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ABSTRACT
Microswimmers typically operate in complex environments. In biological systems, often diverse species are simultaneously present and inter-
act with each other. Here, we derive a (time-dependent) particle-scale statistical description, namely, a dynamical density functional theory,
for such multispecies systems, extending existing works on one-component microswimmer suspensions. In particular, our theory incorpo-
rates not only the effect of external potentials but also steric and hydrodynamic interactions between swimmers. For the latter, a previously
introduced force-dipole-based minimal (pusher or puller) microswimmer model is used. As a limiting case of our theory, mixtures of hydro-
dynamically interacting active and passive particles are captured as well. After deriving the theory, we apply it to different planar swimmer
configurations. First, these are binary pusher–puller mixtures in external traps. In the considered situations, we find that the majority species
imposes its behavior on the minority species. Second, for unconfined binary pusher–puller mixtures, the linear stability of an orientationally
disordered state against the emergence of global polar orientational order (and thus emergent collective motion) is tested analytically. Our
statistical approach predicts, qualitatively in line with previous particle-based computer simulations, a threshold for the fraction of pullers and
for their propulsion strength that lets overall collective motion arise. Third, we let driven passive colloidal particles form the boundaries of a
shear cell, with confined active microswimmers on their inside. Driving the passive particles then effectively imposes shear flows, which per-
sistently acts on the inside microswimmers. Their resulting behavior reminds of the one of circle swimmers although with varying swimming
radii.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5099554., s

I. INTRODUCTION

From a fundamental point of view, the study of active
microswimmers1–6—i.e., micronsized self-propelling particles sus-
pended in a fluid—is interesting already because of the inherent
nonequilibrium nature of self-propelling particles.7–10 Unusual col-
lective behavior arises from this feature, e.g., motility-induced phase
separation (MIPS)11–17 and laning.10,18–22 Moreover, on the applied
side, natural biological microswimmers1,23–30 occur in almost all
locations on Earth, including the human body, and artificial
microswimmers31–36 may in the near future be used in medical
and technical applications on the microscale, e.g., for precise drug

delivery,37–41 for noninvasive surgery,39,42,43 when guiding sperm
cells,44 and to power microengines.45–47

Both biological and artificial microswimmers typically operate
under complex conditions.6 For example, the complexity can arise
from steric confinement of the swimmers48–53 or be induced by a
complex dispersion medium.54–59 Here, we consider the comple-
menting case of complexity caused by interactions between different
swimmer species as can occur in a diverse set of situations.

In medical contexts, active multispecies systems (including
both active–active and active–passive mixtures) appear when active
agents, e.g., pathogenic bacteria or cargo-delivering microrobots,
interact with (similar-sized) human cells. Furthermore, real-world
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microorganisms can change between motile and nonmotile (i.e.,
active and passive in our notation) behavior during their life with the
organization in many-particle biofilms60,61 and active carpets62,63 as
examples for extreme cases. Also, different mutant lines of the same
bacterial species can show different motility properties; see, e.g.,
motile and nonmotile strains of E. coli bacteria.26 More in general,
subgroups of swimmers may be identified if a strong polydisper-
sity, e.g., of swimming speeds, is present inside a system. Finally, at
least two species of swimmers are necessary to construct “heteronu-
clear” (i.e., composed of different building blocks) microswimmer
molecules.64–66

Despite these manifold possible applications, studies on mix-
tures of microswimmers (and active particles, in general) are still
relatively rare. The problems regarded thus far include predator–
prey dynamics,67,68 mixtures of active rotors with opposite senses
of rotation69,70 (see also the corresponding macroscale equivalent
in Ref. 71), transport of passive V-shaped cargo particles by active
rods in the bulk72–75 and by circle swimmers in channels,76 depletion
interactions between passive particles induced by an active bath,77,78

segregation effects in mixtures of Taylor-line swimmers propelling
by self-deformation,79 mixtures in which the activity is introduced
by an effective colored noise,80 mesoscale transport phenomena
in multispecies microorganism systems,81 and MIPS-like phase
separation in active–passive mixtures.82–86 Furthermore, collective
behavior in mixtures of straight-propelling particles87,88 and those
migrating on circular trajectories89,90 has been studied assuming
Vicsek-type91–93 effective alignment interactions between the swim-
mers. In addition to that, particle-based computer simulations of
binary mixtures of microswimmers with different types of propul-
sion mechanisms, subject to mutual hydrodynamic interactions,
have been performed to quantify the effect on the overall collective
alignment behavior.94

In the present work, we cover multicomponent microswim-
mer suspensions subject to external potentials. Different species
here are mutually interacting, both via steric interaction potentials
and via (far-field) hydrodynamic interactions. The latter may, fol-
lowing classical statistical mechanics (for passive particles), affect
the dynamic behavior but, in general, not the appearance of static
equilibrium systems. Microswimmer suspensions, however, are
inherently out of equilibrium so that even steady states may be sig-
nificantly altered by hydrodynamic interactions, calling for their
incorporation in the physical description. Additionally, interesting
phenomena can appear when hydrodynamic effects interplay with,
e.g., magnetic interactions.64,95

Generally, supplementing experiments and many-body
particle-based simulations with statistical descriptions, e.g., density-
field equations, allows for thorough theoretical analysis. Ideally,
the observed phenomena are explained in this way and new types
of behavior are predicted, leading to a better understanding of
the underlying physical effects. A well-established way of finding
such density-field equations in nonequilibrium colloidal systems is
dynamical density functional theory (DDFT).48,96–108 Accordingly,
we successfully derived a DDFT for one-species microswimmer
systems and applied it to several example situations in previous
works.106–108 In other contexts, DDFTs for mixtures of passive col-
loidal particles have been developed before.109–113 Here, we com-
bine these two approaches and explicitly allow for different species
of active microswimmers (and/or passive particles). In addition to

the applications listed above, such a DDFT might in the future
help to find dynamic correlation functions in one-component sys-
tems via “test-particle” methods.108,114,115 We remark that multi-
species DDFT approaches can also be used to describe the dynamics
of other kinds of active matter, e.g., the growth of tumors in cell
tissues.116

Below, the employed microswimmer model—introduced in
previous works94,106–108—and its implications for hydrodynamic
interactions are overviewed in Sec. II. It is then used in Sec. III
as an input to derive the statistical theory, namely, the multi-
species dynamical density functional theory for microswimmers.
Subsequently, several applications of the theory are discussed
in Sec. IV, where we confine ourselves to planar arrange-
ments within three-dimensional fluids. First, extending the one-
component case analyzed previously,106,107 we explore binary mix-
tures of microswimmers in an external trap and find additional
steady states resulting from interspecies interactions. Second, the
possibility of emergent overall orientational order due to hydro-
dynamic interactions in binary mixtures of microswimmers is dis-
cussed. Third, microswimmers confined inside an externally driven
ring of passive colloidal particles are investigated. The passive par-
ticles induce a shear flow that the enclosed active swimmers are
exposed to. Finally, a short summary and an outlook are given in
Sec. V.

II. SWIMMER MODEL AND THE RESULTING
HYDRODYNAMIC INTERACTIONS

Before a particle-scale statistical description can be devel-
oped in Sec. III, an appropriate discretized swimmer model must
first be defined. In particular, the hydrodynamic interactions
between individual swimmers are specified below. For this pur-
pose, we briefly review the previously introduced minimal swimmer
model.94,106–108

Since a microswimmer cannot exert a net force on the sur-
rounding liquid,1,117 the far-field fluid flow around a swimmer (to
lowest order) can typically be described as if it were caused by
a force dipole acting on the fluid. (Exceptions are “neutral-type”
swimmers with a vanishing time-averaged force-dipole contribu-
tion,118–121 which only feature higher-order multipole terms in the
far-field flow caused, e.g., by an effective force quadrupole.) Here, we
explicitly resolve the force dipole by two oppositely oriented forces
of equal magnitude.

Depending on whether the forces push out or pull in the fluid
along the axis of self-propulsion, one distinguishes between pusher
(extensile) and puller (contractile) microswimmers.122,123 Conse-
quently, pushers draw in the fluid from the transverse directions,
while pullers expel it along them. Our model can cover both cases,
as detailed below.

Low Reynolds numbers—as are typical for microswimmers1—
and incompressibility of the fluid are henceforth assumed. Particu-
larly, this means that the response of the fluid to a force is linear,
overdamped, and instantaneous. In the bulk, the analytically known
Oseen tensor then explicitly connects the effect of a pointlike force
center to the resulting fluid flow.124–126 For finite-sized spherical par-
ticles subject to net forces and torques, the way to find (approximate)
expressions for the induced hydrodynamic interactions between
them is well-established.125,126
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This said, we now detail our minimal microswimmer model,
see Fig. 1, referring to one swimmer labeled by i. In this model, a no-
slip boundary encloses the spherical swimmer body, the latter being
centered at position ri and being of radius ai. Below, vi and ωi denote
the velocity and angular velocity of the sphere, respectively.

