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Abstract – The quest for the optimal navigation strategy in a complex environment is at the
heart of microswimmer applications like cargo carriage or drug targeting to cancer cells. Here,
we formulate a variational Fermat’s principle for microswimmers determining the optimal path
towards a given target regarding travelling time, energy dissipation or fuel consumption. For
piecewise constant forces (or flow fields), the principle leads to Snell’s law, showing that the optimal
path is piecewise linear, as for light rays, but with a generalized refraction law. For complex
environments, like general 1D, shear or vortex fields, we obtain exact analytical expressions for
the optimal path, showing, for example, that microswimmers sometimes have to temporarily
navigate away from their target to reach it fastest. Our results apply to idealized microswimmers
which can instantaneously steer, are fast enough so that translational noise is unimportant and
might be useful, e.g., to benchmark algorithmic schemes for optimal navigation.

Copyright c© EPLA, 2019

Introduction. – Microswimmers [1,2] continuously
convert energy into mechanical motion and can self-propel
in viscous solvents typically at low Reynolds number. Of-
ten, they move with an approximately constant speed, but
continuously adapt their swimming direction, e.g., for the
case of biological microswimmers to accomplish survival
tasks. For algae and spermatozoa [3], in particular, finding
an optimal swimming direction can decide on their success
to escape predators and to find prey and mates [4]. Like-
wise, the life of some bacteria rests upon their chemotactic
navigation tasks towards food and away from toxins [5,6].
In the realm of synthetic microswimmers [7–11], in turn,
controlling the choice of the swimming direction is crucial
for technological and medical applications like delivering
drugs [12,13] or other cargo [14–17] towards a prescribed
target. Here, the swimming direction can be controlled via
external chemical [6,18–20] or electromagnetic fields [16]
but also by feedback-based strategies [21–23].

Considering microswimmers with a prescribed deter-
ministic velocity (which may depend on space) and an
adjustable self-propulsion direction in a 2D complex en-
vironment, here we ask for the optimal path to reach a

(a)The authors contributed equally to this work.
(b)E-mail: liebchen@fkp.tu-darmstadt.de
(c)E-mail: hlowen@hhu.de

target. Contrasting recent (algorithmic) optimization pro-
cedures [24–29], here we develop a variational approach,
leading to a generalized Fermat’s principle for optimal mi-
croswimmer navigation, which can be used to calculate the
optimal time, e.g., regarding travelling time, energy dissi-
pation or fuel consumption.

Specifically, for vanishing or constant flow and force
fields, Fermat’s principle for microswimmers reduces to its
classic counterpart in geometrical optics [30], showing that
microswimmers take the same (straight) path as light rays,
with a speed differing from the bare self-propulsion veloc-
ity. Consequently, in piecewise linear media, the optimal
trajectory follows from a generalized Snell’s law, assigning
refractive angles to a microswimmer’s path (fig. 1).

In complex environments, such as general shear-flow
problems, isotropic force and vortex-shaped flows and
forces, Fermat’s principle allows us to calculate exact ana-
lytical expressions for optimal microswimmer trajectories.
These trajectories can have nontrivial shapes (fig. 2): for
instance, a microswimmer in a vortex flow field sometimes
has to swim temporarily away from its target to reach it
fastest (fig. 2). To save fuel, in turn, significant excursions
as compared to the shortest path can pay off (fig. 3).

While some of our results, like the minimization of
self-propulsion power, reside in the low-Reynolds-number
world of microswimmers, those optimizing travelling time,
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Fig. 1: (a) Optimal microswimmer trajectory (red) between rA

and rB for a constant flow or force field f = fxex. The optimal
orientation n̂ is fixed by the condition that v0n̂+fxex is parallel
to rB−rA. (b), (c): Snell’s law for microswimmers determining
the optimal path in a piecewise homogeneous medium (each
with a constant force/flow field and a specific self-propulsion
speed), illustrated for two different “materials” (b) and a linear
ramp potential (c).

might approximately apply even in the macroworld, e.g.,
to route-planning for airplanes in slowly varying cross-
winds or to human swimmers aiming to cross a river
in minimal time. Specifically for such time-optimization
problems, our work creates a formal bridge between mi-
croswimmer physics and Zermelo’s classical navigation
problem [31], which has been overlooked so far, perhaps
because the latter is primarily discussed in the mathemat-
ical and engineering literature [31–35]. This link might
help stimulating a future transfer of knowledge from opti-
mal control theory, where Pontryagin’s maximum princi-
ple [36] provides a general and more abstract framework
to calculate optimal processes, to active matter physics.
Despite the existence of such a framework, the general
expressions for the optimal trajectories in various classes
of complex environments, which we derive in the present
work, might still be unknown1 and a discussion of their
significance for active matter physics is a key goal of the
present article.

