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Abstract. A rigorous analytical justification of turbulence observed in active fluids and caused by self-propulsion is presented.
We prove existence of unstable wave modes for the generalized Stokes and Navier–Stokes systems by developing an approach
in spaces of Fourier transformed Radon measures.
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1. Introduction

In this brief note we study analytical properties of the following minimal hydrodynamic model to
describe the bacterial velocity in the case of highly concentrated bacterial suspensions with negligible
density fluctuations considered on the domain (0, ∞) × R

n:

vt + λ0v · ∇v = f − ∇p + λ1∇|v|2 − (
α + β|v|2)v + �0�v − �2�

2v,

div v = 0,

v(0) = v0.

(1)

Here v is the bacterial velocity field and p the (scalar) pressure and λ0, λ1, α, β, �0 and �2 are real
parameters. For λ0 = 1, λ1 = α = β = �2 = 0 and �0 > 0, the model reduces to the incompress-
ible Navier–Stokes equations in n spatial dimensions. For non-vanishing λ1, α, β, �2 system (1) serves
as a model to describe occuring turbulence in low Reynolds regimes caused by self-propulsion. It was
originally proposed by Wensink et al. in [24] and then considered in Refs. [4,5] and is by now one of
the standard models to describe active turbulence at low Reynolds number [20]. The model was recently
derived from more microscopic descriptions [13] and was quantitatively confirmed in suspensions of liv-
ing biological systems [1,15,24,25] and synthetic microswimmers [11]. Last not least, active turbulence
was also suggested as a power source for various microfluidic applications [15–17,22]. We refer to those
papers and to [26] for a more detailed description of the physics behind the additional occuring terms.
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In [26] an analytical approach to (1) in L2(Rn) is presented. The aim of this note is to prove well-
posedness and significant results on stability and instability (turbulence) in the FM(Rn)-setting, i.e., in
spaces of Fourier transformed Radon measures. The purpose is to mathematically confirm the asymp-
totic behavior observed in simulations and experiments as well as the following ‘formal’ linear stability
analysis given in [24]: For p0 ∈ R consider the steady state (0, p0) of (1) corresponding to a disordered
isotropic state (see (3)). Plugging the wave ansatz

(v, p) := (0, p0) + (ε, η) exp(ik · x + σ t), k �= 0, x ∈ R
n, t � 0, σ ∈ R, (2)

with small ε, η into system (1) and neglecting the nonlinear terms yields the characteristic spectral values

σ(k) = −(
α + �0k

2 + �2k
4
)
.

Thus unstable (turbulent) modes are expected to exist for �0 < 0 and 4α < �2
0/�2, or for �0 � 0 and

α < 0. A similar formal argument leads to stable and unstable modes for a manifold of ordered polar
states (see also the discussion before Proposition 3.6).

In [26] precise and rigorous results on linear and nonlinear stability and instability in the L2(Rn)-
setting are given, depending on the values of the involved parameters. This, however, does not rigorously
confirm the formal stability analysis above just by the fact that the wave ansatz (2) is not an L2(Rn)-
function. (As it is well known, changing the function space, i.e., the functional setting, in general changes
the spectrum, the growth bound and their relation.) On the other hand, it is easy to see that (v, p) as given
in (2) can be regarded as a Fourier transformed Radon measure, that is, it belongs to the space FM(Rn)

(see Remark 2.5). In this note we derive precise and rigorous results on linear and nonlinear stability and
instability in the FM(Rn)-setting which justifies the formal argument based on the wave modes (2).

Note that in the context of evolution equations the formal stability analysis given above based on
wave modes of the form (2) is standard in applied literature. The approach in FM-spaces to confirm
this argument in unbounded domains such as R

n, half-spaces or layers is developed in [9]. It is, e.g.,
also succesfully applied to confirm stability of the Ekman spiral for low Reynolds numbers in [10] and
instability of the Ekman spiral for high Reynolds numbers in [6].

We organized this note as follows. In Section 2 we briefly recall basic facts on the space FM. The main
part Section 3 is divided in several subsections. In Section 3.1 we give precise information on linear (in-
) stability of the steady states depending on the values of the involved parameters. In Section 3.2 we
prove well-posedness for the generalized Navier–Stokes equations (1) in the FM-setting. In fact, we
prove existence of a unique maximal strong solution for arbitrary data and existence of a unique global
mild solution for small data. In Section 3.3 we transfer most of the results on linear (in-) stability to the
nonlinear system (1).

