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Abstract. An analytical method is proposed for computing the low-Reynolds-number hydrodynamic mo-
bility function of a small colloidal particle asymmetrically moving inside a large spherical elastic cavity,
the membrane of which is endowed with resistance toward shear and bending. In conjunction with the
results obtained in the first part (A. Daddi-Moussa-Ider, H. Löwen, S. Gekle, Eur. Phys. J. E 41, 104
(2018)), in which the axisymmetric motion normal to the surface of an elastic cavity is investigated, the
general motion for an arbitrary force direction can now be addressed. The elastohydrodynamic problem
is formulated and solved using the classic method of images through expressing the hydrodynamic flow
fields as a multipole expansion involving higher-order derivatives of the free-space Green’s function. In the
quasi-steady limit, we demonstrate that the particle self-mobility function of a particle moving tangent
to the surface of the cavity is larger than that predicted inside a rigid stationary cavity of equal size.
This difference is justified by the fact that a stationary rigid cavity introduces additional hindrance to the
translational motion of the encapsulated particle, resulting in a reduction of its hydrodynamic mobility.
Furthermore, the motion of the cavity is investigated, revealing that the translational pair (composite)
mobility, which linearly couples the velocity of the elastic cavity to the force exerted on the solid particle,
is solely determined by membrane shear properties. Our analytical predictions are favorably compared
with fully-resolved computer simulations based on a completed-double-layer boundary integral method.

1 Introduction

Many industrial and biological transport processes on the
microscale predominantly occur under confinement, where
hydrodynamic interactions with boundaries drastically al-
ter the diffusive behavior of microparticles in viscous me-
dia. Prime examples include particle sorting in microfab-
ricated fluidic devices [1–5], membrane separation and pu-
rification in pharmaceutical industry [6–8], as well as in-
tracellular drug delivery and targeting via multifunctional
nanocarriers, which release therapeutic agents in disease
regions such as tumor or inflammation sites [9–16]. The
uptake by cell membranes occurs via endocytosis or by
direct penetration to reach target cellular compartments.

At small length scales, fluid flows are characterized
by small Reynolds numbers, implying that viscous forces
dominate inertial forces. In these situations, the fluid-
mediated hydrodynamic interactions are fully encoded in
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the mobility tensor, which linearly couples the velocities
of microparticles to the forces and torques exerted on
them [17–19]. Even for simple geometric confinements,
finding closed analytical solutions of diverse flow problems
can be challenging. Most theoretical approaches are based
on the method of images, consisting of a set of (typically
higher-order) singularities that are required to satisfy the
prescribed boundary conditions at the confining bound-
aries [20]. Using this approach, the solution of the Stokes
equations in the presence of a point force singularity act-
ing in a fluid domain bounded by a rigid spherical cavity
has been obtained by Oseen [21]. Extensions of Oseen’s so-
lution have further been proposed [22–29]. A particularly
more compliant solution that separately considers both
axisymmetric and asymmetric Stokeslets has later been
presented by Maul and Kim [30, 31]. Meanwhile, the hy-
drodynamic coupling and rotational mobilities have been
calculated for point-like particles [32]. In this context, the
low-Reynolds-number swimming inside spherical contain-
ers has also attracted some attention [33–38].

In this manuscript, we examine the slow transla-
tional motion of a small colloidal particle moving inside
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a large spherical elastic cavity (that itself is floating in
an infinitely-extended viscous fluid). This setup may be
viewed as a relevant model system for transport processes
within biological media, such as elastic cell membranes.
The cavity membrane is modeled as a two-dimensional
hyperelastic sheet, endowed with resistance toward shear
elasticity and bending rigidity. This model has previously
been employed to address the effect of elastic confinements
on the diffusive behavior of colloidal particles moving close
to planar [39,40] or curved elastic membranes [41–44].

The present article is a natural extension of a preced-
ing paper [45] (hereinafter referred to as part I), where
the axisymmetric motion was examined. The goal of the
current study is to supplement and complement our pre-
vious results by quantifying the effect of the confining
elastic cavity on the asymmetric motion of an encapsu-
lated particle located at arbitrary position within the cav-
ity. Our approach is based on the method of images em-
ployed by Fuentes and collaborators [46, 47], who exam-
ined theoretically the hydrodynamic interactions between
two unequally-sized spherical viscous drops at moderately
small separations. Our analytical investigations proceed
through the calculation of Green’s functions associated
with a point force acting inside a spherical elastic cavity.
The problem treated here does not possess the symmetry
properties of the simpler axisymmetric case considered in
part I. This makes it necessary to employ an alternative
mathematical framework to obtain the solution of the flow
problem for the asymmetric case. The calculated hydro-
dynamic flow field is used to determine the frequency-
dependent mobility functions for an enclosed point parti-
cle. This approximation is reasonable if the separation dis-
tance between the particle and the cavity surface is large
compared to the particle size. Particularly, inside our de-
formable cavity, the mobility in the quasi-steady limit of
vanishing frequency is shown to be always larger than the
one predicted inside a rigid cavity with no-slip boundary
condition. Our theoretical results favorably compare to
numerical simulations.

The remainder of the paper is organized as follows. In
sect. 2, we use the multipole expansion method to find
solutions of the elastohydrodynamic problem for the fluid
inside and outside the cavity. We then provide in sect. 3
analytical expressions of the hydrodynamic self-mobility
function for a particle moving tangent to the surface of
the cavity. In sect. 4, we assess the motion of the large
cavity and determine the deformation field induced by the
motion of the particle. We provide in sect. 5 concluding
remarks summarizing our findings. The appendix contains
explicit expressions for the series coefficients arising from
the multipole expansion.

2 Singularity solution

We examine the low-Reynolds-number motion of a small
sphere of radius b situated inside a large spherical elastic
cavity of radius a. The fluid inside and outside the cavity
is characterized by a constant dynamic viscosity η, and
the flow is assumed to be incompressible. The center of

Fig. 1. Graphical illustration of the system setup. A small
spherical particle of radius b is located at x2 = Rez inside
an elastic spherical cavity of radius a positioned at x1. The
fluid on both sides of the cavity is characterized by a constant
dynamic viscosity η. In an asymmetric configuration, the force
is directed perpendicular to the unit vector d = (x1 − x2)/R.

the cavity at x1 coincides with the origin of the spherical
coordinate system. The solid particle located at position
x2 = Rez is moving under the action of an asymmetric
external force F ⊥ ez. An illustration of the system under
consideration is shown in fig. 1.