Additionally, two oppositely oriented forces

fi± = ±fi n̂i (1)

of equal magnitude are exerted by the swimmer onto the surround-
ing fluid at positions

ri+ = ri + αi Li n̂i, (2)
ri− = ri − (1 − αi)Li n̂i, (3)

respectively, relative to its body center. They move and rotate along
with the sphere and create the fluid flow that (self-)propels the swim-
mer. Here, n̂i is the unit vector describing the orientation of the
axially symmetric swimmer, Li > 2ai is the distance between the two
force centers, and |f i| sets the magnitude of the forces. Depending on
the sign of f i, either pusher (f i > 0) or puller (f i < 0) microswimmers
are constructed. Furthermore, the real number αi (with ai/Li < αi <

FIG. 1. Force-dipole-based minimal microswimmer model.106 Around a central
sphere of radius ai , two antiparallel equal-magnitude forces fi± = ±fin̂i are
exerted asymmetrically onto the fluid. The sphere is transported by the resulting
fluid flow [streamlines are shown, with dark (red) line segments corresponding to
high magnitudes and light (yellow) ones to low magnitudes of the local fluid flow] for
αi ≠ 1/2. A dashed circle of diameter σ i indicates the effective swimmer size due to
steric interactions between the swimmers. (a) For f i > 0, a pusher microswimmer
is constructed, which expels fluid along its symmetry axis and draws fluid in from
the sides. (b) For a puller microswimmer (f i < 0), the directions of the fluid flow are
inverted.

1/2) is a geometric parameter, see Fig. 1, that quantifies the break-
ing of the front–rear symmetry, which implies self-propulsion. The
swimmer self-propels in the direction of n̂i for pushers, see Fig. 1(a),
and −n̂i for pullers, see Fig. 1(b).

Moreover, an isotropic steric interaction between the swim-
mers is assumed that avoids unphysical overlap between force cen-
ters and bodies of different swimmers. As indicated in Fig. 1 and fur-
ther detailed later, the effective center-to-center range of the steric
interactions is denoted by σi.

Next, we specify the hydrodynamic interactions in a system of
N potentially different such model swimmers, labeled by i = 1, . . ., N.
For shorter notation, we furthermore define the phase-space coordi-
nate Xi = {ri, n̂i} of each swimmer i. In our overdamped system
of microswimmers in suspension, vi and ωi follow instantaneously
from the microstate XN

= {X1, . . . ,XN}.
In principle, hydrodynamic interactions are many-body inter-

actions.124–126 Yet, already the lowest-order contributions beyond
pairwise interactions are of fourth order in the ratio of body size
to swimmer distance125 and can be neglected when one is primarily
interested in the effect of far-field hydrodynamic interactions, e.g.,
in semidilute suspensions.127–131 This is further supported by our
use of repulsive steric interactions between swimmers, as detailed
below, that keep them at distances from each other that are signifi-
cantly larger than their hydrodynamic radii ai; see also Fig. 1. Thus,
here we only account for pairwise interactions and restrict ourselves
to an expansion up to (including) the third order, also known as the
Rotne-Prager level.132,133

Following this idea, vi and ωi are connected to the (nonhydro-
dynamic) forces Fj and torques Tj acting on the swimmer bodies
j = 1, . . ., N and the self-propulsion forces that the swimmers exert
via106

⎡
⎢
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⎥
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0
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⎞

⎠
. (4)

Here, the mobility tensors representing the passive hydrody-
namic interactions between two swimmer bodies i ≠ j are given
by106,125,132,133

μttij =
1

6πη
(

3
4rij
(1 + r̂ijr̂ij) +

a2
i + a2

j

4
(

1
rij
)

3

(1 − 3 r̂ijr̂ij)), (5)

μrrij = −
1

8πη
1
2
(

1
rij
)

3

(1 − 3 r̂ijr̂ij), (6)

μtrij = μ
rt
ij =

1
8πη
(

1
rij
)

3

rij×, (7)

where η is the dynamic viscosity of the fluid, “×” denotes the outer
vector product, 1 represents the identity matrix, rij = rj − ri is the
distance vector, rij = |rij| denotes its absolute value, and r̂ij = rij/rij is
the corresponding unit vector. Additionally, the passive “self ” (i.e.,
i = j) mobilities read (no summation over repeated indices in these
expressions)

μtt
ii = μ

t
i 1, μrr

ii = μ
r
i 1, μtr

ii = μ
rt
ii = 0, (8)

with
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μt
i = 1/(6πηai), μr

i = 1/(8πηa3
i ). (9)

Next, the active contribution to Eq. (4) is given by the tensors106

Λtt
ij = μ

tt+
ij − μ

tt−
ij , (10)

Λrt
ij = μ

rt+
ij − μ

rt−
ij , (11)

with

μtt±
ij =

1
8πηr±ij

(1 + r̂±ij r̂
±
ij ) +

a2
i

24πη(r±ij )
3 (1 − 3 r̂±ij r̂

±
ij ), (12)

μrt±
ij =

1

8πη(r±ij )
3 r±ij×, (13)

and

r+
ij = rij + αj Lj n̂j, (14)

r−ij = rij − (1 − αj)Lj n̂j. (15)

As can be seen, there is only little change to the one-species case
(ai = aj ≡ a)106 at this order of the expansion in ak/rij, k = i, j, namely,
only in Eq. (5).

Setting i = j in Eqs. (10) and (11), the velocity and angular
velocity of a free swimmer i are obtained as94

v0i =
ai

2Li
1 − 2αi

αi(1 − αi)
(3 −

a2
i

L2
i

1 − αi + α2
i

α2
i (1 − αi)2 )μ

t
i fi n̂i (16)

and, respectively, ω0i = 0. Thus, in the absence of thermal noise and
outer influences, this kind of swimmer self-propels along a straight
trajectory. Corresponding circle swimmers of axial asymmetry and
a nonvanishing ω0i were considered in a previous work.107

We remark that, for simplicity, we here do not account for the
distortions caused by the finite spherical swimmer bodies on the flow
field induced by the active force centers.126,134 That is, when dis-
cussing the active mobility tensors Λtt

ij and Λrt
ij for i ≠ j, in effect, we

only consider terms in aj/Lj to the leading order.
Finally, the forces and torques in Eq. (4) remain to be defined.

First, we set the overall potential in our system of N swimmers as

U(r1, . . . , rN) =
N

∑
k=1

ukext(rk) +
N

∑
k, l=1; k<l

ukl(∣rk − rl∣). (17)

Here, the external potentials ukext can differ for different parti-
cles k. Additionally, pairwise steric interactions are introduced via
ukl(|rk − rl|), which we specify for the applications in Sec. IV as the
GEM-4 potential135,136

ukl(∣rk − rl∣) = 𝜖
kl
0 exp(−(

∣rk − rl∣
σkl

)

4

), (18)

with the potential strength 𝜖kl0 and the effective diameter σkl = (σk
+ σ l)/2 being set for each pair k and l.

The forces Fj in Eq. (4) then read

Fj = −kBT∇rj lnP −∇rjU(r1, . . . , rN), (19)

where the effect of thermal forces enters via the first term based
on the effective entropic potential,137 which involves the microstate
probability density P = P(XN , t), the Boltzmann factor kB, and the
temperatureT of the system. This expression ensures that the correct
(translational) diffusion terms eventually appear in the statistical
description in Sec. III.

Similarly, the torques in Eq. (4) are given by

Tj = −kBT n̂j ×∇n̂j lnP. (20)

Again, this expression correctly reproduces (rotational) diffusion in
the statistical description; see Sec. III.

III. DERIVATION OF THE DYNAMICAL DENSITY
FUNCTIONAL THEORY

In this section, we derive the partial differential equations
describing the dynamical microscopic statistics of a multicompo-
nent microswimmer system via dynamical density functional the-
ory (DDFT), building on the derivations of the one-component
case.106,107 For this purpose, the hydrodynamic swimmer model
overviewed in Sec. II is used as an input. The resulting theory
covers, combines, and extends several previously considered theo-
ries for systems of, e.g., one-species microswimmer suspensions,106

“dry”—i.e., not hydrodynamically interacting—self-propelled parti-
cles,48,105 hydrodynamically interacting passive colloidal particles,138

and binary mixtures of dry passive colloidal particles.109

First, we specify our system, which contains two different
species of microswimmers suspended in a surrounding bulk fluid.
For these species, the number of corresponding swimmers in the
system is given by NA and NB, respectively, adding up to a total of
N = NA + NB swimmers. Here, we order the swimmers by species,
such that swimmers 1, . . ., NA belong to the first species and swim-
mers NA + 1, . . ., N to the second species. Additionally, a constant
temperature T of the fluid and a constant volume of the system are
assumed. We adhere to the swimmer model introduced in Sec. II,
with all swimmers of species ν ∈ {A, B} featuring the same parame-
ters aν, f ν, αν, Lν, and σν. Setting f ν = 0, also passive particles can be
described accordingly, i.e., active–passive mixtures are covered by
our theory as well.

Our starting point to derive the statistical description is the
many-body Smoluchowski equation137

∂P
∂t
= −

N

∑
i=1
(∇ri ⋅ (viP) + (n̂i ×∇n̂i) ⋅ (ωiP)) (21)

for the overdamped dynamics of our microswimmers. Here,
P = P(X1, . . ., XN , t) denotes the microstate probability density of
the corresponding configuration at time t. The velocities vi and the
angular velocities ωi are again related to the forces, torques, and the
self-propulsion mechanisms via Eq. (4).

