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In this study, we formulate a density functional theory (DFT) for systems of labeled particles, considering a
two-dimensional bead-spring lattice with a magnetic dipole on every bead as a model for ferrogels. On the one
hand, DFT has been widely studied to investigate fluidlike states of materials, in which constituent particles are
not labeled as they can exchange their positions without energy cost. On the other hand, in ferrogels consisting
of magnetic particles embedded in elastic polymer matrices, the particles are labeled by their positions as their
neighbors do not change over time. We resolve such an issue of particle labeling, introducing a mapping of the
elastic interaction mediated by springs onto a pairwise additive interaction (pseudosprings) between unlabeled
particles. We further investigate magnetostriction and changes in the elastic constants under altered magnetic
interactions employing the pseudospring potential. It is revealed that there are two different response scenarios
in the mechanical properties of the dipole-spring systems: While systems at low packing fractions are hardened
as the magnetic moments increase in magnitude, at high packing fractions softening due to diminishing effects
from the steric force, associated with increases in the volume, is observed. The validity of the theory is also
verified by Monte Carlo simulations with both real springs and pseudosprings. We expect that our DFT approach
may promote our understanding of materials with particle inclusions.
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I. INTRODUCTION

In statistical mechanics, indistinguishability of particles
and consequently the correct Boltzmann counting play an
essential role (see, e.g., Refs. [1–3]). The Gibbs paradox is
well known in this regard and the extensivity of entropy is
recovered by introduction of the 1/N! factor, which corrects
the number of microstates by the number of permutations
of N particles. Commonly, the 1/N! factor is regarded as a
remnant of quantum mechanics in the classical limit, in which
identical particles are inherently indistinguishable. In contrast
to such a point of view, however, the 1/N! factor should be
consistently interpreted based on an informatic definition of
entropy [4]. Accordingly, a modified term, “undistinguished”
particles [5], has also been proposed. Consequently, even
though the classical particles such as colloidal particles are un-
doubtedly distinguishable, the statistical mechanics with the
1/N! correction describes the macroscopic behaviors of such
systems successfully [6,7], as long as one ignores detailed
differences between particles [8,9] and leaves the particles
unlabeled.

At the very microscopic level, i.e., at the atomic scale,
a system consisting of identical particles is invariant under
permutations of the particles and the particles are unlabeled
in principle. If one considers a mesoscopic length scale
and employs a coarse-grained description [10,11], however,
it may become necessary to distinguish between particles
that are physically identical. Such a scenario can emerge if
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the particles are permanently localized with respect to their
neighbors, thereby rendering the system nonergodic on the
relevant energy scale. It is thus a major challenge for statistical
mechanical theories to describe a model with labeled particles
[12] or to keep track of a single localized particle [13].

Here we develop a statistical description for a class of
composite materials, which consist of magnetic particles and
an elastic polymer matrix [11,14,15]. In these materials, called
ferrogels or magnetorheological elastomers, the dynamical
trajectories of the magnetic particles are frequently strongly
constrained by the polymeric environment [16,17]. Such a
magnetomechanical coupling can even be enhanced by di-
rectly anchoring the polymers on the surface of magnetic par-
ticles [15,18–20]. Hence, the elastic properties of the materials
can be tuned from the outside by noninvasive applications
of magnetic fields [21–23]. As a further consequence of this
coupling, the particles cannot exchange their positions due to
the fixation by the elastic medium.

Various studies have been conducted to understand theoret-
ically the behavior of such ferrogels with different description
levels from the microscopic scale resolving the individual
polymer particles to the macroscopic hydrodynamic or ther-
modynamic theory. For many practical purposes, one may
neglect the thermal motions of the magnetic particles [11].
In particular, a mesoscopic dipole-spring model has been
adopted to study the elastic and dynamical properties of
ferrogels [24–26]. The matrix-mediated interaction between
magnetic particle inclusions has also been revealed in terms of
continuous elastic backgrounds [27–32]. Furthermore, micro-
scopic descriptions of ferrogels via coarse-grained molecular
dynamics simulations enable us to probe the role of thermal
motions of the magnetic particles explicitly [33–35].
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Here we merge several of the aspects mentioned above.
Our goal is to formulate a statistical mechanical theory for
ferrogels in a dipole-spring model with thermal fluctuations
of the magnetic particles taken into account. The most chal-
lenging problem that has to be addressed along the way
arises from the fact that the particles in ferrogels are strictly
labeled by their positions as in lattice systems, for instance,
the classical Ising or XY models [36] and harmonic crystals
[37]. Accordingly, correcting the number of microstates by
the factor 1/N! does not apply to a statistical description of
ferrogels and a permutation of particles will cause a change
in energy (physically this results in strong distortions of the
surrounding elastic matrix). While computational approaches
such as Monte Carlo (MC) simulations are still feasible [35],
the formulation of a statistical mechanical theory is severely
complicated by the inherent composite nature of the ferrogels,
in contrast to, for instance, harmonic crystals. In practice, one
would need to take into account the nonlinearity stemming
from the steric and magnetic interactions.

One natural candidate for a statistical theory is classical
density functional theory (DFT) [38–40], which has been
probed to be successful for a variety of systems [41], rang-
ing from simple classical fluids [42] to systems showing a
freezing transition [43], from hard spheres [44] to hard convex
particles [45], and also for two-dimensional systems [46–48],
including dipolar or electrostatic interactions [49,50], and
capturing the spinodal decomposition dynamics [51] in an
adiabatic approximation for time-dependent systems. How-
ever, due to the particle labeling, a direct application of
the machinery of DFT to ferrogels is not possible. To this
end, we will map the elastic interaction onto an appropriate
pairwise pseudopotential [12] between unlabeled particles,
which allows us to formulate a DFT. Ultimately, we aim
at investigating the elastic properties of the dipole-spring
systems within the DFT framework. By comparison to the MC
simulations, the validity of the theory is confirmed.

The paper is organized as follows. In Sec. II we in-
troduce a two-dimensional model for ferrogels. Section III
describes detailed procedures of the mapping and the sub-
sequent formulation of a DFT. Combining MC simulations
and DFT calculations, two distinctive response scenarios in
elastic properties to the change of the magnetic moment are
identified in Sec. IV. A summary and a discussion are given in
Sec. V.

II. DIPOLE-SPRING MODEL

We consider a bead-spring model [10] in terms of a
periodic two-dimensional hexagonal lattice, as illustrated in
Fig. 1. There are N identical magnetic particles and 3N
identical harmonic springs connecting the nearest neighbors.
We denote the position and the dipole moment of the ith
particle of diameter σ by �ri and �mi, respectively. The total
Hamiltonian Htot of the model system is given by the sum of
the kinetic part and the interaction Hamiltonian Hint, which
consists of three parts in the form

Hint = Hm + Hel + Hst. (1)

FIG. 1. Illustration of the dipole-spring model.

