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Traveling band formation in feedback-driven colloids
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Using simulation and theory we study the dynamics of a colloidal suspension in two dimensions subject to a
time-delayed repulsive feedback that depends on the positions of the colloidal particles. The colloidal particles
experience an additional potential that is a superposition of repulsive potential energies centered around the
positions of all the particles a delay time ago. Here we show that such a feedback leads to self-organization of
the particles into traveling bands. The width of the bands and their propagation speed can be tuned by the delay
time and the range of the imposed repulsive potential. The emerging traveling band behavior is observed in
Brownian dynamics computer simulations as well as microscopic dynamic density functional theory. Traveling
band formation also persists in systems of finite size leading to rotating traveling waves in the case of circularly
confined systems.
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I. INTRODUCTION

Non-equilibrium systems subject to a feedback potential
have been studied extensively in recent times [1–10]. Due
to the feedback used, e.g., to stabilize dynamics [10–14]
or structure [8,15], the system dynamics becomes history
dependent. The feedback can be realized through external
programming of a laser trap [8,16–22] or, more naturally, may
arise in autochemotactic particles, i.e., if the particles them-
selves are part of the production mechanism of the chemical
substance they react to. In particular, examples of the latter
include biological systems such as bacteria [23,24] and army
ants [25], as well as synthetic microswimmers such as active
colloidal particles [26–32] or self-propelling droplets [33,34].

In the context of many-particle systems, the topic of pattern
formation [35–41] is of central interest. In particular, the
Ginzburg-Landau [42–45] and Swift-Hohenberg equations
[46] are widely used to study pattern formation. Most of these
studies present a coarse-grained treatment using effective
continuum theories but do not resolve the individual particles.
One pattern which is commonly observed in many different
systems is traveling waves or moving bands of particles.
Examples include actin waves formed in the biological actin-
myosin systems [47–49], metachronal waves in cilia arrays
[50], the patterning in systems of active agents under various
settings [40,51–56], the formation of bands in passive col-
loidal suspensions driven by ac [57,58] or dc [59–64] fields,
and phase separating mixtures [40,65,66]. Recent work on
pattern forming systems also considers the effect of time-
delayed feedback using continuum theories [44,67–69].

In this paper, we present a study of feedback-driven col-
loidal particles as an example of a feedback system of discrete
components considered on the fundamental particle level. In
our model, the particles are subjected to a feedback potential

*sonja.tarama@hhu.de

driving them away from their previous positions. Using Brow-
nian dynamics computer simulations and dynamical density
functional theory [70–75], we show that this repulsive feed-
back leads to self-organization of the particles into a moving
band structure reminiscent of a traveling wave. Remarkably,
this ordering takes place despite the absence of any attractive
interactions in the system, for which static band formation is
known to occur [76,77]. The width of the bands and their
propagation speed can be tuned by the delay time and the
range of the imposed repulsive delay potential. Finally, we
demonstrate that traveling band formation also persists under
strong confinement, leading, in circularly confined systems, to
globally rotating and spiraling bands [78].

Our model can be realized in experiments for colloidal
suspensions. The suspensions can be exposed to a potential
energy landscape using optical fields which are programed via
a feedback loop [20,79,80]. Typically the colloids are attracted
towards the intensity maximum of the optical field. However,
by inverting the intensity landscape a repulsion is achieved,
in which case the particles are driven away from the dark
regions.

The paper is organized as follows: In the following section
we introduce the underlying Langevin equation including a
delay term [81–88] describing the dynamics of the system.
We continue with presenting our simulation results in Sec. III.
A prediction of the observed traveling wave formation is
derived from dynamic density functional theory in Sec. IV.
Subsequently, we consider confinement effects in Sec. V.
Finally, we conclude with a summary of our main findings and
an outlook to possible extensions of the system in Sec. VI.

II. MODEL AND BROWNIAN DYNAMICS
COMPUTER SIMULATIONS

The Brownian dynamics of N colloidal particles in two
spatial dimensions is described by their time-dependent po-
sitions ri(t ) (i = 1, . . . , N) and governed by the following
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Langevin equation:

γ
dri

dt
= fi(t ) +

N∑
j=1

F(ri(t ) − r j (t − τ ))

+
N∑

j = 1
j �= i

FYuk (ri(t ) − r j (t )), (1)

which can be viewed as a force balance equation. The
left-hand side of Eq. (1) contains the Stokes drag force
with γ denoting the friction coefficient. The Gaussian ran-
dom force fi(t ) mimics the collision of the particle with
solvent molecules. This stochastic force is characterized
by its first two moments 〈fi(t )〉 = 0 and 〈fi(t ) ⊗ f j (t ′)〉 =
2Dγ 21δ(t − t ′)δi j , where D is the short-time diffusion coeffi-
cient of the particles, δ(t ) is the Dirac delta function, and δi j

denotes the Kronecker delta. The important new ingredients
in Eq. (1) are the feedback forces F(ri(t ) − r j (t − τ )). These
forces are evaluated at distances between the actual position
ri(t ) of particle i and the former positions r j (t − τ ) of the
other particles j (where the special case i = j is included).
Here, τ is the time difference, which we refer to as the delay
time of the feedback.

We derive F(r) from a potential Vfb(r) as

F(r) = −∇rVfb(r)

and assume for simplicity a Gaussian form

Vfb(r) = A exp

(
− r2

2b2

)
, (2)

characterized by an energy amplitude A and a range b. The
Gaussian potential form is a good approximation for optical
systems such as optical tweezers and occurs naturally for
autochemotactic particles [31]. Here, we confine ourselves to
the case of repulsive feedback potentials such that the energy
amplitude A > 0 is positive and the special case A = 0 serves
as an equilibrium reference case. For A > 0, all particles are
driven away from the past positions of all particles including
their own.

