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Laboratory realizations of two-dimensional (2D) plasma crystals typically involve monodisperse microparti-
cles confined into horizontal monolayers in radio-frequency (rf) plasma sheaths. This gives rise to the so-called
plasma wakes beneath the microparticles. The presence of wakes renders the interactions in such systems
nonreciprocal, a fact that can lead to a quite different behavior from the one expected for their reciprocal
counterparts. Here we examine the buckling of a hexagonal 2D plasma crystal, occurring as the confinement
strength is decreased, taking explicitly into account the nonreciprocity of the system via a well-established
point-wake model. We observe that for a finite wake charge, the monolayer hexagonal crystal undergoes a
transition first to a bilayer hexagonal structure, unrealizable in harmonically confined reciprocal Yukawa systems,
and subsequently to a bilayer square structure. Our theoretical results are confirmed by molecular dynamics
simulations for experimentally relevant parameters, indicating the potential of their observation in state-of-the-art

experiments with 2D complex plasmas.
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I. INTRODUCTION

Monodisperse negatively charged microsized particles,
levitating in a plasma sheath above a powered radio-frequency
(rf) electrode, form, under sufficiently strong confinement,
a monolayer hexagonal complex plasma crystal [1,2]. Such
crystals offer the possibility to study complex kinetic phe-
nomena in solids [3-5], such as crystal melting [2,6—11] and
the dynamics of dislocations [12], on a particle-resolved level.
Not only have these studies shed light on the generic behavior
of typical solids, but also they have revealed alternative mech-
anisms such as crystal melting induced by a mode coupling
instability (MCI) [9,13,14].

The MCI makes its appearance in monolayer hexagonal
complex plasma crystals due to the existence of wake-
mediated interactions between the dust particles [15-17]. The
electric field, essential for the levitation of the particles in
the rf discharge, perturbs the ionic cloud around them, ren-
dering it highly asymmetric. These asymmetric ion clouds,
known as “plasma wakes” [18-21], exert attractive interac-
tions on the negatively charged dust particles, making their
pair interactions nonreciprocal and consequently prohibiting
a description of the system in terms of a Hamiltonian [22,23].
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Nevertheless, the MCI is inhibited when the gas damping is
strong enough [15]. Then the observation of further uncon-
ventional effects introduced by the plasma wakes, such as
distinctive structural changes, can be facilitated.

The non-Hamiltonian nature of the 2D complex plasma
becomes more evident for sufficiently weak confinements,
where the wake-charge interactions become more promi-
nent. In such a case, the charged particles create vertical
pairs [24,25]. When the interactions’ nonreciprocity is large
enough, the particles constituting these pairs can jointly self-
propel as a doublet, providing a remarkable example of
emerging activity in complex plasma systems [26].

Regarding the complex plasma crystal, the vertical pairs
of charged particles trigger, for a weak confinement, the
formation of vertically aligned hexagonal layers [27,28]. In
individual cases of neither very weak nor very strong con-
finement, the formation of multilayer structures has also been
observed [4,29], but so far a systematic experimental study of
the structural transitions in the system is missing.

Meanwhile, several theoretical and numerical studies have
systematically examined the instability of the hexagonal
monolayer Yukawa crystal in the context of complex plasma
[30-36], classical Wigner crystals [37—41] and charged col-
loids [42-52]. It has been shown that under harmonic
confinement, for a decreasing confinement strength or increas-
ing density, the hexagonal monolayer is expected to buckle
first to a hexagonal triple layer crystal and subsequently to
a bilayer square [4]. For even weaker confinement or higher
densities, multilayer structures are expected to prevail, found
occasionally also in complex plasma experiments [4,29]. Al-
though the stability of the bilayer square crystal is prominent
in all the aforementioned theoretical and numerical studies,
it still remains elusive in 2D complex plasma experiments. A
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possible reason could be that these theoretical predictions are
questionable in the context of 2D plasma crystals, since they
do not take into account the inherent non-Hamiltonian nature
of complex plasma caused by the plasma wakes [53].

In this paper, we systematically study the buckling of
2D plasma crystals following the structural instability of the
hexagonal monolayer crystal. In our theoretical and numerical
investigation, we explicitly take into account the nonrecipro-
cal character of pair interactions in the system, employing a
simplified but successful model of wakes as pointlike positive
charges located below the dust particles [15,28,54,55]. Within
this model, we show that for decreasing confinement strength,
the hexagonal monolayer gives its place to a hexagonal triple
or bilayer crystalline structure, depending on the value of the
effective wake charge. Moreover, we identify a large stabil-
ity region of the bilayer square structure, along the lines of
the theoretical predictions for reciprocal Yukawa interactions
[4,30,38,45]. A part of this region overlaps with the stabil-
ity region of the bilayer (or triple) layer hexagonal crystal,
marking a regime of bistability which proves to be a source
of hysteresis. Our detailed phase diagram for experimentally
relevant values of the parameters not only extends the existing
theoretical results to the case of nonreciprocal interactions but
also allows for estimating the conditions under which each
of the investigated structures can be found, facilitating their
observation in experiments of 2D complex plasma crystals.

II. THE ONSET OF THE MONOLAYER INSTABILITY
A. The model

Ignoring the thermal agitation, the equations of motion
(EOM) for the dust particles in a 2D monodisperse complex
plasma read

mi; + mvk; = Y Fip(r; — 1;) + Foxy (1), (1
J#i

where r; is the position of the particle i, m is the particle mass,
and v is the damping rate originating from the gas friction.
Each particle i is subjected to two different kinds of forces,
namely the interaction force Fiy (r; — r;), exerted by any other
particle j, and the force of the external confinement F (r;).

The external force results from the assumed parabolic
confinement of the particles in the vertical direction z and
therefore reads

Fex(r) = —mQ2,,zn,, )

where it is implied that r = xn, + yn, + zn, and Q., stands
for the eigenfrequency of the confining potential well.

The interaction force is much more involved since, except
from the direct reciprocal interaction between the dust par-
ticles i and j, we should take also into account the effect
of nonreciprocal interactions, stemming from the asymmetry
of their surrounding ionic clouds. For the description of the
latter nonreciprocal interactions, we employ a simple model,
used so far successfully in literature [15,28,54,55] in various
situations. Within this model, the focusing of ions downstream
of the dust particles with a negative charge Q, leads to the
formation of plasma wakes which can be approximated by
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FIG. 1.

(a) Schematic illustration of the interaction forces
Fiy (r; — r;) between the particles i and j. (b) Sketch of the ele-
mentary hexagonal lattice cell of the monolayer configuration with
the frame of reference. Here A denotes the lattice constant and the
angle 6 is the angle between the wave-vector k and the x axis.
(c) Sketch of the reciprocal lattice in k space with basis vectors
by, = 2w A~'(1/4/3, £1). The shaded region corresponds to the
first Brillouin zone with boundaries |k| = 2w A™! /ﬁ for 6 = 0°
and |k| = 4 A~!/3 for & = 30°. (d) Color plot of the squared eigen-
frequency Q2 of the out-of-plane mode, pointing (see discussion in
the text) to the onset of the structural instability for § = 0.2, Qeon =
2.48,8 = 0.3,and x = 1. The white spots indicate where Q? < 0and
the structural instability sets in (near & = 30° and |[kK”| = 47 /3).
(e) Color plot of the z value of each particle for the real part of the
first unstable eigenmode d,.g as discussed in the text. The particles’
positions in the x-y plane, s, ; and s, ;, are depicted, with the color
indicating the position of each particle in the z direction.

pointlike positive charges ¢, located directly below each par-
ticle at a fixed distance § [Fig. 1(a)].

