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Active Brownian and inertial particles in disordered environments:
Short-time expansion of the mean-square displacement
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We consider an active Brownian particle moving in a disordered two-dimensional energy or motility landscape.
The averaged mean-square displacement (MSD) of the particle is calculated analytically within a systematic
short-time expansion. As a result, for overdamped particles, both an external random force field and disorder
in the self-propulsion speed induce ballistic behavior adding to the ballistic regime of an active particle with
sharp self-propulsion speed. Spatial correlations in the force and motility landscape contribute only to the cubic
and higher-order powers in time for the MSD. Finally, for inertial particles two superballistic regimes are found
where the scaling exponent of the MSD with time is α = 3 and α = 4. We confirm our theoretical predictions
by computer simulations. Moreover, they are verifiable in experiments on self-propelled colloids in random
environments.
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I. INTRODUCTION

The motion of active colloidal particles in complex envi-
ronments is a vivid topic of recent physics research [1–3].
In particular, if self-propelled particles are moving in a het-
erogeneous or random medium, then there is a plethora of
new effects created by disorder. Examples include trapping
and clogging of particles [4–6], destruction of flocks [7], the
control of crowds [8,9], and subdiffusive long-time dynamics
[4,10–12]. The random environment can be established by a
porous medium [13,14], by fixed obstacle particles [15–20], or
by optical fields (such as a speckle field [21–27]) which can
create both random external potentials [28–34] or a motility
landscape [35,36].

While the control of particle motion in a random environ-
ment is crucial for many applications such as steered drug
delivery and minimal invasive surgery, also the fundamental
physics needs to be understood within statistical mechanics.
In particular, analytical solutions for simple model systems
are important here to unravel the underlying principles. A
particular successful model for self-propelled particles is that
of active Brownian motion [37–39] designed for colloidal
microswimmers. Basically, the particle performs overdamped
motion under the action of an internal effective drive directed
along its orientation which is experiencing Brownian fluctu-
ations establishing a persistent random walk of the particle.
In this model, the mean-square displacement (MSD) of the
particle exhibits a crossover from ballistic behavior governed
by directed self-propulsion to final long-time diffusion with a
diffusion coefficient that scales with the square of the self-
propulsion velocity. The motion of self-propelled particles
in various random environments has been studied by using
computer simulations of active Brownian particles or related
models [4,40–56]. Also some experiments for active particle

in disordered landscapes have been performed on colloids
[7,8,16,57] and bacteria [58]. However, analytical results are
sparse, even for a single active particle. In one spatial dimen-
sion, exact results have been obtained for a run-and-tumble
particle [11]. In higher dimensions, analytical results are avail-
able for discrete lattice models [10] and for a highly entangled
slender self-propelled rod [59,60].

Here we present analytical results for the off-lattice model
of active Brownian motion in two dimensions by exploring
the short-time behavior of the mean-square displacement.
The self-propelled particle is experiencing a space-dependent
landscape of quenched disorder [61,62] of an external force
or the internal motility field. We calculate the averaged MSD
of the particle for arbitrary disorder strength in a systematic
short-time expansion. As a result, for overdamped particles,
randomness in the external force field and the particle motility
both contribute to the initial ballistic regime. Spatial correla-
tions in the force and motility landscape contribute only to the
cubic and higher-order powers in time for the MSD. Finally,
for inertial particles which are initially almost at rest three
subsequent regimes can occur where the scaling exponent of
the MSD with time crosses over from an initial α = 2 to a
transient α = 3 and a final α = 4. The latter superballistic
regimes are traced back to the initial acceleration. We remark
that similar superballistic exponents have been found for an
active Brownian particle in linear shear flow [38] and for
animal motion [63] but the physical origin is different in these
cases. Our predictions are confirmed by computer simulations
and are in principle verifiable in experiments on self-propelled
colloids in random environments.

As an aside, we also present results for a passive particle in
an random force landscape. Note that we consider the short-
time behavior that is also briefly mentioned in [28–32,64,65]
though in these works usually the focus is on the long-time
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behavior [28–32,65] or the mean first passage time [64] of
such systems.

The paper is organized as follows: In the next section we
discuss the model of a single Brownian particle interacting
with an external random landscape, in the subsequent one we
move on to the case of a random motility field and in both
cases we consider both an overdamped and an underdamped
particle. Finally, in Sec. IV we conclude with a summary of
our results and possible continuations of our work.