Finally, the equations of motion include direct particle-
particle interaction forces

FYuk(r) = −∇r�(r) (3)

via a repulsive Yukawa pair potential

�(r) = V0

r
exp (−κr) (4)

involving an inverse range κ and an amplitude V0.
We perform Brownian dynamics simulations with a square

simulation box of length L and periodic boundary conditions
with N = 6400 particles. Some of the simulations were re-
peated in a rectangular box, in order to obtain stable trav-
eling bands. This was necessary because at the onset of the
formation of traveling bands, the band stability is highly
dependent on the commensurability of the box size and
the preferred wavelength. Possible wavelengths in the finite
system are restricted to those being commensurate with the
periodic boundaries, which thus requires the system length to
be adjusted. The equation for the particle positions, Eq. (1),

FIG. 1. Formation of bands. The plots show snapshots of the
system at times (a) t = 0, (b) t = 10, (c) t = 50, and (d) t = 100
for the case of a strong feedback potential (A = 20). Separation into
crowded and empty regions is followed by the formation of bands.

is integrated using an explicit Euler scheme with a finite time
step of �t = 10−4τ0, where τ0 = b2/D denotes the Brownian
time scale.

In the following, lengths are normalized to the feedback
potential range b and times to the Brownian time τ0 = b2/D.
Energies are given in terms of the thermal energy kBT ≡ Dγ .
In order to keep the set of parameters limited, we maintain
V0 = 60 bkBT , κ = 4.5/b, and τ = 0.25 τ0 constant in our
units. Furthermore, we use a number density ρ0 = N/L2 =
1/b2. The units are dropped hereafter for ease of notation.
We use the feedback amplitude A as a control parameter and
investigate the change in the system structure and dynamics
as a function of it.

Our simulation protocol is as follows: First, the system is
equilibrated without any feedback potential (corresponding to
a two-dimensional pure Yukawa system [89]), after which the
positions are recorded for updating the feedback potential. We
define t = 0 as the time at which the feedback potential is first
introduced into the system. Subsequently, the relaxation of the
system is monitored for a long time, several hundreds of time
units.

III. SIMULATION RESULTS

A. Band formation

Figure 1 shows a typical instance of system relaxation in
the case of strong feedback potentials. The initial equilibrated
homogeneous fluid state in Fig. 1(a) spontaneously separates
into two regions which are either empty or crowded (i.e.,
exhibiting a high density of particles). This demixed state
coarsens further as a function of time into a configuration
of system-spanning straight bands at long times, resembling
those observed in mixtures of particles subjected to bidisperse

022609-2



TRAVELING BAND FORMATION IN FEEDBACK-DRIVEN … PHYSICAL REVIEW E 100, 022609 (2019)

FIG. 2. Particle positions at times t = 500 (blue/dark) and
(a) t = 500.25 and (b) t = 500.5 (pink/light) for feedback amplitude
A = 20. The particles move approximately one bandwidth in the
normal direction within a feedback time τ = 0.25. The direction of
movement is indicated by the arrow in (a).

Magnus forces [90]. The width of the formed bands depends
on the specific parameters of the particle repulsion and the
feedback potential as well as the delay time τ . In particular,
no band formation is observed for very small delay times,
in which case the feedback potential can be understood as
modified direct interactions between the particles, while larger
delay times lead to an increase in the time scale on which band
formation takes place. The orientation of the bands is tilted
relative to the quadratic box with the angle depending on the
initial configuration as well as the commensurability of the
wavelength and the box size. The commensurability condition
leads to a finite set of possible orientations for the bands while
the initialization determines which of these is realized.

The emerging bands are observed to move collectively
along the normal of their interfaces. The empty regions are
found at the former particle positions, i.e., the positions
where the potential is inserted, suggesting that particles try
to effectively avoid regions where they have been a time
τ before. In more detail, the occurrence of the separation
into empty and crowded regions can be explained in the
following way: If in a disordered system as in Fig. 1(a)
there are by chance more particles at a particular position
at time t , the strong repulsive potential imposed at time
t + τ leads to fewer particles at this position, which in turn
leads to a small potential and more particles at time t + 2τ .
The feedback potential thus leads to a self-ordering and the
particle distribution effectively changes between one state and
its negative image with period 2τ . The easiest way to achieve
this, namely, the one with the fewest collisions between the
particles, is a collective movement into one direction as given
for the moving lamellar phase seen in Fig. 2.

Based on the previous consideration, a band moves over
its full periodicity λb during twice the delay time τ such that
a scaling expression for the magnitude of the expected band
velocity is obtained as

vs = λb

2τ
. (5)

Remarkably, knowledge of the static property, namely, the
wavelength and orientation of the band structure, thus pro-
vides an estimate of the dynamics of the system, i.e., the band
velocity. Likewise, determining the velocity of the bands for
a given feedback time yields an approximative value for the

band periodicity λb. Moreover, through a determination of the
velocity and periodicity, the feedback time can be estimated,
which, in particular in biological systems, might not be easily
accessible otherwise.

The prediction for the band velocity obtained from the
scaling expression can be compared to the simulation results.
For the latter case, we use the systematic force

Fi(t ) =

⎡
⎢⎢⎢⎣

N∑
j=1

F(ri(t ) − r j (t − τ ))

+
N∑

j = 1
j �= i

FYuk (ri(t ) − r j (t ))

⎤
⎥⎥⎥⎦ (6)

acting on particle i at time t to define an instantaneous drift
velocity

vi(t ) = Fi(t )

γ
(7)

of this particle. From this expression, the mean global drift
velocity v is then obtained by averaging over all particles as

v = 1

N

N∑
i=1

〈vi(t
′)〉 , (8)

where

〈B(t ′)〉 = 1

T

∫ t0+T

t0

dt ′B(t ′) (9)

denotes an average taken over time t ′ for an observable B(t ′).
The time t0 is bigger than a typical relaxation time of the
system and T is the width of the time window over which
the average is performed. Here, we use t0 = 500 and T =
500. In the ordered band state the mean drift velocity equals
the velocity of the bands. The comparison between the two
velocities is shown in the next section as a function of the
feedback potential amplitude A [Fig. 7].