The physical problem is thus equivalent to solving the
forced Stokes equations inside the cavity [17,18],

η∇2v(i) − ∇p(i) + F δ (x − x2) = 0, (1a)

∇ · v(i) = 0, (1b)

and homogeneous (force-free) equations for the outer fluid,

η∇2v(o) − ∇p(o) = 0, (2a)

∇ · v(o) = 0, (2b)

wherein v(i) and v(o) denote the flow velocity fields for the
inner and outer fluids, respectively, and p(i) and p(o) are
the corresponding pressure fields. Equations (1) and (2)
are subject to the regularity conditions

∣
∣
∣v(i)

∣
∣
∣ < ∞ as r → 0, (3a)

v(o) → 0 as r → ∞, (3b)

in addition to the standard boundary conditions of conti-
nuity of the velocity field and discontinuity of the hydro-
dynamic stresses at the cavity surface. In the present work,
we assume that the cavity undergoes a small deformation
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only, so that the boundary conditions are evaluated at the
undeformed surface of reference at r = a. Specifically,

v(o) − v(i)
∣
∣
∣
r=a

= 0, (4a)
(

σ(o) − σ(i)
)

· er

∣
∣
∣
r=a

= ΔfS + ΔfB, (4b)

where σ = −pI + 2ηE is the viscous stress tensor. Here,
E = (∇v +∇vT)/2 denotes the rate-of-strain tensor, the
components of which are given in spherical coordinates by

σθr = η

(

vθ,r −
vθ + vr,θ

r

)

, (5a)

σφr = η

(

vφ,r +
vr,φ − vφ

r sin θ

)

, (5b)

σrr = −p + 2ηvr,r, (5c)

where φ and θ, respectively, denote the azimuthal and
polar angles, such that (φ, θ) ∈ [0, 2π) × [0, π] describes
a point on the surface of the unit sphere. Furthermore,
by convention, indices after a comma stand for the cor-
responding partial derivatives, e.g., vr,r = ∂vr/∂r. Addi-
tionally, ΔfS and ΔfB denote the traction jumps stem-
ming from shear and bending deformation modes, respec-
tively. We further remark that, if the membrane cavity
undergoes a large deformation, the boundary conditions
should rather be evaluated at the displaced membrane po-
sitions, see, e.g., refs. [48–54].

In this work, we model the elastic cavity as a spherical
hyperelastic shell of vanishing thickness, the deformation
of which is governed by the shear elasticity model pro-
posed by Skalak [55] that is commonly employed when
modeling, e.g., the membranes of red blood cells [56, 57].
Specifically, the areal strain energy density of the Skalak
model is given by [58]

E =
κS

12
(

(I2
1 + 2I1 − 2I2) + CI2

2

)

, (6)

where I1 and I2 stand for the invariants of the right
Cauchy-Green deformation tensor [59,60], and C = κA/κS

is the Skalak coefficient representing the ratio between the
area dilatation modulus κA and shear modulus κS [55]. For
C = 1, the Skalak model is equivalent to the classical Neo-
Hookean model for small membrane deformations [61].

Accordingly, the linearized traction jump due to shear
is expressed in terms of the deformation field u, and can
be split into an axisymmetric and an asymmetric part as

ΔfS = ΔfS
∣
∣
Axi

+ ΔfS
∣
∣
Asy

, (7)

where

ΔfS
θ

∣
∣
Axi

= −2κS

3
(

2ξ−ur,θ + λ (uθ,θθ + uθ,θ cot θ)

−uθ

(

λ cot2 θ + λ − 1
) )

,

ΔfS
φ

∣
∣
Axi

= 0,

ΔfS
r

∣
∣
Axi

=
4κS

3
ξ− (2ur + uθ,θ + uθ cot θ) ,

and

ΔfS
θ

∣
∣
Asy

=−2κS

3

(

ξ−
uφ,φθ

sin θ
+

uθ,φφ

2 sin2 θ
− ξ+

cot θ

sin θ
uφ,φ

)

,

ΔfS
φ

∣
∣
Asy

=−2κS

3

(

λ
uφ,φφ

sin2 θ
+

uφ,θθ

2
+

ξ−
sin θ

(2ur,φ+uθ,φθ)

+
(

1 − cot2 θ
) uφ

2
+

uφ,θ

2
cot θ+ξ+

cot θ

sin θ
uθ,φ

)

,

ΔfS
r

∣
∣
Asy

=
4κS

3
ξ−

sin θ
uφ,φ,

for the axisymmetric and asymmetric parts, respectively.
Here, the asymmetric part includes all terms that depend
on uφ or involve derivatives with respect to φ. Moreover,
we have defined

λ : = 1 + C = 1 +
κA

κS
, (8a)

ξ± = λ ± 1
2

. (8b)

In addition, we introduce a resistance toward bend-
ing following the Helfrich model [62–64]. The areal bend-
ing energy density thus is described by a curvature-elastic
continuum model of a quadratic form given by [65]

EB = 2κB (H − H0)
2
, (9)

wherein κB denotes the bending modulus, H0 stands
for the spontaneous curvature (here taken as the corre-
sponding value for the initial undeformed sphere), and
H := bα

α/2 (summing over repeated indices) is the mean
curvature, with bβ

α being the corresponding component of
the curvature tensor [66].

The traction jump equation across the membrane as
derived from this model reads [65]

Δf = −2κB

(

2(H2 − K + H0H) + Δ‖
)

(H−H0)n, (10)

where n is the outward-pointing unit normal vector to
the spherical cavity, K := det bβ

α stands for the Gaussian
curvature, and Δ‖ denotes the Laplace-Beltrami opera-
tor [67]. Accordingly, bending introduces a traction jump
along the normal direction which can be split into an ax-
isymmetric and an asymmetric part as

ΔfB
r = ΔfB

r

∣
∣
Axi

+ ΔfB
r

∣
∣
Asy

, (11)

where

ΔfB
r

∣
∣
Axi

= κB

(

4ur + T
(

5 + T 2
)

ur,θ

+
(

2 − T 2
)

ur,θθ + 2Tur,θθθ + ur,θθθθ

)

,

ΔfB
r

∣
∣
Asy

= κB

(

1 + T 2
) (

2ur,φφθθ + 2
(

3 + 2T 2
)

ur,φφ

−2Tur,φφθ +
(

1 + T 2
)

ur,φφφφ

)

,

and where we have used the shorthand notation T :=
cot θ. We note that bending as derived from Helfrich’s
model does not introduce discontinuities along the tan-
gential directions. Accordingly, ΔfB

θ = ΔfB
φ = 0. These
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traction jumps reduce to the axisymmetric case consid-
ered in part I [45] for which ΔfS|Asy = ΔfB|Asy = 0. In
this situation, uφ = 0 and all derivatives with respect to
φ drop out.

A closure of the problem is achieved by requiring a
no-slip boundary condition at the undisplaced membrane.
Accordingly, the velocity field at r = a is assumed to be
equal to that of the displaced material points of the elastic
cavity, i.e.,

v|r=a =
du

dt
, (12)

which can be written in Fourier space as

v|r=a = iω u. (13)

Our resolution methodology proceeds through writing
the solution of the elastohydrodynamic problem inside the
cavity as

v(i) = vS + v∗, (14)

where vS = G(x − x2) · F represents the velocity field
induced by a point-force singularity acting at position x2

in an unbounded fluid – i.e., in the absence of the cav-
ity – and v∗ is the complementary term that is required
to satisfy the imposed boundary conditions at the cavity.
This type of complementary solution is often termed as
the image system solution or sometimes known under the
name of reflected flow field [20,68].