Next, we introduce Xm
A = {X1, . . . ,Xm} and Xn

B
= {XNA+1, . . . ,XNA+n} as short notations for the sets containing the
phase-space coordinates of the first m swimmers of species A and,
respectively, the first n swimmers of species B in the system. Since
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all swimmers are identical, we now define, for m ≤ NA and
n ≤ NB, the reduced (m, n)-swimmer density ρ(m,n)

(Xm
A ,Xn

B, t) of
finding (any) m swimmers of species A and (any) n swimmers of
species B at the coordinates indicated in the argument. It is obtained
from the full probability distribution P(XNA

A ,XNB
B , t) by integrating

out the degrees of freedom of NA − m swimmers of species A and
NB − n swimmers of species B, reading

ρ(m,n)
(Xm

A ,Xn
B, t) =

NA!
(NA −m)!

NB!
(NB − n)! ∫

dXm+1⋯∫ dXNA

× ∫ dXNA+n+1⋯∫ dXNA+NB P(X
NA
A ,XNB

B , t).

(22)

Here, the prefactors result from the considered indistinguishabil-
ity between swimmers of the same species. Particularly, we define
the one-swimmer densities ρA(X, t) ∶= ρ(1,0)(X, t) and ρB(X, t)
∶= ρ(0,1)(X, t). Instead of referring to one specific swimmer, the
coordinates X now simply identify “a swimmer” of the corre-
sponding species. Furthermore, reduced densities with m + n
= 2 (m + n = 3) will be referred to as two-swimmer (three-swimmer)
densities below.

Our aim is to derive a physically well-grounded, closed set of
coupled dynamical equations for the two one-swimmer densities.
Thus, eventually, there shall be no remaining explicit dependence on
the (generally unknown) higher-order densities. The starting point
for our derivation is the many-body Smoluchowski equation given
in Eq. (21). We first integrate out all swimmer coordinates except
for those of one swimmer of species A. Second, we integrate out
in the initial Eq. (21) all swimmer coordinates except for those of
one swimmer of species B. As a result, we obtain one dynamical
equation for ρA(X, t) and one for ρB(X, t), respectively. These equa-
tions (given below) form a coupled set but at this point still contain
higher-order densities and thus require an additional closure, as will
be addressed afterward via methods of dynamical density functional
theory.

The corresponding equation for species A reads

∂ρA(X, t)
∂t

= −∇r ⋅ (J tt
A + J tr

A + J ta
A + K tt

AA + K tr
AA + K ta

AA + K tt
AB

+Ktr
AB + Kta

AB) − (n̂ ×∇n̂) ⋅ (J rt
A + J rr

A + J ra
A + K rt

AA

+Krr
AA + Kra

AA + Krt
AB + Krr

AB + Kra
AB). (23)

In this expression, the current densities labeled as J ⋅⋅⋅ do not involve
hydrodynamic interactions between swimmers. These current den-
sities are given by

J tt
A = − μ

t,A
(kBT∇r ρA(X, t) + ρA(X, t)∇r uA

ext(r)

+ ∫ dX′ρ(2,0)
(X,X′, t)∇ruAA

(∣r − r′∣)

+ ∫ dX′ρ(1,1)
(X,X′, t)∇ruAB

(∣r − r′∣)), (24)

J ta
A = fAΛ

tt,AA
r,X ⋅ n̂ ρA(X, t), (25)

J rr
A = − kBT μr,A n̂ ×∇n̂ ρA(X, t), (26)

J tr
A =J rt

A = J ra
A = 0. (27)

In contrast to that, the current densities involving hydrodynamic
interactions between pairs of swimmers of species A follow as

Ktt
AA= −∫ dX′ μtt,AA

r,r′ ⋅ (kBT∇r′ρ(2,0)
(X,X′, t)

+ ρ(2,0)
(X,X′, t)∇r′(uA

ext(r
′
) + uAA

(∣r − r′∣))

+ ∫ dX′′ρ(2,1)
(X,X′,X′′, t)∇r′uAB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(3,0)
(X,X′,X′′, t)∇r′uAA

(∣r′ − r′′∣)), (28)

Ktr
AA= −∫ dX′ kBT μtr,AA

r,r′ (n̂
′
×∇n̂′)ρ

(2,0)
(X,X′, t) = 0, (29)

Kta
AA= fA∫ dX′Λtt,AA

r,X′ ⋅ n̂
′ρ(2,0)

(X,X′, t), (30)

Krt
AA= −∫ dX′ μrt,AA

r,r′ (kBT∇r′ρ(2,0)
(X,X′, t)

+ ρ(2,0)
(X,X′, t)∇r′(uA

ext(r
′
) + uAA

(∣r − r′∣))

+ ∫ dX′′ρ(2,1)
(X,X′,X′′, t)∇r′uAB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(3,0)
(X,X′,X′′, t)∇r′uAA

(∣r′ − r′′∣)), (31)

Krr
AA= −∫ dX′ kBT μrr,AA

r,r′ ⋅ (n̂
′
×∇n̂′)ρ

(2,0)
(X,X′, t) = 0, (32)

Kra
AA=fA∫ dX′Λrt,AA

r,X′ n̂′ρ(2,0)
(X,X′, t). (33)

Third, the current densities associated with hydrodynamic effects of
swimmers of species B on swimmers of species A are

Ktt
AB= −∫ dX′ μtt,AB

r,r′ ⋅ (kBT∇r′ρ(1,1)
(X,X′, t)

+ ρ(1,1)
(X,X′, t)∇r′(uB

ext(r
′
) + uAB

(∣r − r′∣))

+ ∫ dX′′ρ(1,2)
(X,X′,X′′, t)∇r′uBB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(2,1)
(X,X′′,X′, t)∇r′uAB

(∣r′ − r′′∣)), (34)

Ktr
AB= − ∫ dX′ kBT μtr,AB

r,r′ (n̂
′
×∇n̂′)ρ

(1,1)
(X,X′, t) = 0, (35)

Kta
AB= fB∫ dX′Λtt,AB

r,X′ ⋅ n̂
′ρ(1,1)

(X,X′, t), (36)

Krt
AB= −∫ dX′ μrt,AB

r,r′ (kBT∇r′ρ(1,1)
(X,X′, t)

+ ρ(1,1)
(X,X′, t)∇r′(uB

ext(r
′
) + uAB

(∣r − r′∣))

+ ∫ dX′′ρ(1,2)
(X,X′,X′′, t)∇r′uBB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(2,1)
(X,X′′,X′, t)∇r′uAB

(∣r′ − r′′∣)), (37)

Krr
AB= −∫ dX′ kBT μrr,AB

r,r′ ⋅ (n̂
′
×∇n̂′)ρ

(1,1)
(X,X′, t) = 0, (38)

Kra
AB= fB∫ dX′Λrt,AB

r,X′ n̂′ρ(1,1)
(X,X′, t). (39)
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Here, the tensors μ⋅⋅⋅⋅ and Λ⋅⋅⋅⋅ follow from the definitions in Eqs. (5)–
(15) by inserting the parameters corresponding to the (phase-space)
coordinates given in the subscripts and the combination of species
referred to in the superscripts. The current densities Ktr

AA, Krr
AA,

Ktr
AB, and Krr

AB vanish for spherical swimmer bodies because the cor-
responding mobility tensors are independent of n̂′; see Eqs. (6)
and (7). Integrating the remaining gradient expressions over the
closed surface of the unit sphere yields zero in each case. For
nonspherical swimmer bodies, however, these current densities
(as well as J tt

A , J rt
A , and J ra

A ) could be nonzero. Moreover, we
remark that all Ks become zero if hydrodynamic interactions are
neglected.

An analogous dynamical equation for ρB(X, t) follows by
replacing A → B, B → A, and ρ(m ,n)

→ ρ(n ,m). Moreover, because of
our convention of ordering species coordinates by first A and then
B, we need to replace

ρ(1,1)
(X,X′, t)→ ρ(1,1)

(X′,X, t),

ρ(1,2)
(X,X′,X′′, t)→ ρ(2,1)

(X′,X′′,X, t),

ρ(2,1)
(X,X′,X′′, t)→ ρ(1,2)

(X′′,X,X′, t),

ρ(2,1)
(X,X′′,X′, t)→ ρ(1,2)

(X′,X,X′′, t).

Obviously, Eqs. (24)–(39) depend on unknown higher-order
densities. In principle, one can now find dynamical equations for
these quantities by applying corresponding integral operations on
Eq. (21), but the resulting equations again contain unknown densi-
ties of even higher order. This escalating loop is typical for BBGKY-
like hierarchies139 and must be truncated and closed by appropriate
approximations of the higher-order densities, e.g., as functions of
the one-swimmer densities. In the following, DDFT methods will be
employed for this purpose.