B. Dependence on the feedback strength

The system shows different structuring depending on the
amplitude of the applied feedback potential A. The patterns
are shown in Fig. 3 with the color code indicating the drift
velocity directions of the individual particles. As a general
result, we find that the average of these velocities, the mean
drift velocity v, is typically normal to the band direction.

With respect to potential strength A, we observe that, while
for small A � 1 [Fig. 3(a)], diffusion prevents any struc-
ture formation, higher potential amplitudes lead to patterning
[Fig. 3(b)] and, for even larger potential strength, to the for-
mation of a band structure. The necessary potential amplitude
for pattern formation can be estimated by considering at which
point the feedback force F becomes comparable to the inter-
particle repulsion force FYuk. From the condition F2 = F2

Yuk,
we find that A ≈ 6, which is in reasonable agreement with the
simulation results which indicate the start of band formation
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FIG. 3. System snapshots for feedback potential strengths
(a) A = 1, (b) A = 5, (c) A = 6, (d) A = 6.5, (e) A = 10, and (f) A =
20 after t = 500. A band pattern is formed initially for sufficiently
high strengths of the feedback potential. The direction of motion of
the particles is extracted from the individual drift velocities vi(t ) =
|vi|(cos ϕi, sin ϕi ) and the angle ϕi is indicated by color.

at 5 � A∗ � 6. Close to this threshold, the band state can
be constituted of two distinct band orientations [Fig. 3(c)].
Further increasing the potential leads to a single band ori-
entation with a considerable number of particles traveling in
the opposite direction [Fig. 3(d)]. At even higher potentials
[Figs. 3(e) and 3(f)], the system forms stable bands with all
particles moving as part of the bands into the same direction.

We have checked the system for hysteretic behavior via
additional simulations. For a finite system, a small hysteresis
effect is observed in forming the bands, which appears to
be due to the finite system size and the prescribed periodic
boundary conditions.

The density distribution within the bands ρb can be deter-
mined by changing to a co-moving frame. Taking an average
along the band tangential, the density only depends on the

FIG. 4. Density profile ρb(s) of the bands in the co-moving
frame, as a function of the position s in the band drift direction for
different feedback potential strengths A.

position s in the drift direction êv,

ρb(s) =
〈

N∑
i=1

δ(s − ri(t
′) · êv)

〉
. (10)

One period of these profiles is shown in Fig. 4, revealing an in-
creasing layering of particles for strong feedback amplitudes
and hence an increasing internal order of the bands.

In the following, the formed patterns are explored in more
detail via the structure factor, defined by

S(k) =
〈

1

N

N∑
i, j=1

e−ik(ri (t ′ )−r j (t ′ ))

〉
. (11)

Figure 5 shows S(k) for the cases shown in Fig. 3 as a function
of the components of the wave vector k = (kx, ky). The outer
black ring corresponds to the mean particle distance. For
higher potential, its radius is shifted away from the equilib-
rium value 2πρ

1/2
0 towards higher wave numbers, indicating

that the mean distance between particles in the band structure
is considerably smaller than the one in the homogeneous
system without the feedback potential.

Further, the inner black ring first appearing in Fig. 5(b)
represents the ordering due to the feedback potential. With
respect to the feedback potential strength A, different stages of
ordering are observed at this wave number which we denote
by k∗. First, for small potentials, directionally independent
patterning at k∗ ≈ 0.82 is found [Fig. 5(b)], which for stronger
amplitudes develops a directional dependence with two pre-
ferred band orientations [Fig. 5(c)]. While medium potentials
[Figs. 5(c) and 5(d)] still show some remainder of the initial
orientationally independent ordering, indicated by the light
gray ring at k∗, this feature disappears at large feedback
potential strength A [Figs. 5(e) and 5(f)]. For strong feedback
A, only a single band orientation is found. For large potential
amplitudes [Figs. 5(d)–5(f)], the nonsinusoidal form of the
density profile, visualized in Fig. 4, is reflected in higher har-
monics which lead to additional peaks at multiples of k∗ in the
structure factor. For easier comparison, the azimuthal average
S(k) is shown in Fig. 6 for different feedback strengths A,
illustrating the shift in the mean particle distance as well as the
growth of the new wave number k∗ and its higher harmonics.
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FIG. 5. Two-dimensional structure factor S(k) for the systems of
Fig. 3, i.e., for feedback amplitude (a) A = 1, (b) A = 5, (c) A = 6,
(d) A = 6.5, (e) A = 10, and (f) A = 20. The outer black ring corre-
sponds to the mean particle distance, the inner black ring, visible in
(b)–(d), to patterning at the wave number k∗. The system transitions
from directionally homogeneous patterning at wave number k∗ to
preferred orientations between A = 5 and 6.

Extracting the wavelength of the band pattern from the
structure factor S(k) allows for a comparison between the
estimated value of the band velocity obtained from the scaling
expression introduced in the previous section and the simula-
tion results. The prediction for the band velocity according to
the scaling expression vs, given by Eq. (5), and the simulation
results for the magnitude v of the global drift velocity v,
defined by Eq. (8), are shown in Fig. 7. Above a threshold
value 5 � A∗ � 6, v increases sharply. For high feedback
amplitudes A it saturates to a value that depends on the
specific choice of the remaining potential parameters as well
as the delay time τ . The agreement between the theoretical
prediction and the simulation results is acceptable but not
exact. The reason for the discrepancy is that the bands filled
with particles and the empty spaces in between are not exactly
equal in width, a consequence of the feedback force pushing
the particles from behind. The difference in width is also
visible in Fig. 2. The length traveled by the bands is thus

FIG. 6. Azimuthally averaged structure factor S(k) for different
values of the feedback potential strength A. The structure factor
shows the appearance of a new structure of wave number k∗ ≈ 0.82
in the system, corresponding to the wavelength of the traveling
bands. For stronger potentials additional peaks appear at multiples
of this wave number indicating higher harmonics.

overestimated when using half the wavelength of the band
structure instead of the width of the bands, leading to a slightly
higher predicted velocity for the present parameters.

