF + D∇2F −∇ · (Ff)
İ(r, t) = α(1− r)E − δI −∇ · (If)
Ṙ(r, t) = δ(soF + sr I)+ D∇2R −∇ · (Rf)+ ν′

V̇(r, t) = δ(1− sr)I + δ(1− so)F
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the population density (bronze curves in Fig. 2), we observe an infection maximum (panel a) about 30 days (two 
infection cycles) after the onset of vaccine production, i.e. when about 22% of the population have received vac-
cines and 2% of the population is infected. When distributing the available vaccines proportionally to the local 
bi-linear incidence rate βSI instead, which according to İ ∝ βSI refers to the number of new infected cases in a 
given time frame (“infection weighted strategy”), notably, the infection maximum occurs an entire infection cycle 
earlier (silver curve in panel a). Here the infection number peaks when only 11% of the population has received 
vaccines and only 1% is infected. However, the infection weighted strategy is not optimal but can be further 
improved by exclusively providing all available vaccines to the region (e.g. a city) with the highest incidence rate 
(“focusing strategy”). This means that initially only a single region receives vaccines until the number of new 
infected individuals in a second region catches up and both regions simultaneously receive vaccines, until a third 
region catches up and so on. Following this “focusing strategy” the infection peak further shifts to earlier times 
(golden curve in panel a) and occurs when only 0.6% of the population is infected. Importantly, the resulting 
fraction of deaths reduces by more than a factor of two when following the infection weighted strategy (silver) 
rather than the demographic strategy (bronze). It almost halves again when following the focusing strategy 
instead (gold). This shows that the precise spatial and temporal order of vaccine donation controls the number 
of survivors from an infectious disease.

We now complement these results by numerical solutions of the statistical mean-field model equations by 
finite-difference simulations. As in our particle based simulations we find that the focusing strategy is generally 
better than the infection-weighted strategy and the demographic vaccine distribution strategy. The results of the 
agent-based simulations and the continuum simulations show a close quantitative agreement (not shown for the 
uniform system; see Fig. 4 for an exemplaric quantitative comparison in the presence of “cities”.).

To systematically explore the robustness of these findings we now repeat our simulations for different vaccine 
production rates and initial reproduction numbers. Figure  3 shows that the resulting fraction of deaths, counted 
once the disease is gone, is generally highest for the demographic strategy (bronze) and lowest for the focusing 
strategy (gold). Mathematically, this is because vaccination is most efficient at locations where it maximally 
inhibits the development of new cases of infections, which holds true independently of the specific parameter 
regime. The differences among the individual strategies is comparatively large if vaccine is produced fast enough 

Figure 2.  Competition of spatiotemporal vaccine distribution strategies regarding the time evolution of the 
fraction of infected individuals (a), the fraction of deaths (b), and of recoveries and vaccinations (c). Dashed 
red lines show simulation results without vaccination and bronze, silver (or grey) and gold show results for the 
demographic vaccine distribution strategy, the infection weighted strategy and the focusing strategy respectively. 
The blue line in panel (c) shows the vaccinated fraction of the population and vertical blue lines mark the 
onset of vaccination; the specific time of which is unimportant (see text). Panels on the right show simulation 
snapshots taken 14 days after the onset of vaccine production; insets magnify extracts of these snapshots. 
Parameters: Disease duration tD = 14 days ; latency time tL = tD/3 , survival probability sr = 0.965, so = 0.99 , 
total vaccination rate ν = 0.1N/tD and initial reproduction number R0 = 2.5 . (The latter is based on 
D = 102R2

c /tD , βo = 0.3 , βr = 0.1 ; see “Methods”); L = 500Rc ; curves are averaged over 100 random initial 
ensembles with N = 6000.
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to allow vaccinating at least about 1% of the population per day and at reproduction rates around R0 ∼ 2− 3 . 
The latter value might be sensible for Covid-19. However, even for slower vaccine production or for R0 ∼ 1− 2 
(as typical for influenza), several percent of deaths can be avoided in our simulations by strategically distributing 
the available vaccines in space and time.