Among these three terms, the magnetic part Hm and the steric
part Hst can be written as

Hm,st = 1

2

∑
i �= j

um,st (�ri j ), (2)

where �ri j = �r j − �ri. For isotropic interactions, the vector �ri j in
the argument can be replaced by ri j = |�ri j |.

First, the two-body magnetic dipole-dipole interaction en-
ergy between magnetic particles reads

um(�ri j ) = μ0

4π

[
�mi · �mj

r3
i j

− 3( �mi · �ri j )( �mj · �ri j )

r5
i j

]
, (3)

where μ0 is the vacuum permeability. Henceforth, we assume
that the magnetic moment is constant in time and for all
particles, i.e., �mi(t ) = �m regardless of i and t , for the sake
of simplicity. Moreover, we constrain ourselves to isotropic
magnetic interactions in the two-dimensional plane by further
assuming that �m = mẑ is perpendicular to the lattice plane so
that the magnetic two-body interaction energy can be written
in a simpler form as

um(ri j ) = μ0m2

4π

1

r3
i j

. (4)

The second term in Eq. (1) corresponds to the elastic
energy of the harmonic springs and reads

Hel =
∑
〈i, j〉

uel(ri j ) =
∑
〈i, j〉

1

2
kel(ri j − a)2, (5)

where kel is the spring constant and a is the rest length
of the springs. Apparently, each spring connects a certain
prescribed pair of particles, and our summation consistently
runs only over nearest-neighboring pairs as indicated by the
angular bracket. Consequently, all particles are labeled by the
predetermined ordering on a lattice, the energetic memory of
which is recalled by Hel. We remark that Eq. (5) cannot be
cast into the form of 1

2

∑
i �= j ūel(�ri j ) with an (i, j)-independent

function ūel(�r).
Finally, the two-body steric repulsion energy is taken as a

hard-core potential of the form

ust (ri j ) =
{

0 if ri j � σ

∞ otherwise
(6)

and completes the interaction Hamiltonian in Eq. (1). This
term prevents the possible divergence of the magnetic
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interactions at ri j = 0. Following Refs. [46,48,52,53], we
introduce a dimensionless packing fraction defined as the ratio
of the space occupied by particles to the two-dimensional
“volume” of the system (the term volume is used for area
throughout the paper). As we might consider the systems un-
der constant pressure (see Sec. IV A), however, the volume V
of our system is not necessarily a fixed variable. We therefore
define a reference volume Vref ≡ NV0 ≡ N

√
3a2/2 in which

the springs are in their rest state. Accordingly, the packing
fraction of a reference system with this volume is given by
η0 = (σ 2π/2)/

√
3a2. Apart from a, which will be used as the

unit of length, η0 depends only on the diameter of particles σ

and therefore we employ it as a model parameter representing
the steric repulsion. In contrast to that, the conventional
packing fraction η ≡ (πσ 2/4)N/V defined in terms of the
“actual” volume V of the system may change as the volume
increases (decreases) in response to a decrease (increase) of
the pressure or an increase (decrease) of the magnetic moment
m at constant pressure.

From now on, we measure lengths and energies in units of
a and kBT , respectively. Accordingly, the magnetic moment
m and the spring constant kel are measured in units of m0 ≡√

kBTa3/μ0 and kBT/a2, respectively. Finally, let us note that
our bead-spring model is identical to the classical harmonic
crystal [37] if the magnetic interaction energy Hm and the
steric repulsion energy Hst are neglected in Eq. (1).

III. MAPPING ONTO PSEUDOSPRINGS

Now we address the issue of particle labeling and derive
an approximate elastic Hamiltonian H̃el, which can be readily
used for the density functional calculation. Putting aside the
magnetic and steric parts of the Hamiltonian, i.e., Hm,st,
which are free from this issue [see Eq. (2)], we consider
only the elastic part Hel in this section. Following Ref. [12],
we consider a mapping of Hel onto a pseudospring potential
between unlabeled particles of the form

Hel → H̃el = 1

2

∑
i �= j

upel(ri j ), (7)

where upel(r) is a two-body interaction between particles of
center-to-center distance r. In contrast to Eq. (5), here H̃el in-
volves all particle pairs (i, j). Consequently, the Hamiltonian
H̃el is invariant under permutations of the particles, i.e.,

H̃el({�ri}) = H̃el({�rπ̂ (i)}), (8)

where π̂ is a permutation operator constituting the symmetric
group SN . While such a mapping is convenient from a tech-
nical point of view, it is physically appropriate only if we
can ensure through the form of upel(r) that each particle in
effect interacts only with a prescribed set of other particles,
i.e., the same number of nearest neighbors as in the real-spring
system. To this end, we will cut each springlike interaction
(which we specify later) at larger distances to prevent inter-
actions between particles too far away from each other. The
crucial point is then to ensure that H̃el neither introduces
additional contacts nor misses actually existing ones.

In one spatial dimension, the particles described by a
pseudospring model are automatically “labeled” through the

FIG. 2. Mapping between the systems of unlabeled particles with
pseudopotential interaction (left-hand side) and labeled particles
linked by springs (right-hand side). In the former case, there are
N! equivalent microscopic states that correspond to a single overall
structure. In sharp contrast to that, in the latter case, permutations
of particle positions (keeping the springs intact and thus leading to
strong distortions) indeed involve changes in energy, as depicted in
the inset.