2. The space of Fourier transformed Radon measures

We start with basic notation. For a domain 
 ⊂ Rn and a Banach space X in the sequel Lp(
, X),
1 � p � ∞, denotes the standard Bochner–Lebesgue space with norm

‖u‖Lp(X) =
(∫




∥∥u(x)
∥∥p

X
dx

)1/p

,
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if 1 � p < ∞ and ‖u‖L∞(X) = ess supx∈
 ‖u(x)‖X in case that p = ∞. The space of bounded and
continuous functions is denoted BC(
, X) and we write BUC(
, X), if the functions are additionally
uniformly continuous. As usual, C∞

c (
, X) stands for the space of smooth compactly supported func-
tions.

The symbol Wk,p(
, X), k ∈ N0, 1 � p � ∞, denotes the standard Sobolev space of k-times weak
differentiable functions in Lp(
, X). Its norm is given as

‖f ‖Wk,p(X) :=
( ∑

|α|�k

∥∥∂αf
∥∥p

Lp(X)

)1/p

with the usual modification if p = ∞. The class of all bounded and linear operators from the space
X into the space Y we denote by L (X, Y ), where we write L (X) if X = Y , and σ(A) denotes the
spectrum of a linear operator A : D(A) ⊂ X → X.

We outline properties of the space of Fourier transformed Radon measures FM(Rn). For a compre-
hensive and detailed introduction we refer to [9].

Definition 2.1. Let A be a σ -Algebra over Rn, K ∈ {R,C}, and let Km be equipped with the euclidian
norm | · |. A set map μ : A → K

m is called a finite vector valued Radon measure if

(1) μ is a K
m-valued measure, that is, if μ(∅) = 0 and μ is σ -additive;

(2) the variation of μ defined as

|μ|(O) := sup

{ ∑
E∈�(O)

∣∣μ(E)
∣∣ : �(O) ⊆ A finite decomposition of O

}

for O ∈ A is a finite Radon measure (that is if |μ|(Rn) < ∞ and |μ| is a Borel regular measure).

We denote by M(Rn) = M(Rn,Km) the space of finite vector valued Radon measures.

From [9] we know that M(Rn) equipped with the norm ‖μ‖M(Rn) := ‖μ‖M := |μ|(Rn) is a Banach
space. Let B be the Borel σ -algebra. Since K

m has the Radon–Nikodým property, there exists a νμ ∈
L1(Rn, |μ|) such that we have μ(O) = ∫

O νμ d|μ| for O ∈ B. For ψ ∈ BC(Rn,Km×�) we set

μ�ψ(O) :=
∫
O

ψνμ d|μ| (O ∈ B),

which is well-defined since B ⊂ A . Elementary properties are listed in

Lemma 2.2. Let K ∈ {R,C}, n, m, �, j ∈ N, φ ∈ BC(Rn,K�×j ), and ψ ∈ BC(Rn,Km×�). Then we
have (1) |μ�ψ | � |μ|�|ψ |, (2) μ�ψ ∈ M(Rn), (3) (μ�ψ)�φ = μ�(φψ).

Next, we consider the closed subspace of M(Rn) consisting of measures with no point mass at the
origin, i.e.,

M0
(
R

n
) := {

μ ∈ M
(
R

n
) : μ

({0}) = 0
}
.
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We observe that

L1
(
R

n
)

↪→ M0
(
R

n
)

↪→ M
(
R

n
)

↪→ S ′(
R

n
)
.

Hence, the Fourier transform of a Radon measure is defined and given as

μ̂(ξ) = μ�φξ

(
R

n
)

with φξ (x) = (2π)− n
2 e−ix·ξ .

Spaces of Fourier transformed Radon measures then are defined as

FM
(
R

n
) := {

μ̂ : μ ∈ M
(
R

n
)}

,

FM0
(
R

n
) := {

μ̂ : μ ∈ M0
(
R

n
)}

,

which are equipped with the norm ‖u‖FM := ‖F−1u‖M = ‖Fu‖M. Both FM(Rn) and FM0(R
n) are

Banach spaces. Furthermore, we define

FMk
(
R

n
) := {

u ∈ FM
(
R

n
) : ∂αu ∈ FM

(
R

n
)(|α| � k

)}
for k ∈ N and

FMs
(
R

n
) := {

u ∈ FM
(
R

n
) : (

ξ �→ û�|ξ |s) ∈ M
(
R

n
)}

for s � 0. The spaces FMk
0(R

n) for k ∈ N and FMs
0(R

n) for s � 0 are defined accordingly. Note that
for s ∈ N the two definitions are consistent thanks to Proposition 2.4 below. From [9] we recall the
following useful facts.