In this picture, the total interaction force Fiy(R;;) exerted
on particle i by particle j can be written as a sum of the direct
reciprocal interaction between the particles i and j, F;; (F;; =
—F};), and the nonreciprocal interaction between the particle
i and the wake of particle j, F{; (F{;, # —F%), i.e.,

) R;; Rj;
Fin(R;j)) =0 fY(Rij)R_ + ‘IQfY(R:‘]j)R_q (€)
ij ij

(in Gaussian units).
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Here we have assumed that both the reciprocal and the
nonreciprocal forces are of the Debye-Hiickel (Yukawa) form

fr(R) =

exp (—R/A) (1 n R)’ @

R? A
with A denoting the effective screening length, and we have in-

troduced the notation R;; = r; — r; and R;’j =r; —r; +4n,.

B. The emergence of the structural instability

The complex plasma system described by Eq. (1) in view
of Eqgs. (2)—(4) is known to relax at a hexagonal monolayer
crystal [2,14] for strong enough parabolic confinement. The
reference frame we use for the description of this crystal is
shown in Fig. 1(b), where the equilibrium lattice constant is
denoted by A and the angle between the wave vector k and
the x axis by 6. The reciprocal lattice is shown in Fig. 1(c),
in which also the first Brillouin zone is indicated. Under these
assumptions the particles’ positions in the lattice are given by
r® = s&H )A, where

J
§H) (“/3

1
I ij)nx+ (Emj-’_nj)ny’ (5)

mj, n; are specific integers, and n,, n, are the unit vectors
in the real space. Hereafter, we will use dimensionless units,
measuring distance in units of A (i.e., A = 1) and frequency
in units of the dust lattice frequency

02
QpL =/ el (6)

We also introduce the dimensionless quantities of the effective
wake charge § = |¢/Q)|, the effective wake distance § = §/A,
the screening parameter x = A/A, and the normalized con-
finement frequency Qeon = Rcon/ 2L

The stability of the hexagonal monolayer crystal can be
investigated on the linear level by assuming a plane-wave
ansatz for each particle’s displacement d; from its equilibrium

position rl?

o as follows:

d; ocexp (—ia)t + ik - r;o)). 7

The linearization of the EOM (1) in terms of d; and
the use of the above plane-wave ansatz lead, as shown in
Refs. [9,14,15], to the dynamical matrix D with eigenvalues
Q? = wj(w; +iv), where w; denote the system’s eigen-
frequencies. Under the assumption v <« w;, the hexagonal
equilibrium is stable, if all Qf are positive.

As discussed in Refs. [9,14,15], two of the ©2, in addition
to their positive real part, attain a finite imaginary part as the
confining frequency Q.,n decreases below approximately 3.5.
This is an imprint of the mode coupling instability (MCI) of
the hexagonal monolayer, for weaker confinement strengths,
causing the crystal to melt. Importantly, both this instability
and the induced melting can be suppressed by increasing the
damping rate v, i.e., increasing the gas pressure [15].

For an even weaker confinement, in addition to the MCI,
a structural instability of the monolayer is expected to set in,
causing the formation of a multilayered structure. In order to
gain a deeper understanding into the nature of this structural
instability, we examine the behavior of the squared frequency

of the out-of-plane mode SZ% in the reciprocal space. When
Q2 < 0, the out-of-plane eigenvector grows exponentially in
time and the system becomes structurally unstable in the ver-
tical direction. Thus, at the critical value of the confinement
frequency for the structural instability, QD the minimum
value of Q% (for k £ 0) becomes zero. For lower confinement
frequencies, Qcon < Q8. Q2 becomes negative at a certain k.
Such a case, with Qo slightly smaller than Q31| is depicted
in Fig. 1(d), where we observe that SZ% attains its lowest (neg-
ative) value at # = 30° and a wave-vector magnitude |k(“"| =
47 /3. This points to the fact that the structural instability sets
inatk = %ex + %T”ey, where e, and e, are the unit vectors
in the reciprocal space.

The value of k" when complemented with the informa-
tion of the particular crystalline configuration [Eq. (5)] leads
to the identification of the softening mode as doz (1, 1)
exp [i 2T”(Zm i+ n;)]. The crystalline structure resulting from
this mode is the one described by s, ; = A cos [ZT”(ij +n;)]
[Fig. 1(e)], which can be identified with the hexagonal bilayer
(21) with a doubly occupied bottom layer (see Sec. III A). This
will be one of our first candidates for the multilayer structures

resulting from the buckling of the hexagonal monolayer.

III. MONOLAYER BUCKLING: THEORY

Having seen that with decreasing confinement frequency
Qcon the monolayer hexagonal crystal undergoes not only
a MCI but also a structural instability at a value Q8D we
examine in this section the structure of the 2D complex plasma
crystal as Qcon lowers below QD). We remark here that due to
the non-Hamiltonian nature of the system, caused by the pres-
ence of wakes, the energy-minimization techniques which are
commonly used to tackle theoretically such problems [30,42—
45], cannot be applied in our case. Therefore, we take the
cumbersome route of first solving the force equilibrium equa-
tions to identify some of the system’s crystalline equilibria
and subsequently using the dynamical matrix to determine the
regimes of their stability.

A. Candidate structures

As discussed above, the first unstable mode of the hexago-
nal monolayer yields a bilayer hexagonal structure [Fig. 1(e)].
Having in mind also the results for reciprocal Yukawa systems
[30,43,45] which predict a bifurcation of the hexagonal mono-
layer (1A) to a symmetric triple layer hexagonal structure
(3A), we proceed to the investigation of a more general struc-
ture of hexagonal order, i.e., an asymmetric hexagonal triple
layer, termed hereafter as (111) and presented schematically
in Figs. 2(a) and 2(b). In this configuration and within the
frame of reference of Fig. 1(b), the position of the jth particle
in the lattice is given by the vector

' n (8)

a1y _ (H)
=S§; —l—sw

J

with S;H ) defined above in Eq. (5) and

2 . (27
0] = —husin (S0). ©)
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hexagonal structure (111)

?

staggered honeycomb structure (2A)

FIG. 2. Sketch of the different candidate equilibrium structures
of hexagonal order, expected to emerge at the buckling point and
investigated in this work: [(a), (b)] a general hexagonal triple layer
structure (111) and [(c), (d)] a hexagonal bilayer structure with a
doubly occupied bottom layer (21). The left part shows a top view
of each structure, while the right part is a side view. For the triple
layer structure, the separation between the middle layer and the top
or the bottom layer is denoted by h; or h, respectively. For the
bilayer structure, the separation between the two layers is denoted
simply by A. Note that all the particles are identical and the color
distinguishes only between particles in the different layers. Also,
in all the subfigures, the numbers 0,1,2 stand for the corresponding
values of / as discussed in the text [Egs. (10)] and the shaded green
regions mark the unit cells of the corresponding lattices.

where in order to simplify the notation we have introduced
I = mod(2m; + n;j, 3). (10)

According to this notation, when [ = 0 the jth particle be-
longs to the middle layer at a height 4y = O [blue particles in
Figs. 2(a) and 2(b)], when [ = 1 it belongs to the top layer at
a height h; [yellow particles in Figs. 2(a) and 2(b)], whereas
when [ = 2 it belongs to the bottom layer with a height —h;
[purple particles in Figs. 2(a) and 2(b)]. Note that due to the
presence of wakes the layers are generally not equidistant, i.e.,
hy # hy.

The general triple layer hexagonal configuration (111),
depicted in Figs. 2(a) and 2(b), can lead, for suitably chosen
hy and hy, to different configurations of hexagonal order.
The most important for this study are those of an enhanced
symmetry. In particular, we obtain the bilayer (21) configura-
tion with a doubly occupied bottom layer for hy = h, hy =0
[Figs. 2(c) and 2(d)], its reverse bilayer configuration (12) for
h; =0, hy = h, and the equidistant triple layer configuration
(3A) for hy = hy. The hexagonal monolayer configuration
(1A) is the trivial case h; = h, = 0. Note that all these multi-
layer configurations, similarly to the (111) structure, possess
a unit cell consisting of three atoms [Figs. 2(a) and 2(c)].