steric hard-core repulsion [54,55], which fixes their mutual
ordering. Hence, within a proper range of the spring length
at sufficiently high density [12], where the particles usu-
ally interact with their two nearest neighbors, the mapping
works perfectly. Note that there is no phase transition due
to the strong thermal fluctuations in one dimension. In a
more realistic two- or three-dimensional fluid, however, the
particles can always find a path to bypass each other. Still, a
fixation similar to a cell surrounded by the nearest neighbors
can be achieved via ergodicity breaking associated with the
freezing transition. In this sense, we can construct a mapping
of the labeled particles in the original lattice model onto
the crystalline phase of the unlabeled particles with all-to-all
pairwise-additive interactions. We take this viewpoint as the
inversion of the following interpretation from Ref. [4] for a
system of unlabeled hard spheres. For hard-sphere crystalline
systems, even though there are N! possible distinct crystals
of labeled particles as the Hamiltonian is invariant under
permutations, all microscopic configurations correspond to
one unique overall lattice structure, as depicted in Fig. 2
(blue open arrow). In this way, lattice models of labeled
particles, for which the 1/N! factor is omitted in the statistical
counting, provide a good approximation for the crystalline
state of materials, emerging from the freezing of fluids with
unlabeled particles. Inversely, for ferrogels, given the lattice
system of labeled particles as the original model, we restore
the 1/N! factor when we map the unique lattice onto N!
possible frozen states of a fluidlike system with unlabeled
particles, as represented by the red closed arrow in Fig. 2.
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FIG. 3. Schematic diagram to illustrate the justification of our
mapping. (a), (b), and (d)–(f) Whole 4N-dimensional phase space
partitioned by the black grids, each cell of the grid representing
a permutation-related subspace σi. Probability density profiles in
the phase space are depicted by red lines. Specifically, the proba-
bility densities of the real-spring systems at (a) high and (b) low
temperature are illustrated, as well as those using pseudosprings at
(d) high and (e) low temperature. (f) One density profile, localized
within one single permutation-related subspace, is chosen arbitrarily
from N! available subspaces [the 1/N! factor is simultaneously
omitted in the partition function; see the last equality in Eq. (10)].
Moreover, (c) describes the lattice structure in the configurational
space corresponding to (f) [see Eq. (10)] or approximately to (b) [see
Eq. (9)]. Finally, the approximation involved in between (b) and (c) is
optimized via Eq. (11), which we here achieve by searching for a
vanishing concentration nvac of vacancies [indicated by an open circle
in (c)].

In Sec. III A and in Fig. 3, our argument justifying such a
mapping in two dimensions is laid out in full detail, before
establishing the specification of the elastic pseudopotential
upel in Sec. III B. Then we demonstrate in Sec. III C how
to implement the mapped system within our DFT approach.
Before we proceed, we make two additional remarks. First, we
assume that the pseudospring systems governed by upel have
a crystalline phase. Second, we consider two-dimensional
crystals [56,57] in this study. As is well known, there is no true
long-range order in two-dimensional systems in the absence
of truly long-range interactions [58].

A. Detailed justification of the mapping

Our argument is based on the idea that, at low temper-
atures, the energetic contribution overwhelms the entropic
contribution involving the 1/N! factor, enabling us to map the
systems of labeled particles onto those of the unlabeled ones.
Such an argument is strong enough to justify the mapping,
for instance, at zero temperature, for which the minimum
of Hint completely determines the equilibrium properties. At
finite temperatures, however, the elastic properties (or even
the stability of the systems) critically depend on the details of
the mapping and of the profile of the consequent interaction
potential H̃int ≡ Hm + H̃el + Hst. This applies not only at the
minimum of H̃int, but even if the adjacent particles are not
located exactly at their lattice sites due to thermal fluctuations.
Accordingly, a quantitative matching of lattice structures in
real-spring and pseudospring systems turns out to be essential.
Therefore, in this section, we carefully describe how the
1/N! factor and the fluctuations of particles confined to their

lattice sites in the low-temperature crystalline phase should be
addressed throughout the mapping.

Let us consider the 4N-dimensional phase space of our
system. The probability density to locate our system in
this phase space reads ω({�ri}, { �pi}) ∝ exp[−βHtot ({�ri}, { �pi})]
with the conventional definition β ≡ kBT . We then parti-
tion the phase space into N! subspaces that are related by
permutations of the particles, analogously to the symmetry-
related regions discussed in Ref. [36]. To this end, we
first specify the completely ordered set (subspace) as σ1 =
{(�r1, . . . , �rN , �p1, . . . , �pN ) | |�ri| > |�r j |, i > j}. In other words,
every configuration in which each particle with a smaller label
is located closer to the origin than each of the other particles
with a larger label belongs to this subspace. (If there exist
pairs of particles, whose distances from the origin are the
same, one can further order the particle pairs by comparing
the angle, e.g., from the x axis.) Then, with the permutation
operators π̂i (for i = 1, . . . , N! where π̂1 is the identity of the
SN symmetric group) introduced in Eq. (8), one can generate
N! subspaces exhausting the whole phase space by permut-
ing particles, i.e., σi = {(�rπ̂i (1), . . . , �rπ̂i (N ), �pπ̂i (1), . . . , �pπ̂i (N ) ) |
(�r1, . . . , �rN , �p1, . . . , �pN ) ∈ σ1}. For example, a subspace σα is
generated by the permutation of particles of the completely
ordered subspace σ1, with a corresponding operator π̂α .

In the case of the real-spring systems, the probability
densities of each subspace are not identical to each other [see
Figs. 3(a) and 3(b)], as an exchange of any particle pair is
always accompanied by a change in energy, i.e., Hel({�ri}) �=
Hel({�rπ̂ (i)}). However, for pseudospring systems, the proba-
bility densities corresponding to each subspace are identical
to each other, as illustrated in Figs. 3(d) and 3(e), because
the Hamiltonian is invariant under permutations. Therefore,
the probability densities in the whole phase space of the real-
spring and pseudospring systems are not equivalent to each
other in general. More specifically, for real-spring systems, the
probability density in a subspace should deviate from the one
in another subspace as they involve permutations of particles,
while for pseudospring systems they are still identical due to
the symmetry under permutations.

Let us now turn to low-temperature systems, i.e., kBT �
kela2. Recall that there is no phase transition for harmonic
crystals [37,59], that is, for our real-spring system. Nonethe-
less, the corresponding probability density becomes highly
localized, as depicted in Fig. 3(b). In the case of the pseu-
dospring system, a freezing transition might occur instead,
which is the starting point of our mapping. First we constrain
ourselves to each one of the permutation-related subspaces.
Therefore, particle exchanges or, namely, permutations of par-
ticles via, e.g., vacancy hopping are ignored in the following
analysis. Then we consider the ergodicity breaking of the
systems due to freezing. Accordingly, the probability density
in each permutation-related subspace is isolated as illustrated
in Fig. 3(e). [In contrast to that, as shown in Figs. 3(a)
and 3(d), the probability densities at high temperature are
rather broad for both the real- and pseudospring systems
and therefore it is not possible to construct such a mapping
in our situation.] In both systems, we conclude that, below
a certain temperature, the thermal vibration in the particle
positions is much smaller than interparticle distances in the
crystalline state. Therefore, the trajectory of each particle in
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each subspace does not span the full configurational space R2

but only a localized area. That is, a particle i remains localized
within the corresponding Wigner-Seitz cell �i associated with
its average position [see Fig. 3(c)]. In such a way, we provide a
tiling of R2 = �1 ∪ · · · ∪ �N , where �i ∩ � j = ∅ for i �= j.