We now briefly outline the main steps in our resolu-
tion approach. First, we express the Stokeslet solution in
terms of harmonics, which are then rewritten in terms of
harmonics relative to the origin via the Legendre expan-
sion [69]. Second, the reflected flow field and the solution
outside the cavity are expressed using Lamb’s general so-
lution [70] with interior and exterior harmonics, respec-
tively. This gives us a complete solution form involving a
set of unknown series coefficients. These coefficients are
determined from the underlying boundary conditions im-
posed at the cavity surface. Finally, the solution of the
flow problem can then be employed to assess the effect
of the confining cavity on the motion of the encapsulated
spherical particle.

2.1 Stokeslet representation

For the remainder of this paper, we will scale all the
lengths by the cavity radius a. In analogy with part I,
we begin by writing the Stokeslet singularity located at
position x2 as

vS = G (x − x2) · F =
1

8πη

(
1
s

+
ss

s3

)

· F , (15)

where we have defined s := x−x2 and s := |s|. Here, 1 is
the unit tensor. Using Legendre expansion, the harmonics
located at x2 can conveniently be expressed in terms of
harmonics centered at x1 as

1
s

=
∞∑

n=0

Rnϕn(r, θ). (16)

Here, ϕn are harmonics of degree n, which are related to
Legendre polynomials by [71]

ϕn(r, θ) :=
(d · ∇)n

n!
1
r

=
1

rn+1
Pn(cos θ),

where d := (x1 − x2)/R is a unit vector, r = x − x1

is the position vector in the spherical coordinate system
centered at the cavity center, and r := |r|. The dyadic
product in eq. (15) can be written as

ss

s3
= s∇2

(
1
s

)

, (17)

with ∇2 := ∂/∂x2. By making use of eq. (16), the deriva-
tives with respect to x2 can readily be taken care of by
noting that

∇2R
n = −nRn−1d, (d · ∇2) d = 0. (18)

In the present work, we focus our attention on the
asymmetric situation in which the force is purely tangent
to the membrane surface and thus F · d = 0. By taking
this into consideration, the Stokeslet stated in eq. (15) can
therefore be expressed as

8πηvS = F

∞∑

n=0

Rn ϕn − r

∞∑

n=1

Rn−1 (F · ∇) ϕn−1

−d

∞∑

n=1

Rn (F · ∇) ϕn−1.

Accordingly, the Stokeslet solution has now been ex-
pressed in terms of spherical harmonics positioned at the
origin. By defining t = F × d, we have the recurrence
relation

d(F · ∇)ϕn = (t × ∇)ϕn + (n + 1)Fϕn+1. (19)

In addition, imposing F · d = 0 yields

(2n + 1)(n + 1)Fϕn = −(2n + 3)rψn − r2∇ψn

+∇ψn−2 − (2n + 1)γn−1, (20)

where the harmonics ψn and γn are, respectively, defined
as

ψn = (F · ∇)ϕn, γn = (t × ∇)ϕn. (21)

These are related to each other via ψn = γn · d.
In the following, the functions ∇ψn, rψn, and γn are

chosen as vector basis functions to be used for expanding
the velocity and pressure fields. Accordingly, the Stokeslet
solution can be written in a final form as

8πηvS =
∞∑

n=1

(
(n − 2)Rn−1

(2n − 1)n
r2− nRn+1

(n + 2)(2n + 3)

)

∇ψn−1

− 2Rn

n + 1
γn−1 −

2(n + 1)Rn−1

n(2n − 1)
rψn−1. (22)

We next proceed to deriving analogous expansions for
the flow fields inside and outside the spherical cavity.
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2.2 The image system solution

The solution for the flow field in a spherical domain
possesses a generic form known as Lamb’s general solu-
tion [18,70]. It involves three sets of unknown coefficients
to be determined from the underlying boundary condi-
tions, and can be written for an asymmetric situation as

8πηv∗ =
∞∑

n=1

(anσn1 + bnσn2 + cnσn3) , (23)

where we have defined

σn1 =
n + 3
2n

r2n+3∇ψn−1+
(n + 1)(2n + 3)

2n
r2n+1rψn−1,

σn2 =
r2n+1

n
∇ψn−1 +

2n + 1
n

r2n−1rψn−1,

σn3 =r2n−1γn−1 + (2n − 1)r2n−3(t × r)ϕn−1.

Here, an, bn, and cn are free parameters that will be
determined from the boundary conditions. It is worth not-
ing that the present solution involves three unknown coef-
ficients for each n, while the simpler axisymmetric motion
considered in part I only involves two sets of coefficients.
Unfortunately, this also means that we are not able to
proceed as for the axisymmetric case, but have to derive
the solutions using a notably different framework.

2.3 The exterior solution

The solution on the outside of the spherical cavity can
be expressed in terms of exterior harmonics using Lamb’s
general solution as

8πηv(o) =
∞∑

n=1

(

An

(
n − 2

2(n + 1)
r2∇ψn−1 − rψn−1

)

− Bn

n + 1
∇ψn−1 + Cnγn−1

)

. (24)

The latter expression can be deduced from the solution
for the inner fluid given by eq. (23) by making use of the
substitution n ← −(n + 1).

The six unknown coefficients (an, bn, and cn for the
image system solution, and An, Bn, and Cn for the ex-
terior flow) can now be determined from the underlying
boundary conditions of continuity of the flow velocity field
and discontinuity of the hydrodynamic stress tensor across
the membrane.

2.4 Velocity projections

Before proceeding with the determination of the unknown
series coefficients, it is convenient to state explicitly the
projected expressions of the velocity field along the radial
and tangential directions.

2.4.1 Radial velocities

The radial projection of the three vector basis functions
are given by

er · ∇ψn−1 = −n + 1
r

ψn−1, (25a)

er · rψn−1 = rψn−1, (25b)

er · γn−1 = −1
r

ψn−2. (25c)

In addition to that, since er and r are collinear, the scalar
triple product er · (t × r)ϕn−1 vanishes. Moreover, the
projection of eq. (20) onto the radial direction yields

er · Fϕn =
1

2n + 1

(
ψn−2

r
− rψn

)

. (26)

By making use of eqs. (25) and (26) in the radial pro-
jection of eqs. (22), (24), and (23), the components of the
fluid velocity fields along the radial direction can thus be
expressed in terms of the harmonics ψn as

8πηvS
r =

∞∑

n=1

(
n + 3
2n + 3

R2

r2
− n + 1

2n − 1

)

Rn−1rψn−1, (27a)

8πηv∗r =
∞∑

n=1

(
n + 1

2
anr2+bn − cn+1

)

r2nψn−1, (27b)

8πηv(o)
r =

∞∑

n=1

(

−nr

2
An +

Bn

r
− Cn+1

r

)

ψn−1. (27c)

2.4.2 Tangential velocities

As for the tangential direction, we define the projection
operator Π := 1−erer, which projects vectors on a plane
tangent to the surface of the spherical cavity. By applying
the projection operator to eq. (20), we readily obtain

(ΠF )ϕn =
1

n + 1

(
1

2n + 1
(

Ψn−2 − r2Ψn

)

− Γn−1

)

,

(28)
where we have defined the vector harmonics

Γn := Πγn, Ψn := Π∇ψn.