The main step in DDFT96–105 is the adiabatic approximation.
It transfers equilibrium closure relations established in (classical)
density functional theory (DFT) to the nonequilibrium case. Par-
ticularly, DDFTs imply that the higher-order densities relax faster
than the one-swimmer densities102 as is conceivable for typical over-
damped systems of colloidal particles (i.e., at low Reynolds numbers)
and thus also for microswimmers.106

In equilibrium, DFT states that each observed density pro-
file results from exactly one, uniquely specified external potential
working on the corresponding particles.97–101,104,140 We call these
potentials Φν

ext(X), ν = A, B, for the two species in our case. DDFT
assumes these relations to hold at any time t. Thus, the external
DFT potentials become time-dependent, and we denote them by
Φν

ext(X, t). We remark that the equilibrium relations strictly hold
only for f ν = 0, ν = A, B, i.e., for passive particles. This limits the
applicability of the theory when activity-induced correlation effects
in the higher-order densities dominate the behavior of the sys-
tem. Nevertheless, the overdamped nature of the systems favors the
DDFT approach. Previously, bulk swimmer–swimmer pair distribu-
tion functions have been determined108 by combining DDFT with a
Percus-like141 test-particle protocol.

We now discuss the above-introduced virtual external poten-
tials, which may (and generally will) differ for the two species. In
contrast to the “real” external potential introduced in Eq. (17), a
dependence on the orientations of the swimmers here is allowed

and indeed even needed when the distributions of the orientations
become nonuniform.

It must be stressed that these virtual potentials do not need
to be determined explicitly. Repeating usual steps in derivations of
DDFTs, we will in the following show two different ways of express-
ing Φν

ext(X, t) so that they can be eliminated from the mathematical
description. Accordingly, we obtain expressions that help us to close
the above BBGKY-like set of equations.

We start from the equilibrium grand potential as a functional
of the one-swimmer densities, which is minimal for the equilibrium
density distributions. The general ansatz for this functional can be
written as109

Ω[ρA, ρB] =∑
ν=A,B
(F ν

ext[ρν] + F ν
id[ρν]) + Fexc[ρA, ρB]. (40)

Here, all terms on the right-hand side except for the last one are
known analytically. Namely,

F ν
id[ρν] = kBT∫ dX ρν(X)( ln(λ3

νρν(X)) − 1), (41)

ν = A, B, is the ideal gas part, with λν being the corresponding ther-
mal de Broglie wavelength λν. The contributions due to the external
DFT potentials read

F ν
ext[ρν] =∫ dX ρν(X)Φν

ext(X), (42)

ν = A, B. For our purposes, we may assume the chemical potentials
to be combined with the external potentials.

Finally, the third contribution Fexc includes interactions
between the particles and represents the excess free energy beyond
the ideal gas part. In almost all situations, an exact expression for
Fexc is not known analytically, and it must be approximated by
an appropriate functional depending on the case at hand. Typi-
cally, this assumption needs to be carefully tested against experi-
mental and simulational results. Nevertheless, the general theoret-
ical framework up to this point applies to any interaction potential,
here independent of the orientations of the swimmers (in principle,
this restriction could be lifted, e.g., when describing rodlike active
particles48,142).

In equilibrium, the actual magnitude of the grand potential is
found by minimizing the grand potential functional over all possi-
ble density distributions. Thus, the equilibrium density fields ρeq

ν (X)
satisfy

0 =
δΩ

δρν(X)
∣

ρν≡ρeq
ν

(43)

for ν = A, B. Inserting Eqs. (40)–(42) leads to

−Φν
ext(X) = kBT ln(λ3

νρ
eq
ν (X)) +

δFexc

δρν(X)
∣

ρν≡ρeq
ν

(44)

for ν = A, B.
Second, we employ standard equilibrium statistical mechan-

ics.143 In equilibrium, the static system properties are set completely
by the temperature and the overall potential U = U(X1, . . ., XN)
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as defined in Eq. (17), writing Φν
ext(X) instead of uνext(r). Thus, the

microstate probability density is given by

P ≡ Peq
∝ exp( − βU), (45)

where β = (kBT)−1.
Applying the gradient with respect to the position of the first

swimmer, which is of species A, leads to

∇r1P
eq
= − βPeq⎛

⎝
∇r1Φ

A
ext(X1) +∇r1

NA

∑
j=2

uAA
(∣r1 − rj∣)

+∇r1

NA+NB

∑
j=NA+1

uAB
(∣r1 − rj∣)

⎞

⎠
. (46)

Since swimmers of the same species are considered to be identical
and indistinguishable, we may write

kBT∇rρeq
A (X) = − ρ

eq
A (X)∇rΦA

ext(X)

−∫ dX′ ρ(2,0),eq
(X,X′)∇ruAA

(∣r − r′∣)

− ∫ dX′ ρ(1,1),eq
(X,X′)∇ruAB

(∣r − r′∣) (47)

after integrating over the coordinates of all but the first swimmer of
species A and using Eq. (22). This constitutes a lowest-order mem-
ber of the binary-mixture translational Yvon-Born-Green (YBG)
relations.139,143 Combining Eqs. (44) and (47), ΦA

ext(X) is eliminated
and

∫ dX′ ρ(2,0)
(X,X′, t)∇ruAA

(∣r − r′∣)

+ ∫ dX′ ρ(1,1)
(X,X′, t)∇ruAB

(∣r − r′∣)

= ρA(X, t)∇r
δFexc

δρA(X, t)
(48)

is obtained. Here, we now applied the adiabatic approximation
and also switched to a time-dependent description. This equation
is inserted into Eq. (24) on our way of closing our dynamical
equations.

Based on Eqs. (22), (44), and (45), i.e., again applying the
adiabatic approximation, we find two further helpful relations,
namely,

kBT∇r′ρ(2,0)
(X,X′, t) + ρ(2,0)

(X,X′, t)∇r′uAA
(∣r − r′∣)

+ ∫ dX′′ρ(2,1)
(X,X′,X′′, t)∇r′uAB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(3,0)
(X,X′,X′′, t)∇r′uAA

(∣r′ − r′′∣)

= kBT ρ(2,0)
(X,X′, t)∇r′ ln(λ3

A ρA(X′, t))

+ ρ(2,0)
(X,X′, t)∇r′

δFexc

δρA(X′, t)
(49)

and

kBT∇r′ρ(1,1)
(X,X′, t) + ρ(1,1)

(X,X′, t)∇r′uAB
(∣r − r′∣)

+ ∫ dX′′ρ(1,2)
(X,X′,X′′, t)∇r′uBB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(2,1)
(X,X′′,X′, t)∇r′uAB

(∣r′ − r′′∣)

= kBT ρ(1,1)
(X,X′, t)∇r′ ln(λ3

B ρB(X′, t))

+ ρ(1,1)
(X,X′, t)∇r′

δFexc

δρB(X′, t)
. (50)

Analogs for species B follow after applying to Eqs. (48)–(50) the
replacements listed below Eq. (39).

Inserting the above relations into Eqs. (24), (28), (31), (34), and
(37) yields

J tt
A = − μ

t
A(kBT∇rρA(X, t) + ρA(X, t)∇r uA

ext(r)

+ ρA(X, t)∇r
δFexc

δρA(X, t)
), (51)

Ktt
AA = −∫ dX′ ρ(2,0)

(X,X′, t) μtt,AA
r,r′ ⋅ jA(X

′, t), (52)

Krt
AA = −∫ dX′ ρ(2,0)

(X,X′, t) μrt,AA
r,r′ jA(X

′, t), (53)

Ktt
AB = −∫ dX′ ρ(1,1)

(X,X′, t) μtt,AB
r,r′ ⋅ jB(X

′, t), (54)

Krt
AB = −∫ dX′ ρ(1,1)

(X,X′, t) μrt,AB
r,r′ jB(X

′, t), (55)

respectively, where we defined the vector fields

jν(X
′, t) = kBT∇r′ ln(λ3

ν ρν(X
′, t)) +∇r′(uνext(r

′
) +

δFexc

δρν(X′, t)
).

(56)

This way, the two-swimmer density in Eq. (24) and all three-
swimmer densities have been eliminated. Again, analogous relations
apply to the dynamical equation for ρB(x, t) and are obtained by
considering the replacements introduced below Eq. (39).

Still, the remaining two-swimmer densities in the K⋅⋅⋅⋅ current
densities must be addressed. For this purpose, as in a previous
work,107 we employ the Onsager-type144 approximations

ρ(2,0)
(X,X′, t) = ρA(X, t) ρA(X′, t) exp(−βuAA

(∣r − r′∣)), (57)

ρ(1,1)
(X,X′, t) = ρA(X, t) ρB(X′, t) exp(−βuAB

(∣r − r′∣)), (58)

ρ(0,2)
(X,X′, t) = ρB(X, t) ρB(X′, t) exp(−βuBB

(∣r − r′∣)). (59)

Here, for |r − r′| smaller than the sum of the radii of the involved
swimmer bodies, we furthermore set the pair densities to zero
to avoid the otherwise-appearing unphysical hydrodynamic diver-
gences. Strictly speaking, this leads to a discontinuity, but typically
the jump is vanishingly small, e.g., exp(−5 exp(−1/16)) ≈ 0.009≪ 1
for 𝜖⋅⋅0 = 5kBT and a⋅ = σ⋅/4; see Eq. (18). This order of magnitude
is sufficiently low to treat the function as basically “smooth” in the
numerical evaluation.
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Equations (57)–(59) implicitly assume gμν(X,X′, t)
≈ exp(−βuμν(∣r − r′∣)) for the pair distribution functions, with μ,
ν ∈ {A, B}. Using these relations is exact for passive equilibrium
systems in the low-density limit139 as the expressions are based on
the assumption that the two involved particles interact only with
each other (and with no third particles). Adapting these relations
to describe semidilute active suspensions thus constitutes a rea-
sonable first-order approximation beyond assuming a constant pair
distribution function. More generally, one could at this point also
insert another reasonable approximation for the pair distribution
function.

