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Properties of surface Landau–de Gennes
Q-tensor models

Michael Nestler,*a Ingo Nitschke,a Hartmut Löwenb and Axel Voigt acd

Uniaxial nematic liquid crystals whose molecular orientation is subjected to tangential anchoring on a

curved surface offer a non trivial interplay between the geometry and the topology of the surface and

the orientational degree of freedom. We consider a general thin film limit of a Landau–de Gennes

Q-tensor model which retains the characteristics of the 3D model. From this, previously proposed

surface models follow as special cases. We compare fundamental properties, such as the alignment of

the orientational degrees of freedom with principle curvature lines, order parameter symmetry and

phase transition type for these models, and suggest experiments to identify suitable model assumptions.

1 Introduction

Liquid crystals1,2 consist of particles that possess both translational
and orientational degrees of freedom. If these particles are
constrained to the tangent bundle of a curved surface interest-
ing phenomena emerge, which result from the tight coupling of
the elastic and bulk free energies of the liquid crystal with the
topological and geometrical properties of the surface. There are
various experimental realization3–13 and particle-based computer
simulations,14–30 which mainly focus on the emergence and position
of topological defects on spherical or more complex surfaces.
However, not only defects are tightly linked to the topological and
geometrical properties of the surface, but also other fundamental
issues, such as the alignment of the orientational degree of freedom
with principle curvature lines, order parameter symmetries, phase
transition type and curvature induced phase transitions are of
fundamental interest, but are much less explored. We will address
these issues for uniaxial nematic liquid crystals within a field-
theoretical description of a surface Landau–de Gennes Q-tensor
model. Various such models have been proposed.31–38 They strongly
differ in the coupling mechanism between the orientational ordering
of the nematic liquid crystal and the geometric properties of the
surface. These coupling terms strongly depend on the assumptions
made in the derivation and, as will be shown, have strong
consequences on the fundamental properties of the phase
transition type and order parameter symmetries.

Liquid crystals on curved surfaces are in a certain sense
between 2D and 3D and could thus show properties of both
dimensions. Lets first compare such properties of the established
Landau–de Gennes Q-tensor theory for nematic liquid crystals in
2D and 3D:1 the nematic phase can be stable in both dimensions.
However, already the isotropic-to-nematic phase transition
qualitatively differs between 2D and 3D. While it is of first-
order in 3D, it is controversially discussed if this generally holds in
2D. Even if it can be proven that first-order isotropic-to-nematic
phase transitions are possible in 2D,39,40 computer simulations
and experiments indicate qualitatively different behaviour
including continuous, first-order and even the absence of phase
transitions, see e.g. ref. 41–43. In ref. 44 an overview of these
theoretical arguments, computer simulations and experimental
observations for thin films and 2D systems is provided. The
situation on curved surfaces should somehow reflect these
properties. However, in some of the proposed surface models
first-order phase transitions are not possible. Another aspect
highlighting the differences is discussed in ref. 45 by comparing
mean field theories in 2D46 and 3D.47 The definitions yield
different eigenvalue spectra in the order tensor, which corre-
sponds to either a symmetry under in plane rotations by 901 in
2D or a rotational symmetry (w.r.t. the average particle direc-
tion) in 3D. How a nematic liquid crystal on a curved surface fits
into this picture is open. A similar situation arises for Landau–
de Gennes models. Some of the proposed surface models yield
an eigenvalue spectrum as in 2D, others as in 3D. In 2D uniaxial
nematics is the only possible nematic state, in 3D it is the
energetically most favourable state under weak assumptions on
the state potential.45 A proper classification of uniaxiality in a
surface Landau–de Gennes model is open, but one might ask, if,
as in 2D, only uniaxial nematics should be allowed. The third
aspect considers the mean orientation. If not induced by
external fields or boundary conditions the mean orientation in
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nematic liquid crystals is arbitrary in 2D and 3D. This changes
on curved surfaces, where it should be preferential to align with
the principle curvature lines. This aspect has been discussed
previously and is identified with the influence of extrinsic
curvature terms32,33 in surface models, which again are considered
in some but not all of the proposed models.

We will review the proposed surface Landau–de Gennes
Q-tensor models with the aspect of these fundamental properties.
Furthermore we propose a version of a surface Landau–de Gennes
Q-tensor model which effectively describes surface liquid crystals
retaining the 3D phase transition type and uniaxial eigenvalue
spectra. Most previously proposed models follow as special cases
and we discuss under which assumptions the fundamental
properties get lost. The paper is structured as follows. In Section 2
we briefly review the 3D Landau–de Gennes Q-tensor model1 and
propose its thin film limit under generic anchoring conditions.
Solving this model indicates a strong influence of geometry on
fundamental properties. In particular, it is established that
curvature can induce biaxiality, even if parameters in the original
3D model enforce state potential minima to be uniaxial. To
overcome this problem we modify the derived energy by adding
a penalty term which enforces uniaxiality weakly. In Section 3 this
model together with its special cases is discussed in a flat 2D
scenario with respect to their fundamental properties. We
demonstrate the general model to retain the 3D properties.
With this established, we apply the models to curved surfaces
and discuss the effects of curvature on the ordering of the liquid
crystal in Section 4. We summarize our findings and discuss
them in a general framework in Section 5. As all these results do
not depend on specific material parameters, we only consider a
one-constant approximation. Details on derivations and used
numeric methods can be found in the Appendix.

