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Active rotational dynamics of a self-diffusiophoretic
colloidal motor†

Shang Yik Reigh, *abc Mu-Jie Huang,*d Hartmut Löwen, b Eric Lauga e and
Raymond Kapral d

The dynamics of a spherical chemically-powered synthetic colloidal motor that operates by a self-

diffusiophoretic mechanism and has a catalytic domain of arbitrary shape is studied using both continuum

theory and particle-based simulations. The motor executes active rotational motion when self-generated

concentration gradients and interactions between the chemical species and colloidal motor surface break

spherical symmetry. Local variations of chemical reaction rates on the motor catalytic surface with catalytic

domain sizes and shapes provide such broken symmetry conditions. A continuum theoretical description of

the active rotational motion is given, along with the results of particle-based simulations of the active

dynamics. From these results a detailed description of the factors responsible for the active rotational

dynamics can be given. Since active rotational motion often plays a significant part in the nature of the

collective dynamics of many-motor systems and can be used to control motor motion in targeted cargo

transport, our results should find applications beyond those considered here.

1 Introduction

Small self-propelled colloidal particles that use chemical energy
derived from their environments to execute directed motion
have been the subject of numerous investigations because of
their potential applications and the new phenomena that arise in
systems of such active colloids.1–7 Colloidal motors with different
shapes and sizes that are propelled by various mechanisms have
been made and their properties have been characterized (see e.g.
ref. 8–12). The focus of the work described here is on the active
orientational motion of motors that operate by phoretic
mechanisms,13,14 especially through self-diffusiophoresis.3,5,15–17

The self-diffusiophoretic mechanism operates for colloidal
particles whose surfaces have catalytic and noncatalytic domains.
Under nonequilibrium conditions, chemical reactions on the
catalytic portion of the colloid surface generate fuel and product

concentration gradients that give rise to pressure gradients on
the fluid and shear stresses on the particle derived from the
fluid–colloid interaction potentials. Since no external forces are
present, momentum conservation leads to fluid flows in the
surrounding medium that are responsible for motor motion.

Most studies of diffusiophoretic motors have considered the
simplest motor geometry: spherical Janus motors with catalytic
and noncatalytic hemispherical caps.1,8,14,18,19 As a consequence
of axial symmetry these motors execute active directed motion
along the polar axis of the motor but their orientational dynamics
is controlled solely by rotational Brownian motion. Janus motors
with variable cap sizes that retain the axial symmetry of the
colloid have also been studied but, like the Janus motors with
hemispherical caps, they cannot execute active rotational
motion.9,10,12,20 However, active rotational motion is obtained
if the axial symmetry of the spherical colloid is broken by
asymmetrical catalytic domains, for example, inhomogeneous
catalytic reaction rates21 or asymmetrical distribution of catalytic
domains on the motor surface.22 Active rotational motion has
also been studied for Janus motors with a coupling of electro-
chemical forces to fluid flow23 or under an external field such as
gravity,24 nonspherical colloidal motors including L-shaped
particles25,26 and dimer aggregates of motors.27–32

In this paper we investigate self-diffusiophoretic spherical
Janus motors with catalytic domains that break the axial symmetry
of the colloid and undergo active rotational motion. Experimental
realizations of Janus colloids with such catalytic domains have
been made by glancing angle metal evaporation.21 Catalytic
domains made by this process have variable thickness and
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evidence suggests that propulsion occurs largely through an
electrophoretic mechanism where the catalytic activity depends
on the thickness of the metal coating,33 although it has also
been suggested that active rotation can arise solely due to
diffusiophoresis. In the following we present the full conti-
nuum theoretical description of the self-diffusiophoretic active
rotational dynamics of Janus colloids with catalytic domains of
arbitrary shape, along with particle-based simulations of the
translational and rotational dynamics of such Janus colloids.
We show that both the domain shape and spatial variations of
the catalytic activity play important roles in determining the
nature and magnitude of the active rotational motion.

The outline of the paper is as follows. Section 2 gives the
general expressions for the linear and angular propulsion velocities,
along with the solutions of the reaction–diffusion equations for
the concentration fields that enter these formulae. Simulations of
the Janus motor dynamics are presented in Section 3 where the
spatial structure of the concentration fields is studied in
detail as a function of the catalytic domain shape and spatial
dependence of the reaction rate. In addition, various aspects of
the active rotational motion and its effects on the motor mean
square displacement are presented. Section 4 contains the
conclusions of the study, while the Appendix provides details
of the simulation method.