Our results might be useful for a range of microswim-
mer applications from targeted drug delivery [12,13] to
fuel saving and perhaps also in the context of searching
(in the presence of drifts) [38]. They might also find ap-
plications for benchmarking machine learning algorithms
applied to optimize navigation [25,39]; for sufficiently sim-
ple problems, one could do this, e.g., by comparing algo-
rithmically optimized paths with those obtained from the
present variational approach. Similarly, the present re-
sults could be used in principle to explore if ocean fish
or other swimmers manage to find the path of the least
resource consumption [40,41].

1Compare, e.g., the following literature reviewing Zermelo’s
problem [31–35,37].

Fermat’s principle for microswimmers. – Con-
sider an overdamped microswimmer (or self-propelled
particle) in 2D, with time-dependent position r(t) =
(x(t), y(t)) and orientation n̂(t) = (cos φ(t), sin φ(t)) by

ṙ = v0(r)n̂ + f(r); φ̇ = M0(t). (1)

Here, v0(r) denotes the swimming speed which can be
position-dependent [42–45] and f(r) is the overall exter-
nal field f(r) = u(r) + F(r)/γ(r), with u(r) and F(r) be-
ing external solvent flow and force fields and γ(r) being
the Stokes drag coefficient, which can also vary spatially
(as is relevant for viscotaxis [46]); M0(t) is a reduced
active torque. We assume that M0(t) can be controlled
on demand (e.g., via external fields) which is equivalent
to choosing an optimal φ(t). Here, any external torque
or rotational noise in eq. (1) can be absorbed in M0(t)
and translational noise is neglected as commonly done
for microswimmers. Given starting and target positions
r(t = 0) = rA, r(t = T ) = rB , we now ask for the optimal
connecting trajectory, which is compatible with the equa-
tions of motion, and minimizes the traveling time T , for
given v0(r), f(r). This is a well-posed mathematical varia-
tional problem leading to a generalized Fermat’s principle
for active particles.

To minimize traveling time, we write T =
∫ xB

xA

dx 1
|ẋ| and

describe the connecting curve by a function y(x), using
y′(x) = dy/dx for its derivative, see fig. 1(a). Then we
solve eq. (1) for n̂, square it and express ẏ = y′(x)ẋ to
arrive at (ẋ−fx)2+(y′ẋ−fy)2 = v2

0 . Solving this equation
for ẋ yields a functional for T ,

T [y(x), y′(x), x] =

∫ xB

xA

dx L(y(x), y′(x), x), (2)

where we have defined the Lagrangian

L =
(1 + y′2)

∣

∣

∣
fx + y′fy ±

√

v2
0(1 + y′2) − (fy − y′fx)2

∣

∣

∣

(3)

depending on fx, fy, v0, which are prescribed functions
of x, y. Here, the sign leading to the shorter travel-
ling time is the relevant one. A necessary condition to
minimize L now follows from the Euler-Lagrange equa-
tion [47] d

dx
∂L
∂y′

− ∂L
∂y

= 0 yielding a boundary value prob-

lem for a second-order differential equation. (Specifically
for f = (fx, fy) = 0, we recover Fermat’s principle of
geometrical optics with v0(r) replacing the reduced light
speed c0/n(r), where c0, n(r) are the vacuum speed of light
and the space-dependent refraction index.)