II. ACTIVE PARTICLE IN A DISORDERED POTENTIAL
ENERGY LANDSCAPE

A. Overdamped active Brownian motion

We start by considering a single active Brownian parti-
cle moving in the two-dimensional plane. The dynamics is
assumed to be overdamped as relevant for micron-sized swim-
mers and self-propelled colloids at low Reynolds number. The
position of the particle center is described by its trajectory
�r(t ) = (x(t ), y(t )) and its orientation is given by a unit vector
û(t ) = (cos φ(t ), sin φ(t )), where φ is the angle of the orien-
tation vector with the x axis and t is the time. The equations
of motion of an overdamped active Brownian particle for the
translation and rotation degrees of freedom are given by

γ �̇r(t ) = γ v0û(t ) + �f (t ) + �F (�r(t )), (1)

γRφ̇(t ) = fR(t ), (2)

where γ and γR are, respectively, the translational and ro-
tational friction coefficients and v0 is the self-propulsion
velocity which is directed along the orientation vector û(t ).
The terms �f (t ) and fR(t ) represent Gaussian white noise
forces and torques originating from the solvent kicks with

〈 �f (t )〉 = 0, (3)

〈 fi(t ) f j (t
′)〉 = 2Dγ 2δ(t − t ′)δi j, (4)

〈 fR(t )〉 = 0, (5)

〈 fR(t ) fR(t ′)〉 = 2DRγ 2
R δ(t − t ′). (6)

Here 〈·〉 is the thermal noise average, D is the translational
free diffusion constant, and DR is the rotational one.

Importantly, the particle is exposed starting at t = 0 to
an external force field �F (�r) representing the static quenched
disorder. We assume that the external force is conservative,
i.e., that it can be derived as a gradient from a random potential
energy V (�r) such that

�F (�r) = −�∇V (�r) (7)

holds. For the scalar potential energy we choose a general
decomposition into two-dimensional Fourier modes and as-
sume that the amplitudes in front of these modes are randomly
Gaussian distributed and uncorrelated. In detail, the random
potential V (�r) is expanded as

V (�r) = −
∞∑

i, j=0

[
ε

(1)
i j cos(kix + k jy) + ε

(2)
i j sin(kix + k jy)

]
,

(8)

where kn = 2π
L n, L denoting a large periodicity length. The

amplitudes ε
(α)
i j are Gaussian random numbers which fulfill

ε
(α)
i j = 0 and ε

(α)
i j ε

(β )
mn = ε

(α)2
i j δimδ jnδ

αβ, (9)

where (·) denotes the disorder average. We further assume
the potential to be isotropic, meaning that the εi, j are only
functions of i2 + j2.

Now we compute the MSD 	(t ) of the particle which is
initially at time t = 0 at position �r0 with orientational angle
φ0. In this paper, we consider a disorder-averaged MSD, in
detail it is a triple average over (i) the thermal noise 〈·〉, (ii) the
disorder (·), and (iii) the initial conditions 〈〈·〉〉. As we switch
on the potential at t = 0, due to translational invariance and
self-propulsion isotropy, the latter are assumed to be homo-
geneously distributed in space and in the orientational angle.
Consequently,

	(t ) := 〈〈 〈(�r(t ) − �r0)2〉 〉〉. (10)

In order to simplify the notation, the average over both dis-
order and initial conditions for the various components and
derivatives of the forces will be abbreviated by the symbol (̂·),
for example, 〈〈F 2

x (�r0)〉〉 ≡ F̂ 2
x .

In Appendix we detail the analytical systematic short-time
expansion in terms of powers of time t for the MSD. To fourth
order, the final result reads as

	(t ) = 4Dt +
[
v2

0 + 1

γ 2
F̂ 2

i

]
t2 −

[
1

3
v2

0DR + D

γ 2
F̂ j2

i

]
t3

+ 1

24

[
2v2

0D2
R + 10

D2

γ 2
F̂ jk2

i − 5
v2

0

γ 2
F̂ j2

i

+ 1

γ 4

(
14̂F 2

i F i2
i + 8 ̂F 3

i F ii
i + 14 ̂FxFyF y

x F i
i

+ 14 ̂FyFxF x
y F i

i − 5̂F 2
i F y2

x − 5̂F 2
i F x2

y

)]
t4 + O(t5).