2 Continuum theory
2.1 Linear and angular motor velocities

We consider a spherical motor with hydrodynamic radius RM

immersed in fluid with dynamic viscosity Z and density r
comprising reactive A (fuel) and B (product) particles. The
motor has a catalytic (C) region with an arbitrary shape on its
surface while the rest of the surface is noncatalytic (N). Assuming
that catalytic reactions on the motor surface strongly favor the
formation of products, we consider only the forward reactions,

CþA �!k0 Cþ B, to occur with an intrinsic reaction rate k0. In
order to maintain the system in a nonequilibrium state we

also suppose that a chemical reaction B �!k2 A occurs by a
different mechanism in the fluid phase; e.g., by a reaction

Eþ B �!k3 FþA, where the fixed concentration of species [E]
is incorporated in the rate constant k2 = k3[E] and can be used to
vary the value of k2. The introduction of fluid-phase reactions to
supply fuel and remove product mimics the way these processes
occur in biological contexts, and they can be implemented in
in vitro experiments. They are especially important for the
particle-based simulations described below since the system
must be maintained in a nonequilibrium state for long time
periods to extract reliable statistical data on motor motion.34,35

The deterministic force and torque on a colloidal motor can
be computed from surface averages of the fluid pressure tensor
with boundary conditions that account for values of the fluid
velocity fields on the surface and diffusiophoretic coupling to
the chemical species concentration gradients.14,36 For partial slip
boundary conditions on the surface of the colloid, they take the

following forms on time scales longer than the hydrodynamic
time, RM

2r/Z:37,38

F ¼ z
�
t

4pRM
2 1þ 3b=RMð Þ

XN
h¼C

lh

ð
S

dSHhðy;fÞ½ðI� r̂r̂Þ � rcBðrÞ�;

(1)

T ¼ 3z
�
r

8pRM
3 1þ 3b=RMð Þ

XN
h¼C

lh

ð
S

dSHhðy;fÞ½r̂�rcBðrÞ�; (2)

where I is the unit dyadic, r̂ is the outward normal unit vector
from the sphere surface, cB(r) is the concentration of species B

at r, b is the slip length, and z
�
t and z

�
r are the translational

and rotational friction coefficients for perfect stick boundary
condition (b = 0). Here the function Hh(y,f) = 1 if the angles y
and f lie in a surface domain of type h, otherwise Hh(y,f) = 0,
where h = C or N, and lh = kBT(l(1)

h + bl(0)
h )/Z with

lðnÞh ¼
ð1
0

drrðnÞ e�UhBðrÞ=kBT � e�UhAðrÞ=kBT
h i

; (3)

where Uhk(r) is the interaction potential between fluid particles of
species k = A, B and motor surface of type h. While perfect stick
boundary conditions are usually considered for micrometric
and larger particles, partial slip boundary conditions apply for
colloids with hydrophobic interactions and have been suggested
to give rise to enhancement of interfacially driven transport
phenomena.39 The colloidal particles considered in the simulations
presented below have repulsive interactions with the fluid and
satisfy partial slip boundary conditions.

The translational zt and rotational zr friction coefficients of
the spherical colloid are38

zt ¼ z
�
t

1þ 2b=RM

1þ 3b=RM
; zr ¼

z
�
r

1þ 3b=RM
; (4)

and it then follows that the diffusiophoretic translational and
angular velocities are given by

V = F/zt; X = T/zr: (5)

In this paper we consider motor dynamics for two situations:
(1) the interactions of the A and B particles with a motor are the
same for the C and N domains, and (2) these interactions differ
for the two domains. For the former case we have lC = lN = l
and the formulas for the linear and angular velocities reduce to

V ¼ l
4pRM

2 1þ 2b=RMð Þ

ð
S

dS½ðI� r̂r̂Þ � rcBðrÞ�; (6)

X ¼ 3l
8pRM

3

ð
S

dS r̂�rcBðrÞ½ �: (7)

For the latter case, considering only the C domain to be
responsible for self propulsion, one has lN = 0 and the expressions
for the velocities become

V ¼ lC
4pRM

2 1þ 2b=RMð Þ

ð
S

dSHCðy;fÞ½ðI� r̂r̂Þ � rcBðrÞ�; (8)
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X ¼ 3lC
8pRM

3

ð
S

dSHCðy;fÞ r̂�rcBðrÞ½ �: (9)

In this case one can see from eqn (9) that active rotation takes
place when the distribution of concentration gradients over the
C domain must have broken symmetry in the plane of the motor
rotation.

2.2 Concentration field

The concentration fields that enter the expressions for the
linear and angular velocities can be obtained from the solutions
of reaction–diffusion equations. For small Péclet numbers,
Pe = VRM/D { 1, where D is the diffusion coefficient of the A
and B species, we solve the steady state reaction–diffusion
equation for the concentration cA of species A,

Dr2cA � k2cA = 0, (10)

subject to the radiation boundary condition on the motor
surface,

�J�r̂|r=Rc
= RcA(r = Rc), (11)

where Rc is the radius at which surface chemical reactions
occur and J is the flux of species A given by J = �DrcA. The
concentration cB of species B can be found from the mass
conservation condition, cA + cB = c0 = const.

In eqn (11) R denotes the chemical reaction rate on the
catalytic domain. It may be written as the product of the rate
coefficient k0(y,f), which in general depends on angles, and the
step function HC(y,f), R =k0(y,f)HC(y,f)/(4pRc

2). Using this
form the boundary condition in eqn (11) may be written as

RckD
@cA
@r
jr¼Rc

¼ k0ðy;fÞHCðy;fÞcA r ¼ Rcð Þ; (12)

where the Smoluchowski diffusion-controlled rate coefficient is
given by kD = 4pRcD.