Snell’s law for microswimmers. – We first con-
sider a microswimmer with constant v0 in a simple en-
vironment, given by a gravitational force m∗g [48–50]
and a constant flow u0. Choosing an appropriate coor-
dinate system allows us to write f = fxex with fx =
|u0 + m∗g/γ| = const, and the Euler-Lagrange equation

34003-p2
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Fig. 2: Optimal trajectories (lines) and navigation strategy (arrows on lines show n̂ = (cos φ, sin φ)) in various flow or force
fields f. (a), (b): 1D linear field f = (kx, 0); (c) shear flow (pipe or plane Poiseuille flow) f = (k[1 − y2/R2], 0); (d) vortex field
f = k(−y, x). Background colors and white arrows show strength and direction of the reduced force f/k. (e) Travelling time
T (black lines) for problems shown in panels (a), (b), relative to the optimal travelling time T0 = T (k = 0). The dashed line
represents T (k → 1)/T0. Red lines show T/T0 for a straight trajectory (where existent). (f) Orientation angle φ(r) for the
trajectories in panel (d). Length and time units are arbitrary, e.g., µm, s, and v0 = 1.

reduces to a conservation law [47],

d

dx

∂(1 + y′2)/|fx ±
√

f2
x + (v2

0 − f2
x)(1 + y′2)|

∂y′
= 0. (4)

Thus, y′(x) is constant, i.e., the connecting line between
rA and rB is straight [31]. To reach its target fastest, the
microswimmer thus has to self-propel in a direction n̂ such
that u0 + m∗g/γ + v0n̂ is parallel to rB − rA (fig. 1(a)),
yielding

cos φ = ±
√

cos2 θ

[

1 − f2
x

v2
0

sin2 θ

]

− fx

v0
sin2 θ, (5)

where usually the + sign is relevant. The microswimmer
can reach its target if v2

0 > f2
x sin θ2, where θ is the (small-

est) angle between rB − rA and f. Its velocity along the
trajectory is veff = |f + v0n̂| and the total traveling time
is T = veff/|rA − rB |.

When rA, rB lie in different homogeneous media, char-

acterized by constant f(i) and v
(i)
0 (i = 1, 2), and separated

by a planar interface the optimal trajectory must be piece-
wise linear (fig. 1(b)). (This is because the optimal trajec-
tory between start/target point and intersection point is
straight, independently of the location of the intersection
point.) The consequence is a generalized Snell’s law for
microswimmers, with a generalized refraction formula,

sin Θ(1)

sin Θ(2)
=

v
(1)
eff

v
(2)
eff

, (6)

where Θ(i) is the angle between the interface normal and
the trajectory in medium i. The standard Snell-formula

emerges for f (i) = 0, whereas v
(i)
eff generally depends on

Θ(i), i.e., (6) is an implicit equation. We illustrate Snell’s
law and the resulting refraction angles for a microswimmer
crossing an interface between two fluids in fig. 1(b), and
for a swimmer surmounting a finite and piecewise linear

potential barrier in fig. 1(c). Equation (6) applies if v
(i)
0

2
>

[f
(i)
x sin θ(i)]2 in both media; if the criterion is violated in

one medium, a negative refraction index can arise, as in
metamaterials [51,52].

Complex environments. – Let us now explore the
optimal path in more generic fields.

i) Exploiting linear flow: In the quasi-1D case f =
f(x)ex, v0 = v0(x), we obtain ∂y(x)L = 0, i.e., y is a
cyclic variable, and the Euler-Lagrange equation shows
that ∂y′(x)L = c0 where c0 is constant along the optimal
path. Resolving for y′(x) yields (both for +,− in eq. (3))

y′(x) =
±c0v0

√

1 − c2
0(v

2
0 − f2)

(7)

which determines the shape of the optimal path for an
arbitrary f(x), with c0 and the integration constant be-
ing fixed by the boundary conditions y(xA) = yA and
y(xB) = yB . (Since ± can be absorbed in c0 both
branches of eq. (7) yield identical boundary value solu-
tions.) Equation (7) can be exactly integrated, e.g., for
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f(x) = kx, k/x, keαx with k, α being arbitrary (real) con-
stants, and otherwise numerically. Exemplarily consider-
ing f(x) = kx (fig. 2(a)), we recover the straight line for
k = 0; as k increases, the optimal trajectory increasingly
bends away from the straight line. To understand how
such a detour pays off regarding travelling time, consider
the k = 1 case: here, the microswimmer self-propels in
the y-direction only, whereas the external field generates
all required motion in the x-direction. In this way, the
travelling time reduces by a factor of