Additionally, the tangential projection of (t×r)ϕn can be
taken care of by noting that

Π(t × r)ϕn−1 =
1

2n − 1

(
1

n − 1
(

Ψn−4 − r2Ψn−2

)

−n − 2
n − 1

Γn−3 − r2 Γn−1

)

. (29)

Applying the projection relations stated by eqs. (28)
and (29) to eqs. (22), (24), and (23), we finally obtain

see eqs. (30) on the next page



Page 6 of 14 Eur. Phys. J. E (2019) 42: 89

8πη ΠvS =

∞
X

n=1

„

(n − 2) Rn−1

(2n − 1)n
r2 − nRn+1

(n + 2)(2n + 3)

«

Ψn−1 +

∞
X

n=0

−2Rn+1

n + 2
Γn, (30a)

8πη Πv∗ =
∞
X

n=1

„

r2n+3

n + 2
cn+3 −

r2n+1

n
cn+1 +

r2n+1

n
bn +

n + 3

2n
r2n+3an

«

Ψn−1 +
∞
X

n=0

−n + 1

n + 2
r2n+3cn+3 Γn, (30b)

8πη Πv(o) =
∞
X

n=1

1

n + 1

„

n − 2

2
r2An − Bn

«

Ψn−1 +
∞
X

n=0

Cn+1Γn. (30c)

2.5 Determination of the series coefficients

To determine the unknown coefficients, we have to make
recourse to the orthogonality properties of spherical har-
monics [72]. For this purpose, we introduce the follow-
ing notation to describe the average of a given quan-
tity Q(φ, θ) over the surface of a sphere. Specifically, this
means

〈Q〉 :=
1
2π

∫ 2π

0

∫ π

0

Q(φ, θ) sin θ dθ dφ. (31)

At the surface of the cavity, i.e., for r = 1, the har-
monics ϕn and ψn satisfy the orthogonality relations

〈ϕm−1ϕn−1〉|r=1 =
2

2n + 1
δmn, (32a)

〈ψm−1ψn−1〉|r=1 =
n(n + 1)
2n + 1

δmn, (32b)

where δmn denotes the Kronecker symbol, i.e., the above
terms vanish for m 	= n. Moreover, the vector harmonics
Ψn−1 and Γn satisfy at r = 1 the orthogonality properties

〈Ψm−1 · Ψn−1〉|r=1 =
n2(n + 1)2

2n + 1
δmn, (33a)

〈Γm · Γn〉|r=1 =
4(n + 1)3

(2n + 1)(2n + 3)
δmn, (33b)

〈Ψm−1 · Γn〉|r=1 =
n2(n + 1)
2n + 1

δmn. (33c)

We further note that their derivatives with respect to r
(needed in the calculation of the stress jumps) satisfy the
recurrence relations

(Ψn−1,r + (n + 2)Ψn−1)|r=1 = 0, (34a)
(Γn,r + (n + 2)Γn)|r=1 = 0. (34b)

2.5.1 Pressure field

Knowing the velocity fields on both sides of the elastic
cavity, the inner and outer pressure fields can readily be
calculated from the fluid motion equations. The solution
inside the spherical cavity, which comprises both contri-
butions from the Stokeslet and the image system solution,
can be expressed in terms of a multipole expansion as

8πp(i) =
∞∑

n=1

(

−2Rn−1 +
(n + 1)(2n + 3)

n
r2n+1an

)

ψn−1.

Outside the cavity, only the exterior harmonics that decay
at larger distances should be accounted for, thus excluding
contributions of the form r2n+1ψn−1. After some algebra,
we obtain

8πp(o) =
∞∑

n=1

−n(2n − 1)
n + 1

Anψn−1.

2.5.2 Continuity of velocity

The projections of the fluid velocity field along the radial
and tangential directions can be presented in a generic
form as

v(q)
r =

∞∑

n=1

ρ(q)
n ψn−1, (35a)

Πv(q) =
∞∑

n=1

α(q)
n Ψn−1 +

∞∑

n=0

β(q)
n Γn, (35b)

wherein q = i holds for the fluid on the inside, and q = o

for the fluid on the outside. Moreover, ρ
(q)
n , α

(q)
n , and β

(q)
n ,

for q ∈ {i, o}, are radially symmetric series functions that
can readily be obtained by identification with eqs. (27)
and (30) giving the radial and tangential velocities, re-
spectively.

The unknown coefficients inside the cavity can conve-
niently be expressed in terms of those outside thanks to
the natural continuity of the velocity field across the mem-
brane. By making use of the orthogonality properties of
the basis functions, we obtain

an =
n(2n − 1)
2(n + 1)

An − 2n + 1
n + 1

Bn +
2n + 1
n + 1

Cn+1

+Rn−1

(
(n + 3)(2n + 1)
(n + 1)(2n + 3)

R2 − 1
)

, (36a)

bn =−n(2n + 1)
4

An +
2n + 3

2
Bn − 2n + 3

2
Cn+1

−nCn−1

n − 1
+Rn−1

(
2n3 + n2 − 10n + 3
2(2n − 1)(n − 1)

−n + 3
2

R2

)

,

(36b)

cn =− (n − 1)Cn−2 + 2Rn−2

n − 2
. (36c)
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α̃n +
β̃n

n + 1

˛

˛

˛

˛

r=1

= α

  

α(o)
n +

β
(o)
n

n + 1

!

`

n(n + 1)λ − 1
´

− (2λ − 1)ρ(o)
n

!

˛

˛

˛

˛

˛

r=1

, (39a)

α̃n +
4(n + 1)2

(2n + 3)n2
β̃n

˛

˛

˛

˛

r=1

= α

 

`

n(n + 1)λ − 1
´

α(o)
n − (2λ − 1)ρ(o)

n +

„

12 + 22n + 13n2 + 2n3

2n(2n + 3)
+ λn

«

β(o)
n

!

˛

˛

˛

˛

˛

r=1

. (39b)

2.5.3 Discontinuity of stress tensor

Expressions for the unknown coefficients An, Bn, and Cn

associated with the outer fluid can be obtained from the
traction jump equations across the membrane. For the
sake of clarity, and to make the calculations traceable,
we will consider in the following the effects of shear and
bending deformation modes separately.

a) Pure shear. The tangential traction jump equations
due to shear can conveniently be cast in the form

∞∑

n=1

α̃nΨn−1 +
∞∑

n=0

β̃nΓn

∣
∣
∣
∣
∣
r=1

=

∞∑

n=1

α(o)
n Fn +

∞∑

n=0

β(o)
n Gn +

∞∑

n=1

ρ(o)
n fn

∣
∣
∣
∣
∣
r=1

, (37)

where we have defined

α̃n = α(o)
n,r − α(i)

n,r − (n + 2)
(

α(o)
n − α(i)

n

)

,

β̃n = β(o)
n,r − β(i)

n,r − (n + 2)
(

β(o)
n − β(i)

n

)

.