2 Thin film limit of the Q-tensor model

In this section we present essential notions and properties of the
Landau–de Gennes Q-tensor model in 3D1 and derive a generic
surface model as a thin film limit. Restrictions to enforce
uniaxiality and special cases, which link the model to the
previously proposed surface Landau–de Gennes Q-tensor
models, follow.

Q-Tensor model in 3D

We consider rod like particles with a head–tail symmetry in a
volume V C R3. We consider the symmetric and trace free
tensorial order parameter Q. In the special case of a uniaxial
eigenvalue spectrum it is defined by

Q ¼ S P� P� 1

3
G

� �
; sðQÞ ¼ � 2

3
;�1

3
;�1

3

� �
S (1)

where P denotes the principal director, defined by the average
orientation of the particles, S the scalar order parameter,
encoding the degree of alignment by the particles with the
average direction, G the metric of V and s(Q) the eigenvalue
spectrum. Please note that for Cartesian coordinates the metric
G coincides with the identity matrix I3. The phase of prevalent

liquid like material properties is characterized by an isotropic
ordering of particles and S = 0. In the nematic phase the
particles tend to preferentially align with the average direction
and S - S* 4 0. The Landau–de Gennes Q-tensor model is
based on the free energy

FðQÞ ¼
ð
V

L

2
r3Qk k2 þ o atr3Q

2 þ 2

3
btr3Q

3 þ ctr3Q
4

� �
dV:

(2)

The first term, the elastic energy, penalizes any spatial deviations
from the ground state. For the sake of simplicity we consider a
one-constant approximation with single elastic parameter L. r3

denotes the typicalr-operator in R3 and 8�8 the Frobenius norm.
For more general models see e.g. ref. 48–52. In the remaining
terms, the state potential, we have factored out o 4 0 such that
classic phenomenological constants are given by a* = oa, b* = ob
and c* = oc. For the sake of readability we use an index free
tensor notation,53 where e.g. � denotes the inner product, regard-
less of the tensorial degree. We define trace notion by tr3Q = Q�G.
Such full contraction with the space metric coincides with the
Frobenius tensor norm by tr3Q

2 ¼ Qk k2 ¼
P
ij

Qij
2. The state

potential can be expressed in terms of S such that the choice
of a, b and c defines the preferred ordering S* as local minima of
the state potential.

Following ref. 45 and 52 we point out that the tensorial order
parameter Q in this model is not restricted to the uniaxial
eigenvalue spectra s(Q) as defined in (1). To track such situations,
a biaxiality measure is introduced54

UðQÞ ¼ 1� 6
tr3Q

3
� �2
tr3Q2ð Þ3

(3)

for which U(Q) = 0 if and only if Q is uniaxial. This measure is
discussed in detail in ref. 45 and it is established that for b o 0 state
potential minima Q* are uniaxial.

Planar anchoring and tensor decomposition

For the boundary of the volume V, qV, with outward pointing
normal n, planar anchoring of uniaxial Q-tensors is modeled by
a bare surface energy as discussed in ref. 35–37,

FBðQÞ ¼
ð
@V

a nQn � b½ �2 þ g Q� n � nð Þ Qnð Þk k2d@V ; (4)

with non-negative coefficients a, g A R+. The formulation can
be interpreted as a penalty energy enforcing n as an eigenvector
of Q with eigenvalue b. In the case of a tangential aligned
uniaxial Q-tensor (P�n = 0) this would translate into b = �1

3S.
Given this concept of prescribing a specific eigenvalue in the
boundary normal direction motivates the separation of Q in a
normal part b and tangential parts q (8qn8 = 8nq8 = 0).
Analogous to ref. 35–37 we thereby choose a separation such
that q is symmetric and trace free (in the boundary domain
sense)

Qðq; bÞ ¼ q� b
2
gþ bn � n; (5)
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where g is the metric of qV and tr2q = q�g = 0. Within this
decomposition we can consider q as a two dimensional Q-tensor
on qV with tangential principal director p ( p�n = 0)

q ¼ S p� p� 1

2
g

� �
; sðqÞ ¼ � 1

2
;�1

2
; 0

� �
S: (6)

Thin film limit models

Lets consider V = Sh as a thin film with thickness h, such that

Sh ¼S� �h
2
;
h

2

� �
and S a regular surface. We perform the

thin film limit lim
h!0

1

h
FðQÞ ¼FSðQÞ in the spirit of ref. 38 under

boundary condition 8(G � n# n)(Qn)8 = 0, which corresponds
to a = 0 and g - N in eqn (4) and keeps b as a degree of
freedom. For details see the Appendix. By averaging out the
normal direction we yield a surface model. Inserting (5) in (2)
leads to