(11)

Here our convention in the notation is that the presence of any
index i, j, or k implies an additional sum over the directions
x and y. For example, in this compact notation, we have F̂ 2

i ≡∑
i=x,y F̂ 2

i . Subscripts in F indicate the Cartesian component
of the force, while superscripts denote a spatial derivative. For

example, F̂ j2
i = ∑

i=x,y

∑
j=x,y

̂( ∂Fi
∂ j )2.

In order to assess the presence of scaling regimes for the
MSD, it is necessary to know if the prefactors of tα are neg-
ative or positive and hence what the sign of the various force
products is. In Eq. (11), it can be shown that all products are

positive with the exception of ̂F 3
i F ii

i . In the special case of a
single mode potential, that we define as a potential where only
ε11 	= 0, one can simplify this negative product with all the
ones with 1/γ 4 prefactor and obtain the shorter and positive

expression 6̂F 2
i F k2

j (see Appendix). In the more general case
positivity is not ensured.

Let us now discuss the basic result contained in Eq. (11).
First, in the absence of any external forces, we recover the
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analytical expression for a free active particle [37] where

	(t ) = 4Dt + 2
v2

0

D2
R

(DRt + e−DRt − 1)

= 4Dt + v2
0t2 − 1

3
v2

0DRt3 + 1

12
v2

0D2
Rt4 + O(t5) (12)

expanded up to order O(t5). Conversely, for finite forces but
in the limit of no activity, v0 = 0, we get results for a passive
particle in a random potential energy landscape [65].

In general, for both v0 	= 0 and �F 	= 0, as far as the influ-
ence of disorder is concerned, the first leading correction in
the MSD is in the ballistic t2 term. The physical interpretation
of this term is rooted in the fact that in a disordered energy
landscape on average the particle actually feels a nonvanishing
force such that it is drifting. The resulting ballistic contribu-
tion is on top of the activity itself which also contributes to
the transient ballistic regime. We define now the crossover
time t c

1→2 as the ratio A1/A2 between the two regimes scaling
with A1t and A2t2. This quantity indicates the time when the
ballistic regime becomes prominent over the diffusive one. In
this case t c

1→2 depends on the self-propulsion velocity and the
strength of the potential, and more specifically it shrinks as
those grow:

t c
1→2 = 4D

F̂ 2
i

/
γ 2 + v2

0

, (13)

meaning that an active particle subject to a random force field
begins earlier to move ballistically. Spatial correlations in the
random potential energy landscape are contributing to the t3

term in lowest order and affect the higher powers in time as
well. Clearly, from the result (11), the prefactor in front of the
t3 term is negative such that there is no regime where a pure
t3 scaling in the MSD can be observed.

Finally, one could deduce from Eq. (11) that there is a
special limit of parameters where the dominant regime is an
acceleration where 	(t ) ∝ t4. In order to see this, one can set
v0 and D to be small, while considering large wave vectors k
and amplitudes ε in the potential decomposition Eq. (8) such
that any combination of ε2k4 is much larger than one. How-
ever, this is not a scaling regime, as the term O(t6) dominates
on O(t4) in the same limit.

We compared the result (11) to standard Brownian dy-
namics computer simulations. In our simulations, we first
generated a random energy landscape, and then the particle
was exposed to the selected landscape with an initial random
position and orientation. Then we integrated the equations
of motion with a Euler finite difference scheme involving a
finite time step of typically 	t = 10−6/DR. In order to sim-
plify calculations for the simulations, we always used single
mode potentials. The MSD was then appropriately averaged
over many starting configurations, the number of which was
always larger than 104. This amount was large enough to yield
statistical errors always below 1% of the averaged values of
the MSD. We believe these samples are hence large enough to
ensure ergodicity for the initial conditions.

FIG. 1. Mean-square displacement [(a) and (c)], scaling expo-
nent α [(b) and (d)], and crossing time t c

1→2 (marked by a blue line)
for an overdamped active particle in a random single mode potential.
In (a) and (b) we used the parameters v0 = 100

√
DDR, ε = 100Dγ ,

and L = 100
√

D/DR. As described by the theory, the initial diffu-
sive behavior is soon replaced by the ballistic behavior. In (c) and
(d) the parameters v0 = 50

√
DDR, ε = 100Dγ , and L = 10

√
D/DR

also show first the diffusive and then the ballistic regimes, but for
larger times the short-time expansion approximation breaks down
earlier, as the average ε2k4 is larger.