Lemma 2.3. Let u, v ∈ FM(Rn). Then we have

(1) ‖uv‖FM � (2π)− n
2 ‖u‖FM‖v‖FM,

(2) FL1(Rn) ↪→ FM0(R
n) ↪→ FM(Rn) ↪→ BUC(Rn).

Proposition 2.4. For σ ∈ BC(Rn\{0},Km×�) we set Op(σ)f := F−1(f̂ �σ). Then we have

∥∥Op(σ)
∥∥

L (FM0(R
n,Km),FM0(R

n,K�))
= ‖σ‖L∞(Rn\{0},Km×�).

If σ is additionally continuous at the origin, then the assertion holds also with FM0 replaced by FM.

Remark 2.5. By the fact that Feik· = (2π)
n
2 δ(· − k) with δ the Dirac measure, we obtain ‖eik·‖FM =

(2π)
n
2 ‖δ(· − k)‖M < ∞. Hence eik· ∈ FM0(R

n) for k �= 0 which proves the wave ansatz (2) to be a
function in FM0(R

n).
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3. Well-posedness, stability, and turbulence

We consider the following physically relevant stationary solutions:

(v, p) = (0, p0) (3)

with a pressure constant p0 and, if α < 0, additionally

(v, p) = (V , p0), (4)

where V ∈ Bα,β := {x ∈ R
n : |x| = √−α/β}, i.e., V denotes a constant vector with arbitrary orientation

and fixed swimming speed |V | = √−α/β. The steady state (3) corresponds to a disordered isotropic
state and (4) to the manifold Bα,β of globally ordered polar states.

In order to include the steady states, as in [26] we consider the following generalized system:

ut + λ0
[
(u + V ) · ∇]

u + (
M + β|u|2)u − �0�u + �2�

2u + ∇q = f + N(u),

div u = 0,

u(0) = u0.

(5)

Here q = p − λ1|v|2, M ∈ R
n×n is a symmetric matrix, and N(u) = ∑

j,k ajku
juk with (ajk)

n
j,k=1 ⊂

R
n×n is a quadratic nonlinear term. By setting

V = 0, M = αI, N(u) = 0, (6)

where I denotes the identity matrix and α is a scalar, we obtain (1) for u = v, i.e., the system corre-
sponding to the steady state (3) and by setting

V ∈ Bα,β, M = 2βV V T , N(u) = −β|u|2V − 2β(u · V )u (7)

we obtain the system for u = v − V corresponding to (4). Note that for the appearing parameters we
always assume that

λ0, λ1, �0, α ∈ R; �2, β > 0. (8)

Furthermore, space dimension is always assumed to be n = 2 or n = 3.

3.1. The linearized system

In this subsection we consider the linearized system

ut + λ0(V · ∇)u + Mu − �0�u + �2�
2u + ∇q = f in (0, ∞) × R

n,

div u = 0 in (0, ∞) × R
n,

u(0) = u0 in R
n.

(9)
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In a first step we introduce the Helmholtz projection on FM0(R
n). The symbol of the Helmholtz pro-

jection is defined as σP (ξ) := I − ξξT /|ξ |2 and the corresponding operator as Pu := F−1(û�σP )

for u ∈ FM0(R
n). Note that P is bounded on FM0(R

n) by Proposition 2.4. We obtain the Helmholtz
decomposition

FM0
(
R

n
) = FM0,σ

(
R

n
) ⊕ GFM

(
R

n
)
,

with

FM0,σ

(
R

n
) := P FM0

(
R

n
) = {

u ∈ FM0
(
R

n
) : div u = 0

}
,

GFM
(
R

n
) := {∇p : p ∈ F̂M

1
0

(
R

n
)}

,

where F̂M
1
0(R

n) = {p ∈ D′(Rn) : ∇p ∈ FM0(R
n)}/C, see [9]. Next, we define the operator associated

to (9) as

ALFu := λ0(V · ∇)u + PMu − �0�u + �2�
2u,

D(ALF) := FM4
0,σ

(
R

n
) := FM0,σ

(
R

n
) ∩ FM4

0

(
R

n
)
.