FS½q; b� ¼ 1

2

ð
S

L k rq k 2 þ 3

2
L k rb k 2

� 6LHbhB; qi þ L k B k 2 tr2q
2 þ 9

2
b2

� �
dS

þ o
ð
S

1

2
2a� 2bbþ 3cb2
� �

tr2q
2 þ ctr2q

4

þ b2

8
12aþ 4bbþ 9cb2
� �

dS: (7)

In contrast to (2) all operators are defined by the Levi–Civita
connection (covariant derivative) r. For a definition see e.g.
ref. 55. Furthermore, the inner products are considered at the
surface. As in 3D we identify the first integral with the elastic
energy and the second with the state potential. The first
integral contains additional coupling terms, where B denotes
the shape operator and H the mean curvature of S, for details
see the Appendix. These are extrinsic curvature contributions,
the term 6HbhB,qi induces an alignment of p with one of the
lines of principle curvatures depending on the sign of H. The

second term k B k 2 tr2q
2 þ 9

2
b2

� �
poses an isotropic coupling

between curvature and ordering. The term is closely related to
the state potential such that the curvature can locally deform
the potential and can induce phase transition or violate uni-
axiality even if b o 0, a setting guarantees state potential
minima to be uniaxial in the initial 3D model.45 An example
is provided in the Appendix.

As we are only interested in uniaxial nematic liquid crystals,
we require a constraint, which suppresses curvature induced
biaxiality. Inserting the decomposition (5) in the biaxiality
measure (3) leads to a condition for b enforcing uniaxial eigenvalue
spectra of Q-tensors, for details see the Appendix. It reads

b ¼ �
ffiffiffi
2
p

3
k q k : (8)

Using this constraint in (7) to eliminate b leads to numerically
cumbersome terms in the first variation, which is not further

pursued. We instead add a penalty term to (7) to enforce the
constraint weakly,

ob

ð
S

1

4
b2 � 2

9
k q k 2

� �2

dS; (9)

with ob 4 0.
As evolution laws we propose L2-gradient flows of the energy

(7) with (9) with independent variables q and b, which read

@tq¼ LDDG
S q� L H2� 2K

� �
�o 2a� 2bbþ c 3b2þ 2tr2q

2
� �� �� �

q

þ 3LHb B� 1

2
Hg

� �
�ob

2

9
b2� 2

9
k q k 2

� �
q

(10)

@tb ¼ LDSb� o 3cb3 þ bb2
� �

� o 2aþ 2ctr2q
2

� �
b

� 3L H2 � 2K
� �

bþ 2LHhB; qi þ 2

3
btr2q

2

þ ob b2 � 2

9
k q k 2

� �
b

(11)

where DDG
S denotes the surface Div-Grad (Bochner) Laplace

operator, DS the Laplace–Beltrami operator and K the Gaussian
curvature. Details of the derivation can be found in the Appendix.
Eqn (10) and (11) provide a general surface Landau–de Gennes
Q-tensor model with uniaxial eigenvalue spectra with a minimum
of a priori assumptions. This system can be solved numerically,
see the Appendix.

Previously proposed models consider special choices for b.
They result as a thin film limit by considering the boundary
conditions nQn � b = 0 and 8(G � n # n)(Qn)8 = 0, corres-
ponding to a-N and g-N in eqn (4), which specifies b. b = 0
yields a model with degenerate Q-tensors Q = q as in ref. 31 and
34, for b = �1

3S* we yield the model of approximate uniaxial
Q-tensors,32,37,56,57 where some consider a different constant
value for b, and the one-constant approximation of the derived
models in ref. 35, 36 and 38. The resulting evolution equations
are special cases of eqn (10). In the following we will compare the
three models:

1. b ¼ �
ffiffiffi
2
p

3
k q k (eqn (10) and (11))

2. b = �1
3S* (eqn (10) with b = �1

3S* and ob = 0)

3. b = 0 (eqn (10) with b = 0 and ob = 0).
(1) ensures 3D uniaxial eigenvalue spectra, (2) approximates

this condition, and (3) essentially has a biaxial eigenvalue
spectrum in 3D and is only uniaxial if considered as a 2D model.

3 Fundamental properties of the
surface models

To keep the discussion as simple as possible we start with
planar surfaces, which already show fundamental differences.
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Eigenvalue spectra and symmetries

We recall the results of the mean field modeling approach for
3D systems, see e.g. ref. 47,

QMF ¼
ð
S2

M �M � 1

3
G

� �
f3ðMÞdM; M 2 R3; kM k¼ 1

(12)

with M as the particle orientation and f3 the associated
probability distribution. For planar alignment of M w.r.t. the
tangential direction, of a thin film, the mean field model

implies an eigenvalue spectrum s QMF
� �

¼ 2

3
;�1

3
;�1

3

� �
. The

mean field model in 2D, e.g. ref. 46, reads similar

qMF ¼
ð
S1

m�m� 1

2
g

� �
f2ðmÞdm; m 2 R2; mk k ¼ 1 (13)

but implies an eigenvalue spectrum of s qMF
� �

¼ 1

2
;�1

2

� �
. Con-

sidering the eigenvalue spectrum for the decomposed Q tensor (5)

sðQðq; bÞÞ ¼ � 1

2
ðS � bÞ; �1

2
ðS þ bÞ; b

� �
(14)

we observe for b = 0 a spectrum compatible with the 2D mean field

theory, while b = �1
3S* and b ¼ �

ffiffiffi
2
p

3
k q k conform to 3D theory.