Now let us be more explicit and consider only one subspace
among all permutation-related subspaces at low temperature.
In the case of the real-spring system, a particle i is localized in
the Wigner-Seitz cell around a lattice site with the same label
i, so

∫
R2 d�rie−βH ≈ ∫

�i
d�rie−βH. Then the partition function

becomes

Z real
N = 1

	N

∫
R2

d�r1 · · ·
∫
R2

d�rN e−βHint

→ 1

	N

∫
�1

d�r1 · · ·
∫

�N

d�rN e−βHint , (9)

where 	 is the mean thermal wavelength of the particles.
As indicated by the arrow on the second line, the partition
function has been rewritten in terms of the Wigner-Seitz cells.
With the Wigner-Seitz cells {�̃i} corresponding to the pseu-
dospring system in the crystalline state, the partition function
involving the unlabeled particles can be similarly rewritten as

Zpseudo
N = 1

	N N!

∫
R2

d�r1 · · ·
∫
R2

d�rN e−βH̃int

→ 1

	N N!

∑
π∈SN

∫
�̃π̂ (1)

d�r1 · · ·
∫

�̃π̂ (N )

d�rN e−βH̃int

= 1

	N

∫
�̃1

d�r1 · · ·
∫

�̃N

d�rN e−βH̃int , (10)

where the last equality follows from the fact that H̃int is
invariant under permutations. In this way, one can cancel
the N! counting factor, completely neglecting the exchange
of particles, as illustrated in Fig. 3(f). We stress that the
probability of the ignored configurations in both Eqs. (9) and
(10) is negligible and vanishes as T → 0 and/or N → ∞.

Comparing now both expressions to each other, we map the
lattice of labeled particles to that of unlabeled particles via∫

�1

d�r1 · · ·
∫

�N

d�rN e−βHint = N
∫

�̃1

d�r1 · · ·
∫

�̃N

d�rN e−βH̃int ,

(11)

where N is an arbitrary constant which does not alter any
physical properties of the mapping, indicating that the (many-
body) pseudospring potential can be determined up to an
additive constant. Even though the above equation is not easy
to analyze as it still involves interactions between many parti-
cles, the issue of particle labeling has been resolved: The 1/N!
factor does not appear in the mapping. Moreover, it provides
us with a route of how to construct an approximate elastic part
of the Hamiltonian H̃el in Eq. (7) for practical calculations. In
addition to the trivial condition that (i) the nearest-neighbor
interaction of Hint should be reproduced by H̃int, Eq. (11)
indicates that (ii) the lattice of the real-spring system should

be recovered with the pseudospring potential, namely, {�i} !=
{�̃i}. Next we describe our strategy to explicitly perform such
a mapping by introducing a cutoff for the springs.

B. Pair potential of pseudosprings

We consider an elastic interaction energy via pseu-
dosprings with a cutoff. The latter introduces an additional
degree of freedom to control the offset of the remaining part
of the springs, leading to a two-body interaction in the form

upel(ri j ) =
{

1
2 kel(ri j − a)2 − u0

pel for ri j < Rc

0 otherwise,
(12)

where kel and a take the same role as in Eq. (5) and the two
mapping parameters Rc and u0

pel are fixed by the conditions (i)
and (ii), respectively, as discussed below.

Regarding condition (i), the nature of the mapping onto
the pair potential upel(ri j ) leads to an apparent violation of
Eq. (11), because the number of nearest neighbors cannot be
unambiguously imposed. Even when the potential has only
a finite range, additional contacts with next-nearest-neighbor
particles can be formed in one direction, simultaneously miss-
ing the contacts with nearest-neighbor particles in the other
directions. Specifically, if a particle is located, e.g., at one
of the corners of its Wigner-Seitz cell, the minimal possible
distance to a particle in a nonadjacent cell is only one edge
length, i.e., a, while the maximal possible distance to another
particle in a neighboring cell is as large as

√
13a ≈ 3.6a.

This drawback cannot be overcome by any choice of another
cell shape but becomes less severe as kBT/kela2 → 0. Hence,
we simply consider an isotropic pseudopotential of range
Rc for computational convenience. This cutoff parameter in
Eq. (12) should be determined to achieve the optimal connec-
tivity with the six nearest-neighbor particles (see the inset of
Fig. 4), as the best approximation for the original bead-spring
Hamiltonian.

To this end, we first determine the cutoff radius R0
c for

the reference system with Vref = NV0 introduced in Sec. II,
in which the springs assume their rest length. As a simple
analytic estimate for R0

c , one may assume a uniform (fluidlike)
density N/Vref and replace the seven Wigner-Seitz cells con-
taining a particle and its six nearest neighbors by a circle of the
same total area. Such an assumption leads to the value of R0

c =
(7V0/π )1/2 ≈ 1.39a. As we only consider the crystal, in which
the density is highly inhomogeneous, however, R0

c is expected
to be smaller. As a more appropriate alternative, we extract
the value from MC simulations of the real-spring system with
V = NV0, i.e., the target of our mapping. Specifically, we
compute the isotropic pair correlation function defined as

g(r) = V

2πrN2

〈
1

2

∑
i �= j

δ(r − ri j )

〉
. (13)

By simply probing the distance at which g(r) takes its first
minimum, we find R0

c ≈ 1.34a (compare Fig. 4). As the effect
from the discontinuity of upel(r) at R0

c (see the solid red line in
Fig. 4) is minimized with R0

c = 1.34a, the convergence rate in
DFT calculations turns out to be faster than the minimization
with R0

c = 1.39a (see Sec. III C). As the results are hardly
affected by this small change of the parameter and the value
R0

c = 1.34a seems to be sufficiently accurate, we use it from
now on. For systems under constant pressure with volumes
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FIG. 4. Agreement between the real-spring and pseudospring
systems. We compare pair correlation functions g(r) from the real-
spring and pseudospring MC simulations of the reference system
with V = Vref , which are depicted by black and green symbols,
respectively. First, black squares show g(r) obtained from the MC
simulation of the real-spring system. As depicted by the dashed black
vertical line, the distance at the minimum point between the first and
the second peak in g(r) is chosen as R0

c . Here ka2/kBT = 100, η0 =
0.3, m/m0 = 0, and N = 480 are used and we find R0

c = 1.34a. In
the inset, the anisotropic pair correlation function g(�r) obtained from
the real-spring MC-simulation results is also displayed, together
with the yellow line indicating R0

c . As shown, the yellow line is
far enough from the neighboring peaks and we confirm that the
isotropic cutting off of the springs is a reasonable approach. The
pair correlation function g(r) obtained from pseudospring systems
with u0

pel = 3.94kBT is represented by green circles. The agreement
between the real-spring and pseudospring simulations is manifested
clearly. Finally, the solid red line presents the elastic energy of
pseudosprings upel(r) defined in Eq. (12).

other than V = Vref (see Sec. IV), we use

Rc = R0
c

√
V

Vref
. (14)

This is the only external input necessary during the formula-
tion of our DFT in Sec. III C.