The reaction–diffusion eqn (10) in spherical polar coordinates,
(r,y,f), can be solved by separation of variables and the solution
for cB can be written as

cB ¼ c0
X1
n¼0

Xn
m¼�n

Anm
RnðrÞ
Rn Rcð Þ

Ynmðy;fÞ; (13)

with radial part

RnðrÞ ¼
ffiffiffiffiffiffiffiffiffi
p

2k2r

r
K

nþ1
2
k2rð Þ; (14)

where k2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
k2=D

p
and Kn+1/2 is a modified Bessel function of

the second kind. The angular part is given in terms of spherical
harmonics,

Ynm(y,f) = anmPnm(y,f)eimf, (15)

where Pnm is an associated Legendre function, and anm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ=4p

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�mÞ!=ðnþmÞ!

p
. The solution is expressed

in a body-fixed frame (see Fig. 1).
The unknown coefficients Anm in the concentration field are

found by inserting cA = c0 � cB determined from eqn (13) into

the boundary condition (12). Use of the orthogonality of the
spherical harmonics leads to the following set of equations:

X1
n¼0

Xn
m¼�n

Mn0m0nmAnm ¼ gn0m0 ; (16)

where

Mn0m0nm ¼ an0m0nm þ bn0m0nm;

an0m0nm ¼ k2RM
Rnþ1 Rcð Þ
Rn Rcð Þ

� n

� �
dn0ndm0m;

bn0m0nm ¼
1

kD

ð2p
0

ðp
0

k0ðy;fÞHðy;fÞYnmY
�
n0m0 sin ydydf;

gn0m0 ¼
1

kD

ð2p
0

ðp
0

k0ðy;fÞHðy;fÞY�n0m0 sin ydydf;

(17)

where dnm is the Kronecker delta. If HC(y,f) is expanded
in series of spherical harmonics, one can obtain explicit
expressions for the coefficients Anm in terms of the coefficients
in this series expansion.22

For small k2, the radial part of eqn (13) reduces to

RnðrÞ ¼
pð2nÞ!
n!

1

2k2r

� �nþ1
; (18)

and in the limit of vanishing fluid phase reactions (k2 - 0),
corresponding to a source for fuel particles and a sink for
product particles far from the colloid, the concentration field of
B particles becomes

cB ¼ c0
X1
n¼0

Xn
m¼�n

Anm
Rc

r

� �nþ1
Ynmðy;fÞ; (19)

Fig. 1 A model of the motor with a catalytic domain specified in spherical
polar coordinates (r,y,f) with polar angle yC and azimuthal angle fC with
respect to the Cartesian coordinates (x, y, z). The small region surrounded
by the solid blue lines (0 o yo yC and 0 o fo fC) is the catalytic domain
while the rest of the surface is noncatalytic.
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where the coefficients Anm are determined by eqn (16) and (17)
except that an0m0nm is given by

an0m0nm ¼ ðnþ 1Þdn0ndm0m: (20)

If the catalytic domain has form of a spherical triangle, it
can be specified by the angles yC and fC as the region where
0 r y r yC and 0 r f r fC (see Fig. 1). Since HC(y,f) = 1 for
(0 r y r yC, 0 r f r fC) and 0 otherwise, bn0m0nm and gn0m0 in
eqn (17) can be written as

bn0m0nm ¼
1

kD

ðyC
0

ðfC

0

k0ðy;fÞYnmY
�
n0m0 sin ydydf;

gn0m0 ¼
1

kD

ðyC
0

ðfC

0

k0ðy;fÞY�n0m0 sin ydydf:

(21)

For a Janus motor with a hemispherical catalytic cap, one has
yC = p/2 and fC = 2p. If the catalytic activity is uniform, i.e.
k0(y,f) = k̃0 = const, one sees that only the m = m0 = 0 term
remains in eqn (16), (17) and (21) since Mn0m0nm = 0 for m a m0

and gn0m0 = 0 for m0a 0, which gives Anm = 0 for all n and m a 0.
Hence an0m0nm, bn0m0nm, and gn0m0 for m = m0 = 0 are given by

an00n0 ¼ an0 k2Rc
Rnþ1 Rcð Þ
Rn Rcð Þ

� n

� �
2

2nþ 1
dn0n;

bn00n0 ¼ an0
k0

kD

ð1
0

Pn0Pn00dm; gn00 ¼
k0

kD

ð1
0

Pn00dm;

(22)

where the integrals have analytic expressions.40 In this case one
obtains the B concentration field as

cB ¼ c0
X1
n¼0

an0An0
RnðrÞ
Rn Rcð Þ

Pnðy;fÞ; (23)

which is consistent with previously given solutions.41,42

2.3 Linear and angular velocities for special cases

2.3.1 Uniform k (k = kC = kN). If the interaction potentials have
no angular dependence, for instance by setting UCA = UNA a UCB =
UNB where the A and B particle interaction potentials do not depend
on the domain type, one has l = lC = lN. The self-propulsion
properties and fluid flow fields of Janus motors with hemispherical
caps and such interaction potentials were studied previously.42

The propulsion velocities in the body-fixed frame with
Cartesian coordinate unit normal vectors {x̂,ŷ,ẑ} (Fig. 1) may
be obtained using eqn (8) and (13). Noting that m = �1 is
sufficient for this calculation, one finds that the x-component
of the propulsion velocity, Vx = V�x̂, is given by

