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Unlike in thermodynamic equilibrium where coexisting phases always have the same temperature, here
we show that systems comprising “active” self-propelled particles can self-organize into two coexisting
phases at different kinetic temperatures, which are separated from each other by a sharp and persistent
temperature gradient. Contrasting previous studies that have focused on overdamped descriptions of active
particles, we show that a “hot-cold coexistence” occurs if and only if accounting for inertia, which is
significant, e.g., in activated dusty plasmas, microflyers, whirling fruits, or beetles at interfaces. Our results
exemplify a route to use active particles to create a self-sustained temperature gradient across coexisting
phases. This phenomenon is fundamentally beyond equilibrium physics and is accompanied by a slow
coarsening law with an exponent significantly smaller than the universal 1=3 exponent seen in both
equilibrium systems and overdamped active Brownian particles.
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Introduction.—In equilibrium systems, entropy maximi-
zation (or free energy minimization) requires thermal,
mechanical, and chemical equilibrium among coexisting
phases. Conversely, in nonequilibrium no fundamental
law forbids different temperatures in coexisting phases,
evoking the question if a specific mechanism exists that can
generate such a difference. Such a mechanism may appear
counterintuitive, as heat gradients, unless they are sustained
by a localized heat source such as a star performing nuclear
fusion, usually cause processes opposing them and driving
the system towards thermal equilibrium (unless for ideal
isolation): For example, a temperature difference in the air
evokes a balancing wind, and air friction cools down a
radiator once switched off.
Here we report and systematically explore a surprisingly

different scenario, where particles self-organize into co-
existing phases sustaining different temperatures. This two
temperature coexistence occurs spontaneously in a uniform
system and, remarkably, there is no heat flux at steady state,
because the gradient in kinetic temperature is balanced by
a self-sustained, opposite density gradient. A “hot” and a
“cold” phase are allowed to coexist in principle, as the
system we consider comprises self-propelled micro-
particles which allow the system to bypass equilibrium
thermodynamics.
By now, we know that such microparticles, often

described as “active Brownian particles” [1–5], can self-
organize into a liquid phase, coexisting with a gas phase,
even when interacting purely repulsively [6–17]. Coined
as “motility-induced phase separation,” or MIPS, this
phenomenon has advanced to a key paradigm in the physics
of self-propelled particles. When the microparticles are
overdamped, like microorganisms in a solvent [18] or

active colloidal microswimmers [19–23], they are equally
fast in both phases. Hence, despite the presence of active
microparticles, liquid and gas as emerging from MIPS have
identical kinetic temperatures, just like for liquid-gas phase
separation in equilibrium. (Note that MIPS involves a
slow down of particles in regions of high density [2,6],
which occurs, however, only for the “coarse grained self-
propulsion,” not for the actual velocity determining the
kinetic temperature, as further discussed below.)
When releasing the overdamped standard approxima-

tion, as relevant, e.g., for beetles at interfaces [24], whirling
fruits [25], microflyers [26] or activated dusty plasmas [27],
both the phase diagram and the properties of the contained
phases change dramatically, as we show in this Letter. In
particular, while MIPS generally requires a sufficiently
large self-propulsion speed v0 to occur, specifically for
underdamped particles, it breaks down again if v0 is too
large; i.e., MIPS is reentrant in the presence of inertia [28].
This is because MIPS also requires particles to slow
down (regarding their directed motion) in regions of high
density [2]: such a slow down occurs instantaneously upon
collisions of overdamped particles, but in the presence of
inertia, particles bounce back from collisions and do not
slow down much before experiencing subsequent colli-
sions. Thus, at very large v0, underdamped particles can
exchange their kinetic energies before slowing down much
and MIPS breaks down.
To see which physical mechanism controls the difference

in kinetic temperature (which is identical to the virial
temperature and to be distinguished from the effective
temperature [29–32]) in coexisting phases, consider the
collision of an active underdamped particle moving with
a fixed orientation towards an elastically reflecting wall.
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This problem is equivalent to a bouncing ball experiencing
friction and gravity (see Supplemental Material [33] for
details): while reaching a terminal speed (v0) when falling
in free space, the ball continuously slows down, when
reflected by a wall, even when the collisions are elastic.
Analogously, particles essentially move with v0 in the gas
phase, where they rarely collide, but slow down when
entering the dense liquid phase, due to successive collisions
with other particles (see Fig. 1). Notice that inelastic
collisions among the particles provide an alternative, but
mechanistically unrelated, route to achieve a remarkable
hot-cold coexistence, which has been discussed for vibrated
granular particles, where particles dissipate energy due to
inelastic collisions [39–41]. In contrast, for the micro-
particles we consider, no inelastic collisions are required:
the emergence of coexisting temperatures is based on the
interplay of activity and weak inertia.
Our results exemplify a generic route to use active