Condition (ii) cannot be directly imposed, because the
lattice structure is usually not an input but the result of a
calculation based on a prescribed interaction. The fact that this
condition is not automatically fulfilled even if the real-spring
and pseudospring systems are at the same density is related
to another aspect of a pair-potential system in general: The
lattice may be imperfect, as indicated in Fig. 3(c). The real-
spring system with labeled particles assigned to the lattice is
completely free from defects, whereas the mismatch between
the range of the pairwise interaction and the desired lattice
structure suggests that there should be some vacancies or
interstitials. Moreover, if there were such defects, Eq. (10)
should also be corrected by additional factors addressing the
number of possible defect configurations. Hence, we modify
upel(ri j ) such that it yields a zero vacancy concentration
nvac = 0 as an equivalent requirement to the above condition
of an equal cell structure. The only way to do so while leaving
Rc invariant is to tune the depth of the pseudospring potential
in Eq. (12) by an offset value u0

pel, which we understand as

follows. On the one hand, if 〈upel〉 � 0, the total elastic energy
is lowered by forming additional contacts with new neighbors.
This undesired effect results in the undesired formation of in-
terstitials or aggregates. On the other hand, when 〈upel〉 � 0,
vacancies are generated. Closing this section on the mapping,
we are now ready to formulate our DFT. The only remaining
mapping parameter u0

pel will be determined within the DFT
framework.

C. Density functional theory

Following previous studies [46,60], we consider two unit
cells of a hexagonal lattice in a rectangular base with periodic
boundary conditions in the x and y directions. The volume and
the number of particles of the two unit cells are denoted by
Vcell and Ncell, respectively. Our starting point is to construct
a grand-canonical free-energy functional �([ρ(�r)]) whose
value at its minimum corresponds to the equilibrium grand
potential �0(T, μ,V ; m, kel, η0, u0

pel ) in the grand-canonical
ensemble at fixed temperature T , chemical potential μ, and
volume V . The free parameters employed here are the magni-
tude of the magnetic moment m, the spring constant kel, and
the packing fraction η0 of the reference system with Vcell =
NcellV0 = √

3a2 as defined in Sec. II. In addition, we will
complete the theory by specifying the yet to be determined
offset for the pseudospring potential u0

pel. As we have also
employed an additional condition for nvac in the preceding
section, however, each resultant equilibrium density profile
corresponds to a parameter set of (m, kel, η0).

We write

�([ρ(�r)]) = F ([ρ(�r)]) − μ

∫
d�r ρ(�r), (15)

where the Helmholtz free-energy functional F ≡
Fid([ρ(�r)]) + Fexc([ρ(�r)]) consists of the ideal gas term
and the excess functional, which read

Fid([ρ(�r)]) = β−1
∫

d�r ρ(�r)[ln{	2ρ(�r)} − 1],

Fexc
(
[ρ(�r)]; m, kel, η0, u0

pel

) = Fm + Fel + Fst, (16)

respectively. Here 	 denotes the (here irrelevant) thermal
wavelength. Regarding the elastic and magnetic interactions,
we employ the mean-field functional in the form

Fel,m ≡ 1

2

∫
d�r d�r ′ρ(�r)upel,m(|�r − �r ′|)ρ(�r ′), (17)

while we adopt fundamental measure theory [46] for Fst. Each
excess functional is calculated with the aid of the Fourier
convolution theorem. The detailed forms of the Fourier trans-
forms of upel and um used in our calculations are described in
Appendix A.

As in Refs. [46,48,61], we minimize � for a prescribed
bulk density

ρbulk ≡ Ncell

Vcell
= 2(1 − nvac)

Vcell
. (18)

Here the chemical potential is obtained as an output of the
calculation. Specifically, the minimization process consists of
two distinct stages. At the first stage, we minimize F for fixed
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nvac using the Picard iteration algorithm

ρ (i+1)(�r) = αρ̃ (i)(�r) + (1 − α)ρ (i)(�r), (19)

with a mixing parameter α [44], where

ρ̃ (i)(�r) = 1

	2
exp

[
−β

δFexc([ρ (i)(�r)])
δρ (i)(�r)

+ βμ(i)

]
. (20)

As we have prescribed the bulk density but not the chemical
potential, μ(i) is updated in each iteration step to keep the
average density constant. Our convergence criterion for mini-
mization at this stage is (F (i) − F (i+1))/F (i) < 10−15, where
F (i) = F ([ρ (i)(�r)]). Then we determine the equilibrium den-
sity profile by further minimizing F/Ncell with respect to nvac.
In practice, we vary nvac by controlling Vcell while ρbulk is
fixed. Comparing the values of F/Ncell obtained for each nvac,
we determine the vacancy concentration nvac and the equi-
librium density profile ρ(�r) with which the free energy per
particle F/Ncell is minimized. These procedures are repeated
until we have an accuracy of 10−6 for nvac. In the calculations,
we set 	 = 1.

Now we determine the values of u0
pel to close our DFT.

Specifically, we first perform the two-stage DFT minimization
as discussed above to find corresponding vacancy concentra-
tions for given values of u0

pel. Then we choose the value of
u0

pel for which the vacancy concentration is zero, i.e., nvac =
0. Apparently, the resultant offset values of u0

pel and simul-
taneously the pseudopotential upel(ri j ) depend on the bulk
density ρbulk of the system. According to Refs. [62,63], such a
density dependence emerges as a consequence of introducing
an effective potential between the individual particles in soft
matter systems.

Performing first the minimization with m = 0 and without
a hard-core repulsion (η0 = 0), we confirm that the pseu-
dospring potential indeed admits a freezing transition, which
is the prerequisite of the mapping. Then we perform MC sim-
ulations with H̃pel, together with Hst, to verify the mapping at
finite packing fraction, using the value of u0

pel obtained from
such a DFT as an input. As manifested in Fig. 4, the agree-
ment between the real-spring and the pseudospring systems is
quantitatively excellent. Therefore, we conclude that the DFT
approach to systems with labeled particles is successfully
formulated with the pseudospring potential between unlabeled
particles and ready to be used in the presence of magnetic
interactions as a model for ferrogels.