For the individual particles, the directed drift motion
becomes visible in the mean-squared displacement (MSD),
which we define by

�(t ) =
〈

1

N

N∑
i=1

(ri(t
′ + t ) − ri(t

′))2

〉
. (12)

The MSD changes qualitatively with the onset of the traveling
wave instability: Increasing A over the threshold value for
band formation changes the long-time behavior from diffusive
(∝ t) to a directed drift motion (∝ t2), similar to what is
found for active (self-propelled) Brownian particles [26,91]
(see Fig. 8). Thus, the feedback potential effectively provides
a source of self-propulsion.

FIG. 7. Mean drift velocity obtained from simulations [Eq. (8)]
compared to the band velocity predicted via the scaling expression
[Eq. (5)]. For the latter, the wavelength λb = 2π/k∗ is a necessary
input; its value is extracted from the structure factor obtained through
simulations.
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FIG. 8. MSD �(t ) for different values of the feedback potential
strength A. Within the time window considered, the long-time MSD
changes from diffusive to ballistic behavior.

IV. DYNAMICAL DENSITY FUNCTIONAL THEORY

The previously observed values for the potential strength
A∗ and wave number k∗ characterizing the onset of the pat-
tern formation instability are now derived from microscopic
dynamic density functional theory (DDFT). The theory re-
quires the particle interactions as the only input.

DDFT is based on the Smoluchowski equation [92] corre-
sponding to the Langevin equation (1). The equivalent time-
delayed Smoluchowski equation is known for the one-particle
case [3,86–88,93,94] and is briefly discussed in Sec. IV A.
Subsequently, this single-particle case is extended to the case
of many particles (in Sec. IV B) and the approximations used
to obtain a self-contained DDFT equation are introduced in
Sec. IV C. Finally, the system’s stability against traveling
waves is investigated within DDFT in Sec. IV D and the
obtained predictions are compared to the simulation results
in Sec. IV E.

A. One-particle time-delayed Smoluchowski equation

To determine the time-delayed Smoluchowski equation
equivalent to Eq. (1), we first revisit the case of just a
single feedback-driven particle. In [93], the Smoluchowski
equation corresponding to a time-delayed Langevin equa-
tion was derived. Equations (1), (12), and (14) of this
work are relevant here and are reproduced below for the
case of a constant noise amplitude. Specifically, in [93] it
was shown that a time-delayed Langevin equation of the
form

∂

∂t
X (t ) = h(X (t ), X (t − τ )) +

√
2D (t ) , (13)

for a general state variable X (t ) subject to a Gaussian noise
(t ), defined by 〈(t )〉 = 0 and 〈(t )(t ′)〉 = δ(t − t ′), is
equivalent to the Smoluchowski equation

∂

∂t
w(x, t |xτ , tτ )|tτ =t−τ = L̂(x,∇x, xτ )w(x, t |xτ , tτ ) (14)

with

L̂(x,∇x, xτ ) = − ∂

∂x
h(x, xτ ) + D

∂2

∂x2
. (15)

Here, the conditional probability w(x, t |xτ , tτ ) gives the prob-
ability for the system to be in state x at time t , under the
condition that it was in state xτ at time tτ = t − τ . The time
derivative on the left-hand side of Eq. (14) only acts on t but
not tτ . The one-particle equivalent of our Eq. (1) is contained
in this solution by identifying the actual and the time-shifted
system states x and xτ with the particle positions r and rτ . We
set h(r, rτ ) = F (r, rτ )/γ for which

L̂(r,∇, rτ ) = − 1

γ
∇F (r, rτ ) + D�, (16)

where � denotes the Laplace operator. The Smoluchowski
equation then reads

∂w(r, t |rτ , tτ )

∂t

∣∣∣∣
tτ =t−τ

= 1

γ
∇[kBT ∇ − F(r, rτ )]w(r, t |rτ , tτ ) . (17)

From this equation, the joint probability w(r, t ; rτ , tτ ) =
w(r, t |rτ , tτ )w(rτ , tτ ) is obtained by multiplication with
w(rτ , tτ ) as

∂w(r, t ; rτ , tτ )

∂t

∣∣∣∣
tτ =t−τ

= 1

γ
∇[kBT ∇ − F(r, rτ )]w(r, t ; rτ , tτ ) . (18)

Finally, integration over the past position rτ yields an expres-
sion for the probability w(r, t ) = ∫

drτw(r, t ; rτ , tτ ) to find
a particle at r at time t without specifying its past position
[3,86–88,93,94]; i.e., it leads from the joint probability to have
a particle at position r at time t and at position rτ at time tτ to
one for the joint probability to have a particle at position r at
time t and at any position at time tτ . The resulting probability
w(r, t ) is then no longer dependent on the past time tτ and its
time evolution is given by

∂w(r, t )

∂t
= D�w(r, t )

− 1

γ

∫
drτ ∇F(r, rτ )w(r, t ; rτ , tτ ) . (19)

B. Extension to the many-particle case

We now return to the original problem of finding a Smolu-
chowski equation equivalent to Eq. (1). In this case, the system
state X (t ) is given by a set of particle positions which should
still obey Eq. (14). The many-body conditional probability
density w(rN , t |rN

τ , tτ ) to have N particles at positions rN =
r1, . . . , rN at time t under the condition that the previous
corresponding positions were rN

τ = rτ1 , . . . , rτN at time tτ =
t − τ is thus given by

∂w(rN , t |rN
τ , tτ )

∂t

∣∣∣∣
tτ =t−τ

= 1

γ

N∑
i=1

∇i
[
kBT ∇i−

(−∇iUtot
(
rN , rN

τ

))]
w

(
rN , t

∣∣rN
τ , tτ

)
.

(20)
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Here, the gradient or divergence ∇i indicates differentiation
with respect to ri. The forces on the particles are expressed as
potential gradients −∇iUtot (rN , rN

τ ) with the derivative in this
term only intended to act on Utot and not on w(rN , t |rN

τ , tτ ).