Figure 1 shows examples for the scaling behavior of both
the MSD and its scaling exponent

α(t ) := d ( log(	(t )))
d ( log(t ))

(14)

as functions of time in a double logarithmic plot. As can
be deduced from Figs. 1(a) and 1(b), the initial diffusive
regime where 	(t ) ∝ t and the subsequent ballistic regime
	(t ) ∝ t2 are clearly visible and reproduced by our short-time
expansion. As expected, for large times there are increasing
deviations between theory and simulation as the theory is
a short-time expansion, and this is especially noticeable for
large values of ε2k4, as for example is shown in Figs. 1(c)
and 1(d).

B. Underdamped active Langevin motion

For macroscopic self-propelled particles or particles in
a gaseous medium, inertial effects are getting relevant and
overdamped active Brownian motion is generalized toward
underdamped active Langevin motion [39,66]. The equations
of motion for an inertial active particle in a random potential
energy landscape are then generalized to

m�̈r(t ) + γ �̇r(t ) = γ v0û(t ) + �F (�r(t )) + �f (t ), (15)

γRφ̇(t ) = fR(t ), (16)

where m is the particle mass. For simplicity, as in many
previous studies for inertia [18,67–69], we have neglected
rotational inertia here which could be included by using a
finite moment of inertia [39,66].
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Now the initial condition average 〈〈·〉〉 has to be performed
not only over particle positions and orientations but also over
the initial particle velocity �̇r(0). The resulting triple-averaged
short-time expansion of the mean-square displacement
is now:

	(t ) = σ 2
v t2 + γ

m

[
4

3

γ

m
D − σ 2

v

]
t3

+ 1

m2

[
7

12
γ 2σ 2

v + 1

4
F̂ 2

i + 1

4
γ 2v2

0 − γ 3

m
D

]
t4 +O(t5),

(17)

where σ 2
v = 〈〈ẋ2(0) + ẏ2(0)〉〉 is the variance of the initial

speed of the particle. This result bears different dynami-
cal scaling regimes. First, for short times the MSD starts
ballistically with t2 due to the initial velocities. Of course,
this regime is absent if the particle is initially at rest when
σ 2

v = 0. Remarkably, for σ 2
v 
 Dγ /m the leading behavior

is governed by the term t3, cubic in time, as the prefactor
is positive. Please note that for an initially thermalized par-
ticle with a Maxwellian velocity distribution, the prefactor
is negative, implying the absence of this cubic regime. Fi-
nally, the presence of an external disordered force field now
contributes to the t4 term as does the self-propulsion. This
is plausible, as if on average a constant (external or internal
self-propulsion) force is present, then the particle is constantly
accelerated which leads to the t4 scaling. Consequently, for
σ 2

v 
 Dγ /m 
 F 2
i /γ 2+v2

0 there are three subsequent scaling
regimes: from initially ballistic, over to the cubic regime, and
finally to the constant acceleration regime.

The typical crossover time between the t2 and t3 scalings
and the one between t3 and t4 are referred to as t c

2→3 and t c
3→4.

Their values are as follows:

t c
2→3 = m

γ

σ 2
v

4
3

γ

m D − σ 2
v

, (18)

t c
3→4 = mγ

4
3

γ

m D − σ 2
v

7
12γ 2σ 2

v + 1
4 F̂ 2

i + 1
4γ 2v2

0 − γ 3

m D
, (19)

where we assume that both prefactors of t3 and t4 in Eq. (17)
are positive.

Using Langevin dynamics computer simulations, we have
compared the theoretical short-time expansion with simula-
tion data in Fig. 2. We used for the time evolution of the
system a symmetrical stochastic splitting method that sepa-
rates the stochastic and deterministic parts of the differential
equations [70,71], with a typical time step of 	t = 10−10/DR.
As for the overdamped case, we used a single mode potential
field and we averaged the MSD over more than 104 configu-
rations of the initial conditions and the potential.

A double-logarithmic plot indeed reveals three distinctive
regimes where the MSD scales as tα with α = 2, 3, 4 and
there is good agreement between theory and simulation if
the times are not too large. It is important to note that the
cubic regime can only be seen for initially cool systems which
are exposed to thermal fluctuations. These can be experimen-
tally prepared for example for granular hoppers [66] which
are initially at rest and then brought into motion by instan-
taneously changing the vibration amplitude and frequency.