IV. ELASTIC PROPERTIES OF FERROGELS

We finally demonstrate the utility of the theory to in-
vestigate the mechanical properties of ferrogels, varying the
magnetic moment and the density of the particles. In partic-
ular, we probe the system at constant pressure p = kBT/a2

and determine the volume V and the responses to elastic
deformations �∇�u, where �u is the displacement field. With the
component of the corresponding linear strain tensor [64]

εi j = 1
2 ( �∇iu j + �∇ jui ), (21)

the stress tensor and the stiffness tensor are defined as

σi j = ∂ f

∂εi j
, Ci jkl = ∂σi j

∂εkl
, (22)

where f ≡ F/V is the density of the Helmholtz free energy F .
For two-dimensional hexagonal lattices, the stiffness tensor

Ci jkl = Kδi jδkl + G(δikδ jl + δilδ jk − δi jδkl ) (23)

can be expressed in terms of only two independent elastic
constants, namely, the bulk modulus K and the shear modulus
G, because of the symmetry [65].

In the following, we describe in Sec. IV A how to calcu-
late the volume and elastic constants in MC simulations for
the real-spring and pseudospring systems as well as using
pseudopotentials from our DFT treatment. We compare the
results of those methods in Sec. IV B. Henceforth, V and the
elastic constants, namely, K and G, are measured in units of
NV0 = N

√
3a2/2 and kBT/a2, respectively.

A. Implementation

1. MC simulation

In the case of MC simulations, we employ the isobaric-
isothermal (TpN) ensemble [66,67] and vary the rectangular
lengths Lx and Ly independently [68]. Accordingly, random
walks in terms of ln Lx and ln Ly have been performed with
the detailed balance condition [69]

ω(V → V ′)
ω(V ′ → V )

= exp{−β[U (�s ′N ,V ′) − U (�s N ,V )

+ p(V ′ − V )] + (N + 1) ln (V ′/V )}, (24)

where ω is the transition rate corresponding to the volume
changes and �sN = {�si} are the scaled coordinates defined by
�si ≡ V −1/2�ri for i = 1, . . . , N . We then compute the volumes
of the systems, simply taking the average of V ≡ LxLy, and
we extract K and G from the fluctuations 〈(�V )2〉, 〈(�Lx )2〉,
and 〈(�Ly)2〉 [68]. The elastic constants are computed from
the real-spring as well as the pseudospring MC simulations to
verify the validity of the mapping. In particular, for the pseu-
dospring MC simulation, we use the values of the offset u0

pel
obtained from the density functional calculations as inputs,
while the average volumes extracted from the corresponding
real-spring MC simulations are employed to determine the
value of the cutoff Rc, with the aid of Eq. (14).

2. DFT calculation

Computation of thermodynamic quantities under the given
pressure in DFT is formally not straightforward, because the
theory is based on the grand-canonical ensemble. In a finite
system, for example, the structure depends significantly on
the specific choice of the statistical ensemble [70–72]. Due to
the equivalence of the ensembles in the thermodynamic limit,
however, one can still regard the density profiles obtained
from DFT also as minima in the isobaric ensemble as long
as large systems are considered. Hence, the requirement to
compare the DFT results to MC simulations at constant pres-
sure does not represent a conceptual problem for our study.
Specifically, we first compute pressures at various volumes
Vcell from the relation p = −�0/Vcell and choose the volume at
which the pressure reaches the prescribed value. The accuracy
of the volume is 10−5(2V0) and the vacancy concentration
is fixed during the procedures by fine-tuning u0

pel with an
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accuracy of 10−4kBT . The detailed procedures are exemplified
in Appendix B.

Since we have direct access to the free energy, we can
directly compute the elastic constants deforming the system.
We consider four types of deformations as follows:

ε
↔ =

(
εK 0

0 εK

)
,

(
εx 0

0 0

)
,

(
0 0

0 εy

)
,

(
εG 0

0 −εG

)
. (25)

Specifically, we first deform the system according to the given
strain, simultaneously controlling the density. Then we obtain
the equilibrium density profile of the deformed system adjust-
ing the vacancy concentration equivalently to the undeformed
system as described in Sec. III C. We note that two types of
deformation are enough to determine the two unknowns K
and G. Examining four types of deformation, we verify the
consistency of the theory. However, the deformations involv-
ing a volume difference seem to involve inelastic changes:
Shifts of the vacancy concentration in the equilibrium step
indeed imply changes in the number of particles in the unit
cell, which would not occur during genuinely elastic defor-
mations. To minimize such inelastic contributions, we utilize
the identity p ≡ −�0/Vcell instead of directly computing the
bulk modulus K from the definition of Eqs. (22) and (23).
Specifically, the elastic constants are calculated from

K = −{p(εK ) − p(0)} + {p(0) − p(−εK )}
4εK

, (26)

G = f (εG) + f (−εG) − 2 f (0)

4εG
2

, (27)

where f ≡ F0/Vcell is the free-energy density, with the equi-
librium free energy F0 of two unit cells computed from the
two-step minimization process as described in Sec. III C.
Here the pressure of the deformed systems is computed from
p(εK ) = −�0(εK )/Vcell(εK ), where �0(εK ) is the grand po-
tential at which the density functional is minimized under
the given constraint due to a deformation. We note that, in
every case, the differences in the values of K are less than
10%, compared to the results for K that we have calculated in
analogy to Eq. (27) via the changes in f , instead of using the
pressure as in Eq. (26).

Before we proceed, let us make a few technical remarks.
First, the minimization of the functionals at nvac = 0 requires
large computational resources because a small value of the
Picard iteration parameter α in Eq. (19) should be used to
guarantee the convergence of the minimization. To calculate
the equilibrium density in a reasonable timescale, we choose
to fix the iteration parameter at α = 0.001 in general, at
the cost of loosening the strict condition to impose a zero-
vacancy concentration. Values of α smaller than that are only
used for a few cases in which the minimization eventually
fails otherwise. With this constraint, we could minimize the
free-energy functional up to nvac = 0.0006 ± 1.0 × 10−6 for
η0 = 0.3 and 0.5 and nvac = 0.015 ± 1.0 × 10−6 for η0 = 0.8.
Second, as is well known, the numerical treatment of long-
range interactions with periodic boundary conditions would
require sophisticated techniques [73,74]. In the MC simu-
lations we simply cut the magnetic interaction beyond the
nearest-neighbor interaction as an approximation [26,75].
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FIG. 5. For systems of low packing fractions, i.e., η0 = 0.3 and
0.5, (a) the volume V , (b) the bulk modulus K , and (c) the shear
modulus G are presented as functions of the repulsive magnetic
dipole moment m. Apparently, the DFT overestimates the volume
V for elevated values of m. Rough agreement among the theory and
the MC simulations of both the real-spring and pseudospring systems
are observed for both elastic constants K and G. Here εK = 0.000 25,
εG = 0.000 25, and N = 480 have been used.