To further explore the applicability-regime of the focusing strategy, we now combine it with social distancing 
rules, which reduce the effective reproduction number to Rt ∼ 1 . We implement the latter as a phenomenologi-
cal repulsive three-body interaction among the agents (see “Methods” for details) which prevents them from 
aggregating in groups of more than two individuals. Also here, the resulting deaths fraction (Fig. 4a) saturates 
significantly earlier when following the focusing strategy (gold) rather than the demographic strategy (bronze). 
The difference in deaths numbers among the three different vaccination strategies is almost identical to our cor-
responding results at R0 ∼ 1 but without social distancing (Fig.3b).

Figure 3.  Fraction of deaths as a function of the vaccine production rate (left) and the initial basic reproduction 
number (right) for the demographic strategy (bronze), the infection-weighted strategy (silver) and the focusing 
strategy (gold). Results without vaccination (black) are shown for comparison. The results are based on the 
agent-based model; the statistical mean-field equations lead to very similar graphs. Parameters are shown in the 
key; remaining ones are as in Fig. 2.

Figure 4.  Competition of spatiotemporal vaccination strategies (a) in the presence of social distancing which is 
activated after 14 days (black vertical line) and reduces the reproduction number to R ≈ 1 (b) for a population 
density distribution following Zipf ’s law. Colors and parameters are as in Fig. 2 but we have N = 12000 , 
L = 700 , R0 = 2.7 (which is based on D = 103R2

c /tD and βo = 0.05 , βr = 0.017 ) and ν = 0.05N/tD . Inset: 
Analogous results for the mean-field model using same parameters as in the agent-based model and a 140 × 
140-grid with each grid point corresponding to a spatial area of 5Rc × 5Rc (c) assuming a delay of 2 (dotted 
golden curve) and 7 (dashed golden curve) days in the registration of the cases of infection. Parameters are as in 
Fig. 4b.
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Finally, we explore a possible impact of a nonuniform population distribution (city structure) on the proposed 
vaccination strategies. We create a population with a spatial density distribution following Zipf ’s law which 
closely describes the city size distribution in most  countries52 as P̃c(s > S) ∝ 1/S , where P̃c(s) is the probability 
that a city is larger than S. To generate a population featuring a corresponding population distribution, we add 
an external potential U to the equation of motion of the agents (see “Methods” for details). Following statistical 
mechanics, the resulting population density follows Boltzmann’s law P(r) ∝ exp[−U(r)/(kT)] where P(r) is the 
probability that an agent is at position r and kT = γD is the effective thermal energy of the agents, controlling 
how often agents leave a “city” (minimum of U). Now matching Boltzmann’s distribution with Zipf ’s law yields 
a construction rule for U (see “Methods”) to create a population pattern featuring a characteristic city-size 
distribution. Our resulting simulations, shown in Fig. 4b, and in the Supplementary Movie (for N = 55.000 
agents), demonstrate that the focusing strategy and the infection weighted-strategy again halve the number of 
deaths compared to the demographic strategy. Here, the former two strategies are comparatively close to each 
other regarding the number of resulting deaths, which indicates that in strongly inhomogeneous populations a 
suitable spatial vaccine distribution rule might be even more important than the precise temporal sequence of 
vaccine donation. While in the previous simulations we assumed an immediate registration of infected persons, 
we have tested the strategies when the time scale for registration of infections is delayed by up to seven days 
(dashed and dotted golden curves in Fig. 4c). Even in the presence of such a delay, we obtain a reduced number 
of deaths when following the focusing strategy.

To further test the robustness of these findings, we have performed continuum simulations of our statistical 
mean-field model, which leads to close quantitative agreement with the particle based simulations (Fig. 4b). 
Typical snapshots of the infection pattern 56 days after the onset of vaccination are shown in Fig. 5. These 
figures show a clear reduction of the infection number in all infection hotspots for the focusing strategy (panel 
c) as compared to the infection weighted strategy (b) and in particular compared to the demographic vaccine 
distribution practice (a).