FIG. 2. Mean-square displacement (a) for an underdamped ac-
tive particle in a random single mode potential, with scaling exponent
α (b) and crossing times t c

2→3, t c
3→4. The parameters used are v0 =

100
√

DDR, ε = 100Dγ , L = 100
√

D/DR, and σv = 0.0002
√

DDR,
and the unit for mass is the mass of the particle m. The three different
scalings t2, t3, and t4 are in this case clearly distinguishable from
each other.

Hence though the t3 regime is not visible for a thermalized
system it shows up for relaxational dynamics even for passive
particles.

III. ACTIVE PARTICLE IN A DISORDERED
MOTILITY LANDSCAPE

A. No aligning torque, overdamped

We now consider a self-propelling velocity that fluctuates
[72] as a function of the position of the particle. We denote
hence the fluctuating part of the self-propelling velocity with
δv(�r), while the constant part will still be named v0, leading to
a total propulsion velocity [v0 + δv(�r)]û(φ) or motility field.
As in the case of the random potential, the random motil-
ity field is decomposed into two-dimensional Fourier modes,
with Gaussian uncorrelated amplitudes:

δv(�r) =
∞∑

i, j=0

[
ζ

(1)
i j cos(kix + k jy) + ζ

(2)
i j sin(kix + k jy)

]
,

(20)

where the ζ
(α)
i j prefactors have the same statistical properties

as the ε
(α)
i j prefactors in (9).

The main differences between the motility and potential
fields are that the first one does not appear as a gradient in the
equations of motion and that it is coupled to û(φ).

In absence of an aligning torque and inertia the system
fulfills the equations:

γ �̇r(t ) = γ (v0 + δv(�r))û(φ) + �f (t ), (21)

γRφ̇(t ) = fR(t ), (22)

leading to the following short-time mean-square displace-
ment:

	(t ) = 4Dt + (
v2

0 + δ̂v2
)
t2

− 1
3

[
2Dδ̂vi2 + DR

(
v2

0 + δ̂v2
)]

t3

+ 1
24

[
6D2δ̂vi j2 + 8DDRδ̂vi2 + 2D2

R

(
v2

0 + δ̂v2
)

+ 7 ̂δv2δvi2 + 4 ̂δv3δvii − 5v2
0 δ̂v

i2
]
t4 + O(t5), (23)

062604-4



ACTIVE BROWNIAN AND INERTIAL PARTICLES IN … PHYSICAL REVIEW E 102, 062604 (2020)

FIG. 3. Mean-square displacement (a), scaling exponent α (b),
and crossing time t c

1→2 for an underdamped active particle in a ran-
dom single mode motility field. The parameters v0 = 20

√
DDR and

ζ = 20
√

DDR, L = 100
√

D/DR feature the initial diffusive behavior
and the ballistic behavior.

where we use the same notation as described for Eq. (11):
The symbol (̂·) indicates an average over disorder and initial
conditions, while the superscripts of δv indicate sums over

derivatives. We also remark that the product ̂δv3δvii is nega-
tive, while all the others are positive.

From the results in Eq. (23) we can extract similar con-
siderations as those we discussed in Sec. II A for Eq. (11).
In the limit of a vanishing motility field δv(�r) = 0, the
mean-square displacement of an active particle with constant
speed [see Eq. (12)] is recovered. For a finite total self-
propulsion velocity the first correction to the linear MSD is a
t2 term which is always positive, leading to a ballistic regime.
The typical crossover time related to this transition t c

1→2
is now

t c
1→2 = 4D

δ̂v2 + v2
0

. (24)

Similarly to Eq. (11), the space configuration of the field
appears for the first time in the O(t3) term of the equa-
tion as a negative term that does not constitute a regime.
The O(t4) prefactor is positive for a large motility field
and a small v0, but as the higher-order terms always over-
shadow this, the particle never shows a pure accelerating
behavior.

All these results have been confirmed by simulations sim-
ilar to those described in Sec. II A. In Fig. 3 we can see an
example of such a simulation, where the plots of the MSD
and its scaling exponent α behave in accord to our theory for
short times, with first a diffusive regime and then a ballistic
one.

B. No aligning torque, underdamped

The underdamped equations of motion for a massive parti-
cle subject to a random motility field and no aligning torque
are as follows:

m�̈r(t ) + γ �̇r(t ) = γ (v0 + δv(�r))û(φ) + �f (t ), (25)

γRφ̇(t ) = fR(t ), (26)

we ignore the effects of angular inertia, for the same reason
explained in Sec. II B.