B. Results

We explore the following sets of parameters: (kel, η0) =
(100.0, 0.3), (100, 0.5), and (100.0, 0.8), each for several
magnetic moments m � 12. Again, we note here that η0
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FIG. 6. For systems with a high packing fraction η0 = 0.8, (a) the volume V , the bulk modulus K obtained from (b) DFT calculations
and (c) MC simulations, and (d) the shear modulus G are presented as functions of the magnetic dipole moment m. As in Fig. 5, the
DFT overestimates the volume V . For the elastic constants, the agreement among the theory, the real MC simulations, and the pseudo-MC
simulations is again quite reasonable for the shear modulus G. However, the DFT significantly underestimates the bulk modulus K . The reason
for this large deviation is very likely a rather large value of the vacancy concentration nvac = 0.015 (see the main text for details), but also the
mean-field approximation may play a certain role. In the inset of (d), the values of the shear modulus are additionally presented as a function
of the packing fraction η ≡ (πσ 2/4)N/V . Here εK = 0.000 25, εG = 0.000 25, and N = 120 have been used.

corresponds to the packing fraction of the reference system
with V = Vref , conveying the information of the diameter of
the particles. The conventional packing fraction is defined by
η ≡ (πσ 2/4)N/V and is not a fixed variable as we consider
the isobaric ensemble [see the paragraph below Eq. (6) for
details]. In Fig. 5 we first present the results at low packing
fractions, i.e., η0 = 0.3 and 0.5, for which the conventional
hard-disk system is in the fluid phase [46,53,76]. Therefore,
the crystallization in this low-packing-fraction regime is due
to the elastic interaction. As one can see, the DFT and the
real-spring and pseudospring MC simulations agree well with
each other, except that the DFT overestimates the volumes,
especially for large values of m. Here mean-field approxima-
tions adopted in our DFT and the truncation of the magnetic
interaction in MC simulations seem to lead to such deviations
between DFT and MC simulations. Overall, the volume V ,
the bulk modulus K , and the shear modulus G increase as the
magnetic moment m increases.

Meanwhile, results with η0 = 0.8 are shown in Fig. 6.
In this case, we expect strong contributions from the steric
forces. We first note that a significant deviation of the theory
from the MC simulations in the bulk modulus is observed.
Quantitatively, the bulk moduli obtained from the DFT are
approximately one-fourth of those obtained from the MC
simulations [compare Figs. 6(b) and 6(c)]. This seems to be

mostly due to the fact that we had to use a quite large value,
i.e., nvac ≈ 0.015, for the vacancy concentration because of
technical reasons related to the computational time and the
consequent choice of the mixing parameter α (see Sec. IV A).
Indeed, using the same vacancy concentration, we also obtain
similar deviations in K at η0 = 0.3 or 0.5. Apart from that, the
mean-field approximation may contribute to such deviations.
Nonetheless, good agreement between the real-spring and
pseudospring MC simulations is still observed, confirming
that such a deviation of the DFT does not indicate a failure
of our mapping. Surprisingly, the behavior of G is still well
predicted by the DFT. In contrast to K , computation of G does
not involve any changes in volume and consequently both the
density and the vacancy concentration remain approximately
constant during deformation. (In contrast to that, deformations
involving volume changes are always accompanied by shifts
of the vacancy concentration.) Therefore, we speculate that
the vacancy concentration plays a much smaller role in the
case of the volume-conserving deformation in DFT, for which
nvac remains basically the same. To conclude, except for
the technical issue discussed, the DFT provides qualitatively
correct trends even at high packing fractions.

Remarkably, we observe response behaviors of K and G
to an increase in m for the high packing fraction, which are
opposite to the low packing fraction. For η0 = 0.8, K and
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G decrease as m increases, while V is still an increasing
function of m. The emergence of two such different scenarios
originates from the composite nature of ferrogels: Here we
are observing different types of crossovers from hard-disk
crystals (high packing fraction, small m) or harmonic crystals
(low packing fraction, small m) to elastic-dipolar crystals
(both high and low packing fractions, large m).

To understand the phenomena in detail, we first note that
V always increases as m increases because the magnetic in-
teraction is repulsive. For low packing fractions, the magnetic
repulsion simply causes additional increases in the bulk and
shear moduli on top of the harmonic crystals. In contrast to
that, for high packing fractions, the steric force dominates the
mechanical properties and the system is very stiff (hard-disk
crystals) with relatively large K and G for small values of m.
As the magnetic moment m and consequently the volume V
increase, the packing fraction η decreases and the contribu-
tions from the steric repulsion become insignificant compared
to the dipolar repulsion at some values of the packing fraction
around 0.6 � η � 0.7 [see, e.g., the inset of Fig. 6(d)]. These
values are slightly smaller than the fluid-crystal coexisting
packing fractions of hard-disk systems, which are in between
0.68 and 0.73 [46,48,53,77,78]. Once η has decreased enough,
as in the low-packing-fraction regime, the signature of the
elastic-dipolar crystals should be recovered, the elastic prop-
erties of which are governed by the combination of the spring
and dipolar interactions. Indeed, for m = 10, the volume and
the elastic constants (compare Figs. 5 and 6) are quantitatively
similar among η0 = 0.3, 0.5, and 0.8. As expected, the values
of K and G for η0 = 0.8 increase in the regime of large
magnetic moments, i.e., for m � 8 where η < 0.70 (η ≈ 0.68
and 0.60 for m = 5 and 8, respectively).

V. SUMMARY AND OUTLOOK

In this study we have formulated a DFT for a two-
dimensional ferrogel model. We have replaced the labeled par-
ticles in a state of strictly permanently connected neighboring
particles by the unlabeled particles in a fluidlike state to map
the elastic part of the associated energy onto a pseudopotential
invariant under permutations. In particular, we have shown
that the mapping provides a plausible approximation for the
considered systems and their response to magnetic interac-
tions, even though the mapping still leads to some deviations
in the calculated response of the systems. These deviations
have been minimized by fine-tuning the mapping parameters.
Finally, it has been demonstrated that the elastic properties of
ferrogels can be successfully investigated in this framework
and two scenarios have been identified for the response mech-
anism of the dipole-spring system, depending on the packing
fraction. Notably, our DFT approach may also provide a
clue for the scale bridging [79] between mesoscopic dipole-
spring models and the macroscopic description of ferrogels
[80,81]. In addition, a further extension to characterize other
systems including many-body interactions [82–86] might be
possible. Indeed, several of these studies assume certain lattice
structures of particles, which is a prerequisite for our mapping.