(10)

The Fourier symbol of the operator ALF then reads as

σALF(ξ) := F−1ALFF = �2|ξ |4 + �0|ξ |2 + σP (ξ)M + iλ0V · ξ, ξ ∈ R
n.

Again thanks to Proposition 2.4 we can derive a bounded H∞-calculus. For an introduction to the notion
of a bounded H∞-calculus and its use we refer to [2,12,18]. To be precise, we have

Proposition 3.1. There exists an ω > 0 such that ω+ALF admits a bounded H∞-calculus on FM0,σ (Rn)

with H∞-angle φ∞
ω+ALF

< π/2.

Proof. Since �2 > 0 there exists an ω > 0 and a ϕ0 ∈ (0, π/2) such that ω + σALF ∈ �ϕ0 and
|ω + σALF | � δ > 0 on R

n \ {0}. Thus for ϕ ∈ (ϕ0, π/2) the symbol ξ �→ h(ω + σALF(ξ))σP (ξ) is
bounded and continuous on R

n \ {0} and satisfies∥∥h(ω + σALF)σP

∥∥
L∞(Rn)

� Cϕ0‖h‖∞
(
h ∈ H∞(�ϕ)

)
,

where �ϕ := {z ∈ C \ {0}; | arg z| < ϕ} and H∞(�ϕ) denotes the space of bounded holomorphic
functions on the sector �ϕ . By the fact that

h(ω + ALF)Pu = F−1
(
û�h(ω + σALF)σP

) (
u ∈ FM0

(
R

n
))

Proposition 2.4 yields∥∥h(ω + ALF)P
∥∥

L (FM0(R
n))

� Cϕ0‖h‖∞
(
h ∈ H∞(�ϕ)

)
. (11)

Setting h(z) := λ(λ + z)−1, estimate (11) and the fact that ω + ALF is invertible imply sectoriality of
ω+ALF on FM0,σ (Rn) with spectral angle φω+ALF < π/2. Thus the holomorphic functional calculus via
the Dunford integral is defined as usual, see [2]. Estimate (11) then yields the assertion. �
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Note that by the sectoriality of ω + ALF the operator −ALF generates an analytic C0-semigroup on
FM0,σ (Rn). Furthermore, fractional powers (ω + ALF)

γ : D((ω + ALF)
γ ) → FM0,σ (Rn), γ > 0, are

well-defined, see [2]. As a consequence of Proposition 3.1 we immediately obtain

Corollary 3.2. For γ ∈ (0, 1) we have[
FM0,σ

(
R

n
)
, D(ALF)

]
γ

= D
(
(ω + ALF)

γ
) = FM4γ

0

(
R

n
) ∩ FM0,σ

(
R

n
)
,

where [·, ·]γ denotes the complex interpolation functor.

Proof. By means of Fourier transformation it is straight forward to verify the second equality, whereas
the first equality is a consequence of [23, Theorem 1.15.3]. �

One advantage of working in FM(Rn) is reflected by the fact that the operator �2�
2 with domain

D(�2�
2) = FM4(Rn) has L1 maximal regularity.

Proposition 3.3. Let 1 � p � ∞. For T (t) := exp(−�2t�
2) and (�2T � f )(t) := �2

∫ t

0 T (t −
s)f (s) ds we have

(1) ‖�2T u0‖Lp(R+,FM(Rn)) � 1
(�2p)1/p ‖u0‖FM4−4/p ,

(2) ‖�2T � f ‖L1(R+,FM(Rn)) � 1
�2

‖f ‖L1(R+,FM(Rn)).

Proof. To prove (1) we have due to Lemma 2.2(1) that

∥∥�2e−�2t�
2
u0

∥∥
FM = ∥∥û0�

(|ξ |4e−�2t |ξ |4)∥∥
M �

∫
Rn

|ξ |4∣∣e−�2t |ξ |4∣∣ d |̂u0|(ξ).

Then the assertion follows since∥∥�2T u0

∥∥
Lp(R+,FM(Rn))

�
∫
Rn

|ξ |4∥∥e−�2(·)|ξ |4∥∥
Lp(R+)

d |̂u0|(ξ)

� 1

(�2p)1/p
‖u0‖FM4−4/p .