FIG. 4. Mean-square displacement (a) for an underdamped ac-
tive particle in a random single mode motility field, with scaling
exponent α (b) and crossing times t c

2→3, t c
3→4. The parameters used

are v0 = 100
√

DDR, ζ = 100
√

DDR, L = 100
√

D/DR, and σv =
0.0002

√
DDR, and the unit of mass is the mass of the particle m.

The three different scalings t2, t3, and t4 are clearly distinguishable.

The resulting MSD, averaged over disorder, initial condi-
tions, and thermal noise is as follows:

	(t ) = σ 2
v t2 + γ

m

[
4

3

γ

m
D − σ 2

v

]
t3 + γ 2

m2

[
7

12
σ 2

v

+ 1

4

(
v2

0 + δ̂v2
) − γ

m
D

]
t4 + O(t5). (27)

The three consecutive scaling regimes that characterized
Eq. (17): t2, t3, and t4, can be also found in Eq. (27) by
requiring now σ 2

v 
 Dγ /m 
 δ̂v2 + v2
0 . The crossing time

t3→4 changes accordingly, while t2→3 remains the same that
we calculated in the potential case [see Eq. (18)]:

t c
2→3 = m

γ

σ 2
v

4
3

γ

m D − σ 2
v

, (28)

t c
3→4 = m

γ

4
3

γ

m D − σ 2
v

7
12σ 2

v + 1
4

(
v2

0 + δ̂v2
) − γ

m D
, (29)

where we assume that both the prefactors of t3 and t4 in
Eq. (27) are positive.

These results were compared to the numerical MSD cal-
culated with the help of Langevin dynamics simulations. In
Fig. 4 we present the typical results that can be obtained when
the limit σ 2

v 
 Dγ /m 
 δ̂v2 + v2
0 applies, and hence three

different regimes appear.

C. Aligning torque

In this subsection we discuss the special case of the
presence of an aligning torque τ (�r, φ) that redirects the self-
propulsion of the particle toward either the maxima or the
minima of the motility field. An aligning torque is important
for colloidal realizations of active systems [35,73–75]. Since
one common way of realizing a motility field is by the use of
light fields, we refer to the self-propulsion toward the maxima
of the field as positive phototaxis and the one toward the
minima as negative phototaxis.

Here we only focus on the underdamped case, character-
ized by the following equations:

γ �̇r(t ) = γ (v0 + δv(�r))û(φ) + �f (t ), (30)

γRφ̇(t ) = γRτ (�r, φ) + fR(t ), (31)
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where τ (�r, φ) ≡ q[v0 + δv(�r)][ �∇δv(�r) × �u(φ)] · �ez. The sign
of the prefactor q determines whether the phototaxis is posi-
tive (q < 0) or negative (q > 0).

The averaged MSD up to O(t4) is as follows:

	(t ) = 4Dt + (
v2

0 + δ̂v2
)
t2 − 1

3

[
2D(1 + qv0)δ̂vi2

+ DR
(
v2

0 + δ̂v2
)]

t3 + O(t4). (32)

In the special case of no translational diffusion (D = 0) the
next order of the MSD is as follows:

	(t ) = · · · + 1
24

[
2D2

R

(
v2

0 + δ̂v2
) + 7 ̂δv2δvi2 − 5v2

0 δ̂v
i2

+ 4 ̂δv3δvii − 4q
(
v3

0 δ̂v
i2 + 3v0

̂δv2δvi2
)

+ 3q2
(
v4

0 δ̂v
i2 + 6v2

0
̂δv2δvi2 ̂δv4δvi2

)]
t4 + O(t5).

(33)

Analyzing Eqs. (32) and (33) we first notice that in the limit of
q = 0 we recover the previous case with no aligning torque.
When q is nonzero, it appears for the first time as prefactor of
t3 if D > 0 and as prefactor of t4 otherwise. What is peculiar
about q is that for different experimental setups its sign can
change, and when it is negative, all the prefactors where it
appears become positive. One can intuitively understand the
reason for this by considering that a positive phototaxis means
that the particle redirects itself toward the motility field max-
ima, and hence will show an MSD which is larger than in the
negative phototaxis case. Even when q is negative and large
though, this does not constitute a regime of either order t3 or
t4, as the higher-order terms in time feature higher powers of
q that overshadow the lower orders.