Here, Fn, Gn, and fn are known series vectors, the ex-
pressions of which can be obtained by identification with
eq. (4b) upon substitution of the tangential velocity field
from eq. (30). They satisfy the orthogonality relations

〈Fn · Ψm−1〉|r=1 = n(n + 1)
(

n(n + 1)λ − 1
)

Snδmn,

〈Gn · Ψm−1〉|r=1 = n
(

n(n + 1)λ − 1
)

Snδmn,

〈fn · Ψm−1〉|r=1 = −n(n + 1) (2λ − 1) Snδmn,

with the basis vector harmonics Ψm−1, and

〈Fn · Γm〉|r=1 = n
(

n(n + 1)λ − 1
)

Snδmn,

〈Gn · Γm〉|r=1 =
SnWn

2n + 3
δmn,

〈fn · Γm〉|r=1 = −n (2λ − 1) Snδmn,

with Γn, where we have defined

Sn =
αn(n + 1)

2n + 1
,

Wn = 6 + 11n +
13
2

n2 + n3 + n2(2n + 3)λ,

with

α =
2κS

3ηiω
(38)

being the shear number. Combining these equations with
the orthogonality relations given by eqs. (33) yields

see eqs. (39) above

Using our representation, the normal traction jump
due to shear reads

∞∑

n=1

(

p(o)
n − p(i)

n

)

ψn−1

∣
∣
∣
∣
∣
r=1

=

α(2λ − 1)
∞∑

n=1

(

ρ(o)
n,r − (n + 1)ρ(o)

n

)

ψn−1

∣
∣
∣
∣
∣
r=1

, (40)

which, upon using the orthogonality property of ψn−1,
yields

p(o)
n − p(i)

n

∣
∣
∣
r=1

= α(2λ − 1)
(

ρ(o)
n,r − (n + 1)ρ(o)

n

)∣
∣
∣
r=1

.

(41)
By combining eqs. (36), (39), and (41), the unknown

series coefficients for the outer fluid can be obtained and
cast in the form

An = − (n + 1)(2n + 1)
K3

(

K1 Rn+1 + K2 Rn−1
)

, (42a)

Bn =
K4

K5
An +

1
K7

(

K6 Rn+1 + K8 Rn−1
)

, (42b)

Cn = −2n + 1
K9

Rn, (42c)

where K1, . . . ,K9 are rather complex functions of α, λ and
n, the expressions of which are explicitly provided in the
appendix. In the limit iα → ∞, which physically corre-
sponds to a cavity membrane with an infinite shear elas-
ticity modulus (or equivalently to a vanishing actuation
frequency), the expressions of the series coefficients inside
the cavity reduce to

lim
α→∞

an =
(n + 3)(2n + 1)
(n + 1)(2n + 3)

Rn+1 − Rn−1, (43a)

lim
α→∞

bn =
2n3 + n2 − 10n + 3
2(n − 1)(2n − 1)

Rn−1 − n + 3
2

Rn+1,

(43b)

lim
α→∞

cn = − 2
n − 2

Rn−2. (43c)

In this limit, An, Bn, and Cn vanish except for n = 1,
where (A1, B1, C1) = (4, 2/3,−R). It is worthwhile to note
that the coefficients given by eqs. (43) correspond to the
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solution for an asymmetric point force acting inside a rigid
cavity with no-slip boundary conditions.

b) Pure bending. We now use a similar resolution pro-
cedure to determine the unknown series coefficients for a
cavity membrane with pure bending resistance, such as
that of a fluid vesicle or a liposome used as a vehicle for
pharmaceutical drugs [73–75]. Since the tangential com-
ponents of the traction are continuous, we obtain

∞∑

n=1

α̃nΨn−1 +
∞∑

n=0

β̃nΓn

∣
∣
∣
∣
∣
r=1

= 0, (44)

which, after applying the orthogonality properties given
by eqs. (33), leads to

α̃n|r=1 = β̃n|r=1 = 0. (45)

The normal traction jump due to bending as derived
from the Helfrich model reads

∞∑

n=1

(

p(o)
n − p(i)

n

)

ψn−1

∣
∣
∣
r=1

=
∞∑

n=1

−ρ(o)
n Hn

∣
∣
∣
∣
∣
r=1

, (46)

which, upon using the orthogonality relation

〈Hnψm−1〉|r=1 = αB
n(n + 1)(n − 1)2(n + 2)2

2n + 1
δmn, (47)

leads to

p(o)
n − p(i)

n

∣
∣
∣
r=1

= −αB(n − 1)2(n + 2)2ρ(o)
n

∣
∣
∣
r=1

, (48)

wherein
αB =

κB

ηiω
(49)

denotes the bending number.
By combining eqs. (45) and (48) with eqs. (36), the

unknown series coefficients for the fluid on the outside
can be cast in the form

An =
n + 1
Q3

(

Q1R
n+1 + Q2R

n−1
)

, (50a)

Bn =
1

Q7

(

Q4An + Q5R
n+1 + Q6R

n−1
)

, (50b)

Cn = − 2
n + 1

Rn, (50c)

where Q1, . . . , Q7 are complicated functions of αB, λ, and
n which are given in the Appendix. In the limit iαB → ∞,
corresponding to an infinite membrane bending modulus,
or to a vanishing forcing frequency, the series coefficients
are given by

lim
αB→∞

an =
(n + 3)(2n − 1)
2(n + 1)(2n + 3)

Rn+1 − Rn−1

2
, (51a)

lim
αB→∞

bn =−n + 3
4

Rn+1 +
(n + 1)(2n + 3)

4(2n − 1)
Rn−1, (51b)

lim
αB→∞

cn =0 (51c)

for the inner fluid, and

lim
αB→∞

An =
1
2n

(

(n + 3)Rn+1 − (n + 1)Rn−1
)

, (52a)

lim
αB→∞

Bn = −n + 1
4

Rn−1 +
n2 + 5n − 2

4(n + 2)
Rn+1, (52b)

lim
αB→∞

Cn = − 2
n + 1

Rn (52c)

for the outer fluid when n ≥ 2. In addition, (A1, B1, C1) =
(4, 2R2/15,−R).

c) Combined shear and bending. An analogous resolu-
tion strategy can be adopted for the determination of the
sum coefficients when the membrane is simultaneously en-
dowed with both a resistance toward shear and bending.
Analytical expressions of the coefficients can readily be ob-
tained using computer algebra systems but these are not
provided here due to their complexity and lengthiness. It is
noteworthy that, in contrast to planar elastic membranes,
a coupling between shear and bending deformation modes
has been observed for curved membranes.

3 Hydrodynamic mobility

The calculation of the flow field presented in the previ-
ous section can be utilized to assess the effect of the con-
fining cavity on the motion of the encapsulated particle.
This effect is quantified by the hydrodynamic self-mobility
function μ, which relates the translational velocity of a
colloidal particle to the force exerted on its surface.