Phase transition type

We now turn to the isotropic-to-nematic phase transition. In
the Landau–de Gennes Q-tensor model such transitions can be
accounted for by a temperature dependent coefficient a = a(T) =
a0(T � T*) where T* denotes the critical temperature where the
isotropic phase is stable for T 4 T*. Fig. 1A shows the phase
portrait of the Landau–de Gennes Q-tensor model for the 3D

case w.r.t.
a

c
;
b

c
with a typical transient for increasing T from the

pure nematic phase, via phase coexistence of the nematic and

isotropic phase to the pure isotropic phase. T1 denotes the
critical temperature where the nematic phase ceases to exist. In
this framework the transition is discontinuous/first-order.

We transfer this investigation of the transient from 3D to the
surface models. For this purpose we consider states of uniform
Q(q,b) and evaluate the minima of the state potential contribution
in (7) w.r.t. to a(T) and the choice of b. In Fig. 1B we have
plotted the minima and their stability. Reviewing the results for

b ¼ �
ffiffiffi
2
p

3
k q k we observe a behavior identical to the 3D case.

This is quite natural, since inserting the Q-tensor decomposition
in 3D state potential energy density yields directly the surface
counterpart. Therefore this surface model exhibits a first order
phase transition type and enables phase coexistence. For the
model of fixed b =�1

3S* we observe a first-order transition at T1 as
in a previous model but no phase coexistence for T A [T*,T1]. In
the case of b = 0 the transition type changes to continuous/
second-order and shifts to the lower temperature T*.

Fig. 2 further highlights the qualitative differences of the
three models on a torus (with two major radii r, R), which is
chosen as a prototypical surface with varying curvature, which
avoids the presence of topological defects.

4 Impact of curvature in surface models

To investigate the impact of b on the geometry coupling
mechanisms and to demonstrate the sketched effects we con-
sider two numerical experiments.

Distortion energy minima

To focus on the first coupling term in the surface Landau–de
Gennes Q-tensor energy (7), 6HbhB,qi, we consider a uniform
director field P(j) = cos(j)pr � sin(j)pR on a torus defined by the
linear combination of two director modes pr and pR as shown in
Fig. 3A. With this director field we define q(j) = (p(j) # p(j)� 1

2g)
with fixed norm. For given b we can now variate j and evaluate

Fig. 1 Types of phase transition in surface models: (A) phase portrait for bulk Landau–de Gennes Q-tensor model as defined in (2). Four distinct phases
w.r.t. state potential parameters a, b and c exist. Only the isotropic phase is stable (I), only the nematic phase is stable (N) isotropic-to-nematic phase
coexistence (C) and orthogonal ordering (O). The red line indicates a typical phase transition for a(T) = a(T � T*), T A [1/2T*,3/2T*] where T* denotes
critical temperature such that the isotropic phase loses stability, (I)-to-(N) transition. Here, the temperature T1 marks the transition from only the isotropic

stable regime to coexistence, (I)–(C) transition. (O) denotes also a region of coexistence but due to
b

c
4 0 a preferred ordering S* o 0 is observed. Such a

situation of orthogonal ordering (w.r.t. P) is not discussed here. (B) Stability of minima S = {0,S*} of state potential w.r.t. to temperature for a(T) and choice
of the b model. Blue lines denote stable minima while red lines indicate unstable minima.
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the distortion energy contributions. In this set up the isotropic
coupling term is constant as well as 8rb82, furthermore the

models b =�1
3S* and b ¼ �

ffiffiffi
2
p

3
k q k coincide. For b = 0 the directed

coupling term vanishes and the minimum of distortion energy is
defined by the 8rq82 contribution. As shown in Fig. 3C (top) two

minima exist. The minimum j� ¼ p
4

results in a surprising q

configuration, shown in Fig. 3B (left). The second minimum j� ¼
3

4
p yields a corresponding configuration with in-plane 901 rotated

eigenvectors. In the model b ¼ �
ffiffiffi
2
p

3
k q k and on the chosen

geometry the �3bLHhB,qi contribution dominates the distortion
energy, see Fig. 3C (bottom) such that the minimum is achieved for

j� ¼ p
2

. The corresponding Q-tensor configuration consists of prin-

cipal eigenvectors aligned with lines of minimal curvature, see
Fig. 3B (right).

Reviewing these results we conclude, once more, that degen-
erate (b = 0) surface Landau–de Gennes Q-tensor models
describe a substantial different type of physical systems than
surface models with non-degenerate Q-tensors. Retaining the
3D nature of liquid crystals in the surface model yields an
intensified geometry-ordering coupling.