particles to create a self-sustained temperature gradient
across coexisting phases, a phenomenon which is funda-
mentally beyond equilibrium physics. This contrasts the
overdamped standard case, which has been predominantly
explored in active matter physics so far and leads to the
dynamics which are diffusive and curvature driven and
therefore can be essentially mapped onto an equilibrium
system at a coarse-grained level [2,6] yielding a phase
transition that is consistent with an equilibrium liquid-gas
transition [16]. Thus, the existence of temperature dif-
ferences in coexisting phases indicates a change of the
nature of MIPS, when releasing the overdamped standard
approximation, resulting in a significant deviation from the
universal t1=3 coarsening law for the mean cluster size, as we
will show. Accordingly, MIPS [6,42–45], a key result in
active matter physics, has remarkable consequences that are
fundamentally beyond equilibrium physics even at a coarse-
grained level, but have been curtained by the overdamped
standard approximation in previous studies.
Model.—Let us now consider a generic model for active

underdamped particles in two dimensions, each having an

internal drive, represented by an effective self-propulsion
force FSP;i ¼ γtv0uðθiÞ, where uðθiÞ ¼ ðcos θi; sin θiÞ is
the direction of self-propulsion. The particles have identical
diameters σ, masses m, and moments of inertia I. They
interact via an excluded-volume repulsive force Fi (see
Supplemental Material [33]). Their velocities vi and ori-
entations θi evolve as

m
dvi
dt

¼ −γtvi þ Fi þ FSP;i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTbγt
p

ηiðtÞ;

I
d2θi
dt2

¼ −γr
dθi
dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTbγr
p

ξiðtÞ; ð1Þ

where ηi, ξi represent Gaussian white noise of zero-mean
unit variance, Tb is the effective bath temperature, and γt, γr
are translational and rotational drag coefficients, yielding
diffusion coefficients Dt;r ¼ kBTb=γt;r. To understand the
behavior of active underdamped particles, it is instructive to
define three characteristic timescales (see Table I): the
persistence time τp ¼ 1=Dr, after which the directed
motion of active particles is randomized by rotational
diffusion, the mean time between collisions for a given
particle τc ¼ πσ=ð4v0φÞ, where φ ¼ Nπσ2=ð4LxLyÞ is the
area fraction, and the inertial timescale τd ¼ m=γt, char-
acterizing the time a particle at rest needs to reach its
terminal speed. In principle, the moment of inertia I leads to
an additional timescale (I=γr), but it turns out to be largely
irrelevant to our results and is thus kept constant to
I ¼ 0.33ϵτ2p, see Supplemental Material [33].
Fixing the area fraction to a regime where MIPS can

occur (φ ¼ 0.5), the behavior of our system is mainly
controlled by two parameters, which can be expressed as
ratios of the relevant timescales: M ¼ τd=τp, which is a
reduced mass measuring the impact of inertia, and the
Péclet number Pe ¼ v0=ðDrσÞ ∝ τp=ðτcφÞ, measuring the
strength of self-propulsion by comparing ballistic to a
diffusive motion.
Nonequilibrium phase diagram.—To explore the impact

of inertia on the collective behavior of active particles,
we first investigate the phase diagram using large-scale
simulations based on LAMMPS [46]. If M → 0, inertia
plays no role and the particles are essentially overdamped.
Accordingly, forM ≲ 10−4, we recover the usual behavior:
at fixed area fraction φ ¼ 0.5, the particles undergo MIPS
[10,12] when the Péclet number is large enough (Pe≳ 20),
leading to a dense liquid phase, coexisting with a gas phase
[Fig. 2(a)]. For moderate inertia (0.03 ≤ M ≤ 0.07), we
still require Pe to exceed a certain threshold to allow the

FIG. 1. Scheme of the phase-separated state associated with a
hot-cold coexistence in underdamped active particles. Particles
self-propel with the colored cap ahead (brown; greenish for the
tagged particle). Active particles move with ∼v0 in the gas phase,
but can be an order of magnitude slower in the dense phase.

TABLE I. Relevant timescales in active underdamped particles.