The potential includes the direct pair interaction potential
between the particles, �, and a contribution due to the feed-
back potential, Vfb:

Utot
(
rN , rN

τ

) = 1

2

N∑
i, j = 1
i �= j

�(|ri − r j |) +
N∑

i, j=1

Vfb(|ri − rτ j |) . (21)

Analogously to the one-particle case, multiplication of Eq. (20) with the probability w(rN
τ , tτ ) to have had N particles at the

positions rN
τ at time tτ leads to an equation for the joint probability w(rN , t ; rN

τ , tτ ) = w(rN , t |rN
τ , tτ )w(rN

τ , tτ ), given by

∂w
(
rN , t ; rN

τ , tτ
)

∂t

∣∣∣∣
tτ =t−τ

= 1

γ

N∑
i=1

∇i
[
kBT ∇i + (∇iUtot (rN , rN

τ )
)]

w
(
rN , t ; rN

τ , tτ
)
. (22)

Integration over the past positions rN
τ yields an equation for the probability density solely dependent on the set of current

positions rN given by

w(rN , t ) =
∫

drτ1 · · ·
∫

drτN w
(
rN , t ; rN

τ , tτ
)
. (23)

Performing the integration, the potential term in Eq. (22),∫
drτ1 · · ·

∫
drτN Utot

(
rN , rN

τ

)
w

(
rN , t ; rN

τ , tτ
) =

∫
drτ1 · · ·

∫
drτN Utot

(
rN , rN

τ

)
w

(
rN , t

∣∣rN
τ , tτ

)
w

(
rN
τ , tτ

)
, (24)

cannot be traced back to a simple expression due to the fact that both Utot (rN , rN
τ ) and w(rN , t |rN

τ , tτ ) depend on the previous
particle positions rN

τ . Intuitively, this can be understood as being due to the coupling of Utot (rN , rN
τ ) to the particle trajectories.

This renders the reduction of the potential to a single value at the current position impossible. The many-particle equivalent of
Eq. (19) obtained from integration of Eq. (22) thus reads

∂w(rN , t )

∂t
= D

N∑
i=1

�iw(rN , t ) + 1

γ

∫
drτ1 · · ·

∫
drτN

N∑
i=1

∇iw
(
rN , t ; rN

τ , tτ
)∇iUtot

(
rN , rN

τ

)
. (25)

Next, we define the one- and two-particle densities, ρ and ρ (2), as well as the time-shifted two-particle density, ρ (2)
s , via

ρ(r1, t ) = N
∫

dr2 · · ·
∫

drN

∫
drτ1 · · ·

∫
drτN w

(
rN , t ; rN

τ , tτ
)
, (26)

ρ (2)(r1, r2, t ) = N (N − 1)
∫

dr3 · · ·
∫

drN

∫
drτ1 · · ·

∫
drτN w

(
rN , t ; rN

τ , tτ
)
, (27)

ρ (2)
s (r1, t ; rτ , tτ ) = N

∫
dr2 · · ·

∫
drN

∫
drτ1 · · ·

∫
drτN w

(
rN , t ; rN

τ , tτ
)
δ(rτ − rτ1 )

+ N (N − 1)
∫

dr2 · · ·
∫

drN

∫
drτ1 · · ·

∫
drτN w

(
rN , t ; rN

τ , tτ
)
δ(rτ − rτ2 ) . (28)

Here, the instantaneous densities ρ(r1, t ) and ρ (2)(r1, r2, t ) do not depend on tτ due to integration over the past positions rN
τ .

Furthermore, note that ρ (2)
s (r1, t ; rτ , tτ ) includes a self-term (first part) as well as a term due to other particles (second part) such

that the resultant two-particle density is defined as the probability to find one particle at r1 at time t and any particle (i.e., the
same or another) at position rτ at time tτ .

To obtain an equation for the evolution of the one-particle density, Eq. (25) is integrated with N
∫

dr2 · · · ∫ drN . Using the
above definitions, this leads to the exact equation

γ
∂ρ(r1, t )

∂t
= kBT �1ρ(r1, t ) +

∫
dr2∇1ρ

(2)(r1, r2, t )∇1�(|r1 − r2|) +
∫

drτ∇1ρ
(2)
s (r1, t ; rτ , tτ )∇1Vfb(|r1 − rτ |) . (29)

It is worth mentioning that the last term, i.e., the in-
teraction via the feedback potential, is similar to the pre-
ceding one, meaning that it takes the same form as a pair

potential. The two terms differ in that the feedback does
not act between positions at the same time but positions
at time t and previous ones at time tτ . Also, the last
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term includes a self-term which is not present in the direct
interactions.

C. Derivation of the DDFT equation

Starting from the many-body time-delayed Smoluchowski
equation [Eq. (29)], which is stochastically equivalent to the
Langevin equation [Eq. (1)], we construct a dynamical density
functional theory (DDFT) [72]. The DDFT is then used in the
next section to investigate the stability of the homogeneous
density state against wave formation.

Equation (29) is exact but not self-contained as it includes
the instantaneous and the time-shifted two-particle density. To
obtain a closed equation, we first rewrite the direct interaction
potential using the adiabatic approximation of DDFT,∫

dr2ρ
(2)(r1, r2)∇1�(|r1 − r2|) = −kBT ρ(r1)∇1c(1)(r1),

(30)

which expresses the particle interaction forces via the direct
correlation function c(1)(r). The latter is related to the excess
free energy, i.e., the nonideal part of the free energy, Fexc, by

c(1)(r) = − 1

kBT

δFexc[ρ(r)]

δρ(r)
(31)

in equilibrium. The adiabatic approximation assumes the
same relation in nonequilibrium.