Discussion
Our findings establish the idea that the optimal vaccine distribution depends not only on individual-based fac-
tors (who first) but also on the spatiotemporal distribution (e.g. where to provide vaccines first). In particular, 
our results have shown that by sequentially prioritizing spatial regions (cities) with the highest local bi-linear 
incidence rates, the proposed “focusing strategy” significantly reduces the number of deaths compared to the 
standard practice of distributing vaccines demographically. Specifically for locally well-mixed populations, initial 
reproduction numbers R0 ∼ 1.5− 4 and a sufficiently inhomgeneous infection pattern, and if vaccine produc-
tion starts long before the population reaches herd immunity, our simulations reveal that the focusing strategy 
can reduce the number of deaths by more than a factor of two (and for R0 ∼ 1 by up to about 35% ). These find-
ings should be further tested in detailed models in the future e.g. to explore the impact of the proposed strategy 
also in situations where the population is not locally well-mixed and to combine the suggested spatiotemporal 
distribution strategy with individual-based factors such as the the prioritization of risk groups, individuals with 
a strong social mixing tendency or with jobs of systemic relevance. Finally, it should be noted that its applicabil-
ity hinges on a reasonably detailed knowledge e.g. of the actual local infection numbers and the relevant delay 
times in the communication of tests.

Methods
Simulation details. To calculate the spatial dynamics of the agents in our model, we solve Langevin equa-
tions ṙi(t) =

√
2Dηi(t) with i = 1, ..,N using Brownian dynamics simulations involving a forward Euler time-

stepping algorithm and a time-step of dt = 0.0028 days which amounts to about 4 minutes. After each timestep 
we check for each infected agent (red or orange) which susceptible agents (grey) are closer than Rc . We then 
change the state of the latter agents to an infected state with a transmission rate of β̃o = 3β̃r = 0.0075/dt (Figs. 2, 
3, 4a), corresponding to infections with mild symptoms (orange) and significant symptoms (red), respectively. 

Figure 5.  Snapshots of the infection patterns 56 days after the onset of vaccination, based on the statistical 
mean-field model. Colors show the density of exposed agents E(r, t) . Parameters are as in Fig. 4b.
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These rates yield βo = 3βr = 0.3 for the corresponding fractions of contacts which lead to infections. See Table 1 
for a list of the simulation parameters which we use in the present work.

Additional simulations. In order to demonstrate that the obtained results do not depend on the details of 
our simulations, but are rather to be understood as a generic outcome, we have performed additional simula-
tions based on a different particle based model. In particular, we have investigated active underdamped particles, 
which feature inertia, unlike the Brownian agents considered in our model, and move in a box of size L× L with 
periodic boundary conditions. We have have also tested this with hard-wall boundary conditions and find simi-
lar results (not shown here). In these simulations each particle has an internal drive, represented by an effective 
self-propulsion force FSP,i = γt v0u(θi) , where u(θi) = (cos(θi), sin(θi)) is the direction of self-propulsion. The 
behavior of the particles with masses m and moments of inertia I is now substantially different and the underly-
ing equations for the velocities vi and orientations θi are

where ηi(t), ξi(t) represent Gaussian white noise of zero-mean unit variance and γt , γr are are translational and 
rotational drag coefficients. In the simulations we again obtain a significantly reduced number of deaths when 
applying the focusing strategy as shown in Fig. 6a (with m/γt = I/γr = 103/tD , v0 = 50Rc/tD).

In addition, we carried out further simulations in which we tested the strategies in a structured population 
in which individuals differ from each other. For this purpose we assigned different mobilities to the agents and 
modeled two groups of individuals within the population, one with very low mobility ( D = 5× 102R2

c /tD ) and 

(1)m
dvi(t)

dt
=− γtvi −∇riU + FSP,i +

√
2Dγtηi ,

(2)I
d2θi(t)

dt2
=− γr

dθi

dt
+

√
2Dγrξi ,

Table 1.  Typical simulation parameters.