Persistence time τp ¼ 1=Dr

Mean time between collisions τc ¼ πσ=ð4v0φÞ
Inertial time τd ¼ m=γt
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system to phase separate into a liquid and a coexisting gas
[Fig. 2(e)]. However, when further increasing Pe, strikingly,
MIPS disappears and the system remains in the disordered
phase [Fig. 2(d)]. Thus, MIPS is reentrant for underdamped
active particles. Finally, when inertia is even stronger
M ≳ 0.08, MIPS does not occur at all. Overall, this leads
to the phase diagram shown in Fig. 2(c). The qualitative
structure of this phase diagram can be understood based on
simple scaling arguments. To see this, let us first remember
how MIPS arises for overdamped particles: consider a
particle self-propelling towards a small dense cluster of
particles; when colliding, the particle stops and is blocked
by the cluster, until rotational diffusion turns its self-
propulsion direction away from the cluster on a timescale
τp ¼ 1=Dr. When the time in between collisions τc is
smaller than τp, the rate of particles entering the cluster
exceeds the leaving rate and the cluster rapidly grows [7,9],
later proceeding slowly towards phase separation. This
criterion explains the existence of a (lower) critical Péclet
number. Since both τc, τp are mass independent, we expect
the lower critical Pe number also to be mass independent:

τp ≳ τc ⇒ Pe1 ¼ const; ð2Þ

as approximately observed in Fig. 2(c). To understand the
upper critical Pe number, note that MIPS requires a
localized slow down of particles to occur. Thus, at very
high collision rates (due to high Pe), underdamped particles
bounce back multiple times on the inertial timescale τd, and
can therefore not slow down locally. We, therefore, expect
that MIPS occurs only if

τc ≳ τd ⇒ Pe2 ∝ 1=m; ð3Þ

which yields the scaling law Pe2 ∼ 1=m shown as the upper
dashed line in Fig. 2(c) and corresponds to our simulation
results.

Temperature difference in coexisting phases.—While in
the overdamped case (M → 0), particles in the liquid and in
the coexisting gas are equally fast on average as shown by
the colors in Fig. 2(a), this changes dramatically when inertia
becomes significant. Following the colors in Fig. 2(e) we
see, strikingly, that particles in the liquid (blue dots) are
much slower than in the gas (green, yellow, and red dots).
Before discussing the origin of this remarkable temperature
difference, let us quantify it in more detail. To this end, we
define the kinetic temperature as TeffðxÞ ¼ 1

2
mhv2ðxÞi,

which is the kinetic energy per particle, averaged along
the lateral coordinate. Unlike various other approaches that
can be used to define temperature in equilibrium, the kinetic
temperature and the virial temperature are both well defined
also for active systems and are identical to each other (see
Supplemental Material [33]). As shown in Fig. 3(a), Teff is
uniform for M ¼ 10−5, but develops a massively nonuni-
form shape when increasing M to 0.05 (see Supplemental
Material [33], Movies S1 and S2, respectively). Figure 3(c)
quantifies the resulting temperature difference, showing
ðTgas − TdenseÞ=Tdense as a function of M. Here, we see that
the temperature in the dilute phase can be almost 2 orders of
magnitude larger than in the dense phase. This is further
reflected by the velocity distribution PðvxÞ in Fig. 3(b),
showing a far-broader distribution for the gas phase than
for the dense one, but only if inertia is significant (see inset).
For the gas phase, a non-Gaussian tail appears at larger
velocities [47].
Power balance.—To understand the temperature differ-

ence quantitatively, we now derive a power-balance equa-
tion. Multiplying the translational part of Eq. (1) by v, and
averaging over all particles in a given phase, we obtain

1

2
m
dhv2ðtÞi

dt
¼ −γthv2ðtÞi þ hvðtÞ · FðtÞi þ hvðtÞ · FSPðtÞi
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTbγt
p

hvðtÞ · ηðtÞi: ð4Þ

(a)

(b)

(c) (d)

(e)

FIG. 2. Nonequilibrium phase diagram at φ ¼ 0.5 (c). Panels (a), (b), (d), and (e) represent snapshots from our simulations
(Lx × Ly ¼ 350σ × 70σ) at state points indicated in the phase diagram. Colors represent kinetic energies of individual particles in units
of kBTb. A hot-cold coexistence is visible in panel (e). Dashed lines in (c) show scaling predictions for the phase boundary between the
homogeneous and phase-separated state.
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Here, the left-hand side equals the time derivative of
the effective temperature ∂Teff=∂t; γthv2ðtÞi ¼ 2Teff=τd
describes the energy dissipation rate due to Stokes drag
and hvðtÞ · FðtÞi represents the dissipated power due to
interactions among the particles, which is negligible here
since particle collisions are elastic, see Supplemental
Material, Fig. S4 [33]. The third term hvðtÞ · FSPðtÞi
represents the self-propulsion power. The last term is
related to the bath temperature by the following relation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTbγt
p hvðtÞ · ηðtÞi ¼ 2kBTbγt=m ¼ 2kBTb=τd, which
is identical in the gas and in the dense phase. Plugging
these expressions into Eq. (4), and using that ∂Teff=∂t ¼ 0
in each phase individually in steady state, we obtain