Second, it is necessary to focus on the time-shifted two-
particle density. In fact, even for the noninteracting particle
case (� = 0) this term leads to a hierarchy of equations
whose solution is not at all trivial and subject to current
research [3,86–88,93,94]. Here, we use the mean-field-like
approximation

ρ (2)
s (r1, t ; rτ , tτ ) ≈ ρ(r1, t )ρ(rτ , tτ )

= ρ(r1, t )ρ(rτ , t − τ ). (32)

At this point, we are thus neglecting the correlations between
the present and past positions of the particles. The description
is then equivalent to having particles move in an effective
external potential

V̄fb(rN , t ) =
∫

drτ ρ(rτ , t − τ )Vfb(|r − rτ |), (33)

which is obtained through a convolution of the time-shifted
one-particle density with the feedback potential Vfb. This is
a crude approximation for systems where the different sets of
actual particle paths are important and the one-particle density
is not sufficient to describe the system. It should, however, be
decent if we are close to a homogeneous state due to a small
amplitude of the feedback potential or if we consider only a
small perturbation to this state, as done in the next section.
Such a homogeneous reference state is expected to lose its
memory of the specific realization of past positions on the
time scale 1/Dρ0, i.e., the time needed for particles to diffuse
the mean interparticle distance. However, this approximation
is in particular not well justified for dilute feedback systems
or very short delay times τ  1/Dρ0.

Finally, inserting the above approximations into Eq. (29),
a self-contained approximative equation for the one-particle

density is obtained:

γ
∂ρ(r, t )

∂t
= kBT �ρ(r, t ) − kBT ∇ρ(r)∇c(1)(r)

+ ∇ρ(r, t )∇
∫

drτ ρ(rτ , t − τ )Vfb(|r − rτ |) .

(34)

D. Linear stability analysis

Next, the effect of a small perturbation ρp(r, t ) on a homo-
geneous state of constant density ρ0 is investigated with

ρ(r, t ) = ρ0 + ρp(r, t ) (35)

being the space- and time-dependent density. We expand the
direct correlation function c(1)(r) about the bulk fluid value ρ0

up to linear order,

c(1)(r) ≈ c(1)
0 +

∫
dr2

δc(1)(r)

δρ(r2)

∣∣∣∣
ρ0

ρp(r2, t )

= c(1)
0 +

∫
dr2 c(2)(|r − r2|; ρ0)ρp(r2, t ), (36)

with the direct pair-correlation function

c(2)(|r − r2|; ρ0) = − 1

kBT

δ2Fexc[ρ(r)]

δρ(r2)δρ(r)

∣∣∣∣
ρ0

(37)

and insert this expression into Eq. (34). Linearization of the
result in the perturbation density ρp(r, t ) and nondimension-
alization yields the equation

∂ρ̃(k, t )

∂t
= −k2[ρ̃(k, t ) − ρ0 ρ̃(k, t )c̃(k; ρ0)

+ ρ0 ρ̃(k, t − τ )Ṽfb(k)], (38)

where ρ̃(k, t ) indicates the Fourier transform of ρp(r, t ),
c̃(k; ρ0) the one of c(2)(|r − r2|; ρ0), and Ṽfb the one of the
feedback potential.

Taking the ansatz for a wave solution of wave vector k and
amplitude ε,

ρp(r, t ) = ε eikreλt , (39)

and inserting it into Eq. (38), we obtain the dispersion relation

λ = −k2[1 − ρ0 c̃(k; ρ0) + ρ0 e−λτṼfb(k)] . (40)

The solution for λ can be separated into a real part α describ-
ing the growth of the perturbation and an imaginary part ω

giving the angular frequency of the traveling wave as

λ(k) = α(k) + iω(k) . (41)

This gives the two equations

α(k) = −k2[1 − ρ0 c̃(k; ρ0) + ρ0 e−α(k)τ cos(ω(k)τ )Ṽfb(k)] ,

ω(k) = k2ρ0 e−α(k)τ sin(ω(k)τ )Ṽfb(k) , (42)

which implicitly define the solution. Since c̃(k; ρ0) for the
equilibrium bulk fluid is required here as an input, we use a
reference simulation without the feedback potential to obtain
c̃(k; ρ0) which is related to the structure factor of the system
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FIG. 9. Prediction of the instability using DDFT: (a) Simulation
result for structure factor S(k) and DDFT prediction for the growth
rate α(k) for A = 5. (b) Growth rate α(k) and angular frequency ω(k)
for different strengths of the feedback potential. Solid lines give val-
ues for α, dotted ones those for ωτ . (c) Comparison between DDFT
prediction of band velocity and simulation results. (d) Stability curve
giving the wave-number-dependent value of A for which the growth
factor α changes from negative to positive. The minimal value of
A, for which an α = 0 exists, is denoted by A∗ ≈ 4.8. The green
dots show the wave number at which patterning was observed in
the simulations. The blue dashed line shows the maximally unstable
wavelength according to the DDFT prediction.

by [95]

c̃(k; ρ0) = ρ0

(
1 − 1

S(k)

)
. (43)

E. DDFT results and comparison to simulations

Results for α(k) and ω(k) are shown in Fig. 9. Figure 9(a)
displays the range of unstable wave numbers defined via a
positive α(k) and puts these into relation to the structure factor
S(k). Indeed, the maximally unstable wave number, i.e., the
wave number at which α(k) has its maximum, coincides with
the structural bandwidth characterized by k∗.

Figure 9(b) shows the full dispersion α(k) and ω(k) for
various A. The range of unstable wave numbers is zero be-
low the transition (A < 4.8) and increases with the feedback
amplitude A above it. From the frequency ω(k), close to
the transition, the phase velocity of the imposed wave is
determined by ω(k)/k. At k = k∗ this phase velocity should
be close to the band velocity v such that the band velocity
predicted by the theory is

v = ω(k∗)

k∗ . (44)

According to Eqs. (5) and (44) we obtain an approximative
phase shift of ω(k∗)τ = π within the delay time. In fact,
Fig. 9(b) reveals that the phase shift ω(k∗)τ is close to π

but deviations appear due to the approximative nature of
Eq. (5). The phase shift ω(k∗)τ is close to the ideal value π

for any k close to the maximally unstable wave vector with
discrepancies indicating that the wave does not change exactly
between a pattern and its negative image after a delay time τ .

The theoretical prediction of the band velocity is compared
to the simulation data in Fig. 9(c) and reasonable agreement is
found with respect to onset and magnitude of the velocity as a
function of the feedback potential amplitude A.