Similarly, our (pairwise) treatment of hydrodynamic inter-
actions between the swimmers, see Eqs. (4)–(15), requires suf-
ficiently large distances between the swimmer bodies. First, this
is ensured by the steric interaction between the swimmers when
half of its effective range, i.e., σμν/2 in Eq. (18), is larger than
aκ, ακLκ, and (1 − ακ)Lκ, with μ, ν ∈ {A, B} and κ ∈ {μ, ν}. The
larger the mean distances are between the swimmers, the higher
the accuracy of our description of hydrodynamic interactions will
be. Together with the assumptions involved in Eqs. (57)–(59), we
thus expect our DDFT for multispecies systems of microswimmers
to perform best for (semi)dilute suspensions of swimmers, within
which our steric interaction potentials maintain a significant dis-
tance between the swimmer bodies, even when they are heading for
collisions.

Finally, the excess functional Fexc involving the effective steric
interactions between the swimmers needs to be specified. As appro-
priate for GEM potentials,136 we from now on use a mean-field
approximation, here for our case of binary mixtures, reading

Fexc =
1
2∫

dX∫ dX′ ρμ(X, t) ρν(X′, t) uμν(∣r − r′∣), (60)

with μ, ν ∈ {A, B} and summing over repeated indices. In this way,
our set of coupled dynamical equations for ρA(X, t) and ρB(X, t)
is closed. We remark that, along the same lines, a theory for more
than two different species can be derived as well, leading to a corre-
spondingly further increased number of terms. Here, we continue
by applying the above theory to concrete example situations in
Sec. IV.

IV. APPLICATIONS
In this section, the DDFT derived in Sec. III is applied to sev-

eral illustrative cases. Specifically, for simplicity, these will be setups
in which the positions and orientations of the swimmers are con-
stricted to the xy-plane. Still, a surrounding bulk fluid is considered
with the planar swimmer ensemble embedded therein, allowing for
three-dimensional fluid flows. Possible methods to experimentally
realize this situation could be the confinement of microswimmers to
the interface between two immiscible fluids of identical viscosity η
or the use of optical trapping fields.

In such a setup, the orientation of a swimmer is described by
a single angle ϕ (measured from the x-axis) via n̂ = (cosϕ, sinϕ, 0).
The orientational gradient operator then reduces to n̂ × ∇n̂ = ẑ∂ϕ,
where ẑ is the oriented Cartesian unit vector pointing (upwards) out
of the xy-plane. Furthermore, the phase-space coordinate X in this
situation becomes X = {x, y, ϕ}.

The numerical solution of the coupled set of partial differen-
tial equations derived in Sec. III is then performed on an equidistant
Nx × Ny × Nϕ grid using the finite-volume-method solver FiPy.145

Formally, numerical periodic boundary conditions are imposed on
all coordinates x, y, and ϕ, but hydrodynamic and steric interactions
are cut at a distance chosen such that no (unphysical) interactions
across the boundaries occur. As nevertheless all physical interactions
inside the system should, of course, be accounted for, we further
always set the length of the simulation box in both spatial directions
to at least twice the largest relevant interparticle distance.

Since the orientation-dependent densities ρν(X, t) at time t are
still a function of x, y, and ϕ, they cannot be easily plotted even for
our planar configurations. For displaying our results, we thus further
define the (orientation-integrated) spatial swimmer densities

ρν(r, t) =
2π

∫

0

dϕ ρν(X, t) (61)

and the orientational vector fields

⟨n̂⟩ν(r, t) =
2π

∫

0

dϕ n̂(ϕ) ρν(X, t), (62)

where ν ∈ {A, B}. Moreover, the overall (average) one-species densi-
ties are described by ρ̄ν = A−1

∫Adr ρν(r, t), where A is the area of the
regarded system.

A. Trapped binary swimmer system
While restricting the binary microswimmer configuration to

two spatial dimensions as detailed above, we now additionally intro-
duce radially symmetric quartic trapping potentials given by

uνext(r) = V
ν
0(

r
σ
)

4
, (63)

with potential strengths Vν
0 , distance r = |r| to the center of the

trap, and ν = A, B. As in previous works,106,107 we use a quar-
tic potential—instead of, e.g., a harmonic one (∝r2)—to observe
more pronounced differences between activity-induced off-center
density distributions (see below) and center-heavy equilibrium dis-
tributions for passive particles. Previously reported results for har-
monic traps146,147 showed qualitative agreement with our results for
a quartic potential.106,107 For simplicity, we furthermore from now
on assume that all species-related parameters are the same for both
species, except for f A = −f B > 0. Thus, species A is formed by pushers
and species B represents pullers (of the same strength).

In analogous one-component suspensions,106,107 without any
active drive, the external potential leads to center-heavy distribu-
tions following standard equilibrium statistics. When the active
drive is switched on in the one-component systems, but hydrody-
namic interactions are still neglected, the self-propelled particles
start forming a radially symmetric high-density ring, along which
the outward self-propulsion is balanced by the restoring trapping
force.106,148,149 With hydrodynamic interactions incorporated, this
ring of microswimmers can become unstable against collapsing to
one spot on this ring, which is induced by the hydrodynamic cou-
pling through the resulting fluid flows.106,107,146,147 In parts of the
parameter space, pushers and pullers were observed to behave quite
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differently, with pushers showing a significantly more pronounced
destabilization of the high-density ring and formation of a high-
density spot, while pullers showed a much weaker density variation
along the ring.107

We are now interested in pusher–puller mixtures. There is a
crucial competition between hydrodynamic effects resulting from
the external potential acting on the swimmer bodies and from the
actively introduced forces exerted by the microswimmers them-
selves. We here concentrate on a parameter range for which the
hydrodynamic interactions induced by the self-propulsion mecha-
nism dominate those induced by the external potential force. Con-
cerning our current densities, we thus always check that ∣Kra

⋅⋅ ∣ > ∣Krt
⋅⋅ ∣,

see, e.g., Eqs. (37) and (39), for our chosen parameters.
Numerical results for (steady-state) distributions of pusher–

puller mixtures are shown in Fig. 2, for varying overall densi-
ties of the two species. In strong contrast to the corresponding
one-component systems, for which the (steady-state) distributions
strongly differed between pure pusher and pure puller systems,107

we here frequently observe the same qualitative behavior when both
species are present simultaneously. For instance, in Fig. 2(a), push-
ers transfer their “spot-forming” tendency onto the pullers, which
in the absence of the pushers would show a ringlike arrangement
instead of the spot. However, the plots in Fig. 2 indicate the rough
relation ρA(r, n̂, t)/ρ̄A ≈ ρB(r, − n̂, t)/ρ̄B. Choosing, e.g., |f A| ≠ |f B|,
this approximate relation breaks down as the two species aggregate
at different distances from the origin, but for sufficiently small devi-
ations, we still observe a qualitatively similar collective behavior for
both species.

In Fig. 2, the overall density ρ̄B of pullers increases from left
to right, while the overall density ρ̄A for pushers decreases from
the top row to the bottom row. We observe clear spot forma-
tion in Figs. 2(a) and 2(b), while Fig. 2(c) shows less-pronounced
instabilities of the high-density ring. Thus, we may conclude that
the dominating species imposes its behavior onto the other species.

For Figs. 2(c) and 2(e), where ρ̄A = ρ̄B and therefore
ρA(r, n̂, t) ≈ ρB(r,−n̂, t) holds, the probability currents associated
with the rotation due to the active forces approximately cancel each
other by symmetry, e.g., Kra

AA ≈ − Kra
AB, so that only the currents

Krt
⋅⋅ can lead to spot formation. The latter starts to outperform the

rotational diffusion for the case depicted in Fig. 2(c) but not for the
lower overall densities in Fig. 2(e). The instability of the ring here
seems to be a question of high-enough overall density because, e.g.,
∣Krt

AA∣∝ ρ̄2
A and ∣Jrr

A ∣∝ ρ̄A.
The bottom row of Fig. 2 shows the corresponding density dis-

tributions for a smaller ρ̄A. Thus, a decreased density of pushers leads
to an increased stability of the high-density ring against aggregation
in one spot. When (significantly) more pullers than pushers are in
the system, as in Fig. 2(f), they dominate the overall behavior and
restabilize the high-density ring.

In summary, the majority species seems to dominate the over-
all behavior of the system. A similar conclusion has recently been
drawn for the unconfined motion in pusher–puller mixtures,94

which we will treat as the next example using our theoretical
approach.