Disease duration tD 14 days

Latency time tL tD/3

Vaccination rate ν 0.1N/tD

Initial reproduction number R0 2.5–3

Survival probability sr 96.5%

Survival probability so 99%

Effective contact rate β ′ R0/tD

Diffusion coefficient D 102–103R2
c /tD

Number of agents N 6.000–55.000

Simulation box length L 500–700Rc
Strength of “city” potential a Dγ /2

“City radius” Rmin ,Rmax 20, 80Rc

Figure 6.  Fraction of deaths over time for (a) active particles with inertia and self-propulsion and (b) particles 
with different mobilities.
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the other with very high mobility ( D = 2× 103R2
c /tD ). The number of deaths is shown in Fig. 6b, where it can 

be clearly seen how this number is significantly reduced when the focusing strategy is applied.

City size structure. To generate a population density distribution with a structure which is typical for 
cities, we add an external potential landscape U(r) to the Langevin equations describing the dynamics of the 
agents, i.e. ṙi(t) =

√
2Dηi(t)−∇riU(ri)/γ . Here γ is an effective “drag” coefficient determining the strength 

of the response of the agents to U. We now create U as a superposition of Gaussians, U(r) =
∑

j ae
−

(r−rj)
2

2σ2j  , 
each of which leads to a population density maximum around rj , which represents the center of city j. Here a 
is the strength (amplitude) of the reduced potential which we choose as a = Dγ /2 = kT/2 and σj defines the 
radius of city j, which we choose randomly from a distribution P(σ ) = 1

σ
1

ln(Rmax/Rmin)
 where Rmin = 20Rc and 

Rmax = 80Rc are the minimal and the maximal possible “city radius” in the simulations underlying Fig.4b. We 
randomly distribute the city centers rj within the simulation box.

Social distancing. To effectively model social distancing in a simple way, we phenomenologically add 
repulsive excluded volume interactions among the agents which prevent that groups of more than two agents 
form. That is, we choose U = 1

2

∑

k,l �=k Vklνkl where the sums run over all agents and where Vkl represents the 

Weeks-Chandler-Anderson interaction potential among agents k,  l, i.e. Vkl = 4ǫ
[

( d
rkl
)12 − ( d

rkl
)6
]

+ ǫ if 

rkl ≤ 21/6d and Vkl = 0 otherwise. Here rkl denotes the distance between agents k and l and rcut = 21/6d repre-
sents a cutoff radius beyond which the interaction potential is zero; ǫ controls the strength of the potential and 
is chosen such that ǫ/γ = D . In our simulations at each timestep we choose νkl = 1 if at least one of the agent k 
and l has a “neighbor” at a distance closer than d = 3Rc and otherwise we choose νkl = 0 . In addition, we add a 
weak pair attraction of strength D/10 and range d = 3Rc to our simulations to support the formation of pairs. 
That way, agents can form pairs but there is a significantly reduced probability that they form triplets or larger 
groups.

Relation of reproduction number to simulation parameters. Here we relate the effective repro-
duction number Re(t) , which is the average number of infections caused by an infected agent at time t, with 
the microscopic parameters in our simulation. For this purpose, let us first consider the area A(t) covered by 
a Brownian agent with radius Rc and diffusion coefficient D over a time t. This area is known as the Wiener 
 sausage53 and reads

where J0(y) and Y0(y) are the 0-th Bessel functions of the first and second kind. Now denoting the agent density 
of susceptible agents with ρS , the average number of (possibly infectious) contacts during a time τ is A(τ )ρS . 
Thus, if agents are infectious over an overall time of tD and the fraction of contacts which lead to infections with 
significant (mild) symptoms is βr ( βo ), we obtain the following expression for the (spatially averaged) effective 
reproduction number Re:

where Re(t = 0) = R0 . This expression links the reproduction number with the microscopic simulation param-
eters and reveals that the reproduction number at time t is proportional to the average density of susceptible 
agents at time t.

Supplementary movie. The movie shows the time-evolution of the modeled infection pattern for 
N = 55.000 agents and its response to the proposed spatiotemporal vaccine distribution strategies. Parameters 
are as in Fig.4b and the population distribution in the movie follows a typical city size structure (Zipf ’s law).

Code availability
The source code of the model has been deposited in a recognized public source code repository (Zenodo, http://
doi.org/10.5281/zenod o.41220 12).
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