Balancing curvature effects for b ¼ �
ffiffiffi
2
p

3
k q k

To obtain an intuition on the possible interactions of the
geometry-order couplings we consider a thick torus (R = 0.55,
r = 0.45) where H changes sign, see Fig. 4A. On this surface we

Fig. 2 Phase coexistence in surface models: (A) temporal evolution of area covered by nematic domain An(t) vs. initial nematic domain An(t0). Starting at
equally sized domains for b = 0 the nematic domain slowly shrinks, for b = �1

3S* the isotropic phase rapidly changes to nematic ordering, and for

b ¼ �
ffiffiffi
2
p

3
k q k the ratio remains almost constant. (B) Initial distribution of isotropic (blue) and nematic (red) domains on torus (R = 2, r = 1

2). (C) Snapshots

of 8Q8 A [0,8Q*8] for ti A [1e � 4,1]. Parameters: L = 1, a ¼ 1

4
; b ¼ �4; c ¼ 1 and o = 100, ob = 10, on = 1000.

Fig. 3 Distortion energy of defect free configurations of torus: (A) director modes on torus (R = 2, r = 1/2). pR (top) and pr (bottom). (B) Equilibrium states

of evolution equations for b = 0 (left) and b ¼ �
ffiffiffi
2
p

3
k q k (right). Principal eigenvectors of minimum energy configurations q(j*) for b = 0 (left): j� ¼ p

4
.

b ¼ �
ffiffiffi
2
p

3
k q k (right): j� ¼ p

2
. (C) Contributions of integral distortion energy for angle j. (top) 8rq82 with minima at j ¼ p

4
;
3

4
p, (bottom) �3bLHhB,qi for

b ¼ �
ffiffiffi
2
p

3
k q k with minima at j ¼ p

2
.
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evaluate the equilibrium states Q of the b ¼ �
ffiffiffi
2
p

3
k q k model

for several values of o, see Fig. 4B. Recalling o as factor
weighting the distortion contribution versus the state potential
we observe for o = 100 a dominant state potential such that a
uniform nematic phase, 8Q8 = 8Q*8, as prescribed by the state
potential, is enforced across the entire surface, suppressing the
effects of the isotropic geometry coupling. In contrast, the directed
geometry coupling is not affected and we observe a strong forcing
towards the – geometry induced – preferred alignment such that a
non uniform ordering of principal directors is yielded, see Fig. 4B
(left). For regions of positive H the alignment is with minimal
curvature lines (outer part), whereas for negative H the alignment
is with maximal curvature lines (inner part). Similar effects have
also been reported for polar liquid crystals within a surface Frank–
Oseen model.58,59 Weakening the state potential by choosing
o = 10 we observe a curvature induced phase transition with
a localized isotropic phase at the inner part of the torus, where
8B82 has its maximum. This area coincides with the area of the
strongest directed geometry coupling. Finally matching the distor-
tion contribution and state potential by o = 1 we yield a global
isotropic phase since the isotropic coupling distorts the state
potential such that only the isotropic Q = 0 phase remains stable.

The isotropic geometry coupling term, k B k 2 tr2q
2 þ 9

2
b2

� �
,

turns out to be the dominating effect compared to the directed
geometry coupling term 6HbhB,qi. Only in situations where the
state potential is strong enough to suppress the isotropic coupling
the effects of directed coupling become traceable. In this situation
the geometry induces a preferred alignment, see also ref. 38 for
similar results on ellipsoidal geometries. For geometries with strong
variations in H, including sign changes, this leads to nonuniform
ordering. An effect is obviously possible only in models with ba 0.

5 Discussion and conclusions

Exploring a thin film limit of the 3D Landau–de Gennes Q-tensor
model allows bridging the gap to previously proposed surface

models. Planar anchoring at the boundary of the thin film was
thereby used to fix the boundary normal as eigenvector with
eigenvalue b, which motivated the decomposition of the tensorial
order parameter Q in tangential q and normal b parts. We will
now review the central results of the models with different
choices of b, discuss suitable application scenarios, assess their
inherent couplings to the curvature of the surface and discuss
possible experiments to confirm these results.

Discussion

The first class of surface Landau–de Gennes Q-tensor models
considers b = 0 and is usually labeled as planar degenerate
Q-tensors.31,34 We observed the models to exhibit essentially 2D
characteristics like eigenvalue spectra of Q matching 2D mean
field theory. These models also show a continuous/second-order
isotropic-to-nematic phase transition, which contradictory results
on the existence of first-order isotropic-to-nematic phase transitions
in 2D.39,40 Concerning the coupling with geometric properties the
model in ref. 31 and 34 did only account for intrinsic curvature
effects.