Motivated by the results regarding the buckling of the
hexagonal monolayer crystal in colloids [43—45], we use here
two additional candidate structures, namely the bilayer stag-
gered honeycomb (2A) and the bilayer square (2[1), depicted

FIG. 3. Sketch of two further candidate equilibrium structures
expected to develop from the structures shown in Fig. 2: [(a), (b)]
a bilayer staggered honeycomb structure (2A) and [(c), (d)] a bilayer
square structure (20]). The left part shows a top view of each struc-
ture, while the right part is a side view. The separation of the two
layers in each configuration is denoted by h. As in Fig. 2, all the
particles here are identical and the color distinguishes only between
particles in the different layers. The numbers 0,1,2 stand for the
corresponding values of / [(a), (b)] or w [(c), (d)] as discussed in
the text [Egs. (10), (13)] and the shaded green regions mark the unit
cells of the corresponding lattices.

in Figs. 3(a) and 3(b) and Figs. 3(c) and 3(d), respectively.
Both these structures consist of two layers, separated by a
distance % and possess a unit cell consisting of two atoms. The
staggered honeycomb structure can be described by Egs. (5)—
(10), if we ignore the particles with [ = 0 and keep only those
with [ = 1, 2. The position of the jth particle in the square
bilayer lattice is given in a similar way by

£20

S =ming +njn, + s(ZD)nZ (11)

2]
with m;, n; specific integers and

sEZJD) = —%hw cos (rw), (12)
where we have introduced

w = mod(m; + n;, 2) (13)

in order to distinguish between the particles belonging to the
two different layers.

B. Equilibrium structures

Evidently all the candidate structures considered here
(Figs. 2 and 3) are equilibrated in the x-y plane, since due to
their symmetry the x and y components of the total interaction
force for each particle vanish. Thus, the only free parameters
to be determined are the interlayer separations hy, h;, or h.
Their equilibrium values hio), héo), or 1 can be found by
demanding a force equilibrium in the z direction. Since we
only care about the interlayer separations, our equilibrium
condition is that the z component of the net force acting
on each layer should be the same with the z component of
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the net force acting to each other layer. For the triple-layer
configuration of Figs. 2(a) and 2(b), the equilibrium condition
thus reads

Flo+Fly+ Bl = Q,m
=F o+ F,+FL,+ Q% h, (14)

where F;,u is the total interaction force in the z direction
exerted on the layer with [ = p from the layer with [ = u,
both from its charges and wakes, and F pq, . 18 the net interaction
force in the z direction acting on the layer with [ = p due
to the wakes of the layer with / = u. The full expressions
for £, and F}!, are provided in Appendix A, but here we
remark that both are basically functions of 4, and h;, so that
the solutions of the system (14) supply us with the equilibrium
values h(lo), héo). Of course, for a bilayer structure, such as the
ones in Figs. 3, the equilibrium condition (14) reduces to a
single equation.

Using a Newton method with different initial guesses of
the values of hj, hy in order to solve numerically Eq. (14),
we obtain all the possible equilibrium values h§0)’ h;o for
different confinement frequencies Q.on and different values
of the effective wake charge §. Our results are presented in
Figs. 4(a)—4(d) for the cases of reciprocal interactions [§ = O,
Figs. 4(a) and 4(b)] and nonreciprocal interactions [§ = 0.2,
Figs. 4(c) and 4(d)].

Starting with the case of zero wake charge, § =0, we
observe that for high values of Q. the only possible equi-
librium is that of the hexagonal monolayer with hgo) = hgo =
0 [Fig. 4(a)]. Below a critical frequency QU0 ~ 2.7, the
situation changes, and the hexagonal monolayer bifurcates
to three qualitatively different solutions of hexagonal order.
Namely, we identify with the help of Fig. 4(b) the bilayer
(21) configuration [Figs. 2(c) and 2(d)] with 1{” > 0, A =0
(brown bold dashed line), the bilayer (12) configuration with
hﬁo) =0, hg)) > 0 (orange bold dashed line), and the symmet-
ric triple layer (3A) configuration with h(lo) = hg)) (light blue
bold line). Importantly, all the three different configurations
emerge at the same critical value Q) where the monolayer
becomes structurally unstable [Fig. 4(a)] and the solution
space displays a high degree of symmetry, since the (21) and
(12) bilayer solutions are mirror symmetric [Fig. 4(a)] and the
triple-layer solution is equidistant [Fig. 4(b)].

This symmetry breaks for a finite wake charge as shown
in Figs. 4(c) and 4(d), where § = 0.2. The bilayer solutions,
although they still arise at the same value of the confining
frequency Q1) cease to be mirror symmetric, since the in-
terlayer separation h2® of (21) is larger than that of (12)
[Fig. 4(c)]. This can be seen a consequence of the nonre-
ciprocity of the interactions, considering that in the presence
of wakes a double occupation of the top layer (12) exerts to
the bottom layer a larger attraction than the one exerted by
a doubly occupied bottom layer (21) to the top layer. This
wake-induced symmetry breaking affects also the triple-layer
solution. For a finite wake charge § = 0.2, this becomes asym-
metric (111) with h(lo) > h§0) [Fig. 4(d)] and emerges from a
bifurcation of the bilayer (21) solution at a lower value of the

confinement frequency Qcon < QU [Fig. 4(c)].

0
niy o

0
©| Rl

7

0.6+

N

0.2 4

1 2 Qcon 3 4 1 2 chn 3 4

FIG. 4. [(a)-(d)] Bifurcation diagrams of the hexagonal mono-
layer configuration in terms of the interlayer distances h§0) and h;o)
for two qualitatively different cases [(a), (b)] § = 0 and [(c), (d)]
G = 0.2. In the first column [(a), (c)], all the possible equilibrium
values of hEO) (and consequently also hg))) are depicted as a function
of the confinement frequency Q. In the second column [(b), (d)],
all the equilibrium pairs (hio) s h;o)) obtained when varying Qeon are
shown, so that we can identify the character of the different equi-
libria. All the solid light blue (light grey) lines correspond to triple
layer configurations [(111) or (3A)], all the dashed brown (dark grey)
lines to bilayer (21) configurations, and all the dashed orange (grey)
lines to bilayer (12) configurations. Note that the different lines of the
same color correspond essentially to the same equilibrium structure
and account for all the different permutations of particles 0,1,2 in
Figs. 2(a) and 2(b). The thicker lines (dashed or not) guide the
eye to one of the equivalent structures. [(e), (f)] The values of the
equilibrium separations (e) hgo) and (f) h;o) (depicted by color) as a
function of Q. and g. The dashed-dotted white line marks the crit-
ical confinement frequency Q) for the structural instability of the
monolayer hexagonal structure, while the dashed red line marks the
critical confinement frequency for the bifurcation of the (21) to
the (111) structure, along the lines of panels (c¢) and (d). In all the
cases, we have used k = 1 and § = 0.3.

The values of hgo) and hgo) in the branch of the triple layer
(111) solution are presented as a function of the confinement
frequency on and the effective wake charge § in Figs. 4(e)
and 4(f). We can see that the monolayer configuration
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bifurcates first to the bilayer configuration (21) with hg)) =0

and subsequently to a triple layer (111) with h(lo) > hg)) for all
values of g except forg = 0, where it bifurcates directly to the
(3A) structure with &; ) = hg)). Also the critical confinement
frequencies for both bifurcations shift to lower values for
increasing §.

Regarding the other two candidate structures (Fig. 3), i.e.,
the bilayer honeycomb (2A) and the bilayer square structure
(20), they only lead to a single equilibrium solution, since
they possess only one free parameter, the interlayer distance
h. In contrast to the multilayer hexagonal structures discussed
above, these solutions are structurally incompatible with the
hexagonal monolayer solution (1A) realized in strongly con-
fined 2D plasma crystals. Therefore, a transition to the bilayer
honeycomb (2A) or the bilayer square (20J) configuration
could only occur in a discontinuous manner, as discussed in
Sec. IV. We note that the dependence of both the (2A) and
the (20) structures on the effective wake charge § and the
reduced confinement frequency o, is very similar to that
of the hexagonal bilayer structure (21) [Fig. 4(e)], with the
interlayer separation 4 increasing with decreasing Q.o or §.