At this point, we include a short remark on the perfor-
mance of our theory. We can remove the second species from
our DDFT equations derived in Sec. III by setting ρB(X, t) ≡ 0.
Then, the present set of equations reduces to the previous DDFT
for monodisperse microswimmers.106 In that case, likewise, the sta-
tistical theory was evaluated by exposing the system of swimmers
to a radial external trapping potential, in analogy to the above
consideration for a pusher–puller mixture. There, hydrodynamic
interactions lead to the formation a high-density spot of aligned
swimmers as well, resulting in overall flow fields.106,107 This “hydro-
dynamic fluid pump” had previously been reported in particle-
based computer simulations,146,147 using different swimmer models.
Thus, a qualitative comparison shows that our DDFT reproduces
corresponding general phenomena. Adding another microswimmer

FIG. 2. Steady-state density distribution for binary mixtures of pusher (A) and puller (B) microswimmers in an external trapping potential, see Eq. (63), for varying overall
densities ρ̄A (pushers) and ρ̄B (pullers). All other parameters are held constant at aA = aB = 0.25σ, LA = LB = 0.75σ, αA = αB = 0.4, VA

0 = VB
0 = 0.5 kBT, 𝜖A

0 = 𝜖B
0 = 10 kBT,

and f A = −f B = 600kBT /σ, with σA = σB ≡ σ. The simulation box is of size 18σ × 18σ (only the inner 12σ × 12σ are on display), and the numerical evaluations were performed
on (80 × 80 × 16)-grids. Each pair of plots shows on the left-hand side the results for species A (pushers) and on the right-hand side the corresponding distribution for species
B (pullers). In each plot, the color encodes the (reduced) spatial density profile ρν(r, t)/ρ̄ν (reduced by the average density ρ̄ν), with brighter color corresponding to higher
density, and white arrows indicate the orientational vector field ⟨n̂⟩ν(r, t), as defined in Eqs. (61) and (62), respectively. The overall densities (ρ̄A, ρ̄B) are given (in units of
σ−2) by (a) (0.0123, 0.006 17), (b) (0.0123, 0.009 26), (c) (0.0123, 0.0123), (d) (0.009 26, 0.006 17), (e) (0.009 26, 0.009 26), and (f) (0.009 26, 0.0123). The systems in (a),
(b), and (d) do not reach steady states in a strict sense as the spot formation there is unstable against (spontaneous) movement of the density profile along the rim of the
trap.
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species to the same framework, we expect a similarly successful
performance of the present theory. A direct quantitative compari-
son could be carried out in the future by implementing a suitable
particle picture into many-swimmer computer simulations includ-
ing hydrodynamic interactions and thermal fluctuations, e.g., via
multiparticle collision dynamics150–155/stochastic rotation dynam-
ics.156,157 Then, also higher swimmer densities could be addressed
numerically. Another way to explicitly take into account the induced
hydrodynamic fluid flows in computer simulations could be Lattice-
Boltzmann methods.146,158–161

B. Emergence of polar orientational order
and collective motion in pusher–puller mixtures

In the absence of the spherical trapping potential consid-
ered in Sec. IV A, previous particle-based computer simulations
of planar arrangements of microswimmers with periodic bound-
ary conditions and using the same swimmer model have iden-
tified a tendency of puller microswimmers to develop (global)
collective polar orientational order.94 Related observations were
made in simulations of analogous three-dimensional configura-
tions of squirmer microswimmers.159 Such order in the swim-
mer orientations naturally leads to collective motion, maintain-
ing a common average propulsion direction. Moreover, we have
performed a corresponding linear stability analysis of our DDFT
for planar pure (one-species) pusher or puller systems, with spon-
taneous ordering identified beyond a threshold active drive for
pullers,108 in contrast to pushers. We now address the correspond-
ing two-species situation. In related computer simulations for mix-
tures of pushers and pullers using the same swimmer model,94 it
was found that collective orientational order only develops if the
fraction of pushers is sufficiently small. As we demonstrate, our
DDFT reproduces these results and leads to a more quantitative
insight.

For this purpose, the external potential in our planar arrange-
ment is now set to uext(r) ≡ 0. For simplicity, we assume
that the one-swimmer densities are spatially homogeneous, i.e.,
ρν(X, t) = ρν(ϕ, t)/A, with A denoting the area (considered to be
large) of the periodic plane containing the swimmers and ν ∈ {A, B}.
Then, integrating Eq. (23) over all positions r in the periodic box
leads to

∂ρA(ϕ, t)
∂t

= − ẑ ⋅∫ dr
∂

∂ϕ
(J rr

A +∑
ν=A,B
(Krt

Aν+Kra
Aν)), (64)

with the probability current densities defined in Eqs. (24)–(39).
Following Ref. 108, the current densities Krt

⋅⋅ are neglected for
sufficiently dilute suspensions as all the contained nonvanish-
ing terms scale with three-swimmer densities. Thus, Eq. (64)
reduces to

∂ρA(ϕ, t)
∂t

= kBT μr,A ∂2
ϕρA(ϕ, t)

− fA ∂ϕ∫ dr∫ dX′ ẑ ⋅ (Λrt,AA
r,X′ n̂′)ρ(2,0)

(X,X′, t)

− fB ∂ϕ∫ dr∫ dX′ ẑ ⋅ (Λrt,AB
r,X′ n̂′)ρ(1,1)

(X,X′, t). (65)

Here, the two-swimmer densities are related to the pair distribution
functions via

ρ(2,0)
(X,X′, t) =

ρA(ϕ, t) ρA(ϕ′, t) gAA(X,X′, t)
A2 , (66)

ρ(1,1)
(X,X′, t) =

ρA(ϕ, t) ρB(ϕ′, t) gAB(X,X′, t)
A2 . (67)

Thus, Eq. (65) becomes

∂ρA(ϕ, t)
∂t

= kBT μr,A ∂2
ϕρA(ϕ, t)

− fA ∂ϕ[ρA(ϕ, t)∫ dϕ′ ρA(ϕ′, t)GAA(ϕ − ϕ′, t)]

− fB ∂ϕ[ρA(ϕ, t)∫ dϕ′ ρB(ϕ′, t)GAB(ϕ − ϕ′, t)], (68)

where the hydrodynamic interactions are comprised by the coupling
functions

Gμν(ϕ − ϕ′, t) ∶=∫ dr∫ dr′
ẑ ⋅ (Λrt,μν

r,X′ n̂
′
) gμν(X,X′, t)
A2 , (69)

with μ, ν ∈ {A, B}. An analogous dynamical equation for species B is
obtained by replacing A→ B and B→ A. In the following, species A
again represents pushers, and species B represents pullers.

To allow for further analytical treatment, we include additional
simplifying assumptions. Considering systems in which all active
agents propel with the same amplitude of the active drive and fur-
ther are identical in all other microscopic parameters, the coupling
and pair distribution functions, see Eq. (69), were determined in
Ref. 108 by a modified Percus test-particle method. For this pur-
pose, hydrodynamic interactions were neglected and only the inter-
play of self-propulsion and steric interactions was evaluated. As
a result, we had extracted and approximated the basic functional
form as108

Gμν(ϕ − ϕ′) = C̃μν sin(ϕ − ϕ′), (70)

where C̃AA = C̃BB = C̃/A > 0 is positive for same-species coupling
and C̃AB = C̃BA = − C̃/A. This distinction follows from the fact
of our puller microswimmers propelling into the direction of − n̂
and/or − n̂′; see Fig. 1. Since ϕ and ϕ′ parameterize the orienta-
tions of n̂ and n̂′, respectively, the swimming direction of a puller
is shifted by an additional angle π relatively to ϕ and/or ϕ′. If only
one of the angles ϕ and ϕ′ refers to a puller, the additional shift of
ϕ − ϕ′ by π requires a minus sign in the prefactor of sin(ϕ − ϕ′)
in Eq. (70).

The value of C̃ > 0 generally depends on the overall density and
the microscopic parameters. (Some further positive constant param-
eters are here incorporated by the coefficient C̃ when compared to
the amplitude C in Ref. 108.) Since a similarly simple analytically
treatable expression is still missing for hydrodynamic interactions
included on the level of pair distribution functions, we use Eq. (70)
as an input for our further calculations.

We assume that, if collective order arises, there is only one com-
mon direction of polar ordering, i.e., in this case, species A and B
collectively propel along a common direction. This assumption is
motivated by previous simulation results.94 We now test the lin-
ear stability of the uniform distributions ρν(ϕ, t) ≡ Nν/(2π) against
the emergence of collective orientational ordering. To this end, the
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ansatz ρA(ϕ, t) = NA/(2π) + 𝜖A(t) cos(ϕ − ϕ0) and ρB(ϕ, t) = NB/(2π)
+ 𝜖B(t) cos(ϕ − ϕ0 + π), with an arbitrary angle ϕ0 and |𝜖ν(t)|≪ Nν
for ν ∈ {A, B}, is inserted into Eq. (68) and the equivalent equa-
tion for species B. This leads to the coupled ordinary differential
equations

d
d t
[
𝜖A(t)
𝜖B(t)

] =M ⋅ [
𝜖A(t)
𝜖B(t)

], (71)

with the coefficient matrix

M = −
⎡
⎢
⎢
⎢
⎣

kBTμr,A + mAA mAB

mBA kBTμr,B + mBB

⎤
⎥
⎥
⎥
⎦

, (72)

where mμν ∶= NμfνC̃/(2A).
We recall that species A (pushers) and species B (pullers)

are considered to have the same amplitude of their active drive,
i.e., f A = −f B > 0. Additionally, we keep NA + NB = N con-
stant, i.e., only the ratio of pushers to pullers is varied. More-
over, all other parameters are assumed to be identical for the
two species. Then, the eigenvalues of M are determined as
(− kBTμr,A, − kBTμr,A + fAC̃N(χB − 1/2)/A). Here, the first eigen-
value is always negative, but the second one becomes positive if

kBTμr,A
< fAC̃

N
A
(χB − 1/2), (73)

with χB ∶=NB/N denoting the fraction of pullers. The corresponding
eigenvector is (NA, NB).