For the second class, where b a 0, the obtained models
retain the characteristics of the 3D Landau–de Gennes Q-tensor
model. As the resulting thin film limit in the general case of
variable b shows a distortion of uniaxiality by curvature, we use

a 3D biaxiality measure to fix b ¼ �
ffiffiffi
2
p

3
k q k, which enforces

uniaxial Q also in the surface model. Further investigations
confirmed that in this modified model for uniaxial Q-tensors
the fundamental properties of eigenvalue spectra, first order
isotropic-to-nematic phase transition and phase coexistence
stay preserved. The model b = �1

3S*, as proposed in ref. 36

and 38, has been proven to reproduce the 3D characteristics, under
the assumption of 8Q8 = 8Q*8, except for phase coexistence. It can
be considered as a simplified surface Landau–de Gennes Q-tensor
model suitable for uniaxial nematic liquid crystals far from phase
transition temperature. Furthermore b a 0 introduces additional
curvature coupling terms. In addition to isotropic geometry
coupling, the alignment of the director field with the principle

Fig. 4 Curvature impact on equilibrium configurations on thick torus: (A) curvature of thick torus (R = 0.55, r = 0.45). (top) 8B28 A [4.7, 155], (bottom) H
changes sign, the location indicated by a black line, across geometry such that strong positive at center and mild negative at rim H A [�3.2, 10].
(B) Equilibrium configurations depending on the choice of o [o = 100 (left), o = 10 (mid) and o = 1 (right)]. Lines indicate the direction of the principal

director of Q, obtained by LIC. Colors denote 8Q8 A [0, 8Q*8], where 8Q*8 is given by a minimum value of state potential a ¼ 1

4
; b ¼ �4; c ¼ 1

� �
, (blue)

isotropic, and (red) nematic. Simulations are performed with L = 1, ob = 10 and on = 103.
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curvature lines is considered, which had already been shown in
ref. 32, 36, 38 and 60. Parameter studies for a torus indicate that,
depending on the strength of the curvature, phase transitions can
be enforced, leading to phase coexistence and locally confined
isotropic regions within a nematic phase or even a uniform
isotropic phase if the curvature effect is strong enough. The
derived thin film limit (without the introduced penalization to
enforce uniaxiality) shows even stronger curvature coupling, e.g.
curvature induced biaxiality, see the Appendix. Other implica-
tions of this model are not explored.

These discrepancies in response to the curvature of the b = 0
and b a 0 models provide a motivation for in vitro experiments
to assess the prevalent 2D or 3D nature of liquid crystals which
are confined to curved surfaces.

Conclusions

With the presented derivations and arguments we have provided a
comprehensive study unifying recent approaches for surface
Landau–de Gennes Q-tensor theories for uniaxial nematic liquid
crystals confined to curved surfaces. By introducing a surface
parameter b we have classified different surface limits for nematic
phases on curved manifolds. Essentially, b measures the ability of
the orientational degrees of freedom to fluctuate in the direction
perpendicular to the curved surface while the particle centers are
constrained on the manifold in the thin-film limit. In terms of
physics, these are the imposed anchoring conditions at the surface.
In particular, we have identified two classes of models as special
limits which could be related to liquid crystals with prevalent 2D or
3D characteristics. The distinct response to curvature of these two
model classes enables a path to determine suitable models for the
liquid crystal systems by in vitro experiments. In the future it would
be interesting to link the classes of surface Landau–de Gennes
Q-tensor models studied in this paper to particle-resolved models
where anisotropic apolar particles are bound to curved interfaces. It
remains to be understood how different anchoring conditions of the
particles at the surface can be mapped and described effectively by
the coarse-grained mean-field-like approach. In principle, varying
the anchoring conditions should result in different coupling para-
meters used in the surface free energy (4). In particle-resolved
computer simulations, different anchoring conditions can just be
implemented by an explicit orientational coupling to the curved
interface. In actual experiments on colloids bound to curved inter-
faces (see e.g. ref. 61), on Pickering emulsion droplets62 the
anchoring conditions can be conveniently changed by the pH63

or by changing the thermodynamic parameters.
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A Appendix
A.1 Details on the uniaxiality condition

To obtain the surface uniaxiality condition (8) we can insert the
Q-tensor decomposition (5) into the biaxiality measure (2).

Another elegant approach is to consider the eigenvalue spectrum
(14) and insert it into the biaxiality measure: Q uniaxial 3 U(Q) =

0 3 6(tr3Q3)2 = (tr3Q2)3. We obtain tr3Q
2 ¼ 1

2
S2 þ 3

2
b2 and

tr3Q
3 ¼ �3

4
bS2 þ 3

4
b3 such that the uniaxiality condition U(Q) =

0 can be expressed by, assuming S a 0, b2(18S2 � 81b2) = S4.

This holds if and only if b2 ¼ 1

9
S2 which translates to

b ¼ �
ffiffiffi
2
p

3
k q k.

A.2 Derivation of the thin film limit

Thin film limits require a reduction of the degrees of freedom.
We deal with this issue by setting Dirichlet boundary conditions
for the normal parts of Q and postulate a priori a minimum of the
free energy on the boundary of the thin film. This is achieved by
considering the natural boundary condition of the weak Euler–
Lagrange equation. In this setting we restrict the density of
F to the surface and integrate in the normal direction to
obtain the surface energy FS. We closely follow ref. 38, use
the notation introduced there and only point out differences.
Following this notation we define the shape operator by
B = �[(G � n # n)r3]n.