Estimate (2) follows from (1) and [8, Lemma 2.4]. �

Consequently, ALF has L1 maximal regularity as well:

Theorem 3.4. Let T ∈ (0, ∞). For f ∈ L1((0, T ), FM0,σ (Rn)) and u0 ∈ FM0,σ (Rn) there exists a
unique solution (u, q) of (9) satisfying

‖u‖W 1,1((0,T ),FM) + ‖u‖L1((0,T ),FM4) + ‖∇q‖L1((0,T ),FM)

� C(T )
(‖f ‖L1((0,T ),FM) + ‖u0‖FM

)
with C(T ) > 0 independent of u, q, f, u0.
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Proof. By Proposition 3.3 the operator �2�
2 enjoys L1 maximal regularity also on FM0,σ (Rn). Since the

remaining terms in ALF are of lower order, the assertion follows by a standard perturbation argument. �

Now we consider the spectrum of ALF in order to examine stability. For this purpose we set Ad := ALF

in case of the disordered state (3), that is, V = 0 and M = αI and thus σP (ξ)M is simply replaced by
α since Ad acts on the solenoidal vector fields. Then the Fourier symbol of Ad is given as

σAd
(ξ) := �2|ξ |4 + �0|ξ |2 + α, ξ ∈ R

n.

If we substitute s = |ξ |2 we can characterize the spectrum of −Ad easily by computing the intersection
points of σAd

. We obtain

s± = −�0

�2

(
1

2
±

√
1

4
− α�2

�2
0

)
(12)

and the following result on (in-)stability:

Proposition 3.5. Assume (8). Then the C0-semigroup (exp(−tAd))t�0 on FM0,σ (Rn), which corre-
sponds to the disordered isotropic state (3), is linearly stable if �0 < 0 and 4α > �2

0/�2 or if �0 � 0
and α > 0. More precisely, it is

(1) exponentially stable if �0 < 0 and 4α > �2
0/�2 or if �0 � 0 and α > 0;

(2) asymptotically stable if �0 < 0 and 4α = �2
0/�2 or if �0 � 0 and α = 0;

(3) exponentially unstable if �0 < 0 and 4α < �2
0/�2 or if �0 � 0 and α < 0.

Proof. For the exponential (in-)stability we note that the growth bound ω((exp(−tAd))t�0) and the
spectral bound s(−Ad) := sup{Reλ : λ ∈ σ(−Ad)} coincide, since (exp(−tAd))t�0 is an analytic C0-
semigroup, see [19]. Thanks to (12), relations (1) and (3) are immediate. In case of (2) we obtain by
Lemma 2.2(1) that

∥∥exp(−tAd)u0

∥∥
FM � |û0|�

∣∣e−tσAd

∣∣(Rn
) =

∫
Rn

∣∣e−tσAd

∣∣ d|û0|.

Dominated convergence implies exp(−tAd)u0 → 0 for t → ∞ and the assertion is proved. �

Next, we consider the ordered polar state (4). We set Ao := ALF in this case and

σAo
(ξ) := �2|ξ |4 + �0|ξ |2 + iλ0(V · ξ) + 2βσP (ξ)V V T , ξ ∈ R

n.

We note that σP (ξ)V V T is a positive semidefinite matrix and zero is an eigenvalue with eigenvector
x ∈ {V }⊥. Choosing x, ξ ∈ {V }⊥ with |x| = 1 and |ξ | sufficiently small, we can achieve that

xT σAo
(ξ)x = �2|ξ |4 + �0|ξ |2 < 0,

if �0 < 0. This proves
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Proposition 3.6. Assume (8). Then the C0-semigroup (exp(−tAo))t�0 corresponding to the ordered
polar state (4) is

(1) exponentially unstable on FM0,σ (Rn) if �0 < 0;
(2) asymptotically stable on FM0,σ (Rn) if �0 � 0.