We now assume an arbitrary time-dependent external
force F2 to be acting on the spherical particle positioned
at x2. The zeroth-order solution for the translational ve-
locity of the solid particle can readily be obtained from the
Stokeslet solution as V

(0)
2 = μ0F2, where μ0 = 1/(6πηb)

is the usual Stokes mobility for a sphere moving in an
unconfined viscous fluid. The leading-order correction to
the hydrodynamic self-mobility can be calculated from the
reflected flow field as

v∗|x=x2
= ΔμF2. (53)

The latter result is often denominated as the mobility
correction in the point-particle approximation [76, 77].
Higher-order correction terms can be obtained by em-
ploying a combination of the multipole expansion and the
Faxén theorem [78, 79]. However, we will show in the se-
quel that this approximation, despite its simplicity, can
surprisingly lead to a good prediction of the mobility cor-
rection when comparing with fully-resolved computer sim-
ulations.

By making use of the relations

∇ψn−1|r=x2
= −n(n + 1)

2Rn+2
F2, (54a)

γn−1|r=x2
= − n

Rn+1
F2, (54b)

(t × r) ϕn−1|r=x2
=

F2

Rn−1
, (54c)

rψn−1|r=x2
= 0, (54d)
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in addition to inserting eq. (23) into eq. (53), we write the
scaled mobility correction as

Δμ

μ0
=

3b

4

∞∑

n=1

(

− (n + 1)(n + 3)
4

R3an

−n + 1
2

Rbn + (n − 1)cn

)

Rn−2, (55)

where we have used the relation P ′
n(1) = n(n+1)/2 for the

derivative at the end point. We further remark that R ∈
[0, 1) because all distances have been scaled by the cavity
radius a. The general term in the latter series, which we
denote by fn(α,R), has an asymptotic behavior at infinity
that does not depend on the shear and bending properties
of the membrane. Specifically, we obtain as n → ∞

fn(α,R) =
3b

16
n2

(

1 − R2
)2

R2n−2 + O
(

nR2n
)

. (56)

In particular, for R = 0, the mobility correction sim-
plifies to

Δμ

μ0

∣
∣
∣
∣
R=0

= −3b

4
(b1 − c2) = −5b

4
α(2λ − 1)

5 + α(2λ − 1)
, (57)

in full agreement with the result obtained in part I for
a particle concentric with the elastic cavity. We recall
that the shear number α has previously been defined by
eq. (38), and the dimensionless parameter λ associated
with the Skalak ratio has been defined by eq. (8a).

In the quasi-steady limit of vanishing frequency, the
scaled correction to the mobility reads

lim
α→∞

Δμ

μ0
=

ΔμR

μ0
+ b

(

1 +
3R2

4

)

, (58)

wherein ΔμR/μ0 is the scaled correction to the particle
mobility associated with asymmetric motion inside a rigid
spherical cavity. This correction can readily be obtained
by substituting the series coefficients given by eq. (43) into
eq. (55) to obtain

ΔμR

μ0
=

∞∑

n=1

lim
α→∞

Δμ

μ0
= − 9b

16
4 − 3R2 + R4

1 − R2
, (59)

in agreement with the results by Aponte-Rivera and
Zia [80–82], who provided the elements of the grand mo-
bility tensor for general motion inside a rigid cavity. In-
terestingly, the particle mobility in the limit of infinite
stiffness is found to be always larger than that inside a
rigid cavity with no-slip velocity boundary condition on
its interior surface. Mathematically, this behavior can be
justified by the fact that the limit and sum operators can-
not generally be swapped in every situation. In fact, using
Fatou’s Lemma [83], it can be shown that

lim
α→∞

∞∑

n=1

|fn(α,R)| ≥
∞∑

n=1

lim
α→∞

|fn(α,R)| . (60)

That is, evaluating the sum over n before taking the limit
α → ∞ (as for an elastic cavity) could lead, under some
circumstances, to a larger value in magnitude compared
to the case in which the sum is taken after taking the limit
(as it is the case for a rigid cavity). This is explained by
the fact that the dominated convergence theorem does not
apply for the series function at hand [84].

We further mention that the same limit given by
eq. (58) is obtained when the cavity membrane only pos-
sesses resistance toward shear. In the limit of infinite cav-
ity radius, the classic result for motion parallel to a planar
hard wall is recovered. Specifically,

lim
a→∞

ΔμR

μ0
= − 9

16
b

h
, (61)

wherein h = 1−R denotes the distance between the center
of the particle and the closest point of the cavity mem-
brane.

Next, we consider an idealized cavity membrane with
pure bending resistance and calculate the correction to
the self-mobility function in the limit of αB → ∞, cor-
responding to an infinite bending modulus or to particle
motion in the quasi-steady limit of vanishing frequency.
After some algebra, we obtain

lim
αB→∞

Δμ

μ0
=

ΔμD

μ0
+

3b

40
(

5 − 2R2
)2

, (62)

wherein ΔμD/μ0 is the scaled correction to the particle
mobility for motion inside a spherical drop of infinite sur-
face tension (with vanishing normal velocity on its sur-
face), given by

ΔμD

μ0
=

∞∑

n=1

lim
αB→∞

Δμ

μ0
= − 3b

32
20 − 15R2 − 3R4

1 − R2
. (63)

Again, the particle mobility in the vanishing-frequency
limit for a membrane with pure bending is found to be al-
ways larger than that inside a spherical drop. Notably,
the mobility correction vanishes in the concentric configu-
ration corresponding to R = 0 where the system behavior
is solely determined by membrane shear properties. This
is in agreement with the results of part I obtained by ex-
actly solving the fluid motion equations for an extended
particle of finite size concentric with an elastic cavity.

In the limit of infinite cavity radius, we recover the
mobility correction near a planar fluid-fluid interface,

lim
a→∞

ΔμD

μ0
= − 3

32
b

h
, (64)

in agreement with the result by Lee and Leal [85].
In the following, we assess the appropriateness and va-

lidity of our analytical calculations by direct comparison
with computer simulations based on a completed-double-
layer boundary integral method [86]. The method is per-
fectly suited for solving numerically diverse flow prob-
lems in the Stokes regime involving both rigid and elastic
boundaries. For technical details regarding the computa-
tional method and its numerical implementation, we refer
the reader to refs. [87] and [88].
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Fig. 2. Variation of the correction to the self-mobility function
inside a spherical elastic cavity (scaled by the bulk mobility)
versus the scaled frequency. The physical setup is sketched in
the inset. Squares (�) and circles (�) indicate the real and,
respectively, imaginary parts of the mobility correction as ob-
tained from the full boundary integral simulations performed
for a cavity membrane endowed with pure shear (green), pure
bending (red), or coupled shear and bending (black). Solid
and dashed lines give the corresponding analytical predictions
(as described in the main text), which closely follow the nu-
merical results. Thin black horizontal dashed lines represent
the vanishing-frequency limits. Here, b = 1/10, R = 4/5, and
κB/(κSa2) = 2/75.