C. Stability and phase diagram

Having explored the character of the different equilibrium
configurations of Figs. 2 and 3, we next investigate their
stability, which is essential for their physical realization. For
this reason, we linearize our equations of motion (1) around
each of the equilibria {4”, A"} or 1® and assume a plane-
wave ansatz similarly to Eq. (7) for the displacement d; of
the jth particle. Following this procedure, we construct the

corresponding dynamical matrix

Dxx ny sz
D= (Dyx D,, D_\,z>. (15)
D.. Dzy D,

In this expression, the D,,, with u, v = x, y, z are square sub-
matrices of dimension equal to the number of atoms in the
unit cell of the examined structure. As an example, for the
case of the hexagonal triple layer structure (111) of Figs. 2(a)
and 2(b), we have that

Duu,OO Duv,Ol Duv,02
Dy = {Dw,10 Dwir D2 (16)
Duv,ZO Duu,21 Duv,22

with
Duv,Ll = dyy,L 5Ll + buv,Ll for uv 7é 2z,
Dzz,Ll = (azz,L + ngn)SL] + bzz,Ll (17)

forL,1 =0, 1,2, §;; being the Kronecker §, and the formulas
for a1, byy 11 presented in Appendix B. Note that in Eq. (16)
the 0,1,2 stand for the different values of / [Eq. (10)]. A sim-
ilar expression can be derived also for the other equilibrium
structures explored here, e.g., the square bilayer (200), with a
replacement of / with w [Eq. (13)]. The resulting dynamical
matrix D has always a dimension d equal to three times the
number of particles in the crystal’s unit cell.

In order to investigate the stability of each configuration,
we examine the eigenvalues Q? of D for the respective equi-

libria {hio), hg))} or 1. In a strict sense, stability is provided
if and only if the imaginary part of all eigenfrequencies
2; is equal to zero, i.e., Im ©; =0, V. Therefore, a suit-
able measure of instability can be provided by the quantity
Sint = Z‘f:l [Im €2;|, with it being zero corresponding to the
respective configuration being stable and otherwise unstable.

As we have discussed, however, our system can display
apart from structural instability (SI) also mode coupling in-
stability (MCI) connected to the appearance of an imaginary
part to some of the eigenvalues of D, Q2 [14,15]. This would
yield as well Im €2; # O for some j, and therefore Si, # 0.
In order to capture only the structural instability, we need to
filter out the cases with Re 523 > 0 and Im Qf = 0 from Siy,
1.€., use the measure

d

gint = Z

J
ReQ? <0

Im ;. (18)

In the following, we judge stability by the values of Si,. If this
is zero for all wave vectors k, the corresponding configuration
is regarded as structurally stable and otherwise as structurally
unstable.

It turns out that from the structures discussed above only
the (12) hexagonal bilayer, with a doubly occupied top layer
is always unstable for the 2D complex plasma system. All the
other structures explored here (Figs. 2 and 3) turn to be stable
in different parameter regimes.

The stability regions of each of these structures in terms
of the confinement frequency Q.on and the effective wake
charge ¢ are shown in Fig. 5, which can be interpreted as
the zero-temperature structural phase diagram of our system.
Here we observe that for a finite wake charge ¢ with decreas-
ing confinement frequency .o, the complex plasma crystal is
expected to pass sequentially through the following structures:

(1A) = (21) — 20) — (2A). (19)

The reverse sequence is expected for an increasing fre-
quency Qcon With a hysteresis in the transition (200) — (21),
stemming from the evident bistability region between the (21)
and (20J) structures. We note here that for typical finite values
of ¢ the (21) structure becomes unstable before bifurcating
to the hexagonal (111) structure [Figs. 4(c)—4(f)]. Thus, the
asymmetric triple layer structure does not appear before the
transition to the bilayer square (2LJ) apart from very low
values of g (Fig. 5).

Overall, the buckling behavior of the hexagonal monolayer
is found to be quite similar to that of the recipocal system
(¢ = 0), where a decreasing frequency triggers the transitions

(1A) — 3A) — (20) — (2A), (20)

as known also from Refs. [43—45]. The major difference is that
the hexagonal monolayer (1A) gives its place to the bilayer
(21) hexagonal structure for § > 0 instead of the symmetric
triple-layer hexagonal structure (3A) for ¢ = 0. However,
when these structures become unstable, for lower .., values,
a bilayer square (20J) is realized for any value of g, suggest-
ing that the nonreciprocity of complex-plasma crystals does
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(1 - (24)  (20)  (20)4(21) (21

N S N N I N

QCOTL

FIG. 5. The structural phase diagram of a quasi-2D plasma
crystal with nonreciprocal interactions, according to our theoretical
findings. The stability regions of the different phases, discussed in
the text (Figs. 2 and 3), are depicted here by different colors. In
this sense, the overlap of two different colors (e.g., orange region)
indicates a regime of bistability. The control parameters are the
confinement frequency Q.on and the effective wake charge §. The
other parameters are kept constant at values p = 2/+/3, ¥ = 1, and
8 = 0.3. The horizontal dashed line marks the value of § = 0.2 used
in our simulations (Fig. 6). In the white region, none of the examined
phases is stable. Note, however, that overall the existence of further
stable phases is not precluded.

not prevent the hexagonal-to-square transition known to take
place in reciprocal Yukawa systems [4,30,38,45].
Nevertheless, we note here that neither the bilayer square
(20)) nor the bilayer honeycomb (2A) structure are stable for
high values of the wake charge § > 0.5 (Fig. 5). In this region,
we expect that the wake-particle attraction will be very large,
causing the formation of vertical pairs which at the end will
destabilize the 2D complex plasma crystal [24,25].

IV. MONOLAYER BUCKLING: SIMULATIONS

In order to check the validity of our theoretical results dis-
cussed above, we have performed molecular dynamics (MD)
simulations for our point-wake model [Fig. 1(a)]. During
our simulation time, we have been changing the confinement
strength Q.o in small steps (for a more detailed description,
see Appendix C). We performed two different simulations:
one starting from the hexagonal monolayer (1 A) configu-
ration and slowly decreasing the confinement strength and
another starting from a square bilayer (20J) configuration and
slowly increasing Q2op.

Our results for the two simulations are presented in
Figs. 6(a) and 6(b) and Figs. 6(c) and 6(d), respectively. Here
we focus on the transition from the hexagonal (1A) to the bi-
layer square (2[J) structure (decreasing Qeon) and backwards
(increasing Qcon). As a measure of the degree of hexagonal
and square order in the system, we use the quantities Wg
and W respectively, where the global bond angular order

(20) <« (21) +-(14)

Ol —— s |

0.4
0.6 [

b | »
041
h/A L
02}

0 | |

2 21 2.2 2.3 2.4 2.5 2.6 2.7

(20) — (21) —(14)

0.8

0.4

0.6 }" T

0.4
h/A

0.2

FIG. 6. [(a), (b)] MD simulation results for the buckling of the
hexagonal monolayer (1A) for experimentally relevant parameters
(see Appendix C) as the confinement strength decreases slowly in
time. In panel (a), the evolution of W¢ and Wg [Eq. (21), used as
measures for the hexagonal and the square order respectively] is
depicted as a function of Qecon. Panel (b) shows the evolution of the
average interlayer separation / in units of A (light blue markers with
error bars) with decreasing ., (from right to left). For comparison,
we also show the theoretically expected values for the interlayer sep-
aration of the bilayer hexagonal (21) structure 2" (yellow solid line)
and the bilayer square (20) structure 2?7 (purple solid line). The
square insets are enlarged snapshots of the system at the indicated
by the arrows points. The color of the particles encodes their vertical
positions z in units of A. [(c), (d)] Same as panels (a) and (b) but for
the reverse process in which we start by a square bilayer (2[]) and
increase slowly Q. (left to right). The simulation results presented
here are for an effective wake charge § = 0.2, a screening parameter
k =1, and a coupling parameter I' = Q?/(kzT A) = 1.187 x 10*.
The vertical lines represent the theoretically predicted (Fig. 5) tran-
sition points for (1A) — (21) and (21) — (20) in panels (a) and
(b) and for (200) — (21) and (21) — (1A) in panels (c) and (d).