Proof. Assertion (1) is clear due to the discussion above. Assertion (2) follows completely analogous to
the proof of Proposition 3.5(2). �

3.2. Local strong and global mild solvability

We first construct a maximal solution which includes local well-posedness. For T > 0 we define
relevant function spaces as

ET := W 1,1
(
(0, T ), FM0,σ

(
R

n
)) ∩ L1

(
(0, T ), FM4

0

(
R

n
))

,

0ET := 0W
1,1

(
(0, T ), FM0,σ

(
R

n
)) ∩ L1

(
(0, T ), FM4

0

(
R

n
))

,

F
1
T := L1

(
(0, T ), FM0,σ

(
R

n
))

, F
2 := FM0,σ

(
R

n
)
,

FT := F
1
T × F

2,

and the linear operator

L : ET → FT , Lu := (
∂tu + ALFu, u(0)

)
.

Here u ∈ 0W
1,1 means that u|t=0 = 0. If we also set

H(u) := βP |u|2u + λ0P(u · ∇)u − PN(u), (13)

F(u) := Lu + (
H(u), 0

)
, (14)

then the full system (5) is rephrased as F(u) = (f, u0).

Lemma 3.7. We have H ∈ C1(ET ,F1
T ) and its Fréchet derivative is represented as

DH(v)u = P
∑
|α|�1

bα∂
αu + λ0P(u · ∇)v, u, v ∈ ET , (15)

with matrices bα = bα(v) ∈ L∞((0, T ), FM0(R
n,Cn×n)).

Proof. First observe that the Sobolev embedding

W 1,1
(
(0, T ), X

)
↪→BUC

(
(0, T ), X

)
(16)

yields

ET ↪→W 1,1
(
(0, T ), FM0

(
R

n
))

↪→BUC
(
(0, T ), FM0

(
R

n
))

. (17)
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Utilizing this and the algebra property of FM0, we easily obtain∥∥(u · ∇)u
∥∥
F

1
T

� C‖u‖L∞(FM0)‖∇u‖
F

1
T

� C‖u‖2
ET

,∥∥|u|2u∥∥
F

1
T

� C‖u‖2
L∞(FM0)

‖u‖
F

1
T

� C‖u‖3
ET

,∥∥N(u)
∥∥
F

1
T

� C‖u‖L∞(FM0)‖u‖
F

1
T

� C‖u‖2
ET

,

hence H : ET → F
1
T . By the fact that H consists of bi- and trilinear terms, it is obvious that H ∈

C1(ET ,F1
T ) (even H ∈ C∞(ET ,F1

T )). The Fréchet derivative reads as

DH(v)u = βP |v|2u + 2βP (u · v)v + λ0P(u · ∇)v + λ0P(v · ∇)u − 2P

n∑
j,k=1

ajk

(
ujvk + ukvj

)
.

From this and (17) representation (15) obviously follows. �

Lemma 3.8. Let T ∈ (0, ∞) and fix v ∈ ET . Then we have

L + (
DH(v), 0

) ∈ Lis(ET ,FT ).

Proof. By employing representation (15) for B(t) := (DH(v(t)), 0) we will show that B(·) is a suitable
perturbation of L. In the proof we avoid the use of mixed derivative type theorems, since their availability
in the underlying situation is not clear. Therefore we proceed in two steps.

First we will show that B1(t)u := P
∑

|α|�1 bα(t)∂
αu is relatively bounded by ALF + μ for μ > 0

large enough. Utilizing the algebra property of FM0 we can estimate∥∥B1(t)u
∥∥

FM0

� C
(∥∥∣∣v(t)

∣∣2∥∥
FM0

+ ∥∥v(t)
∥∥

FM0

)‖u‖FM1
0

� C

μ3/4

(‖v‖2
L∞((0,T ),FM0)

+ ‖v‖L∞((0,T ),FM0)

)∥∥(μ + ALF)u
∥∥

FM0

for all t ∈ (0, T ), u ∈ D(ALF) and μ � μ0 with a certain μ0 > 0. Thus, choosing μ large enough we
can apply [21, Theorem 2.5] to the result that

L + (μ + B1, 0) ∈ Lis(ET ,FT ).

Since L + (μ + B1, 0) is linear, we can remove the shift μ > 0. (Note that in [21, Theorem 2.5] it is
assumed that p > 1. With the Definition of L1 maximal regularity used here it is obvious, however, that
the Theorem remains true for p = 1.)

In the second step we show that B2u := (λ0P(u·∇)v, 0) is a lower order perturbation of L+(B1, 0). To
this end, we first consider the case of zero time trace, that is, u ∈ 0ET . Observe that then the embedding
constant in the Sobolev embedding (16) does not depend on the length of the interval (0, T ), if we
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replace W 1,1 by its zero trace version 0W
1,1. As a consequence embedding (17) is independent of T , too.