To probe the effect of the confining elastic cavity on
the motion of an encapsulated particle, we present in fig. 2
the variations of the scaled correction to the self-mobility
as a function of the forcing frequency, for a cavity mem-
brane possessing only shear (green), only bending (red), or
both shear and bending deformation modes (black). Here,
the particle of radius b = 1/10 is positioned at R = 4/5
from the cavity center. We observe that the real (reactive)
part of the mobility correction (shown as dashed lines) is
a monotonically increasing function with frequency and
approaches zero for larger forcing frequencies. In contrast
to that, the imaginary (dissipative) part (shown as solid
lines) exhibits the typical bell-shaped profile which peaks
at around ω ∼ κS/(ηa). In the low-frequency regime,
the mobility correction approaches the plateau values pre-
dicted by eqs. (58) and (62) for a cavity membrane with
only shear elasticity or pure bending, respectively. Over-
all, there is strong quantitative agreement between the full
numerical solutions (symbols) and the theoretical predic-
tions. The small observed discrepancy notably for the real
part in the low-frequency regime is most probably due
to the finite size effect, because the analytical predictions
are based on the point-particle approximation, whereas
the numerical simulations necessarily account for the fi-
nite radius of the solid particle.

4 Cavity motion and membrane deformation

4.1 Pair (composite) mobility

The hydrodynamic self-mobility discussed in sect. 3 rep-
resents the particle response function to an external force.
In this regard, one can also define an analogous response
function for the whole elastic cavity and its interior, that
relates the translational velocity V1 of the cavity centroid
to the force F2 exerted on the encapsulated particle via
V1 = μP ·F2. In accordance to part I, we call the tensor μP

the pair (composite) mobility. By symmetry, V1‖F2 holds,
so that the components of μP reduce to a single entry μP

connecting the corresponding magnitudes via V1 = μPF2.
Without loss of generality, we assume in the follow-

ing that F2 is exerted along the x-direction. Accordingly,
the translational velocity of the elastic cavity can be cal-
culated by integration over the fluid domain inside the
cavity as [89]

V1(ω) =
1
Ω

∫ 1

0

dr

∫ 2π

0

dφ

∫ π

0

dθ v(i)
x (r, φ, θ, ω) r2 sin θ,

(65)
where Ω = 4π/3 is the scaled volume of the undeformed
cavity, and

v(i)
x =

(

v(i)
r sin θ + v

(i)
θ cos θ

)

cos φ − v
(i)
φ sin φ. (66)

The resulting frequency-dependent pair mobility function
is obtained as

μP = − 1
8πη

(
4R2

5
− 2 + a1 + b1 − c2

)

, (67)

so that only the term corresponding to n = 1 remains
after volume integration. Upon simplification and rear-
rangement, the result can be presented in a scaled form
as

6πημP =
3
2
− 3

5
R2 − 5 − 6R2

10
α(2λ − 1)

5 + α(2λ − 1)
, (68)

where the parameters α and λ are defined by eq. (38) and
eq. (8a), respectively.

Consequently, μP depends only on the membrane shear
properties and can be described by a simple Debye model
with a single relaxation time τ/τS = 15/(2(2λ−1)), where
τS = aη/κS is a characteristic time scale for shear. Re-
markably, the pair mobility can also become independent
of frequency for R =

√
30/6 ≈ 9/10, a value for which

6πημP = 1. Nevertheless, as R ∼ 1, it becomes essential
to ensure that the inequality R + b � 1 remains satisfied,
for the point-particle approximation employed here to be
applicable.

In fig. 3, we show the variations of the pair mobility
(scaled by 6πη) as a function of the scaled frequency. Re-
sults are shown for a cavity membrane with pure shear
(green), pure bending (red), and both shear and bend-
ing (black). The pair mobility for a bending-only mem-
brane remains unchanged upon varying the frequency and
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Fig. 3. Variation of the scaled pair mobility function (bridg-
ing between the translational velocity of the cavity and the
external force exerted on the solid particle, as sketched in the
inlet) as a function of the scaled frequency. The theoretical pre-
dictions are shown as dashed and solid lines, for the reactive
and dissipative parts, respectively. Symbols (same as fig. 2)
represent the boundary integral simulations results. The other
system parameters are the same as in fig. 2. In this plot, the
pure-shear data points (green) mostly overlap with those for
coupled shear and bending (black).

amounts to 3/2− 3R2/5. In contrast to that, the reactive
part for a membrane possessing a shear resistance shows
a logistic sigmoid curve varying between 1 (when α → ∞)
and 3/2 − 3R2/5 (when α = 0), whereas the dissipative
part exhibits a Gaussian-like – or – bell-shaped profile.
In all cases, there is strong agreement between the series-
expansion theory (solid lines) and the full numerical so-
lutions (symbols), confirming our theoretical predictions
that the pair mobility is solely dependent on membrane
shear properties (and independent of bending properties).

In analogy to the above discussion of the translational
motion of the cavity in the presence of a force acting on the
enclosed particle, one can also consider the corresponding
rotational response. The angular velocity Ω of the cavity
is (due to symmetry) of the form Ω = Ωey and has to
fulfill v(q)(r) = Ω×r at the surface of the cavity (r = 1),
with q ∈ {i, o}. After some algebra, one obtains

Ω =
3
4

〈

ey ·
(

r × v(q)
)∣
∣
∣
r=1

〉

=
FR

8πη
(69)

upon inserting our solution for the flow field, with angu-
lar brackets again denoting the surface average defined in
eq. (31). Here, we find the same value of Ω for the different
series coefficients obtained for pure shear, pure bending,
as well as combined shear and bending. Additionally, we
note that only the term ∝ Γ0 in eqs. (35) contributes to
the rotation of the cavity, while all other terms lead to
vanishing contributions. Accordingly, the angular velocity
effectively stems only from the Stokeslet solution and does
not depend on membrane shear and bending properties.

4.2 Membrane deformation

The elastic deformation of the membrane can be assessed
by calculating the displacement field u(θ, φ, ω) resulting
from the external force acting on the particle. This field
quantifies the motion of the material points of the cavity
membrane relative to their initial positions in the unde-
formed state. In the small deformation regime, the dis-
placement field can readily be obtained from the no-slip
boundary condition given by eq. (13), to obtain

8πηiω ur =
∞∑

n=1

(

−n

2
An + Bn − Cn+1

)

ψn−1,

8πηiω Πu =
∞∑

n=1

(
n − 2

2
An − Bn

)
Ψn−1

n + 1
+

∞∑

n=0

Cn+1Γn.