043204-7



A. V. ZAMPETAKI et al.

PHYSICAL REVIEW E 102, 043204 (2020)

parameter ¥, withn = 1, 2, 3, ... generally reads
A
v, = | Z : > exp (inf ) 1)
J k(nn)

In the above expression, N is the total number of particles, c;
denotes the coordination number of the particle j, 6, is the
angle of the bond between the adjacent particles j and k with
respect to a fixed reference direction, and k(nn) denotes the
summation over all particles k which are nearest neighbors of
the particle j. Within this definition, the W¢ (Wg) is expected
to be one for a perfect hexagonal (square) lattice and zero if
no hexagonal (square) order is present.

As we observe in Fig. 6(b), for a confinement frequency
Qcon decreasing slowly with time, the initial hexagonal mono-
layer (1A) bifurcates at a certain value of Qeon to a clear
bilayer hexagonal structure (21) with a doubly occupied
bottom layer. At even lower values of 2., the hexagonal
structure becomes unstable and several domains of a bi-
layer square structure (20J) appear which fill eventually our
simulation box. This transition from the bilayer hexagonal
to the bilayer square configuration is accompanied by an
abrupt increase of the interlayer separation i [Fig. 6(b)], a
steep increase of Wsg, and a subsequent steep decrease of W¢
[Fig. 6(a)]. This behavior is in line with our theoretical predic-
tions, discussed above [Fig. 5, sequence (19)]. Even more, the
numerical values for the interlayer separation 4 and the two
transition points are in an excellent agreement with the ones
predicted by our theory.

The results for the reverse scenario [Figs. 6(c) and 6(d)],
in which we start from a bilayer square configuration (20J)
and increase the confinement frequency Qecon, Teveal a clear
hysteretic behavior, signified by the decrease of the square
order (Wg) and increase of the hexagonal order (W) at a larger
Q.on value than the one found for the (21) — (20J) transition
[Figs. 6(a) and 6(b)]. The transition point for the loss of square
order proves to be well estimated by our theoretical results,
in view of which the cause of the hysteresis is the bistability
between the (20J) and (21) structure in the regarded region
(Fig. 5). The transition (200) — (21) appears to be overall
slower than the (21) — (20J), especially in the vertical direc-
tion, where the separation of the particles remains close to the
expected one for the bilayer square (2®2) for some interval
past the transition [Fig. 6(d)]. In addition, the structures re-
alized in our simulations after the destabilization of the (2[1)
and before the stabilization of the hexagonal monolayer (1A),
i.e., between the two transition lines, are quite disordered,
rendering the identification of the different layers difficult and
resulting in the large deviations in the interlayer separation A
[Fig. 6(d)]. 5

Upon a decrease of its confinement frequency 2., below
2, the system exhibits an even more complex behavior. Its
detailed description, however, goes beyond the scope of the
present paper. Here we only mention that after the destabiliza-
tion of the square bilayer (20J) at a certain Qecon, we find in our
simulations the occurrence of a bilayer staggered honeycomb
(2A) structure (Fig. 7), along the lines of our theoretically
calculated phase diagram (Fig. 5). Beyond the destabilization
of the (2A) structure, the system presumably enters a transient
regime and at even lower confinement frequencies we expect

z/A

-1.2 -1 -0.8 -0.6 -04

20 40 60

x/A

FIG. 7. Snapshot of the particles’ positions, resulting from MD
simulations with slowly decreasing confinement strength, for the
case 2.0, = 1.5. The color of the particles encodes the values of their
vertical positions z in units of A. The parameters used read § = 0.2,
k= land " = 1.187 x 10* (for more information, see Appendix C).

the successive formation of more layers, similar to the results
of Ref. [29].

V. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated the buckling of
2D monodisperse complex plasma crystals as their vertical
confinement weakens. Unlike the Yukawa systems whose
buckling has been explored in literature to a large extent
[4,30,38,45], the 2D complex plasma crystals feature nonre-
ciprocal interactions, due to the presence of the plasma wakes.
This fact prohibits their description in terms of a Hamiltonian
[9] and renders the standard minimization techniques unsuit-
able for the investigation of the structural transitions in the
system.

Employing a simple point-wake model, we have solved the
force equilibrium equations for different lattice structures and
determined their stability through the corresponding dynami-
cal matrices, in order to construct the structural phase diagram
of the system. Here we have focused on the exploration of
the regime close to the instability of the hexagonal monolayer
1a).

For a finite wake charge, we find that below a critical
confinement frequency, the hexagonal monolayer (1A) gives
its place to a bilayer hexagonal structure (21) with a doubly
occupied bottom layer. This is different from what has been
found for reciprocal Yukawa systems [45], where instead of
the (21) a symmetric triple layer hexagonal (3A) structure is
realized and can be viewed as an imprint of the nonreciprocity,
which breaks the system’s symmetry. Decreasing further the
confinement frequency, we observe a discontinuous transition
to a bilayer square (20J) and subsequently to a bilayer stag-
gered honeycomb (2A) structure, similar to the reciprocal
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case. Our theoretical results are confirmed by molecular dy-
namics simulations which also show a clear hysteresis of the
(21) — (20)) transition, owing to the existence of a bistability
region of the (21) and (20J) structures.

The results presented here for experimentally relevant pa-
rameters confirm our intuition that a bilayer square structure
should be realized for 2D monodisperse complex plasma
crystals at weak enough confinement frequencies. We believe
therefore that they can be a useful guide for future experiments
aiming at observing the long-sought bilayer square struc-
tures at monodisperse complex plasma systems. The major
challenge thereof will be to avoid the vertical pairing which
destabilizes entirely the plasma crystal for high wake charges.
Thus, it would be important to determine the experimental
parameter values of the wakes, e.g., by employing existing
self-consistent kinetic models for the wake [21].

Future studies could also explore the buckling of a quasi-
one-dimensional chain of microparticles. With reciprocal
interactions alone, this has lead to interesting zigzag structures
with nontrivial associated dynamics [56-59]. With nonrecip-
rocal interactions added, an even more intricate behavior is
expected.

Finally, we remark that the theoretical procedure employed
in this work is quite general and, after adjusted properly, can
be applied to explore the structural properties of other non-
reciprocal systems, such as those featuring diffusiophoretic
[60—62], predator-prey [63,64], and social [65-68] forces.
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APPENDIX A: EXPRESSIONS FOR THE INTERLAYER
FORCES

Here we provide the full expression for the forces appear-
ing in the equilibrium condition (14). As a reference example,
we use the case of a triple layer hexagonal (111) configuration
with interlayer separations h; and h, depicted in Figs. 2(a)
and 2(b). The equilibrium conditions for the other configura-
tions are obtained following a very similar procedure.

Before we proceed, we define the following functions,

— (x—z +_X_3)e_x,

= 32+ 37, (A1)

Ax)
E(x)

which will be used in order to express the different forces.

As already mentioned in the text, the particles for the
(111) configuration can be distinguished into three classes,
indicative of their position in the unit cell (Fig. 2), according
to the value of / [Eq. (10)]. The value of this index affects the
value of the interparticle distances R;; = |r; — r;|/A and con-
sequently the values of s = |R;;| and s5 = |R;; + dn.| with
0 =368/A.