This yields∥∥(u · ∇)v
∥∥

L1((0,T ′,)FM0)
� C‖∇v‖L1((0,T ′),FM0)

‖u‖L∞((0,T ′),FM0)

� C‖∇v‖L1((0,T ′),FM0)
‖u‖0ET ′

(
T ′ ∈ (0, T )

)
,

and we obtain

‖B2u‖FT ′ � C‖∇v‖L1((0,T ′),FM0)
‖u‖0ET ′

for all T ′ ∈ (0, T ) and u ∈ 0ET ′ . Thus, choosing T ′ ∈ (0, T ) small enough, a standard Neumann series
argument implies

L + B ∈ Lis(0ET ′,FT ′). (18)

Since L + B is linear and ‖v‖ET
< ∞, we can iterate this procedure. Consequently, (18) remains true

for T ′ = T . This implies that ALF + DH(v) has maximal regularity on FM0,σ . Thus (18) remains valid
for general time trace in F

2. �

Appealing to the local inverse theorem, we can now prove the following result.

Proposition 3.9 (Maximal solution). Assume that (8) holds. For every f ∈ L1((0, ∞), FM0,σ (Rn)) and
u0 ∈ FM0,σ (Rn) there exists a T ∗ > 0 and a unique maximal strong solution (u, q) of (5) such that

u ∈ ET , ∇q ∈ L1
(
(0, T ), FM0

(
R

n
))

for all T ∈ (0, T ∗). Either we have T ∗ = ∞ or the maximal solution satisfies

lim sup
t→T ∗

∥∥u(t)
∥∥

FM0
= ∞.

Proof. We fix (f, u0) ∈ FT and define a reference solution as

u∗ := L−1(f, u0) ∈ ET .

For the Fréchet derivative of the nonlinear operator F ∈ C1(ET ,FT ) given in (14) we obtain in view of
Lemma 3.8 that

DF
(
u∗) = L + (

DH
(
u∗), 0

) ∈ Lis(ET ,FT ).

Utilizing the local inverse theorem, the construction of a unique local strong solution follows now ver-
batim the lines of the proof of [26, Theorem 1].

Based on the local well-posedness, as usual, we can show the existence of a T ∗ > 0 and
of a unique non-extendible solution (u, q) on (0, T ∗). For the additional property, suppose that
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lim supt→T ∗ ‖u(t)‖FM0 < ∞ and nevertheless T ∗ < ∞. This implies u ∈ BC([0, T ∗), FM0) thanks
to u ∈ ET for T < T ∗ and embedding (17). Next, we write

H(u)(t) = (
βP

∣∣u(t)
∣∣2 + λ0P

(
u(t) · ∇) − Pu(t)T A

)
u(t) =: B(t)u

with A = (ajk)
n
j,k=1. This allows for regarding (5) as the ‘linear’ system(

∂tu + ALFu + B(·)u, u(0)
) = (f, u0).

By the fact that∥∥B(t)u
∥∥

FM0
� C

∥∥u(t)
∥∥

FM1
0

(
t ∈ (

0, T ∗)),
we see that B(t) is a lower order perturbation. It is well-known that then maximal regularity remains true
for ALF + B(·). In fact, based on a Neumann series argument very similar as, e.g., in [21, Theorem 2.5]
or [26, Lemma 3] it can be proved that

L + (
B(·), 0

) ∈ Lis(ET ∗,FT ∗).

By the uniqueness of the solution and due to (17) this gives us

u ∈ ET ∗↪→BUC
((

0, T ∗), FM0,σ

)
.

Thus limt→T ∗ ‖u(t)‖FM0 exists and starting from the initial value u(T ∗) we can extend the solution u

beyond T ∗ which contradicts its non-extendability. �

In the case of linear exponential stability we obtain existence of a global mild solution for small data,
i.e., a solution of the variation of constant formula

u(t) = exp(−tAd)u0 +
∫ t

0
exp

(−(t − s)Ad

)
H(u)(s) ds, t > 0. (19)

Besides, the exponential stability transfers to the nonlinear system.

Theorem 3.10. Assume (8) such that �0 < 0 and 4α > �2
0/�2, or such that �0 � 0 and α > 0.