Vx ¼
l

4RMð1þ 2b=RMÞ
X1
n¼1

c0an;1 An;1 � An;�1
� 	

�
ðp
0

dPn;�1
dy

cos y sin ydyþ Pn;1

� �
dy:

(24)

The integral in eqn (24) may be evaluated to yield �8dn,1/3
giving

Vx ¼
2l

3RM 1þ 2b=RMð Þc0a11 A1�1 � A11ð Þ: (25)

In a similar manner one finds

Vy ¼ �
2li

3RM 1þ 2b=RMð Þc0a11 A1�1 þ A11ð Þ; (26)

Vz ¼
2l

3RM 1þ 2b=RMð Þc0a10A10; (27)

for the y and z components.
The angular velocity components in the body-fixed frame

may be calculated from eqn (7) and one finds that they are zero
since the sum of the concentration gradients around the sphere
becomes zero.

2.3.2 Nonuniform k (kC 4 kN = 0). Active motor rotation is
obtained if the interaction potentials depend on type of surface
domain. For example, this is the case if lC 4 lN = 0, for which
the linear and angular velocities are given by eqn (8) and (9).
This case encompasses situations where the A and B particles
interact differently with the C and N domains (UCB a UNB,
UCA a UNA). The components of the propulsion velocity are
given by

Vx

Vy

Vz

0
BBB@

1
CCCA ¼X

1

n¼0

Xn
m¼�n

anm

Enm

Fnm

Gnm

0
BBB@

1
CCCA; (28)

where anm = lCc0anmAnm/(4pRM(1 + 2b/RM)) and

Enm

Fnm

Gnm

0
BBB@

1
CCCA ¼

ðyC
0

dPnm

dy
sin y

cos y

cos y

sin y

0
BBB@

1
CCCAdy

ðfC

0

cosf

� sinf

�1

0
BBB@

1
CCCAeimfdf

� im

ðyC
0

Pnmdy
ðfC

0

sinf

cosf

0

0
BBB@

1
CCCAeimfdf:

(29)

The components of the angular velocity are

Ox

Oy

Oz

0
BBB@

1
CCCA ¼X

1

n¼0

Xn
m¼�n

bnm

Hnm

Inm

Jnm

0
BBB@

1
CCCA; (30)

where bnm = 3lCc0anmAnm/8pRM
2 and

Hnm

Inm

Jnm

0
BBB@

1
CCCA ¼ �

ðyC
0

dPnm

dy
sin ydy

ðfC

0

sinf

cosf

0

0
BBB@

1
CCCAeimfdf

þ im

ðyC
0

Pnm

cos y

cos y

sin y

0
BBB@

1
CCCAdy

ðfC

0

� cosf

sinf

1

0
BBB@

1
CCCAeimfdf:

(31)
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3 Simulation of motor dynamics

Particle-based simulations of motors undergoing active rotational
and translational motion were carried out. The Janus motor is
made from a collection of small spherical particles (beads) linked
to form a large colloidal particle.34,35,43 The beads may be
chosen to be catalytic or noncatalytic so that Janus colloids with
specifically-shaped catalytic domains can be constructed. In the
simulations the Janus motor is placed in a cubic box of linear
size L = 50 with periodic boundary conditions. The fluid is
composed of Ns(= NA + NB) point particles with NA fuel (A) and
NB product (B). The motor is made from Nb beads, residing
within a sphere of radius RJ linked by stiff harmonic springs
whose the equilibrium lengths are chosen such that the
moment of inertia tensor is nearly diagonal (see Fig. 2).34 Of
the total Nb beads, NC are catalytic and NN are noncatalytic, Nb =
NC + NN. The lower hemisphere of the motor is composed solely
of N beads, while the upper hemisphere has C and N beads with
the size of the C domain determined by the angle fC (see Fig. 2).
The fluid particles evolve by multiparticle collision dynamics44–47

and the coupling between fluid particles and motor beads is
described by repulsive Lennard-Jones potentials, Uhk(r) =
4ehk[(s/r)12 � (s/r)6 + 1/4]Y(r � rc), where h = C, N, k = A, B,
ehk is the interaction energy, s is the effective size of a motor
bead and rc = 21/6s is the cutoff distance beyond which the
potential function vanishes. Chemical reactions, C + A - C + B,
may occur when A particles encounter motor C beads, i.e. when
A particles pass the cutoff distance rc, and the reaction probability,
p(ri), is determined by the position of the nearest catalytic bead at ri

in the body frame. The intrinsic reaction rate constant k0(ri) = k̃0p(ri),
where k̃0 is the intrinsic rate constant for unit reaction probability.
To maintain a nonequilibrium steady state, fluid phase reactions

B �!k2 A are carried out using reactive multiparticle collision
dynamics.48 Further details of the simulation method along with
the parameter values used to obtain the results are provided in the
Appendix. All quantities are reported in dimensionless units.