For all the cases of (111) configurations, we have s, =
V3

m and s, = %m + n, with m, n arbitrary integers and ad-
ditionally
2 T 21
S, = —| hy sin (2—1) — h, sin (—r) ,
z,0 \/§|: 1 3 3
Si.al) =S+ S’
s1= /82 + sf + sil,
2
s =2+ 2+ (59 (A2)

with kg = 0, arbitrary h;, hy, and
r = mod[l — (2m + n), 3].

Using these, along with the formula for the interaction
forces in our system [Eq. (3)], we can write the expression
for the z component of the total force F !, exerted on the layer
| = p from the layer with [ = u as follows

Fp"u = Z [Aksp)s.p, — GA (lcs(a))s;‘?;] ,
m,n
mod [p— 2m+n),3]1=u
(A3)

where we have also used the Q2p;, unit [Eq. (6)]. The first sum
in this expression corresponds to the interaction between the
charges of layer p with the charges of layer u. The second
sum, denoted by

g ~ (8)) ()
Fi, = - Z GA (is?)s?) (Ad)
m,n
mod [p— (2m+n),3l=u

refers to the interactions between the charges of layer p with
the wakes of layer u. Note that through their dependence on
Sps Sz.ps sg”, and sf},, both F";’u and F}/,, are functions of h; and
hy.

For the case of the bilayer square (2[), the situation is very
similar to the one described above. The only difference is in
the expressions for s, = m, s, = n, and the use of w = 0 or 1
[Eq. (13)] in the place of /, which lead to

1
Sow = _E[hw cos (mw) — hycos (wbh)],
261) = 5.0 +38,

51 = /524 s% + 522,,1’
s = s+ 52+ (L) (A5)

with hyg = 0, h; = h, and
b = mod[w — (m + n), 2].

The corresponding expressions for Fp’ . and F/,, in this case

read
F;’u = Z [A(KS,,)SZP qA(Ks(‘S)) (51)7]
mod [p _"(1;’1"+ n),2l=u
(A6)
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and

GA(es)s?)

(AT)

m,n
mod [p—(m+n),2]l=u

APPENDIX B: ELEMENTS OF THE DYNAMICAL MATRIX

Using the expressions of Appendix A for the (111) configu-
ration, we can write the quantities a,, 1., b4 1; Wwhich construct
the dynamical matrix D as follows:

Ay, = E qu,L,m,nv

m,n

buv,Ll = - Z

m,n

mod [L — (2m+n),3] =1

Apg.Lmnexp (—ik -s),

(B1)
with u, v = x, y, z and
Avctmn = Elics))(se/51)* — Alicsy)
—a[2(es”) (se/5)" = Alies)],
Ayyiman = Bks))(sy/s1) — Alksp)
— a2 (s (s /5) = Aes)]
Azt = Bes)(s21/51)" — Alkesy)
= al= () (57)" = Alesf?))
Asytmn = Ayxtmn = Elcs;)(sesy/51)°
— 8 (s (s /5")’,
Avztmn = Azemn = E(cs)(5x820/51)°
— G (es”) (552 /5)’,
Ayetmn = Agytmn = Blesy)(sys21/51)
—g&(esf) (/) (B2)

In the above expressions, we have [, L = 0, 1, 2. Replacing
[, L with w,W =0, 1 and using formulas (AS) instead of
(A2), we can deduce from Egs. (B1) and (B2) also the 6 x 6
dynamical matrix of the bilayer square (2L]) configuration.

APPENDIX C: MOLECULAR DYNAMICS SIMULATIONS

Our molecular dynamics (MD) simulations were per-
formed using LAMMPS in the canonical (NVT) ensemble [69]
for the point-wake model [Fig. 1(a)]. The total number of par-
ticles used in our simulations is N = 6480. In the horizontal
direction, we apply periodic boundary conditions, while in
the vertical direction the particles are confined in a parabolic
potential, so that the confinement force for the particle i reads

Fcon,i = _C(Zi - ZO)nzv (Cl)
with C = mQ?

“on Deing the confinement strength and zp =0
being the equilibrium point of the confining potential. The
particles’ positions are initially chosen so that they form a
monolayer hexagonal configuration in a 24.3 x 20.786 mm
simulation box. The equations of motion for our simulations,
which take into account the damping from the surrounding
neutral gas and the Brownian motion of the particles due to
the finite temperature T, read

mi; +mk; =Y Finrij + Feoni + Li, (C2)
JFL
where r; is the position of particle i, m is the particle mass,
v is the damping rate, and F;, ;; is the nonreciprocal force
exerted on particle i from particle j and its wake [Eq. (3)].
The Langevin force L; is defined as

(Li(1)) =0, (Li(t)L;( + 7)) = 2vmkpT 5;;6(t)I, (C3)

with T being the temperature of the heat bath and I being the
unit matrix.

In our simulation, we use the following parameter val-
ues which are relevant for complex plasma experiments
[15]: mass m = 8.0476 x 10~'3 kg, damping rate v = 10s~!,
thermostat temperature 7 = 300K, screening length A =
A =300 pum, particle charge Q = 8000 e, wake charge g =
—1600 e, and wake-particle distance § = 90 um. These lead
to an effective wake charge § = 0.2, a dimensionless wake-
particle distance § = 0.3, a screening parameter k = 1, and
a coupling parameter I' = Q?/(kgT A) = 1.187 x 10*. Dur-
ing the simulation time, we slowly decrease the confinement
strength C. In particular, starting from a value Cy =4 x
10~°N/m, we decrease C every 4 s by a small amount AC =
10~'"'N/m.

For the reverse simulation, we start from a square bilayer
configuration for Cy =2 x 107°N/m and we increase the
confinement strength by AC every 4 s.

[1] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher,
and D. Mohlmann, Plasma Crystal: Coulomb Crystallization in
a Dusty Plasma, Phys. Rev. Lett. 73, 652 (1994).

[2] H. Thomas and G. E. Morfill, Melting dynamics of a plasma
crystal, Nature (London) 379, 806 (1996).

[3] G. E. Morfill and A. V. Ivlev, Complex plasmas: An interdisci-
plinary research field, Rev. Mod. Phys. 81, 1353 (2009).

[4] A. Ivlev, H. Lowen, G. E. Morfill, and C. P. Royall, Complex
Plasmas and Colloidal Dispersions: Particle-Resolved Studies
of Classical Liquids and Solids (World Scientific, Singapore,
2012).

[5] M. Bonitz, C. Henning, and D. Block, Complex plasmas: A
laboratory for strong correlations, Rep. Prog. Phys. 73, 066501
(2010).

[6] A. V. Ivlev, U. Konopka, G. Morfill, and G. Joyce, Melting of
monolayer plasma crystals, Phys. Rev. E 68, 026405 (2003).

[7] C. L. Chan, W. Y. Woon, and Lin I, Shear Banding in Meso-
scopic Dusty Plasma Liquids, Phys. Rev. Lett. 93, 220602
(2004).

[8] V. Nosenko, S. K. Zhdanov, A. V. Ivlev, C. A. Knapek, and
G. E. Morfill, 2D Melting of Plasma Crystals: Equilibrium and
Nonequilibrium Regimes, Phys. Rev. Lett. 103, 015001 (2009).

043204-10


https://doi.org/10.1103/PhysRevLett.73.652
https://doi.org/10.1038/379806a0
https://doi.org/10.1103/RevModPhys.81.1353
https://doi.org/10.1088/0034-4885/73/6/066501
https://doi.org/10.1103/PhysRevE.68.026405
https://doi.org/10.1103/PhysRevLett.93.220602
https://doi.org/10.1103/PhysRevLett.103.015001

BUCKLING OF TWO-DIMENSIONAL PLASMA CRYSTALS ...

PHYSICAL REVIEW E 102, 043204 (2020)

[9] A. V. Ivlev, V. Nosenko, and T. B. Rocker, Equilibrium and
non-equilibrium melting of two-dimensional plasma crystals,
Contrib. Plasma Phys. 55, 35 (2015).