Then there is a κ > 0 such that, if ‖u0‖FM < κ , there exists a unique global mild solution
u ∈ BC([0, ∞), FM0,σ (Rn)) of (19) satisfying∥∥u(t)

∥∥
FM � Ce−ωt‖u0‖FM (t � 0)

for some C, ω > 0. Furthermore, recovering the pressure via

∇q := −(I − P)
[
λ0[u · ∇]u + (

M + β|u|2)u − N(u)
] ∈ L1

(
(0, T ), FM0

(
R

n
))

the pair (u, ∇q) is the unique classical solution of (5).

Proof. The proof is very analogous to the proof of [7, Theorems 1.2 and 1.3] and is hence omitted. �
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3.3. Nonlinear turbulence

Most of the outcome on linear (in-) stability in the FM-setting transfers to the corresponding nonlinear
situation. The transfer of turbulence follows by principles on linearized instability. Here we apply [14,
Corollary 5.1.6].

Lemma 3.11. Consider the nonlinearity H given in (13). Then we have H ∈ C1(FMη(Rn), FM0,σ (Rn))

for η � 1 and the estimate∥∥H(u)
∥∥

FM � C‖u‖2
FMη

(‖u‖FMη � 1
)
.

Proof. Using the algebra property of FM0(R
n) in Lemma 2.3(1) we obtain∥∥(u · ∇)u

∥∥
FM

� C‖u‖FM‖∇u‖FM � C‖u‖FM‖u‖FMη ,∥∥|u|2u∥∥
FM � C‖u‖3

FM,∥∥N(u)
∥∥

FM � C‖u‖2
FM,

and the claimed estimate follows for u ∈ FMη(Rn) with ‖u‖FMη � 1. The estimates also prove H ∈
C1(FMη(Rn), FM0,σ (Rn)), since H consists of bi- and trilinear terms. �

First, we again examine the (in-)stability of the disordered state (3).

Theorem 3.12. Assume (8). Then the disordered state (3) is nonlinearly

(1) exponentially stable in FM0,σ (Rn) if �0 < 0 and 4α > �2
0/�2, or if �0 � 0 and α > 0;

(2) unstable in FM4γ (Rn) ∩ FM0,σ (Rn) for γ ∈ [1/4, 1) if �0 < 0 and 4α < �2
0/�2, or if �0 � 0

and α < 0.

Proof. (1) is an immediate consequence of Theorem 3.10.
For (2) first observe that T ∗ < ∞ implies that u ≡ 0 is unstable, since lim supt→∞ ‖u(t)‖FM0 = ∞

by Proposition 3.9. So, w.l.o.g. we can assume T ∗ = ∞. From Proposition 3.5 we readily have that
σ(−Ad) ∩ {z ∈ C : Rez > 0} �= ∅. Thanks to Corollary 3.2 and Lemma 3.11 with η = 4γ � 1 we can
apply [14, Corollary 5.1.6] and the assertion follows. (In the notation of [14] we have x0 = 0, A = Ad ,
B = 0, f (u) = g(u) = H(u), α = γ , p = 2.) �

We obtain a similar result on instability of the ordered polar state (4).

Theorem 3.13. Let �2 > 0, β > 0 and �0, α < 0. Then the ordered polar state (4) is nonlinearly
unstable in FM4γ (Rn) ∩ FM0,σ (Rn) for γ ∈ [1/4, 1).

Proof. Also here the assumptions of [14, Corollary 5.1.6] are fulfilled thanks to Corollary 3.2, Proposi-
tion 3.6(1) and Lemma 3.11. �
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4. Conclusion

We gave an analytical approach to the active fluid model proposed by Wensink et al. [24] in the
FM(Rn)-setting, i.e., in spaces of Fourier transformed Radon measures. In detail we have proved:

(i) existence of a unique maximal strong solution for arbitrary data and existence of a unique global
mild (classical) solution for small data in case of linear exponential stability;

(ii) results on linear and nonlinear stability and instability of the ordered and the disordered steady
states in the FM(Rn)-setting, depending on the values of the occuring physically relevant param-
eters.

By the fact that wave modes belong to FM(Rn) (not to L2(Rn)) this justifies the typical formal stability
analysis based on wave modes [24]. It also justifies mathematically the asymptotic behavior observed
in simulations and experiments [1,3,11,15,24,25], in particular meso-scale turbulence caused by self-
propulsion.
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