We now define the reaction tensor R, a frequency-
dependent tensorial quantity relating the membrane dis-
placement field of the cavity to the asymmetric point force
as [77]

u(φ, θ, ω) = R(φ, θ, ω) · F (ω). (70)

By considering a harmonic oscillation of the form F =
Keiω0t, of amplitude K and frequency ω0, the membrane
displacement in real space can readily be obtained from
inverse Fourier transform as [90]

u(φ, θ, t) = R(φ, θ, ω0) · Keiω0t. (71)

An exemplary displacement field is displayed in fig. 4
as a function of the polar angle for three different forc-
ing frequencies. The azimuthal angle φ is chosen to rep-
resent the planes of maximum deformation for the re-
spective components, as described in the figure caption.
Here, the cavity membrane is endowed with both shear
and bending rigidities. We observe that the radial com-
ponent ur vanishes at the upper pole and shows a peak
around θ/π ≈ 1/8, before decaying quasi-linearly to zero
upon increasing θ. The in-plane displacements uθ and uφ

display a maximum value at the upper pole, and monoton-
ically decay as θ increases. Our analytical predictions are
in good agreement with numerical simulations. Notably,
we observe a small deviation in the plot for ur shown
in panel (a) which is most probably due to a finite-sized
effect. In contrast to the axisymmetric case discussed in
part I, the deformation here is (in general) largest in the
tangential direction.

In typical biological situations, the forces that could
be exerted by optical tweezers on particles are of the or-
der of 1 pN [91]. The spherical cavity may have a radius of
10−6 m and a shear modulus of κS = 5 × 10−6 N/m [56].
For a scaled frequency (3ηaω)/(2κS) = 4, the membrane
cavity is expected to undergo a maximal deformation
of only about 1% of its initial undeformed radius. Con-
sequently, cavity deformations and deviations from the
spherical shape are notably small.
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Fig. 4. Scaled membrane displacement field. (a) Radial,
(b) circumferential, and (c) azimuthal components of the dis-
placement field as a function of the polar angle θ for three
scaled forcing frequencies (with β = (3ηaω)/(2κS)), evaluated
at quarter oscillation period for tω0 = π/2. The components
of the local displacement fields are shown for their respective
planes of maximum deformation (φ = 0 for ur and uθ and
φ = π/2 for uφ). Numerical results obtained for coupled shear
and bending are shown as symbols (as indicated in the leg-
end), while the solid lines represent the corresponding, closely
matching theoretical predictions.

5 Conclusions

In summary, we have presented an analytical theory to de-
scribe the low-Reynolds-number motion of a spherical par-
ticle moving inside a spherical membrane cavity endowed

with both shear elasticity and bending rigidity. Here, we
have focused on the situation in which the force exerted
on the particle is directed tangent to the surface of the
cavity. Together with the axisymmetric results obtained
in an earlier paper [45], the solution of the elastohydrody-
namic problem for a point force acting inside a spherical
elastic cavity is thus obtained.

We have expressed the solution of the flow problem
using the method of images. For this purpose, the hydro-
dynamic flow field is represented by a multipole expansion,
summing over modes in terms of spherical harmonics, in
analogy with familiar methods in electrostatics. The un-
known series coefficients associated with each mode have
been determined analytically from the prescribed bound-
ary conditions of continuity of the fluid velocity field at
the membrane cavity and discontinuity of hydrodynamic
stresses as derived from Skalak and Helfrich elasticity
models, associated with shear and bending deformation
modes, respectively.

We have then explored the role of confinement on the
motion of the encapsulated particle by calculating the
frequency-dependent mobility functions. The latter lin-
early couple the translational velocity of the particle to
the external force exerted on it. In the quasi-steady limit
of vanishing actuation frequency, we have demonstrated
that the hydrodynamic mobility inside a spherical elastic
cavity is always larger than that predicted inside a rigid
cavity of equal size with no-slip surface conditions. In ad-
dition, we have quantified the translational and rotational
motion of the confining cavity, finding that the transla-
tional pair (composite) mobility is uniquely determined
by membrane shear elasticity and that bending does not
play a role in the dynamics of the cavity. We have further
assessed the membrane deformation caused by the motion
of the particle, showing that the cavity membrane primar-
ily experiences deformation along the tangential direction.

Finally, we have assessed the appropriateness and ap-
plicability of our theoretical approach by supplementing
our analytical calculations with fully-resolved computer
simulations of truly-extended particles using the bound-
ary integral method. Good agreement is obtained between
theoretical predictions and numerical simulations over the
full range of applied forcing frequencies. The developed
method may find applications in the simulation of hy-
drodynamically interacting microparticles confined by a
spherical elastic cavity, or medical capsules that are di-
rected to a requested site by magnetic forces acting on
incorporated magnetic particles.
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Appendix A. Expression of the coefficients

In this appendix, we provide explicit expressions for the
coefficients stated in eqs. (42) and (50) of the main body
of the paper. For an idealized membrane with pure shear,
the coefficients are given by

K1 = αλn (n − 1) (n + 3) (n + 2),

K2 = (n + 1)(2n + 1)
(

αn4λ + 4αn3λ+(8 − 2α + 5αλ)n2

+(16 − 4α + 2αλ)n + 6
)

,

K3 = n
(

4αλn5 + (−α2 + 10αλ + 16 + 2α2λ)n4

+(32 + 6αλ + 4α2λ − 2α2)n3

+(α2 − 2α2λ + 8 − αλ)n2

−(4α2λ + αλ − 2α2 + 8 + 6α)n − 3 − 3α
)

,

K4 = n
(

αn3λ + (αλ + 4 − α)n2 − 2αn + 2α − 1
)

,

K5 = 2
(

αλn3+(3αλ+4−α)n2+(2αλ − 2α + 8)n+3
)

,

K6 = −(n + 1)n
(

− 2αn3 + (−8 − 15α + 8αλ)n2

+(−43α + 28αλ − 16)n − 42α + 24αλ − 6
)

,

K7 = (n + 2) (αn2 + (3α + 4)n + 6)K5,

K8 = −(n + 1) (n + 2) (2n + 1) (αn2 + (3α + 4)n + 6),

K9 =
1
4

(

αn3 + (2α + 4)n2 + (6 − α)n − 2α + 2
)

,

where we recall that α = 2κS/(3ηiω) is the shear number,
and λ = C + 1 is the dimensionless parameter associ-
ated with the Skalak ratio. For an idealized membrane
with pure bending resistance, the corresponding coeffi-
cients read

Q1 = αB n (n + 3) (n + 2)2 (n − 1)2,

Q2 = −αB n6 − 3αB n5 + αB n4 + 7αB n3 + 8n2

+ (16 − 4αB) n + 6,

Q3 = n
(

2αB n6 + 6αB n5 − 2αB n4 + (8 − 14αB)n3

+12n2 + (−2 + 8αB)n − 3
)

,

Q4 = n
(

αB n7 + 10αB n6 + 17αB n5 + (4 − 20αB)n4

+(40 − 40αB)n3 + (16αB + 47)n2

+(−10 + 16αB)n − 12
)

,

Q5 = −2n (n + 1) (n + 2)
(

αB n4 + 4αB n3 − 3αB n2

−(2 + 10αB)n − 1 + 8αB

)

,

Q6 = 2 (n + 1)
(

αB n6 + 2αB n5 − 3αB n4

−(4αB + 2)n3 + (−21 + 4αB)n2 − 34n − 12
)

,

Q7 = 2 (n + 2)2
(

αB n5 + 2αB n4 − 3αB n3

+4n2 − 4αB n2 + (4αB + 8)n + 3
)

,

wherein αB = κB/(ηiω) denotes the bending number.
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