[10] S. O. Yurchenko, E. V. Yakovlev, L. Couédel, N. P. Kryuchkov,
A. M. Lipaev, V. N. Naumkin, A. Y. Kislov, P. V. Ovcharov,
K. I. Zaytsev, E. V. Vorob’ev, G. E. Morfill, and A. V. Ivlev,
Flame propagation in two-dimensional solids: Particle-resolved
studies with complex plasmas, Phys. Rev. E 96, 043201 (2017).

[11] V. Nosenko, A. V. Ivlev, and G. E. Morfill, Anisotropic shear
melting and recrystallization of a two-dimensional complex
plasma, Phys. Rev. E 87, 043115 (2013).

[12] V. Nosenko, S. K. Zhdanov, and G. E. Morfill, Supersonic
Dislocations Observed in a Plasma Crystal, Phys. Rev. Lett. 99,
025002 (2007).

[13] A. V.Ivlev and G. Morfill, Anisotropic dust lattice modes, Phys.
Rev. E 63, 016409 (2000).

[14] S. K. Zhdanov, A. V. Ivlev, and G. E. Morfill, Mode-coupling
instability of two-dimensional plasma crystals, Phys. Plasmas
16, 083706 (2009).

[15] L. Couédel, S. K. Zhdanov, A. V. Ivlev, V. Nosenko, H. M.
Thomas, and G. E. Morfill, Wave mode coupling due to plasma
wakes in two-dimensional plasma crystals: In-depth view, Phys.
Plasmas 18, 083707 (2011).

[16] L. Couédel, V. Nosenko, A. V. Ivlev, S. K. Zhdanov, H. M.
Thomas, and G. E. Morfill, Direct Observation of Mode-
Coupling Instability in Two-Dimensional Plasma Crystals,
Phys. Rev. Lett. 104, 195001 (2010).

[17] K. Qiao, J. Kong, E. Van Oeveren, L. S. Matthews, and T. W.
Hyde, Mode couplings and resonance instabilities in dust clus-
ters, Phys. Rev. E 88, 043103 (2013).

[18] R. Kompaneets, G. E. Morfill, and A. V. Ivlev, Wakes in com-
plex plasmas: A self-consistent kinetic theory, Phys. Rev. E 93,
063201 (2016).

[19] M. Lampe, G. Joyce, G. Ganguli, and V. Gavrishchaka, Trapped
ion effect on shielding, current flow, and charging of a small
object in a plasma, Phys. Plasmas 7, 3851 (2000).

[20] L.-J. Hou, Y.-N. Wang, and Z. L. Miskovi¢, Interaction potential
among dust grains in a plasma with ion flow, Phys. Rev. E 64,
046406 (2001).

[21] R. Kompaneets, U. Konopka, A. V. Ivlev, V. Tsytovich, and G.
Morfill, Potential around a charged dust particle in a collisional
sheath, Phys. Plasmas 14, 052108 (2007).

[22] A. Melzer, V. A. Schweigert, and A. Piel, Transition from
Attractive to Repulsive Forces Between Dust Molecules in a
Plasma Sheath, Phys. Rev. Lett. 83, 3194 (1999).

[23] A. V. Ivlev, J. Bartnick, M. Heinen, C.-R. Du, V. Nosenko, and
H. Lowen, Statistical Mechanics Where Newton’s Third Law is
Broken, Phys. Rev. X' 5, 011035 (2015).

[24] V. Steinberg, R. Siitterlin, A. V. Ivlev, and G. Morfill, Vertical
Pairing of Identical Particles Suspended in the Plasma Sheath,
Phys. Rev. Lett. 86, 4540 (2001).

[25] V. Nosenko, A. V. Ivlev, R. Kompaneets, and G. Morfill, Stabil-
ity and size of particle pairs in complex plasmas, Phys. Plasmas
21, 113701 (2014).

[26] J. Bartnick, A. Kaiser, H. Lowen, and A. V. Ivlev, Emerging ac-
tivity in bilayered dispersions with wake-mediated interactions,
J. Chem. Phys. 144, 224901 (2016).

[27] V. A. Schweigert, 1. V. Schweigert, A. Melzer, A. Homann, and
A. Piel, Alignment and instability of dust crystals in plasmas,
Phys. Rev. E 54, 4155 (1996).

[28] A. Melzer, V. A. Schweigert, I. V. Schweigert, A. Homann, S.
Peters, and A. Piel, Structure and stability of the plasma crystal,
Phys. Rev. E 54, R46 (1996).

[29] L.-W. Teng, P.-S. Tu, and Lin I, Microscopic Observation of
Confinement-Induced Layering and Slow Dynamics of Dusty-
Plasma Liquids in Narrow Channels, Phys. Rev. Lett. 90,
245004 (2003).

[30] H. Totsuji, T. Kishimoto, and C. Totsuji, Structure of Confined
Yukawa System (Dusty Plasma), Phys. Rev. Lett. 78, 3113
(1997).

[31] K. Qiao and T. W. Hyde, Structural phase transitions and out-
of-plane dust lattice instabilities in vertically confined plasma
crystals, Phys. Rev. E 71, 026406 (2005).

[32] D. N. Klochkov and N. G. Gusein-zade, On the instability of
a two-dimensional plane plasma crystal, Plasma Phys. Rep. 33,
646 (2007).

[33] B. A. Klumov and G. E. Morfill, Characteristics of crystalliza-
tion of complex plasmas in narrow channels, J. Exp. Theor.
Phys. 107, 908 (2008).

[34] Z. Donko, G. J. Kalman, and P. Hartmann, Dynamical corre-
lations and collective excitations of Yukawa liquids, J. Phys.:
Condens. Matter 20, 413101 (2008).

[35] P. Hartmann, Z. Donko, G. J. Kalman, S. Kyrkos, K. I. Golden,
and M. Rosenberg, Collective Dynamics of Complex Plasma
Bilayers, Phys. Rev. Lett. 103, 245002 (2009).

[36] H. Pan, G. J. Kalman, P. Hartmann, and Z. Donko, Strongly
coupled Yukawa trilayer liquid: Structure and dynamics,
arXiv:2007.08758v1.

[37] 1. V. Schweigert, V. A. Schweigert, and F. M. Peeters, Enhanced
stability of the square lattice of a classical bilayer Wigner crys-
tal, Phys. Rev. B 60, 14665 (1999).

[38] I Travénec and L. Samaj, Phase diagram and critical properties
of Yukawa bilayers, Phys. Rev. E 92, 022306 (2015).

[39] M. Mazars, Bond orientational order parameters in the
crystalline phases of the classical Yukawa-Wigner bilayers,
Europhys. Lett. 84, 55002 (2008).

[40] L. Samaj and E. Trizac, Critical phenomena and phase sequence
in a classical bilayer Wigner crystal at zero temperature, Phys.
Rev. B 85,205131 (2012).

[41] M. Antlanger, G. Kahl, M. Mazars, L. §amaj, and E. Trizac,
Rich Polymorphic Behavior of Wigner Bilayers, Phys. Rev.
Lett. 117, 118002 (2016).

[42] R. Messina and H. Lowen, Reentrant Transitions in Col-
loidal or Dusty Plasma Bilayers, Phys. Rev. Lett. 91, 146101
(2003).

[43] E. C. Oguz, R. Messina, and H. Lowen, Crystalline multilayers
of the confined Yukawa system, Europhys. Lett. 86, 28002
(2009).

[44] E. C. Oguz, R. Messina, and H. Lowen, Multilayered crystals
of macroions under slit confinement, J. Phys.: Condens. Matter
21, 424110 (2009).

[45] E. C. Oguz, A. Reinmiiller, H. J. Schope, T. Palberg, R.
Messina, and H. Lowen, Crystalline multilayers of charged
colloids in soft confinement: Experiment versus theory, J. Phys.:
Condens. Matter 24, 464123 (2012).