Our system can thus be linearly unstable against polar orien-
tational ordering only if the right-hand side of Eq. (73) is positive.
Since f A > 0, this implies that the pullers must outnumber the push-
ers (χB > 1/2). If this condition is satisfied, the active drive addi-
tionally needs to be strong enough, i.e., Eq. (73) sets a threshold
strength for f A = −f B. Particularly, the effect of the active drive and
the hydrodynamic interactions need to outperform rotational dif-
fusion. Furthermore, as indicated by the corresponding eigenvector
(NA, NB), if orientational order arises, it does so simultaneously for
both species.

Our results roughly agree with those in the previous simulation
study.94 We stress that our theory only tests linear instability with
respect to polar orientational ordering and that the above approx-
imations were involved. In particular, the influence of hydrody-
namic interactions on the pair distribution function was neglected.
To address this question, possibly the results of particle-based com-
puter simulations could be used as an input to the theory in the
future.94,162 Since our previous theoretical analysis for single-species
systems indicated polar orientational ordering for puller suspen-
sions but not for pushers,108 we again find that the majority species
imposes its behavior onto the minority species as observed already
for the confined (trapped) mixtures in Sec. IV A.

C. Shear cell
As a third example, we now address a planar circular config-

uration which effectively represents a shear cell. We compose this
shear cell of passive colloidal particles forming an effective circu-
lar rim and active microswimmers trapped inside. The passive par-
ticles are continuously driven along the circular rim of the trap,

inducing a shearlike circular fluid flow inside. In a very loose anal-
ogy, this geometry is similar to setups of Taylor-Couette flow163 but,
of course, here in the limit of low Reynolds numbers. In fact, driving
passive colloidal particles along ringlike trajectories can be realized
experimentally via optical trapping potentials.164

Considering the driven particles (that hydrodynamically inter-
act with the interior microswimmers) as one component of a
binary mixture naturally induces fluid flows to which the enclosed
microswimmers are exposed. This avoids explicitly imposing such
flows as an external flow field.165–168 However, we do not account
in the present work for possible effects of shear banding, which
have been addressed in the context of DDFT as well.166–168 Our
one-body density, particularly for passive particles within the cell,
remains basically unchanged by the translational effects of the
shear flow as expected in the limits of our current theory regard-
ing shear.169,170 Instead, for active microswimmers within the cell,
the induced rotation of the swimmer orientations, coupling to the
directions of self-propulsion, can lead to changes in the spatial
density.

In the context of our theory, the active microswimmers repre-
sent the first species A, while the driven colloidal particles are treated
as species B. Consequently, f B = 0, but we also define an effective
potential of confinement

uB
ext(r) = V

B
0
⎛

⎝
erf(

r − R0 −
1
2σR

σR
) − erf(

r − R0 + 1
2σR

σR
)
⎞

⎠
(74)

for the passive particles, based on the error function erf(s)
= (2/

√
π)∫s0du exp(−u2

). For VB
0 ≫ kBT and R0≫ σR, this potential

effectively anchors the particles on a (small-width) ring of radius R0.
Additionally, the nonconservative driving force

Fd(r) = ωd
ẑ × r
μt,B (75)

is taken into account to describe the continuous circular driving of
the passive particles. Technically, we include it by adding −Fd(r) to
∇ruB

ext(r) in the corresponding equations. Here, ωd is the (signed)
magnitude of the imposed (spatial) angular velocity with which the
passive particles are driven along the ring.

For species A, we again choose the external trapping poten-
tial defined in Eq. (63) but take care when adjusting the potential
strength that (even with f A ≠ 0) it at all times hinders the majority of
the swimmers from reaching the passive particles on the outer ring.
This way, species A and B mainly interact with each other hydrody-
namically, as described by, e.g., the current densities in Eqs. (54) and
(55).

The driven ring of passive colloidal particles of species B is
shown in Fig. 3. For typical parameters, (a) the corresponding den-
sity profile and (b) the hydrodynamic influences on the microswim-
mers of species A are depicted. For the latter, we define for species
A the contribution to the velocity resulting from the fluid flows
induced by species B as

vAB
(r, t) =

Ktt
AB(X, t)
ρA(X, t)

, (76)

and the corresponding contribution to the z-component of the
angular velocity as
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FIG. 3. Density ring of driven passive particles (species B) that impose a flow field on confined microswimmers (species A) on the inside (the density of the latter not
explicitly shown here). The system parameters are aA = aB = 0.25σB, 𝜖BB

0 = 10 kBT, R0 = 11.5σB, σR = 3σB, VB
0 = 50 kBT, NB = 10, and ωdτb = 20 [with Brownian time

τb = σ2
B/(μt,BkBT) and σA = σB ≡ σ]. Numerically, the evaluation is performed on a 256 × 256 grid (in x and y), for a simulation box of size 20σ × 20σ. (a) Ringlike

density distribution of species B (passive particles), reduced by the average density ρ̄B. Brighter colors represent higher densities. (b) Illustration of the resulting steady
hydrodynamic flows exerted on species A (microswimmers) by species B. White arrows indicate the magnitude and direction of vAB(r) according to Eq. (76). The color
code quantifies ωAB(r) according to Eq. (77). (c) Radial distribution of ωAB(r), as extracted from the full numerical evaluation [blue line, the same data as in (b)] and via the
semianalytical approximation (red dashed line) given in Eq. (78).

ωAB
(r, t) = ẑ ⋅

Krt
AB(X, t)
ρA(X, t)

. (77)

Here, the current densities, as defined in Eqs. (54) and (55) in com-
bination with Eqs. (56) and (58), are proportional to ρA(X, t) so
that the above expressions do not diverge when the denominator
vanishes.

The resulting density distribution of species B depicted in
Fig. 3 is basically circularly symmetric and after initial equili-
bration does not vary over time any longer. Still, it represents
the moving passive particles driven by the (tangential) exter-
nal force defined in Eq. (75). The latter is the main source of
the fluid flows induced by particles of species B. Resulting flow
fields can be approximated inside the cell by evaluating the cor-
responding terms in Eqs. (76) and (77) under the assumption of
ρB(X′, t) ≡ NB(2π)−2R−1

0 δ(r′ − R0). Considering the contribu-
tion of Fd(r′) as dominant, ignoring steric interactions between
species A and B, and introducing b = r/R0 < 1, we obtain from
Eq. (77)

ωAB
(r) ≈

3
4

a
R0

ωdNB
1

2π

π

∫
−π

dψ
1 − b cosψ

(1 − 2b cosψ + b2)
3/2

≈
3
4

a
R0

ωdNB(1 +
3
4
b2 +

45
64

b4 + O(b6
)) (78)

for the angular velocity. As shown in Fig. 3(c), there is good quantita-
tive agreement between this approximation [the integral expression
in Eq. (78) is plotted as the dashed line] and the full numerical solu-
tion (solid line). For positions close to the outer ring of the driven
particles of species B, the curve drops, most likely because of the
decreased probability of finding the swimmers and the driven par-
ticles within close distances from each other, formally introduced
by the Onsager-like terms in Eqs. (57)–(59). To leading order in
a, the flow field induced by the driven species B can be similarly
obtained as

vAB
(r) ≈

3
4
aωdNB(ẑ × r̂)

1
π

π

∫
−π

dψ
cosψ

(b2 − 2b cosψ + 1)1/2

≈
3
4
aωdNB(ẑ × r̂)(b +

3
8
b3 +

15
64

b5 + O(b7
)). (79)

We now concentrate on species A that is confined inside the
shear cell. For f A = 0, passive particles are recovered. As seen in
the steady states shown in Figs. 4(a) and 4(b), the distribution
of the inner passive particles remains virtually unaffected by the
external driving of the outer passive particles, except for possible
small deviations that cannot be resolved within the precision of our
numerical discretization scheme. But when the enclosed swimmers
are active (f A ≠ 0), see Figs. 4(c)–4(j), the effects of the induced
shear flows become significant. Figures 4(c) and 4(d) show the sit-
uation of the enclosed swimmers for pushers and pullers without
the external drive, i.e., ωd = 0. Here, for the chosen parameters,
the microswimmers form high-density rings with average orienta-
tions tilted relatively to the outward direction for pushers (c)107 and
radially oriented for pullers (d). The directional sense of the tilt for
pushers is spontaneously chosen by the system as either counter-
clockwise or clockwise (depicted here), depending on the initial-
ization of our numerical evaluation. In contrast to these cases of
vanishing external driving of species B, Figs. 4(e)–4(j) demonstrate
that for ωd ≠ 0, the externally induced shear flows can lead to a
collapse of the steady-state density distributions toward the center
of the confinement. Moreover, with increasing external driving ωd,
both pushers and pullers furthermore show an increasing tendency
of their locally averaged swimming direction to be reoriented by the
externally imposed fluid flow [see Fig. 3(b)]. This explains the dif-
ferent sense indicated by the white arrows for increased ωd from
Figs. 4(c)–4(e).