Figure 9(d) illustrates the stability in the plane defined by
the wave number k and the feedback amplitude A. There is a
separatrix distinguishing a stable [α(k) < 0] from an unstable
[α(k) > 0] regime. The instability occurs beyond a critical
amplitude A∗ ≈ 4.8 with an instability wave number k∗ =
0.87. The DDFT prediction for the critical amplitude A∗ ≈ 4.8
compares favorably with the simulation results of 5 � A∗ � 6
which documents the predictive power of the microscopic
theory. Deviations may be due to the approximative pair cor-
relation function entering as an input for the nonequilibrium
steady state or due to the adiabatic approximation.

In the unstable regime, α(k) > 0, the maximally unstable
wave number, i.e., the one with the fastest growth rate, is
shown by the blue dashed line in Fig. 9(d). This prediction
can be compared to the actual band wave number k∗ found
in the simulations shown as green dots. While at the onset
of the transition these two wave numbers are very close [see
also Fig. 9(a)], they exhibit a different trend for increasing A
indicating that nonlinear effects play a larger role away from
criticality.

V. CIRCULAR CONFINEMENT

In the case of periodic boundary conditions as discussed in
Sec. III the commensurability of the box size and the (pro-
jected) wavelength effectively constrains the possible band
orientations. Inversely, this constraint may affect the actually
realized wavelength as certain combinations of orientation
and wavelength that fit well with the box size may be pre-
ferred. In the following, we aim to investigate this effect in
more detail by confining the system to a prescribed geometry.
We choose a circular confinement which is imposed onto
the system by an external potential �c(r) which is radially
symmetric. The potential is soft but diverges at a distance
r = R from the center such that a circular confinement is
realized. We choose the external potential form

�c(r) = V0

R − r
e−κ (R−r) (45)

and fix the radius to R ≈ 45 b such that the density ρ0 =
N/πR2 = 1/b2 with N = 6400 is the same as in the previous
case.

Representative snapshots of the system for different feed-
back potential amplitudes A are shown in Fig. 10. Band for-
mation is found as for the nonconfined case, with the pattern
reaching further inwards if the feedback potential strength
is increased. This is because the confining boundaries set a
preferred band orientation and thus facilitate the formation
of a traveling wave along the boundary. Due to the circular
form of the confining potential, the bands are now forced
into a rotational motion. Moreover, the circular geometry
does not allow parallel wavefronts with a constant separation
running from the boundary to the center. Thus, defects are
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FIG. 10. Particle positions for potential strength (a) A = 5.5,
(b) A = 7, (c) A = 10, and (d) A = 20 at time t = 500. The color
code is the same as used in Fig. 3 and indicates the direction of
movement of the particles.

unavoidable. At low and intermediate feedback potentials the
formed pattern is approximately rotationally symmetric with
respect to the center but not very well ordered. In contrast,
at high values of A, the waves are well established and have
an about constant wavelength. However, to allow for this
arrangement, a separation into domains of different band ori-
entation with a complicated topology at the center is required
and observed.

To further examine the system response in this case, we
consider the time-averaged radial density profile

ρc(r) =
〈 N∑

i=1

δ
(
r − ri(t

′)
)〉

, (46)

which by symmetry depends only on the radial distance r to
the center. Next, we also define a time-averaged angular drift
velocity profile ωc(r):

ωc(r) = êz ·
〈

N∑
i=1

ri(t ′) × vi(t ′)
r2

i (t ′)
δ
(
r − ri(t

′)
)〉 1

ρc(r)
, (47)

where êz is the unit vector perpendicular to the plane of mo-
tion. The profile ωc(r) likewise depends on the radial distance
to the center only. Figure 11 shows results for the density
profile ρc(r) and the angular velocity ωc(r). For growing feed-
back potential strength A, an accumulation of particles near
the system boundary is observed as signaled by a peak in the
density profile close to the wall accompanied by a (relative)
depletion of particles near the center. This effect has also
been found for self-propelled particles in circular confinement
[96,97] and can qualitatively be understood here on similar

FIG. 11. (a) Radial density profile ρc(r) and (b) angular drift
velocity profile ωc(r). In (b) the sign has been adjusted such that
ωc(r) takes a positive value for the particles in the bands (i.e., in
the range r ≈ 20 − 40). The feedback potential leads to a density
accumulation at the system boundary and a rotational motion around
the center.

grounds as suggested by the MSD (Fig. 8) which resembles
active Brownian particles. The difference between the two
cases is that here, the individual particle velocity is typically
directed tangentially to the wall. Therefore, in the feedback
case the accumulation is driven by wall curvature and larger
A enhances the wall accumulation effect. In contrast, in the
active particle case it is driven by persistence in the otherwise
unconstrained propulsion direction.

Considering the angular velocity, we find that for small
feedback potentials it is almost zero at all distances r from the
center. Increasing A leads to the formation of a two-layer state
with the inner part revolving in the opposite direction to the
outer one, signaled by a sign change in ωc. The continuous
change in ωc with distance r is consistent with a motion
spiraling outwards. At even higher values of A, this feature
disappears and all particles rotate like a rigid body with a
constant joint angular velocity apart from some remaining
distance dependence in the central part of the profile. Thus, the
slope of ωc is negative, implying a motion which is spiraling
inwards. Furthermore, close to the wall, particles move in the
opposite direction to the bands or at least significantly more
slowly than the band. This is especially observed for inter-
mediate feedback strengths, signaled by a dip in the angular
velocity to values below zero. This effect is interpreted as
an escape of particles from the ideal bands induced by wall
curvature, leading to counterpropagating particles which are
visible in the system snapshots of Figs. 10(b) and 10(c). It
vanishes again for strong feedback strengths [see Fig. 10(d)].