√
2 as compared to

the straight trajectory at k = 0. If k <
√

2v0/5, the mi-
croswimmer can alternatively reach its target by following
the geometrically shortest, straight path, i.e., to minimize
travelling distance rather than time. Comparing travel-
ling times (fig. 2(e)) shows that the straight-line motion
is never optimal for k �= 0, but only marginally worse
than the optimal one for most relevant k-values. Thus,
for microswimmers seeing only their local environment,
a very simple, yet sensible strategy could be to always
head straight towards the target. This strategy works even
better in our next example.

ii) Optimal navigation in upwards flow direction:
A swimmer aiming to reach a target located in upwards
flow (force) direction (fig. 2(b)), benefits from staying
“above” the straight line. This helps the swimmer to
avoid strong opposing flow regimes unnecessarily early,
but makes the resulting path longer. The optimal com-
promise is a path slightly above the diagonal, following
which requires the swimmer to steer increasingly against
the flow. (This agrees with Zermelo’s qualitative find-
ing [31,35] that the steering “must always be toward the
side which makes the wind component acting against the
steering direction larger”). The optimal path again re-
duces the travelling time as compared to the straight line
(fig. 2(e)), but only very slightly, showing once more that
moving straight towards a target serves as an excellent
alternative strategy.

iii) Crossing a pipe: Analogously to our previous cal-
culation, we obtain an exact expression for the optimal
path for a general shear-flow problem [53,54] f = f(x)ey

(v0 = v0(x)), where +,− in eq. (3) both yield (modulo an
irrelevant sign of c0):

y′(x) = ± c0v
2
0 + f − c0f

2

v0

√

(c0f − 1)2 − c2
0v

2
0

. (8)

Here the + branch is the relevant one in all examples
we have explored. Let us illustrate this result for a mi-
croswimmer aiming to cross a pipe f = k[1−x2/R2]ey (pla-
nar Poiseuille flow); see fig. 2(c). Here, to reach its target
fastest, the microswimmer takes an increasingly S-shaped
path, as −k increases. In particular, to cross the pipe most
efficiently in the upwards flow direction, the microswim-
mer is obliged to temporarily move down the flow. (For
k � −0.82 the target is unreachable.)

iv) 2D environments: To explore the optimal path in 2D
force and flow fields, as created, e.g., by a rotating bucket
or an optical trap [55–59], we rederive the Lagrangian

L = L(r, φ(r), φ′(r)) in polar coordinates (r, φ) parame-
terized by r, for f(r, φ) = fr(r, φ)er + fφ(r, φ)eφ, where
er = (cos φ, sin φ) and eφ = (− sin φ, cos φ):

L =
1 + r2φ′2(r)

∣

∣

∣
fr + rφ′fφ ±

√

v2
0 − f2

φ + rφ′[2frfφ + rφ′(v2
0 − f2

r )]
∣

∣

∣

.

(9)
For isotropic forces fr = f(r); fφ = 0 (like the simplest
optical traps) and v0 = v0(r), we exploit that ∂φ(r)L = 0,
so that the Euler-Lagrange equations yield ∂φ′(r)L = c0

with c0 being constant again. Hence, the optimal trajec-
tory for an arbitrary isotropic potential reads (both for
+,− in eq. (9))

φ′(r) =
c0v0

√

r4 + c2
0r

2[f2 − v2
0 ]

. (10)

Similarly, for vortex fields fr = 0; fφ = f(r); v0 = v0(r)
we find (+,− signs in eq. (9) again lead to the same two
solutions, modulo the irrelevant sign of c0)

φ′(r) = ± c0v
2
0 + rf − c0f

2

rv0

√

r2 − c2
0v

2
0 − 2c0rf + c2

0f
2
. (11)

To exemplify these results, consider a microswimmer in
the center of a rotating flow f = k(−y, x) = kreφ in a
(nonrotating) bucket aiming to reach a specific point on
the bucket rim as soon as possible. As shown in fig. 2(d),
reaching the target fastest, sometimes obliges the swimmer
to initially move away from it (cases k = 0.2; 0.25; 0.3).
Here, the swimmer’s orientation strongly changes at small
r only (panel (f)), where f is weak; i.e., the swimmer
performs its navigation task at small r, letting the flow
advect it to the target afterwards.