The free energy (2) in the thin film Sh in index notation
reads

F½Q�¼
ð
Sh

L

2
QIJ;KQ

IJ;KdV

þo
ð
Sh

aQIJQ
JI þ2

3
bQIJQ

JKQI
KþcQIJQ

JKQKLQ
LI

� �
dV:

For the choice of essential boundary conditions, we require that
Q has to have two eigenvectors in the boundary tangential
bundle and the remaining eigenvector has to be the boundary
normal, i.e., for P A TqSh a pure covariant representation of
Q at the boundary is

Q ¼ S1P
b � Pb þ S2nb � nb �

1

3
S1 þ S2ð ÞG (15)

with scalar order parameters S1 and S2. Hence, it holds Qix =
Qxi = 0 and Qxx = 1

3(2S2 � S1) at the boundaries. The remaining
boundary conditions are considered as natural boundary
conditions 0 = Qij;x at qSh. According to the normal eigenvalue
b of Q at S, we extend this scalar field to the thin film Sh, i.e.,
Qxx = b̂ with b̂|S = b.

We can relate the anchoring conditions to surface identities
by sums and differences of Taylor expansions at the upper and
lower boundaries, see ref. 38. This results in

QixjS¼ QxijS¼ O h2
� �

@xQixjS¼ @xQxijS¼ O h2
� �

Qxx;x
		
S¼ O h2

� �
Qij;x

		
S
¼ O h2

� �
:

The restricted Q-tensor {Qij|S} A T(2)S is not a Q-tensor. We
have tr2{Qij|S} = tr3Q|S � Qxx|S = �b. To ensure Q-tensor
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properties we introduce the projection PQ: t - 1
2(t + tT � (tr2t)g),

and define

q:¼ PQ Qij

		
S

n o
¼ Qij

		
S

n o
þ b

2
g: (16)

We can determine all remaining covariant derivatives restricted
to the surface by

Qix;x
		
S
¼ Qxi;x

		
S
¼ @xQixjS�GK

xiQKx
		
S
¼ O h2

� �

Qxx;k

		
S
¼ @kQxxjS�2GL

kxQLx
		
S
¼ bjk þ O h2

� �

Qix;k

		
S
¼ Qxi;k

		
S
¼ @kQixjS�Gl

kiQlx
		
S
�Gx

kiQxx

			
S
�Gl

kxQil

		
S

¼ qB½ �ik�
3

2
bBik þ O h2

� �

Qij;k

		
S
¼ @kQij

		
S
�Gl

kiQlj

		
S
�Gx

kiQxj

			
S
�Gl

kjQil

			
S
�Gx

kjQix

			
S

¼ @kQij

		
S
�Gl

kiQlj

		
S
�Gl

kjQil

			
S
þO h2
� �

¼ qij �
b
2
gij

� �
jk
þO h2
� �

¼ qijjk �
1

2
bjkgij þ O h2

� �
:

(17)

The contributions of the energy density read

rQk kG2
		
S
¼ Qij;kQ

ij;k þ 2Qix;kQ
ix;k þ 2Qxx;kQ

xx;k
		
S
þO h2
� �

¼ rgk kg2 þ
3

2
rbk kg2 þ 2 qB� 3

2
bB











g

2 þ O h2
� �

tr3Q
2
		
S
¼ tr2q

2 þ 3

2
b2 þ O h2

� �

tr3Q
3
		
S
¼ 3

2
b

b2

2
� tr2q

2

� �
þ O h2

� �

tr3Q
4
		
S
¼ tr2q

4 þ 3

2
b2tr2q2 þ

9

8
b4 þ O h2

� �
: (18)

Using

2 qB� 3

2
bB










2 ¼k B k tr2q

2 þ 9

2
b2

� �
� 6HbhB; qi (19)

which follows from ref. 38 (Corollary A.4.), adding all contributions
up and denoting the free energy densities by F and FS, we obtain
for h - 0

1

h
F ¼ 1

h

ð
Sh

FdV ¼ 1

h

ðh
2

�h
2

ð
S

1� xHþ x2K
� �

FdSdx

¼
ð
S

FSdSþ O h2
� �

¼FS þ O h2
� �

!FS:

(20)

A.3 Variational derivatives

The first variation of

FS½q; b� ¼ 1

2

ð
S

L k rq k 2 þ 3

2
L k rb k 2

� 6LHbhB; qi þ L k B k 2 tr2q
2 þ 9

2
b2

� �
dS

þ o
ð
S

1

2
2a� 2bbþ 3cb2
� �

tr2q
2 þ ctr2q

4

þ b2

8
12aþ 4bbþ 9cb2
� �

dS;

w.r.t. surface Q-tensor c and scalar j perturbations for q and b
reads

dFS ¼ L

ð
S

rq;ryh i þ k B k 2q� 3HbPQB;c
� �

þ 3

2
hrb;rji � 3 HhB; qi � 3

2
k B k 2b

� �
jdS

þ o
ð
S

2a� 2bbþ 3cb2
� �

hq;ci þ 2ctr2q
2hq;ci

þ 9

2
cb3 þ 3

2
b2 þ 3 ctr2q

2 þ a
� �

b� btr2q
2

� �
jdS;

where b is independent. If b is constant, or prescribed generally,
the associated perturbation j vanishes. To enforce uniaxiality (8),
we add the penalty energy

FS
uni ¼ ob

ð
S

1

4
b2 � 2

9
k q k 2

� �2

dS

to FS, with ob 4 0. Its first variation reads

dFS
uni ¼ ob

ð
S

�2
9

b2 � 2

9
tr2q

2

� �
hq;ci þ b2 � 2

9
tr2q

2

� �
bjdS:

From this, the L2-gradient flows lead to the considered evolution
equations for q and b.