The simulations incorporate thermal fluctuations arising
from the particulate nature of the fluid, and deterministic
quantities, such as the motor linear and angular velocities
discussed in the previous section, are obtained from the
simulation data after averaging over an ensemble of realizations
of the dynamics. The linear (V) and angular (X) velocities in
simulations are initially computed in the laboratory frame. In
the body-fixed frame, the components of the translational
(center of mass) velocity, (Vx,Vy,Vz), are computed from the
velocity in the laboratory frame by Vq = hV(t)�q̂(t)i with the
principal axes q̂(t) A {x̂(t),ŷ(t),ẑ(t)} (Fig. 1), where brackets denote
ensemble and time averages. The angular velocity in the body-
fixed frame is computed in a similar way. Letting rbi(t) and vbi(t)
be the position and velocity of the ith bead at time t and Rcm(t)
be the center-of-mass position of the motor in the laboratory
frame, the angular velocity in the laboratory frame is given by

XðtÞ ¼
XNb

i¼1
mb rbiðtÞ � RcmðtÞ½ � � vbiðtÞ � VðtÞ½ �=I ; (32)

where I = 2MRJ
2/5 is the moment of inertia. Then the components

of the ensemble-averaged angular velocity in the moving frame
are Oq = hX(t)�q̂(t)i.

Transport properties such as the translational and rotational
friction coefficients can be obtained from measurements of
their corresponding autocorrelation function expressions. The
translational diffusion coefficient %Dt of an inactive Janus colloid
(in the absence of chemical reactions), can be obtained from
the time integral of the velocity correlation function,

�Dt ¼
1

3

ð1
0

dthVðtÞ � Vð0Þi; (33)

or, equivalently, from the mean square displacement. (Here the
bar notation is used to indicate simulation values for the
inactive colloid.) The translational friction coefficient �zt may
then be determined from the Einstein relation, %Dt = kBT/�zt. The
rotational diffusion coefficient %Dr can be obtained from the
time integral of the orientational correlation function,

1

2 �Dr

¼
ð1
0

dthûðtÞ � ûð0Þi; (34)

where û is an orientation vector, and the rotational friction
coefficient �zr is given by %Dr = kBT/�zr.

3.1 Results for active motor translation and rotation

As discussed in Section 2.3.2, the presence of active rotational
motion depends on broken symmetry rising from the forms of l
and the concentration gradients. In the following, we shall see
that these two factors do indeed play important roles in active
motor rotational motion.

We consider catalytic domains with shapes shown in Fig. 1 and 2.
Specifically the polar angle yC = p/2 is fixed but the azimuthal angle
fC varies from 0 to 2p, so that the catalytic domain is confined
to the upper hemisphere and its size varies with fC. Three
choices, fC = p/2, p and 3p/2, are shown in Fig. 2.

For simplicity, we suppose that the reaction rates depend
only on the polar angle y; specifically, we take k0 = k̃0 cos y, where
k̃0 = 188.4. The energy parameters are chosen to be eNA = eNB =
eCA = 1 4 eCB = 0.1, which gives lC = 0.294 a lN = 0 so that l is

Fig. 2 Bead-spring model of motors with catalytic domains: top views
from the positive z axis (i.e. the upper hemispheres) in Fig. 1. The catalytic
domain sizes vary as shown in (a) fC = p/2, (b) fC = p and (c) fC = 3p/2,
with a fixed yC = p/2. When the chemical reaction rate on the catalytic
domain depends on only the polar angle y (for example, k0 = k̃0 cos y,
where k̃0 is a constant), the motors rotate with the axes indicated by the
white solid arrows due to the symmetry. The catalytic (C) and non-catalytic
(N) parts are indicated by red and blue colors respectively and their
approximate borderlines are shown in white dotted lines.
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nonuniform. For these conditions, the catalytic domain and the
concentration field are symmetric with respect to the bisectional
plane f = fC/2 and rotation is expected to occur about an axis
perpendicular to this plane.

In addition to presenting simulation results on the active
translational and rotational dynamics of the Janus motors, we will
compare those results with continuum theory. The continuum
theory assumes a smooth spherical particle and employs boundary
conditions for the fluid velocity and concentration fields on the
motor surface that account for the presence of a very thin
boundary layer with length d that is much smaller than the
particle radius RM (d { RM). The Janus particle considered in
the simulations is not perfectly smooth since it is constructed
from beads and the boundary layer within which the fluid
particles and colloid interact is of finite size with d/RM E 0.2.

Since the interactions between the fluid and colloid are soft
repulsive potentials, the effective hydrodynamic radius RM may
differ from the reaction distance Rc and should be determined
along with the velocity slip length b. These two quantities RM and
b are estimated from eqn (4) using the simulation values of the

translational (�zt) and rotational friction coefficients (�zr) for the

inactive colloids and assuming z
�
t ¼ 6pZRM and z

�
r ¼ 8pZRM

3.
The friction coefficients may, in turn, be estimated from
measured values of the corresponding diffusion coefficients.

The value of zt B �zt = kBT/ %Dt C 500 with %Dt C 0.002 computed
in simulations using eqn (33), and the value of the rotational

friction coefficient is zr B �zr = kBT/ %Dr C 3620 with %Dr C
0.000276 obtained using eqn (34). Solving the pair of eqn (4)
with the friction coefficients zt and zr obtained from simulations,
one gets RM C 4.61 and b C 6.7.