For high feedback potential amplitude, the emergence of
domains with different band orientations is observed. These
domains are separated by grain boundaries which, interest-
ingly, are neither static nor co-rotating with the same mean
angular speed as the particles. Instead, they rotate with a con-
siderably slower angular speed albeit in the same direction.
This is documented in Fig. 12, where typical system snapshots
are shown during one full but slow rotation of the system grain
boundaries. Four boundaries separating different domains are
indicated in Fig. 12.

The angular position of the grain boundaries as a function
of time is shown in Fig. 13. Their angular positions change
approximately linearly in time. A linear fit yields an average
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FIG. 12. Snapshots for potential amplitude A = 20 for approxi-
mately one full rotation of the slow domain boundaries which occurs
over a time of about 150. As in Fig. 3, colors indicate the direction of
the particle drift velocity. The phase boundaries between the different
domains are also indicated as black lines. Their movement with
respect to time is measured by the angles θ [indicated in (a)] and
plotted in Fig. 13.

rotation speed of the grains of ωg ≈ −0.04 for the system
of Fig. 10(d), i.e., for a feedback amplitude of A = 20. This
is one order of magnitude smaller than the mean particle
angular velocity, which is ωc ≈ −0.5 in the outermost part
of the cavity [see Fig. 11(b)]. We speculate that the slower
grain boundary speed is related to the group velocity of
propagating bands in the bulk which is also much smaller than
the phase velocity. In fact, from Fig. 9(b), the group velocity
dω(k)/dk|k=k∗ is only 13% of the phase velocity ω(k∗)/k∗ at
the wave number k∗ for the given potential strength (A = 20).

To summarize, the feedback-driven suspension forms mov-
ing bands also under circular confinement. Due to the impen-
etrability of the walls, the band velocity has to be tangential to
the wall; i.e., the band lamellas must be oriented perpendicular
to the wall if the bands move along the normal of their
interface as in the unconstrained case. While confinement to a

FIG. 13. Time dependence of the angular position θ of the grain
boundaries indicated by the black lines in Fig. 12. For better visibil-
ity, the positions of the different grain boundaries are distinguished
by color. The corresponding line styles of the boundaries indicated
in Fig. 12 are shown in the legend. The mean angular velocity of the
grains is indicated by the dotted line.

straight (i.e., uncurved) slit geometry supports band formation
perpendicular to the walls by imposing a preferred band
orientation (data not shown), wall curvature destabilizes such
bands due to the incompatibility with straight bands. Since
the constraint of perpendicularity cannot be sustained for a
straight band along a curved wall, the bands must either bend
or change their width as a function of radial distance to the
center such that λb ≡ λb(r). Furthermore, as in the periodic
boundary case, the fixed length of the circumference also
poses a commensurability constraint for the band wavelength.
However, this second constraint is weakened due to the grain
boundaries. For the large feedback strengths considered here,
the system exhibits tilted band formation. Dynamically this
implies that spiraling waves are formed for which both inward
and outward orientation are observed. In particular, particles
near the curved wall cannot accommodate their individual
motion with the global band motion and depending on A are
either left behind or propagate faster [see Fig. 11(b)]. As a
further important consequence, the convex curvature of the
boundary leads to a significant particle accumulation near
the wall and a depletion from the system center. The latter
constitutes a natural source of disorder as topologically the
cavity can never fulfill the constraints of curved bands meeting
in the center. Instead the center becomes a nucleation point for
grains with different band orientations. For strong feedback
strengths, these grains co-rotate with much smaller angular
velocities than that of the individual bands.

VI. CONCLUSIONS

We have shown that subjecting colloidal particles to a
repulsive feedback potential dependent on their previous
positions can lead to pattern formation. For a sufficiently
strong repulsive potential, we have found a transition to a
traveling band phase which can be predicted by a linear
stability analysis of dynamical density functional theory. Un-
der circular confinement, the transition persists but becomes
more complex, exhibiting wall accumulation of particles,
spiraling patterns, and creation of banded domains. Our
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findings can be verified in experiments by using colloids in
an external light field [17–21] or employing autochemotactic
particles [33,34].

Future work can be performed along the following direc-
tions: First, it is worth considering an attractive feedback
potential with a negative amplitude A < 0. For attractive
feedback, particles tend to stay at their previous positions.
Starting from an initial homogeneous system, this leads to
the formation of particle clusters accompanied by a slowing
down of the dynamics and to subsequent coarsening. The
emerging structures are expected to be similar to those found
in phase separation [98]. It would thus be interesting to
identify and compare the scaling laws for the mean cluster size
as a function of time in different regimes for various system
parameters.

Second, while our scenario will not qualitatively change
for other types of soft repulsion between the particles, a
long-ranged attraction [76,77] in the interparticle forces can
give rise to equilibrium gas-liquid phase separation [99]
with a critical point. If a repulsive feedback potential is
applied, there is competition between bulk phase separa-
tion and band formation which may lead to interesting new
structures.

Third, if one considers higher particle densities or
lower temperature than in this paper, the equilibrium two-
dimensional Yukawa system exhibits freezing into a hexatic
or hexagonal crystalline phase [100]. Applying a repulsive
feedback is then expected to lead to the formation of traveling
crystalline bands (“solids”), the detailed structure of which

still has to be worked out. The density increase in the bands
induced by the feedback will additionally support and enhance
traveling crystal formation. Thus, it is expected that the phase
boundary will depend on the amplitude A. Dynamical density
functional theory can in principle be applied to describe
crystallization in nonequilibrium [101,102].

Fourth, active particles in feedback potentials present a rich
playground to investigate further complex collective effects
due to competition between activity and feedback forces.
Even in the absence of feedback the collective behavior of
active particles is rich [103] and it remains to be explored
how swarming [104] and motility-induced phase separation
[105] compete with feedback potentials. Again dynamical
density functional theory can be employed for an appropriate
instability analysis [106].

Last, possible future work should also include extending
the system presented here to three dimensions and considering
the effect of more complex confining geometries [107], for
example, nonconvex walls and moving boundaries. Likewise,
multiple (competing) [108] or more complex [44,109] feed-
back terms can be considered. The latter may also take a
density-dependent form, thus describing quorum sensing [20].
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