As a source of this behavior, the shear flow induced by the
external driving of the outer ring persistently rotates the orienta-
tions of the internal swimmers so that the latter are hindered from
efficiently swimming radially outwards against the trapping force.
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FIG. 4. Steady-state density distributions of species A inside the externally
driven ring of passive particles (species B, not shown here). In addition to the
parameters (for species B) given in Fig. 3, we have used ρ̄Aσ2 = 0.001 88,
aA = 0.25σ, LA = 0.75σ, αA = 0.4, VA

0 = 0.1 kBT, 𝜖AA
0 = 𝜖AB

0 = 10 kBT, with
σA = σB = σ, and only the inner area of 16σ × 16σ is shown. Again, brighter
colors indicate higher spatial densities and white arrows reflect the average ori-
entation vector fields, as defined in Eqs. (61) and (62), respectively. [(a) and (b)]
Densities of internally confined passive particles (f A = 0) at magnitudes of the
external driving (a)ωd = 0 and (b)ωdτb = 80 [with Brownian time τb = σ2/(μt,BkBT)].
Within the precision of our numerical discretization scheme, the distributions are
identical. [(c)–(j)] Confined active microswimmers (|f A| = 400kBT /σ) subject to
external driving strengths acting on the outer particles [(c) and (d)] ωdτb = 0,
[(e) and (f)] ωdτb = 40, [(g) and (h)] ωdτb = 80, and [(i) and (j)] ωdτb = 120.
Here, the cases of pushers are depicted on the left-hand side, while those for
pullers are shown on the right-hand side. The induced shear flows lead to an
increased localization toward the center of the cell, together with an induced tilt-
ing of the swimmer orientation, which is more pronounced for pushers than for
pullers.

FIG. 5. Averaged radial component of the external force acting on the trapped
microswimmers vs angular driving speed ωd of the outer passive particles, for
pushers (red squares) and pullers (blue circles), resulting from the steady-state
density distributions displayed in Figs. 4(c)–4(j). Here, r̂ = r/∣r∣ is the spatial unit
vector pointing radially outward. With increasing ωd, the swimmer orientations are
rotated by the induced flow, which hinders the outward self-propulsion. This leads
to increasingly centered density distributions, reducing the exposure to the external
trapping in magnitude.

In this way, the behavior of species A becomes comparable to that of
circle swimmers, i.e., self-propelled particles that additionally feature
an active self-rotation.171–175 Actually, we have observed a similar
phenomenology as in Fig. 4 for increasing inherent curvature of
the trajectories of circle swimmers in Ref. 107. In the present case,
however, the (externally induced) rotation varies with the distance r
from the origin so that the local radius of induced circle-swimming
Rcs(r) ∶= |v0A/ωAB(r)|, determined from the definitions in Eqs. (16)
and (78), is nonconstant. It reaches a maximum at the origin and
decreases with increasing r. For Figs. 4(e)–4(h), the length scale of
Rcs(r) is comparable to the radius of the effective trap so that a
high-density ring is still visible. However, the average orientations
are significantly tilted from the radial direction (especially for pusher
microswimmers). Further increasing the external driving strength,
see Figs. 4(i) and 4(j), leads to more localized density profiles and
circling around the center of confinement.

The increasing localization can be quantified by the (negative)
radial component of the averaged external trapping force experi-
enced by the microswimmer ensemble, as given in Fig. 5 for the
same (steady-state) data as in Figs. 4(c)–4(j). For vanishing angu-
lar driving speed ωd of the outer passive particles, we find a higher
value for pullers (blue circles) than for pushers (red squares), cor-
responding to the more off-center density distribution of pullers
caused by their stronger tendency to show radial orientation. Both
curves drop for increasing ωd. The reason is again the induced shear
flow increasingly hindering the swimmers from self-propelling effi-
ciently against the radial external trapping potential. The drop is
somewhat delayed for our pullers, in accordance with a similar effect
previously seen for circle swimmers in an external trap, where the
pullers also showed a stronger tendency of maintaining a ring of
outward-oriented swimmers.107

In related works, rosettelike trajectories have been reported
for (single) circle swimmers with explicitly time-dependent

J. Chem. Phys. 151, 064902 (2019); doi: 10.1063/1.5099554 151, 064902-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

self-propulsion velocities.176,177 Beyond the scope of the present
work, when genuine circle swimmers are confined (as species A)
in our setup, again high-density rings might be observed with aver-
age swimmer orientations along the local radial direction. For this
purpose, the induced rotation ωAB should balance the inherent
self-rotation of the circle swimmers.

V. CONCLUSIONS
In this work, we have presented a dynamical density functional

theory (DDFT) for multispecies suspensions of microswimmers. We
have included (pairwise) hydrodynamic and effective steric interac-
tions between swimmers. In this way, we conceptually extended the
previous one-component equivalent.106–108 The theory is based on
a discrete force-dipole minimal microswimmer model, which has
already been used successfully in several previous works.58,94,106–108

We then applied our theory to three illustrative example situations
of planar swimmer configurations inside a three-dimensional bulk
fluid.

First, binary pusher–puller mixtures in external spherically
symmetric trapping potentials have been discussed. For the two
species only differing in their pusher/puller signature, we found that
the majority species imposes its behavior on the minority species.
For example, pushers at the considered propulsion strength on their
own tend to form concentrated spots on the rim of the trap. There-
fore, if pushers represent the majority species, this spot formation
is conveyed to simultaneously present pullers. Conversely, pullers
by themselves rather tend to form a roughly spherically symmetric
high-density ring on the rim of the trap. Thus, if they represent the
majority in a pusher–puller mixture, also pushers tend to organize
themselves in a corresponding ring structure.

Second, in the absence of any external trapping potential,
pusher–puller mixtures in large periodic boxes have been consid-
ered. In an analytical treatment analogous to the previously stud-
ied one-component case,108 pullers are found to be able to estab-
lish the onset of the collective polar orientational order of the
whole mixture. Accordingly, pullers can induce oriented collective
motion. For this purpose, they need to represent the majority species
and show a sufficiently large magnitude of their active drive. Our
results are qualitatively in line with previous agent-based computer
simulations.94

Third, a microswimmer species is confined inside a circu-
lar ring of externally driven passive particles. The induced shear
flow persistently rotates the confined swimmers and thus can hin-
der them from forming the high-density rings that are typically
observed for sufficiently quick self-propelled particles in radial trap-
ping potentials. Instead, the swimmer densities tend to collapse
toward the center of the confinement. Similar mechanisms have pre-
viously been found for circle swimmers (featuring an inherent self-
rotation) without externally induced shear flows. One future task
could be to focus further on the role of shear flows in our statistical
theory.169,170

In the numerical examples, we have restricted our evaluations
for hydrodynamically interacting microswimmers to small confined
systems that suitably fit into the corresponding simulation box. Nev-
ertheless, in the future, our set of partial differential equations could
be solved numerically as well for (basically infinitely extended) bulk
situations. For this purpose, (true) periodic boundary conditions

are applied to a finite simulation box. Then, because of the long-
range nature of the hydrodynamic interactions, the influence of
all periodic images on the density distribution in the simulation
box must be accounted for. Mathematically, this can be achieved
by applying Ewald summation techniques178 to the mobility ten-
sors. Corresponding results have been derived for passive parti-
cles179–181 but could, in principle, also be calculated for our active
microswimmers, as has recently been demonstrated for a similar
force-dipole-based microswimmer model.182 For quantitative tests
of our theory in the future and for extensions to higher densities,
particle-based computer simulations (that include hydrodynamic
flows of the surrounding fluid and thermal fluctuations explicitly)
can be performed.

One very interesting question is whether our DDFT could be
extended to describe the aforementioned motility-induced phase
separation. In this context, existing statistical theories involved a
density-dependent effective swimming speed and/or an anisotropic
pair distribution function as additional inputs.11,13,85,183,184 It would
thus be interesting to study in the future the effect of at least one
similar activity-induced term in our theory. Another promising sta-
tistical approach beyond the adiabatic approximation of DDFT is the
power functional theory for “dry” self-propelled particles, which has
recently been formulated and evaluated semianalytically.185–187

The present work derives the multispecies DDFT for the case
of uniaxial straight-swimming microswimmers with spherical bod-
ies. However, only a few changes transfer it to the case of (inher-
ently biaxial) circle swimmers.107 Even more generally, changes will
allow to describe swimmers with less-symmetric body shapes, e.g.,
rodlike bodies. Nevertheless, we remark that more work is needed
in the future regarding situations of still higher complexity. Exam-
ples are cases in which, for instance, additional phoretic chemical-
or temperature-based interactions between swimmers become sig-
nificant.188 Moreover, effects of the fluctuations of the propulsion
mechanism itself could be taken into account.189

Beyond the direct numerical evaluations performed in this
work, DDFTs can serve as a foundation to derive correspond-
ing phase-field-crystal models86,190–193 and more macroscopic con-
tinuum theories194–196 of microswimmer suspensions. The latter
allow for connections toward still-larger length scales of theoreti-
cal descriptions. Altogether, we thus expect our DDFT to provide
a powerful tool for the statistical characterization of dynamic mul-
tispecies systems of suspended microswimmers of future relevance
both in fundamental physics and concerning the corresponding
biological, technical, and medical applications.
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