The reaction radius Rc can be determined from the simulated
concentration field. For this purpose we consider a catalytic
domain that occupies a quadrant of the spherical surface
(fC = p, yC = p/2, Fig. 2(b)). Fig. 3 shows cross-sectional views
in the xy and yz planes in the body-fixed frame (Fig. 1) for the
product species in the motor vicinity, while quantitative com-
parisons are made in Fig. 4. The asymmetric concentrations
(black circles) are plotted as a function of the polar angle in the
bisectional symmetry plane f = fC/2 (yz plane) and at the cutoff
distance rc = 5.12. Good agreement between simulation and
continuum theory is obtained if the reaction radius is taken to
be Rc = 4.81. This value is close to RM C 4.61.

Fig. 5 shows the translational and rotational motor velocities
as a function of fC. As noted in Section 2.3.1, when the prefactor
l is constant (lC = lN), the motor has no significant active
rotational motion, but only active translation, whether or not
the concentration gradients are asymmetric (red and green
colors). Also, there is no active rotational motion when the
concentration gradients are symmetric (blue) as shown in Fig. 4,
although the prefactor l has angle dependence (lC a lN).

When the concentration gradients are asymmetric and l
depends on angles, significant active rotation is observed (black).
The theory and simulations are compared for this case and the
detailed simulation data are summarized in Table 1. The
rotational axes lie in the xy plane so one sees that Oz is small

compared to the other components (see Fig. 1 and 3). Since the
translational velocity depends on the reaction rate and this
scales with the catalytic domain size, V increases with fC. The
rotational speed O also increases with the domain size for the
same reason when the domain size is smaller than that for a
quadrant-shaped domain (fC = p). However, the speed decreases
if fC 4 p since the symmetric contributions for rotation cancel.
For example when the domain with fC = 3p/2 (Fig. 2(c)) is divided

Fig. 3 Cross sectional views of the normalized chemical B (products)
concentration fields (cB/c0) in the vicinity of the motor with a quadrant
catalytic domain (fC = p, yC = p/2, Fig. 2(b)), where cA + cB = c0. The left
and right columns correspond to the results from theory and simulations,
respectively. The first row is the top view shown in the xy plane and the
second row is the side view in the yz plane (see Fig. 1).

Fig. 4 Concentration distributions: quantitative comparison of theory
(solid curves) and simulations (symbols) for the asymmetric (black circles,
k0 = k̃0 cos y) and symmetric (red squares, k0 = k̃0 = const) B concentration
field with respect to the angle y = yC/2 (dashed line). The motor has a
quadrant catalytic domain as shown in Fig. 3. The concentration is plotted
along the polar angle in the yz plane in the vicinity of the motor surface at
r = rc = 5.12. Here �y = y when f = p/2 and �y = �y when f = 3p/2. From this,
Rc in continuum theory is chosen to be 4.81.

Paper Soft Matter



1242 | Soft Matter, 2020, 16, 1236--1245 This journal is©The Royal Society of Chemistry 2020

to three parts, 0 o fo p/2, p/2 o fo p, and po fo 3p/2, the
contributions from the first and third parts cancel and only the
second part remains, which corresponds to fC = p/2 (Fig. 2(a)).
Hence O has a parabolic shape with the maximum at O = p and,
as expected, the motor does not actively rotate if the entire
hemisphere is covered by catalyst (fC = 2p). It is interesting to
note that a motor with a constant l and k0 does not have a

significant propulsion velocity increase for fC 4 p, since the
length of the borderline of C and N domains which has most
contributions of concentration gradients does not change signifi-
cantly (see Fig. 4 and ref. 42).

The continuum theory and simulations are in accord overall
for different domain sizes and various parameter values but the
quantitatively differences are more pronounced for the asym-
metric Janus colloids compared to the previous studies for
Janus motors with symmetric catalytic domains.42,49,50

3.2 Colloid velocity and orientational correlations

A sample trajectory from the simulation of the dynamics of a
motor with a quadrant catalytic domain (fC = p) is shown in
Fig. 6. One can see that the motor undergoes linear and circular
motions as a result of forces and torques induced by diffusio-
phoretic effects. The velocity and orientational correlation functions
provide quantitative information on the active dynamics of the
colloid in the presence of thermal fluctuations, and we now
consider these quantities. The mean square displacement of the
colloid can be expressed in terms of the velocity correlation
function,

DR2ðtÞ ¼ hðRðtÞ � Rð0ÞÞ2i ¼
ðt
0

dt1

ðt
0

dt2 V t1ð Þ � V t2ð Þh i; (35)

where R(t) is the center of mass position of the motor. The effective
diffusion coefficient of the active motor can be determined from its
long time behavior, DR2(t) B 6Det. Equivalently, the time integral of

the velocity correlation function, De ¼
1

3

Ð1
0 dthVðtÞ � Vð0Þi, is the

analog of eqn (33) for %Dt for inactive colloids. Likewise the
orientational correlations for active rotation are characterized
by hû(t)�û(0)i considered earlier in eqn (34) for inactive colloids.

Simulations of the orientation correlation function and
mean square displacement are shown in Fig. 7(a) and (b),
respectively, for colloidal motors with a quadrant-shaped
catalytic domain, fC = p (Fig. 3), angle dependent reaction rate,
k0 = k̃0 cos y, and interaction energy prefactor, lC a lN. The
orientation correlation function has a decaying oscillatory
structure in contrast to the exponential decay for the inactive
motor, as might be anticipated for a colloid with active rotation.