A.4 L2-Gradient flows

Instead of relating the energies F and FS, also the evolution
equations in Sh and on S can be related. Similar calculations
as in Section A.2 give

rL2FSh ;C
� �		

S
¼ rq

L2F
S;c

D E
þ rb

L2F
S;j

D E
þ O h2

� �
;

with appropriate bulk and surface Q-tensors C and c and scalar
j perturbations, s.t. Cxx|S = j. This condition is the principal
difference to the calculations in ref. 38. Note that we used (19)
in the derivation, weakly in the Q-tensor direction c, i.e.

ð
S

qB� 3

2
bB;cB

 �
dS ¼

ð
S

k B k 2q� 3HbPQB;c
� �

dS:
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Moreover, as qtg = 0 for a stationary surface, we obtain
hqtQ,CiG|S = hqtq,cig + 3

2(qtb)f + O(h2) and as in (20)

1

h

ð
Sh

@tQþrL2F;Ch idV

¼
ð
S

@tqþrq

L2F
S;c

D E
þ 3

2
@tbþrb

L2F
S

� �
jdSþ O h2

� �
:

(21)

Therefore, the relaxation velocity parameter, for the L2-gradient
flow w.r.t. b, has to be 2

3 for consistency of the time-dependent
thin film and surface problems w.r.t. h. The surface evolution
equations thus read

@tq ¼LDDG
S q� L H2�2K

� �
�o 2a�2bbþ c 3b2þ2tr2q

2
� �� �� �

q

þ3LHb B�1

2
Hg

� �
þob

2

9
b2�2

9
k q k 2

� �
q;

(22)

@tb ¼ LDSb� o 3cb3 þ bb2
� �

� o 2aþ 2ctr2q
2

� �
bþ 2LHhB; qi

� 3L H2 � 2K
� �

bþ 2

3
btr2q

2 � ob
2

3
b2 � 2

9
k q k 2

� �
b:

(23)

A.5 Numeric solution procedure

To numerically solve the tensor- and scalar-valued surface PDEs
(22) and (23), we use the surface FEM approaches of ref. 64 and
65, respectively. The approach in ref. 64 extends previous ideas
for vector-valued surface PDEs59,66,67 to tensors of arbitrary
degree. The idea of these approaches is to reformulate the
problems in Cartesian coordinates and to penalize normal
components. This allows for a componentwise solution using
tools for scalar-valued surface PDEs, e.g. ref. 65. The penalty

term added to FS reads on
Ð
S

1

2
k qn k 2dS with on 4 0. This

leads to an additional term in (22) reading on(n # n)q.
To address the nonlinearity of the system of PDEs we

consider a Newton method. We solve the temporal discretized
problem as a sequence of time steps [q̂,b̂] - q,b, where qtq E
(q � q̂)/t and qtb E (b � b̂)/t. We denote with LQ, LB and NQ,
NB the collections of linear and nonlinear operators of the time
step problems, where Q and B refer to the q and b state
equations. The single Newton iteration k - k + 1 reads

dqNQ qk; bk
� �

qkþ1
� �

þ dbNQ qk; bk
� �

bkþ1
� �

þ LQ qkþ1; bkþ1
� �

¼ dqNQ qk; bk
� �

qk
� �
þ dbNQ qk; bk

� �
bk
� �

�NQ qk; bk
� �

dqNB qk; bk
� �

qkþ1
� �

þ dbNB qk; bk
� �

bkþ1
� �

þ LB qkþ1; bkþ1
� �

¼ dqNB qk; bk
� �

qk
� �
þ dbNB qk; bk

� �
bk
� �

�NB qk; bk
� �

To evaluate [q,b] we solve the Newton iterations until

ð
S

qk � qkþ1


 

2 þ bk � bkþ1



 

2dS
� �1=2

o y:

The resulting linear surface PDEs are solved by the surface FEM
methods64,65 which are implemented in the adaptive FEM
toolbox AMDiS.68,69

To assess the quality of enforcing tangentiality and uniaxiality
by the introduced penalty terms, simulations are performed with
on A [101,103] and ob A [101,103] on a torus (R = 2, r = 0.5) for o =

10, a ¼ 1

4
, b = �4 and c = 1. Across the studied parameters we

obtain for tangential alignment 8qn8 o 10�3 and for uniaxiality

b2 � 2

9
k q k 2

				
				= Q�k ko 10�3 at each point of S.

A.6 Curvature induced biaxiality

Without the penalization (9) the solution space for the tensorial
order parameter Q(q,b) is not restricted to the uniaxial eigen-
value spectrum s(Q) as defined in (1). To demonstrate this we
solve (10) and (11) without the penalization term (ob = 0).
Fig. 5A and B shows the equilibrium solution on a flat (2D) and
a curved surface, respectively, demonstrating the distortion of
uniaxiality by curvature.
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