IV. CONCLUSIONS AND OUTLOOK

In conclusion we have systematically computed the
quenched disorder average of the mean-square displacement
for an active particle in a random potential or motility land-
scape. The amplitude of the ballistic regime is affected by the
strength of disorder but spatial derivatives in the landscapes
only contribute to the next cubic term in time. For an iner-
tial particle two new superballistic scaling regimes are found
where the MSD scales as t3 or as t4.

Our method can be applied to other more complex situa-
tions [76]. First, the generalization to an anisotropic potential
is straightforward, even though tedious. Second, the land-
scapes can be time dependent as for real speckle patterns
[26], moving activity waves [75,77], and propagating ratch-
ets [36,78,79] The same analysis can be performed for
time-dependent disorder. Moreover, the same analysis can in
principle be done for other models of active particles, in-
cluding the simpler active Ornstein Uhlenbeck particle [80]
or more sophisticated pusher or puller descriptions for the
self-propagation. A refreshing or resetting of the landscapes
can be considered as well [81,82]. Finally, the model can
be extended to a viscoelastic solvent [83–86] with a random
viscoelasticity where memory effects become important.
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APPENDIX: EXAMPLE OF MEAN-SQUARE
DISPLACEMENT CALCULATION

In this Appendix we present an example for how we cal-
culated the analytical results in this paper. Specifically, we
will show the procedure used for the case of an overdamped
particle in a random potential [see Eq. (11)].

1. Model system

The equation of motion for the time-dependent position
x(t ) of the particle is given by Eqs. (1) and (2). Taylor ex-
panding �F (�r(t )) around the starting position �r(0) ≡ �r0 yields

�F (�r(t )) =
∞∑

nx=0

∞∑
ny=0

[x(t ) − x0]nx [y(t ) − y0]ny

nx!ny!

×
(

∂nx+ny �F
∂xnx ∂yny

)
(�r0). (A1)

We truncate this expression in the following way:

�F (�r(t )) �
(

Fx(�r0) + F x
x (�r0)[x(t ) − x0]

Fy(�r0) + F y
y (�r0)[y(t ) − y0]

)
, (A2)

where a subscript in F denotes a component of the force and
a superscript indicates a partial derivative.

In this way we approximate our system to an active particle
subject to two Brownian oscillators in the x and y direc-
tions independent of each other. The additional force terms
of higher order will be treated in perturbation theory. The
goal is to calculate the mean-square displacement 	(t ) :=
〈〈〈(�r(t ) − �r0)2〉〉〉 for short times up to fourth order in time but
for arbitrary strength of the random forces.

2. Active Brownian oscillator

We will focus on the equation in the x component, as the
one in y can be treated in an analogous way. First we consider
the formal solution of the active Brownian oscillator

γ ẋB = fx(t ) + γ v0 cos (φ(t )) + Fx(�r0) + F x
x (�r0)[xB(t ) − x0],

(A3)

which is

xB(t ) = x0 + Fx(x0)

F ′
x (x0)

[
e

1
γ

F ′
x (x0 )t − 1

]
+ 1

γ

∫ t

0
e

1
γ

F ′
x (x0 )(t−t ′ ) fx(t ′)dt ′

+ v0

∫ t

0
e

1
γ

F ′
x (x0 )(t−t ′ ) cos (φ(t ′))dt ′

=: x0 + xa(t ) + xb(t ) + xc(t ), (A4)
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where

φ(t ) = 1

γR

∫ t

0
fR(t ′)dt . (A5)

The mean-square displacement in the x direction is

	xB(t ) = 〈〈〈[xa(t ) + xb(t ) + xc(t )]2〉〉〉

= 2Dt +
(

F̂ 2
x

γ 2
+ v2

0

2

)
t2 + 1

6

(
8D

F̂ x2
x

γ 2
− DRv2

0

)
t3

+ 1

24

(
14

̂F 2
x F x2

x

γ 4
+ 7

F̂ x2
x

γ 2
v2

0 + D2
Rv2

0

)
t4 + O(t5).

(A6)

Note that we omitted all averages over odd powers of the
force or its derivatives, as they are all accompanied by odd
functions in space that go to zero when averaging over the
initial conditions.

3. Perturbation approach

Now we will treat the time perturbation, considering terms
up to fourth order in time. In order to do this, we will have to
consider all the terms in Eq. (A3) for which nx + ny � 4.