Fig. 5 (a) Translational (V) and (b) rotational motor velocity (O) vs. the
catalytic domain size (fC). The solid lines and symbol correspond to the
theory (Section 2.3) and simulations (Section 3), respectively. Black lines
and circles: lC a lN, k0 = k̃0 cos y. Blue lines and stars: lC a lN, k0 = k̃0.
Red lines and squares: lC = lN, k0 = k̃0 cos y. Green lines and diamonds:
lC = lN, k0 = k̃0.

Table 1 Simulation results: ensemble-averaged translational (hVxi,hVyi,hVzi)
and rotational velocity components (hOxi,hOyi,hOzi) of the motors with
various catalytic domain sizes (fC), as yC = p/2 is fixed, in the body-fixed
(moving) frame

fC hVxi � 104 hVyi � 104 hVxi � 104 hOxi � 104 hOyi � 104 hOzi � 104

451 2.81 1.15 15.6 3.75 �9.14 1.12
901 5.77 7.03 39.0 16.6 �13.7 0.51
1351 3.81 12.3 52.2 22.3 �9.86 �0.71
1801 �0.75 15.8 68.8 24.6 �0.31 �0.24
2251 �0.76 15.5 81.6 21.4 5.73 �0.96
2701 �9.17 8.39 99.3 12.4 13.5 �2.21
3151 �7.66 2.17 118 3.66 9.13 �1.45
3601 �2.08 0.25 134 1.54 �0.10 �1.10

Fig. 6 A sample trajectory of the motor with a quadrant catalytic domain
(fC = p, Fig. 3) projected to the YZ plane in the laboratory frame is shown
for a time interval t/tr B 2.2. The motor rotates counter-clockwise in the
YZ plane (Movie S1, ESI†).
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The structures of these results can be understood in the
context of overdamped Langevin models for the dynamics.51 In
such models, assuming zt,r B �zt,r, the velocity of the motor V(t)
satisfies

d

dt
RðtÞ ¼ VðtÞ ¼ V ûðtÞ þ V fðtÞ; (36)

where the fluctuating velocity is a Gaussian white noise process
with hVf(t)i = 0 and fluctuation dissipation relation, hVf(t1)Vf(t2)i =
2 %DtId(t1 � t2). The orientation of the motor û(t) obeys

d

dt
ûðtÞ ¼ XþXfðtÞð Þ � ûðtÞ; (37)

where the random angular velocity satisfies hXf(t)i = 0 and
fluctuation dissipation relation, hXf(t1)Xf(t2)i = 2 %DrId(t1 � t2).

For the results in Fig. 7, for simplicity in theory52 we assume
that fluctuations apply to the orientation vector in three dimensions,
i.e. û(t) = (cos W(t),sin W(t) cosj(t),sin W(t) sinj(t)), and active
rotational motion is restricted in a plane, for example, in the YZ
plane in the laboratory frame (X,Y,Z), now parallel to the body-fixed
frame, while simulations are in full three dimensions. Then the
Langevin equation for the sole angle j is written as

d

dt
jðtÞ ¼ Oþ OfXðtÞ; (38)

where OfX(t) is the X component of the random angular velocity.
Using eqn (37) and (38), the orientation correlation function

neglecting the contributions from x components approximates to

hû(t)�û(0)i = e�t/trcos(Ot), (39)

where the rotational relaxation time tr = 1/(2 %Dr).
27,51,53 From

eqn (35), (36) and (39), the mean square displacement takes
the form,

DR2 ¼ 6Det� 2
Vtr

1þ Otrð Þ2

 !2

1� Otrð Þ2

 �h

� 1� Otrð Þ2

 �

cosðOtÞ � 2Otr sinðOtÞ
n o

e�t=tr
i
;

(40)

where the effective diffusion coefficient is given by De = %Dt +
V2tr/{3(1 + (Otr)

2)}.27,51

Using the diffusiophoretic linear and angular velocities in
simulations, V = 0.007 and O = 0.00246, respectively, the
translational diffusion constant %Dt C 0.002 and the orientation
relaxation time tr C 1810, Fig. 7(a) compares the orientation
correlation functions obtained from simulations and theory in
the presence and absence of active rotation, whereas panel (b)
displays the mean square displacement for the active motors.
One finds good agreement.

The mean motor trajectory can be obtained from hDRðtÞi ¼Ð t
0hVðsÞids. By replacing û(t) by eij(t)sin W(t) approximately in the

complex plane (where the YZ coordinates are mapped to the
complex plane and the X component is neglected) and using
eqn (36), one obtains

hRðtÞi ! Vtrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Otrð Þ2

q ei jaþ j0h ið Þ 1� e �1=trþiOð Þt
h i

; (41)

where j0 = j(t = 0) and eija ¼ 1þ iOtrð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Otrð Þ2
q

. In the

overdamped limit, the trajectory shows a spiral pattern.51 In
simulations however the motor experiences fluctuations in
three dimensions and the trajectory projected on the YZ plane
is shown in Fig. 6. The analytical solutions for the translational
and rotational motor motion with full three dimensional
fluctuations are more complex.52 If thermal fluctuations are
not present then one sees that the motor moves in a circle with a
radius V/O in the symmetry (YZ) plane by setting %Dr = 1/(2tr) = 0.