Tgas − Tdense ¼
τd
2
½hv · FSPigas − hv · FSPidense�: ð5Þ

Therefore, if and only if τd ≠ 0, self-propulsion can create
a temperature difference in coexisting phases. Since
τd ¼ 0, in overdamped particles, both phases have the
same kinetic temperature. In contrast, for underdamped
particles we have τd ≠ 0. The contributions of the indi-
vidual terms to the power balance is visualized in Sup-
plemental Fig. S4 [33], revealing that the self-propulsion
power is much higher in the gas phase than in the dense

phase and dominates the kinetic temperature (rather than
diffusion as for overdamped particles). To see why the self-
propulsion power is different in the gas phase compared
to the dense phase, we explore the distribution of the
particle effective speeds veff ¼ v · u in both phases; here
hv · FSPi ¼ γtv0hveffi. Thus, Fig. 4(a) shows that the
average effective speed in the gas phase is v0, whereas
negative speed values are rare, showing that particles in the
gas phase rarely move against their self-propulsion direc-
tion (Fig. 1, left panel). This suggests that hv · FSPigas ∼
γtv20. In contrast, in the dense phase, the effective particle
speed is almost symmetrically distributed around 0, which
results from the fact that particles have no space to move
and bounce back after each collision; thus, they move
against their self-propulsion direction about half of the time
(Fig. 1, right panel), which implies hv · FSPidense ∼ 0.
Finally, to be more explicit about the essential difference

regarding the nature of MIPS, respectively, for inertial
and overdamped particles let us explore their characteri-
stic coarsening behavior. Recall first that overdamped
ABPs which can be mapped onto an equilibrium system
at coarse-grained scales [6] and therefore lead to the same
universal LðtÞ ∝ t1=3 coarsening law characterizing equi-
librium systems [10,44], where LðtÞ is the mean cluster
size at late times, which we calculate from the first moment
of the static structure factor Sðq; tÞ [10]. Conversely,
underdamped active particles do not allow for such a
mapping, because uniform temperature profiles are not
possible in equilibrium. Our simulations reflect this
fundamental difference between overdamped and under-
damped active particles and indicate a coarsening law of
LðtÞ ∝ t1=5 for the latter case [see Fig. 4(b) and
Supplemental Material [33] ].
Conclusion.—Unlike equilibrium systems, self-driven

active particles can self-organize into a liquid and a
coexisting gas phase at different temperatures. This result
exemplifies a route to use self-driven particles to create a
self-sustained temperature gradient, which might serve, in
principle, as a novel paradigm to create isolating layers

(a) (b)

FIG. 4. (a) Probability distributions of effective speeds in the
gas phase as well as in the dense phase forM ¼ 10−2. (b) LðtÞ for
overdamped (blue symbols) and underdamped (red symbols)
particles with power law fits (solid lines). Other parameters:
Pe ¼ 100, φ ¼ 0.5.

(a) (b) (c)

FIG. 3. (a) Spatial profiles of the effective temperature TeffðxÞ þ 2.0 (solid lines) and local area fraction φðxÞ (dashed lines) for
different reduced massesM. (b) Steady-state distributions of particle velocities vx for moderate inertiaM ¼ 5 × 10−2. Solid lines are fits
to the Maxwell-Boltzmann distribution PðvxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=ð2πTeffÞ
p

exp½−mv2x=ð2TeffÞ�, where Teff is the kinetic temperature. Inset: PðvxÞ
for vanishing inertiaM ¼ 10−5. (c) The relative temperature and area fraction difference between the two phases as a function of inertia.
Other parameters: Pe ¼ 100, φ ¼ 0.5.
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at the microscale, e.g., to keep bodies at different
temperatures.
On a more fundamental level, our results show that

motility-induced phase separation, one of the best explored
phenomena in active matter research, is fundamentally
different from a liquid-gas phase separation—an insight
which has been curtained by the focus on overdamped
particles so far. As a consequence, the phenomenology of
motility-induced phase separation is even richer than
anticipated previously—it can, in particular, lead to phe-
nomena at the macroscale that are fundamentally beyond
equilibrium physics.
For future studies, it would also be interesting to study

the effect of inertia on anisotropic active particles [48–51]
where translational and rotational motions are coupled.
Specifically for such particles, Ref. [52] has recently
observed (but hardly analyzed) the occurrence of different
kinetic energies in coexisting phases, suggesting that the
present findings survive for particles of nonspherical
shape. An interesting challenge would also be to derive
a microscopic theory for motility-induced phase separation
in underdamped particles to predict the joint temperature
and density profiles across the interface between the
two coexisting states [53]. Such an approach needs to
be designed for nonisothermal situations as considered
recently in Enskog kinetic theories [54,55] or in dynamical
density functional theory [56,57].
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