A strong feature of the presented DFT approach relying
on the pseudospring model in two dimensions is that it works
well independently of the density. First of all, the mapping is

generally well justified even in the low-density regime. More-
over, the mean-field DFT, which we employed here, provides
a good approximation even in the high-density regime where
we found good agreement between our theoretical treatment
and MC simulations, especially for the shear modulus. In
contrast to that, for a one-dimensional model, the prediction
of unphysical freezing within mean-field DFT restricts the
parameter space to intermediate densities and weaker elas-
ticities [12], as otherwise the pseudospring approximation
itself is less accurate due to large possible gaps between
neighboring particles. We stress that, in general, mean-field
approximations become more accurate with increasing dimen-
sionality. Besides, true long-range order generally exists in
three dimensions. Therefore, we expect our DFT approach to
work even better in three dimensions.

Regarding possible experiments to test our theoretically
predicted scenarios, the high packing fraction of η0 = 0.8
needs to be discussed. As mentioned in Ref. [87], for certain
systems there exists a region of increased mechanical stiff-
ness around the magnetic particles. Effectively, this could be
equivalent to an increased size of the particles. In addition,
we note that in three dimensions, the fluid-crystal coexisting
densities are reported as low as η ≈ 0.5 [88,89]. Indeed,
volume concentrations of approximately 50% have already
been reported in three-dimensional samples of ferrogels [90],
implying that the steric force should be taken into account ex-
plicitly. Therefore, decreasing elastic moduli in response to an
increase of the magnitude of the magnetic moments might be
observed in real three-dimensional systems. Furthermore, the
pressure value employed in this study seems to be small: For
instance, p = kBT/a2 ∼ 2 × 10−7 Pa for the system studied
in Ref. [19] with a ≈ 150 nm at room temperature. Therefore,
for direct comparison with experiments, a broad range of
pressures should be explored in future studies with more
realistic settings.

There are several remaining issues. First, aligning the
magnetic dipoles within the two-dimensional plane and the
resulting in-plane anisotropy will give rise to additional phe-
nomena not observed here for perpendicular dipoles. To list
a few, the aspect ratio of the width to the length of the
unit cell will vary depending on the in-plane orientation of
the magnetic dipole moments, the volume may change, and
the magnetic particles could touch each other, leading to
an abrupt change in elastic moduli even at a relatively low
packing fraction [91]. The overall magnetization of ferrogels
could also be of interest for further studies. For instance,
rotational degrees of freedom of permanent magnetic dipoles
in three dimensions [92,93] could explicitly be taken into
account to investigate the relation between applied external
magnetic fields and elastic moduli of ferrogels. Notably, in
three-dimensional systems, the magnetic dipole interaction
always leads to at least local anisotropy. As mentioned above,
an extension to three dimensions would further strengthen
the correspondence to real materials. Additionally, the mean-
field functionals can be replaced by more sophisticated ones,
especially to consider the long-range nature of the magnetic
interaction [60]. Apart from that, the response dynamics to
external magnetic fields represents another topic of interest.
Dynamical DFT [51,94,95] should be the obvious candidate
to study these phenomena in the present context.
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APPENDIX A: FOURIER TRANSFORM

The functional derivatives of the mean-field functionals in
Eq. (17) for the calculation of Eq. (20) read

δFel,m

δρ(�r)
=

∫
d�r ′ρ(�r ′)upel,m(|�r − �r ′|), (A1)

which are numerically implemented with the aid of the con-
volution theorem. First, the Fourier transform of the elastic
energy ũpel can be computed as follows:

ũpel(�k) =
∫ 2π

0
dθ

∫ Rc

σ

dr r{ 1
2 kel(r − a)2 − u0

el}e−i�k·�r

=
∫ Rc

σ

dr 2πrJ0(kr)
{

1
2 kel(r − a)2 − u0

el

}
= πkel

k3
[rJ1(kr){−4 + k2(r − a)2 + akπH0(kr)}

+ rJ0(kr){2kr − akπH1(kr)}]Rc
σ

− πu0
el

k
[2rJ1(kr)]Rc

σ . (A2)

Here Ji are the Bessel functions of the first kind of order
i and Hi the Struve functions of order i. For the magnetic
interaction, the Fourier transformation can be performed as

ũm(�k) = μ0m2

4π

∫ ∞

σ

dr
∫ 2π

0
dθ

1

r2
e−i�k·�r

= μ0m2

2

∫ ∞

σ

dr
J0(kr)

r2

= μ0m2

2

[
−1

r
1F2

(
−1

2
;

1

2
, 1; −1

4
k2r2

)]∞

σ

, (A3)

TABLE I. Example of the DFT computation procedure. Here
ka2/kBT = 100, η0 = 0.3, and R0

c/a = 1.34.

Vcell/NcellV0 u0
pel/kBT nvac pa2/kBT

0.98250 2.7419 0.0006002
2.7420 0.0006000 1.000609
2.7421 0.0005999

0.98251 2.7422 0.0006002
2.7423 0.0006000 0.999613
2.7424 0.0005998

where 1F2 is the generalized hypergeometric function. For
r → ∞,

1F2

(
−1

2
;

1

2
, 1; −1

4
k2r2

)

= kr + cos kr − sin kr√
πk3/2

r−3/2 + O(r−5/2). (A4)

We finally obtain

ũm(�k) = μ0m2

2

[
−k + 1

σ
1F2

(
−1

2
;

1

2
, 1; −k2σ 2

4

)]
. (A5)

The generalized hypergeometric functions were implemented
using the ARB library [96].

APPENDIX B: DFT MINIMIZATION

In this Appendix we describe the procedure of comput-
ing the equilibrium profile at prescribed pressure within the
grand-canonical DFT, which is exemplified in Table I. First,
the volume Vcell and the offset u0

pel are fixed (the first and
the second column in Table I). We then compute the free
energy per particle F/Ncell, varying the vacancy concentration
nvac (the third column). At this stage, we control nvac by
changing Vcell while fixing the density ρbulk [see Eq. (18)].
We choose the value of u0

pel for which F/Ncell is minimized
at the prescribed value of the vacancy concentration (for the
parameter set in Table I, nvac = 0.0006). At this stage, the
pressure corresponding to the fixed volume is determined
simultaneously (the fourth column). Now we change the
volume, varying the density ρbulk while fixing the number of
particles Ncell, and repeat the above procedure to calculate
corresponding pressures. Finally, we obtain the volume and
corresponding density profile, comparing pressures with the
prescribed pressure value, i.e., pa2/kBT = 1.
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