4 Conclusions

This theoretical and computational investigation of the active
rotational motion of self-diffusiophoretic Janus motors provided
quantitative information on the nature of the asymmetrical
concentration gradients and solute particle-colloid interaction
potentials that give rise to this active motion. Consistent with
experimental studies, the asymmetrical concentration gradients

Fig. 7 (a) The orientation correlation function hû(t)�û(0)i for a motor with
a quadrant-shaped catalytic domain (fC = p, lC = 0.294 a lN = 0)
exhibiting translational and rotational motion. The inset shows the corre-
lation function for an inactive colloid. (b) The mean square displacement
DR2(t) of the motor. In the inset the data are plotted in log scales and the
labels are the same in the main figure. In both of these figures the black
solid line and the red circles with error bars correspond to the theory and
simulations, respectively, except for the inset of (a) that shows inactive
motor data in blue.
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can be produced by changing chemical reaction rates locally on
the motor surface or using geometric asymmetry.21,27,32 Interaction
energy asymmetry can arise if the fluid species interact with the
catalytic and noncatalytic surface domains through different inter-
molecular potentials. For given interaction potentials, the domain
sizes and shapes, and local variations in the reaction rates, control
the motor active angular velocity. For example, in our model, the
rotation radius is minimal for a quadrant domain and it increases
as the domain size increases or decreases (Fig. 5).

More generally, active orientational motion plays a role in
the dynamics of many-motor systems, as well as in scenarios for
the control of motor motion for cargo delivery applications. The
results provided in this paper should prove useful for such
applications involving chemically-powered diffusiophoretic
motors. The concepts discussed here for active motor rotation
are not restricted to spherical shapes and diffusiophoresis but
are applicable to other geometries, such as sphere-dimer motors
and other phoretic mechanisms, although detailed aspects of
the description will require modification.21,27,32,54,55
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Appendix: simulation details

The system is composed of Ns = NA + NB fluid A and B particles
of mass m and a Janus motor comprising Nb beads of mass m
and size s linked by stiff harmonic springs.34 A chemical
reaction, C + A - C + B, may occur when an A particle
encounters a motor C bead. The reaction probability p(ri) = ẑ�
ri/|ri| is determined by the position of the nearest C bead at ri

in the body frame, where ẑ is the z-axis in the body-fixed frame.
The interactions among fluid particles are accounted for

through multiparticle collision dynamics (MPCD). This
dynamics consists of streaming and collision steps at discrete
time intervals h0 with random shifts of the collision lattice to
ensure Galilean invariance.44,45,56 The system is maintained in
a steady state through irreversible reactions B - A in the fluid
solution with reaction rate constant k2. The fluid phase reactions
are carried out locally in the collision steps of MPCD.

All quantities are reported in dimensionless units. Length,
energy, mass and time are measured in units of s, kBT, m, and

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= kBTð Þ

p
, respectively. The motor beads are homogeneously

distributed in a sphere of radius RJ = 4 with the motor mass
M = mNb = 2681 to give neutral buoyancy of the motor. The
moment of inertia I = 2MRJ

2/5 = 24 811. The motor reaction
radius used in the continuum theory is estimated by comparing
the concentration field in simulations at the outer edge of the
boundary layer, r = rc = 5.12, which gives the reaction radius
Rc = 4.81 (see Fig. 4). The motor is surrounded by a fluid consisting
of Ns = NA + NB = 1 244 219 particles in the simulation box,
excluding the motor volume, which gives a fluid density of
c0 = 10. Multiparticle collisions are carried out in each cell by
performing velocity rotations by an angle a = 1201 about a

randomly chosen axis at discrete time intervals h0 = 0.1. The
molecular dynamics time step is Dt = 0.01. The transport
properties of the fluid depend on h0, a, and c0. The fluid
viscosity is given by Z = mc0n = 7.9, where n is the kinematic
viscosity. The common diffusion constant of A and B is D = 0.07.
The Schmidt number is Sc = n/D = 13 4 1, which ensures that
momentum transport dominates over mass transport, the Reynolds
number Re = c0Vs/Z o 0.1 implying that viscosity is dominant over
inertia, and the Péclet number Pe = Vs/D o 1 indicating diffusion
dominates over fluid advection. The energy parameters for inter-
actions between the catalytic beads and A and B species are
different (eCB = 0.1, eCA = 1) while they are the same for the
noncatalytic beads (eNA = eNB = 1). We then have, lC = kBT(l(1)

C +
bl(0)

C )/Z C 0.294 with l(0)
C = 0.1 and l(1)

C = 0.476 and lN = 0 since
l(0)

N = l(1)
C = 0, and the motor moves with the catalytic domain at its

head.34 The intrinsic reaction rate coefficient k̃0 is obtained from
comparison of theory and simulations by setting up the rate
equations with radiation boundary conditions, which gives k̃0 =
188.4 through averages over multiple realizations. The reaction
rate for the bulk reaction is taken to be k2 = 0.003.
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