Optimizing drag power. – To illustrate path op-
timization regarding quantities different from T , we
first define the drag power dissipated into the fluid as
P = γ(ṙ − u)2, simplifying to P = γ|ẋ|2[1 + y′(x)2] for
u = 0. Analogously to our previous approach, we write
the energy E dissipated along a microswimmers’ path y(x)
into the solvent as (still for u = 0)

E =

∫

dtP (t) =

xB
∫

xA

dxLP; LP =
γ(1 + y′2)

L(x, y, y′)
, (12)

where γ, v0,F may depend on r. Following the Euler-
Lagrange equation for LP shows that LP has the same
cyclic variables as L, allowing us to follow our earlier so-
lution strategy. Specifically for 1D fields F/γ = f(x)ex,
the path minimizing E is determined by (both for +,− in
eq. (3))

y′(x) =
c0v0

√

(f2 − v2
0)[c2

0 + γ2(f2 − v2
0)]

, (13)

where v0, γ, f may all depend on x and where c0 and the
integration constant are again fixed by boundary condi-
tions. Exemplary trajectories for f = kx (fig. 3(a)) show
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Fig. 3: Trajectories minimizing the power dissipated into the
fluid (a) and fuel consumption (b). Parameters are u = 0, f =
(kx, 0), v0 = 1 and γ = 1 (a) and γ = 1 − kx in (b). Colors,
arrows and units as in fig. 2.

that minimizing energy dissipation requires a microswim-
mer to take a path of opposite curvature as compared to
the fastest one (fig. 2(a)). Physically, the microswimmer
compromises between minimizing travelling distance and
avoiding regions of strong force, since moving in the force
direction is costly, since P ∝ (n̂v0 + f)2. (Notice that
for u �= 0,F = 0 the drag power simplifies to the self-
propulsion power P = γv2

0 , which is discussed next.)

Fuel saving. – Finally, we minimize the self-propulsion
power P = γv2

0 integrated along the path, assumed to be
proportional to the fuel required. Here, if either u = 0

or F = 0 the relevant Lagrangian reads LSP = γv2
0L. For

instance, when F = f(x)ex and γ, v0 depend on x only,
the path minimizing fuel consumption is determined by

y′(x) =
c0v0

√

c2
0(f

2 − v2
0) + v4

0γ2
. (14)

The resulting path is identical to the one minimizing T if
v2
0γ is constant (v4

0γ2 can be absorbed in c0), but not
in general. In fact, optimizing fuel consumption some-
times requires microswimmers to make significant excur-
sions; e.g., for f = kxex and γ = 1 − kx microswimmers
initially navigate towards low-viscosity regions before in-
creasinly turning towards the target (fig. 3(b)).

Conclusions. – Fermat’s principle for microswimmer
navigation connects active matter with geometrical optics
and optimal control theory to determine the optimal strat-
egy to reach a target, e.g., in minimal time or with minimal
fuel consumption. Our exact and general results for mi-
croswimmers in 1D, shear and vortex fields can in principle
be used to benchmark approximative schemes for optimal
navigation, including machine-learning–based ones [25,39]
and perhaps also to test to which extent evolution has
optimized swimming paths of sea animals [40,41].

Here, we have considered microswimmers which can
freely steer to swim in the optimal direction and hence
can dynamically compensate rotational diffusion. If trans-
lational diffusion is relevant or if the compensation of ro-
tational diffusion is incomplete/delayed, the navigation
strategy of the microswimmer will change. In such cases,

the present results might still be of some use, as it may
make sense for a microswimmer to stay close to the op-
timal path (of the underlying noise-free system), which
can be iteratively calculated using the actual position of
a microswimmer as a “new” starting point.

Future work could generalize our approach to 3D [60],
viscoleastic solvents [61], associated intertial effects [62]
or curved manifolds [63–65], and should of course account
for Brownian noise [66–68] or imperfect steering, possibly
by using the Hamilton-Jacobi-Bellman equation [69]
(see also [70]), or based on the Onsager-Machlup func-
tion [71,72]. It might also be interesting to optimize
the microswimmer path with respect to more complex
“cost functions”, e.g., to allow determining a desired
compromise between optimizing travelling time and fuel
consumption.
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[17] Debnath T. and Ghosh P. K., Phys. Chem. Chem.

Phys., 20 (2018) 25069.
[18] Stark H., Acc. Chem. Res., 51 (2018) 2681.
[19] Robertson B., Huang M. J., Chen J. X. and

Kapral R., Acc. Chem. Res., 51 (2018) 2355.
[20] Gonzalez S. and Soto R., New J. Phys., 20 (2018)

053014.
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