We want to determine the solution

x(t ) = xB(t ) + h(1)
x (t ) (A7)

that fulfills the following differential equation:

γ ẋB(t ) + γ ḣ1(t )

= fx(t ) + γ v0 cos (φ(t ))

+
4∑

nx=0

4∑
ny=0

[
xB(t ) + h(1)

x − x0
]nx

[
yB(t ) + h(1)

y − y0
]ny

nx!ny!

×
(

∂nx+ny Fx

∂xnx ∂yny

)
(�r0). (A8)

If we consider a small perturbation h(1)
x (t ), then we obtain:

γ h(1)
x (t ) �

∫ t

0

{
F y

x (�r0)[yB(t ′) − y0] + F xx
x (�r0)

2
[xB(t ′) − x0]2

+ F xy
x (�r0)[xB(t ′) − x0][yB(t ′) − y0]

+ F yy
x (�r0)

2
[yB(t ′) − y0]2

+ F xxx
x (�r0)

6
[xB(t ′) − x0]3 + . . .

}
dt ′, (A9)

where we first used the differential equation of the unper-
turbed Brownian oscillator and then assumed that h(1)

x (t ) is
small. The fifth-order derivatives of the force have been omit-
ted because they would not lead to any terms of forth or
smaller order in t .

Similarly, we calculate the second-order perturbation
h(2)

x (t ), while higher-order perturbations are not necessary.
The mean-square displacement within the first- and

second-order perturbation theory is

	x(t ) = 〈〈〈[
xa(t ) + xb(t ) + h(1)

x + h(2)
x (t )

]2〉〉〉
, (A10)

and the only thing left is to explicitly calculate this expression
and sum it to the respective one for the y direction.

4. Simplification of averages

Given the potential described in Eq. (8), one is able to
simplify the various expressions for the averages of the forces
and their derivatives. For example we have:

F̂ 2
x = 1

2

∑
i, j,α

ε
(α)2
i j k2

i , (A11)

F̂ x2
x = 1

2

∑
i, j,α

ε
(α)2
i j k4

i , (A12)

̂FxF xx
x = − 1

2

∑
i, j,α

ε
(α)2
i j k4

i = −F̂ x2
x , (A13)

̂F 2
x F y2

x = 3

8

∑
i, j,α

ε
(α)4
i j k4

i k2
j + 1

4

∑
i 	= m ∧ j 	= n

α, β

ε
(α)2
i j ε

(β )2
mn k2

i k2
mk2

n ,

(A14)

̂F 2
x FyF xy

x = − ̂F 2
x F y2

x , (A15)

etc.

Using these relations we can write the whole expression for
the MSD using only terms that we know to be positive.
One has to be careful though, especially with the products
containing four terms, as for example in Eq. (A16). These
kind of products contain both a common mode average and a
cross mode one [for example, respectively the first and second
sum in Eq. (A16)]. It can happen that two different products
contain the same (or opposite) common mode average but a
different cross mode one. For example:

̂F 2
x F x2

x = 3

8

∑
i, j,α

ε
(α)4
i j k6

i + 1

4

∑
i 	= m ∧ j 	= n

α, β

ε
(α)2
i j ε

(β )2
mn k4

i k2
m,

(A16)

̂F 3
x F xx

x = − 3

8

∑
i, j,α

ε
(α)4
i j k6

i − 3

4

∑
i 	= m ∧ j 	= n

α, β

ε
(α)2
i j ε

(β )2
mn k4

i k2
m.

(A17)

In this case the absolute value of the cross mode of (A19)
is three times larger than that of (A18), while the common
mode is the same. In other cases, these cross modes can even
disappear:

̂F 2
x F y2

x = 3

8

∑
i, j,α

ε
(α)4
i j k4

i k2
j + 1

4

∑
i 	= m ∧ j 	= n

α, β

ε
(α)2
i j ε

(β )2
mn k2

i k2
mk2

n ,

(A18)

̂FxFyF x
x F y

x = 3

8

∑
i, j,α

ε
(α)4
i j k4

i k2
j . (A19)

In the special case of a single mode potential the following
expression of Eq. (11):

14̂F 2
i F i2

i + 8 ̂F 3
i F ii

i + 14 ̂FxFyF y
x F i

i

+ 14 ̂FyFxF x
y F i

i − 5̂F 2
i F y2

x − 5̂F 2
i F x2

y (A20)

simplifies to 6̂F 2
i F k2

j .
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