[46] Y. Peng, Z. Wang, A. M. Alsayed, A. G. Yodh, and Y. Han,
Melting of Colloidal Crystal Films, Phys. Rev. Lett. 104,
205703 (2010).

[47] S. Grandner and S. H. L. Klapp, Freezing of charged colloids in
slit pores, J. Chem. Phys. 129, 244703 (2008).

043204-11


https://doi.org/10.1002/ctpp.201400030
https://doi.org/10.1103/PhysRevE.96.043201
https://doi.org/10.1103/PhysRevE.87.043115
https://doi.org/10.1103/PhysRevLett.99.025002
https://doi.org/10.1103/PhysRevE.63.016409
https://doi.org/10.1063/1.3205894
https://doi.org/10.1063/1.3620406
https://doi.org/10.1103/PhysRevLett.104.195001
https://doi.org/10.1103/PhysRevE.88.043103
https://doi.org/10.1103/PhysRevE.93.063201
https://doi.org/10.1063/1.1288910
https://doi.org/10.1103/PhysRevE.64.046406
https://doi.org/10.1063/1.2730498
https://doi.org/10.1103/PhysRevLett.83.3194
https://doi.org/10.1103/PhysRevX.5.011035
https://doi.org/10.1103/PhysRevLett.86.4540
https://doi.org/10.1063/1.4900877
https://doi.org/10.1063/1.4953225
https://doi.org/10.1103/PhysRevE.54.4155
https://doi.org/10.1103/PhysRevE.54.R46
https://doi.org/10.1103/PhysRevLett.90.245004
https://doi.org/10.1103/PhysRevLett.78.3113
https://doi.org/10.1103/PhysRevE.71.026406
https://doi.org/10.1134/S1063780X07080053
https://doi.org/10.1134/S106377610811023X
https://doi.org/10.1088/0953-8984/20/41/413101
https://doi.org/10.1103/PhysRevLett.103.245002
http://arxiv.org/abs/arXiv:2007.08758v1
https://doi.org/10.1103/PhysRevB.60.14665
https://doi.org/10.1103/PhysRevE.92.022306
https://doi.org/10.1209/0295-5075/84/55002
https://doi.org/10.1103/PhysRevB.85.205131
https://doi.org/10.1103/PhysRevLett.117.118002
https://doi.org/10.1103/PhysRevLett.91.146101
https://doi.org/10.1209/0295-5075/86/28002
https://doi.org/10.1088/0953-8984/21/42/424110
https://doi.org/10.1088/0953-8984/24/46/464123
https://doi.org/10.1103/PhysRevLett.104.205703
https://doi.org/10.1063/1.3046565

A. V. ZAMPETAKI et al.

PHYSICAL REVIEW E 102, 043204 (2020)

[48] S. Grandner and S. H. L. Klapp, Surface-charge-induced
freezing of colloidal suspensions, Europhys. Lett. 90, 68004
(2010).

[49] F. Ramiro-Manzano, F. Meseguer, E. Bonet, and 1. Rodriguez,
Faceting and Commensurability in Crystal Structures of Col-
loidal Thin Films, Phys. Rev. Lett. 97, 028304 (2006).

[50] F. Ramiro-Manzano, E. Bonet, I. Rodriguez, and F. Meseguer,
Layering transitions in colloidal crystal thin films between 1 and
4 monolayers, Soft Matter 5, 4279 (2009).

[51] D. K. Satapathy, K. Nygard, O. Bunk, K. Jefimovs, E. Perret,
A. Diaz, E. Pfeiffer, C. David, and J. F. van der Veen, Buckling
and layering transitions in confined colloids, Europhys. Lett. 87,
34001 (20009).

[52] M. Eshraghi and J. Horbach, Molecular dynamics simulation of
charged colloids confined between hard walls: Pre-melting and
pre-freezing across the BCC-fluid coexistence, Soft Matter 14,
4141 (2018)

[53] V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. M.
Thomas, Elementary Physics of Complex Plasmas, Lecture
Notes in Physics, Vol. 731 (Springer, Berlin, 2008).

[54] A. V. Ivlev and G. Morfill, Dust acoustic solitons with variable
particle charge: Role of the ion distribution, Phys. Rev. E 63,
026412 (2001).

[55] V. V. Yaroshenko, A. V. Ivlev, and G. E. Morfill, Coupled
dust-lattice modes in complex plasmas, Phys. Rev. E 71, 046405
(2005).

[56] T. Chou and D. R. Nelson, Buckling instabilities of a confined
colloid crystal layer, Phys. Rev. E 48, 4611 (1993).

[57] A. V. Straube, R. P. A. Dullens, L. Schimansky-Geier, and A. A.
Louis, Zigzag transitions and nonequilibrium pattern formation
in colloidal chains, J. Chem. Phys. 139, 134908 (2013).

[58] T. Dessup, T. Maimbourg, C. Coste, and M. Saint Jean, Linear
instability of a zigzag pattern, Phys. Rev. E 91, 022908 (2015).

[59] T. Dessup, C. Coste, and M. Saint Jean, Subcriticality of the
zigzag transition: A nonlinear bifurcation analysis, Phys. Rev.
E 91, 032917 (2015).

[60] B. Sabass and U. Seifert, Efficiency of Surface-Driven Motion:
Nanoswimmers Beat Microswimmers, Phys. Rev. Lett. 105,
218103 (2010).

[61] R. Soto and R. Golestanian, Self-Assembly of Catalytically Ac-
tive Colloidal Molecules: Tailoring Activity Through Surface
Chemistry, Phys. Rev. Lett. 112, 068301 (2014).

[62] S. Saha, S. Ramaswamy, and R. Golestanian, Pairing, waltzing,
and scattering of chemotacticactive colloids, New J. Phys. 21,
063006 (2019).

[63] V. Zhdankin and J. C. Sprott, Simple predator-prey swarming
model, Phys. Rev. E 82, 056209 (2010).

[64] A. Sengupta, T. Kruppa, and H. Lowen, Chemotactic predator-
prey dynamics, Phys. Rev. E 83, 031914 (2011).

[65] D. Helbing and P. Molnar, Social force model for pedestrian
dynamics, Phys. Rev. E 51, 4282 (1995).

[66] D. Helbing, I. Farkas, and T. Vicsek, Simulating dynamical
features of escape panic, Nature (London) 407, 487 (2000).

[67] M. C. Gonzdlez, P. G. Lind, and H. J. Herrmann, System of
Mobile Agents to Model Social Networks, Phys. Rev. Lett. 96,
088702 (2006).

[68] K. Nishimoto, R. Suzuki, and T. Arita, Social particle swarm:
Explosive particle dynamics based on cooperative/defective
forces, in Proceedings of the IEEE Symposium on Artificial Life
(ALife) (IEEE, Singapore, 2013), pp. 134-1309.

[69] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comp. Phys. 117, 1 (1995).

043204-12


https://doi.org/10.1209/0295-5075/90/68004
https://doi.org/10.1103/PhysRevLett.97.028304
https://doi.org/10.1039/b907441d
https://doi.org/10.1209/0295-5075/87/34001
https://doi.org/10.1039/C8SM00398J
https://doi.org/10.1103/PhysRevE.63.026412
https://doi.org/10.1103/PhysRevE.71.046405
https://doi.org/10.1103/PhysRevE.48.4611
https://doi.org/10.1063/1.4823501
https://doi.org/10.1103/PhysRevE.91.022908
https://doi.org/10.1103/PhysRevE.91.032917
https://doi.org/10.1103/PhysRevLett.105.218103
https://doi.org/10.1103/PhysRevLett.112.068301
https://doi.org/10.1088/1367-2630/ab20fd
https://doi.org/10.1103/PhysRevE.82.056209
https://doi.org/10.1103/PhysRevE.83.031914
https://doi.org/10.1103/PhysRevE.51.4282
https://doi.org/10.1038/35035023
https://doi.org/10.1103/PhysRevLett.96.088702
https://doi.org/10.1006/jcph.1995.1039

