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ABSTRACT
We study the phase diagram of a two-dimensional (2D) system of colloidal particles, interacting via an isotropic potential with a short-ranged
Yukawa repulsion and a long-ranged dipolar attraction. Such interactions in 2D colloidal suspensions can be induced by rapidly rotating
in-plane magnetic (or electric) fields. Using computer simulations and liquid integral equation theory, we calculate the bulk phase diagram,
which contains gas, crystalline, liquid, and supercritical fluid phases. The densities at the critical and triple points in the phase diagram are
governed by the softness of Yukawa repulsion and can therefore be largely tuned. We observe that the liquid-gas binodals exhibit universal
behavior when the effective temperature (given by the inverse magnitude of the dipolar attractions) is normalized by its value at the critical
point and the density is normalized by the squared Barker-Henderson diameter. The results can be verified in particle-resolved experiments
with colloidal suspensions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5082785

I. INTRODUCTION

Colloidal suspensions in electric and magnetic fields open
up spectacular opportunities for a wide range of fundamental
and applied studies.1–3 Two-dimensional (2D) colloidal crystals
self-assembled in external fields can act as seeds for 3D struc-
tures used in photonics4–8 as well as for porous media and
membranes used for photocatalysis, electrochemical energy stor-
age and conversion, and chemical applications.9–13 Although tun-
able interactions can be achieved in different ways (including
optical, chemical, and flow-mediated mechanisms2), the use of
electric14–29 and magnetic16,30–41 fields is among the most promis-
ing due to their technological flexibility, the long-range charac-
ter of the obtained interactions, and the ability to change them
in situ.

From a fundamental point of view, colloidal suspensions
with tunable interactions allow us to perform particle-resolved
studies1,2,42–45 to understand basic generic mechanisms of melt-
ing and crystallization, condensation and evaporation, spinodal
decomposition, slow dynamics in glasses, nucleation, and coales-
cence, occurring in different regimes of interactions between par-
ticles.1,26,43,46–48

Dipolar attractions induced by external rotating fields have
attracted interest in the framework of particle-resolved studies of
2D systems in magnetic32,35,48 and electric18,25,26,49 fields. These
studies used 2D colloidal suspensions of particles, which were syn-
chronously polarized by an in-plane rotating field, yielding isotropic
dipolar attractions ∝1/r3 at large distances, whose magnitude is
determined by the field magnitude and the material properties of
the solvent and colloids.50 At short distances (near the contact
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between the particles), the basic interaction (without the exter-
nal fields) is described by Derjaguin, Landau, Verwey, and Over-
beek (DLVO) theory.2,51 In charge-stabilized colloids, where the
dominant interaction is the Yukawa (Debye-Hückel) repulsion, the
phase states, collective dynamics, and thermodynamics have been
studied in detail in Refs. 52–64. Experimentally, the Yukawa repul-
sion can be “adjusted” using charge regulation by varying the choice
of solvent, salt concentration, and material properties of the colloidal
surface.51

The addition of an attracting dipolar branch to the short-range
repulsion between colloids diversifies the phase behavior of the sys-
tem and leads to the emergence of a liquid-gas binodal and a corre-
sponding critical point. Clustering and coarsening of such systems
has been studied using computer simulations of a model 2D system
of rotating permanent dipoles with fixed inverse power law repul-
sion65–67 and in 2D Stockmayer fluids.68 Additionally, the 3D phase
diagram of a model system with isotropic Yukawa repulsion and
anisotropic inverse-dipolar interaction was studied in Ref. 69. How-
ever, we are not aware of papers reporting on the detailed calculation
of phase diagrams of 2D systems with Yukawa repulsion and dipolar
attraction between particles and, in particular, on the role of Yukawa
repulsion softness, which is determined as ratio of the screening
length to the particle diameter.

In this work, we explore the phase diagram of 2D colloidal
systems of particles interacting via Yukawa repulsion at short dis-
tances and isotropic dipolar attraction at large distances. We show
that the phase diagram of the system contains crystal, liquid,
and gas phases and a supercritical fluid. The spinodal is calcu-
lated using Ornstein-Zernike theory, and the results for the criti-
cal point parameters agree well with those from binodal branches.
We used Monte-Carlo (MC) and molecular dynamics (MD) sim-
ulations to analyze the near-critical behavior and to study the
bulk phase diagram of the system for different characteristic mag-
nitudes of repulsive and attractive parts of the interaction. We
observed that the dimensionless densities and effective tempera-
tures (determined by dipolar attraction) at the critical and triple
points in the phase diagram depend significantly on the softness
of the Yukawa repulsion. Moreover, we show that the phase dia-
grams at different repulsion softness can be mapped to the phase
diagram of hard disks with isotropic dipolar attraction by normal-
izing the density and the effective temperature with the inverse
squared Barker-Henderson diameter and the critical temperature.
In this mapping, the liquid-gas binodals exhibit universal behav-
ior, almost insensitive to the repulsion softness, while the form of
crystalline binodals is changed significantly. Finally, we discuss the
experimental realization of the studied system with tunable magnetic
interactions.

II. SYSTEM AND METHODS
A. System

Consider a 2D suspension of monodisperse spherical colloidal
particles in a surrounding medium (solvent). According to the
DLVO theory, the electrostatic interaction between the particles is
described by a Yukawa (screened Coulomb or Debye-Hückel) repul-
sion.2 We assume that the colloidal suspension is stabilized by a
fairly large charge of the particles, which inhibits the close approach

of the particles, so that we can neglect the short-range van der Waals
attraction.

The externally applied in-plane rotating electric or magnetic
field polarizes the particles and induces an additional (tunable)
long-range dipolar attraction.32,50 We assume that the particle
properties are independent of the magnitude of the field and that
the tunable effective interactions can be considered in the dipolar
approximation. Then, in fast-rotating fields, the anisotropic part of
interactions vanishes after angular averaging and only the dipolar
attraction remains. Here, the time period of the rotating field needs
to be much shorter than the diffusive scale of colloid motion but
much longer than the diffusion time of the microscopic counte-
rions which establish the electrostatic screening. We remark that,
to obtain equilibrium phase diagrams of the system, hydrodynamic
interactions can be neglected.66

In our model, the interactions in the system are described by
the following pair potential:

φ(r) = φY(r) + φD(r),

φY(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞, r/σ < 1;

εY
exp[−κσ(r/σ − 1)]

r/σ , r/σ > 1,

φD(r) = −εD(
σ
r
)

3
,

(1)

where 'Y (r) and 'D(r) correspond to the hard core Yukawa repul-
sion and dipolar attraction with magnitudes εY and εD ∝ H2 (here
H is the magnitude of rotating magnetic field), respectively, σ is
the particle diameter, and κ = 1/λ is the inverse Debye screening
length in the solvent. In the linear screening regime, the magni-
tude εY of the Yukawa potential is related to the charge of colloid
as

βεY = Z2

(1 + κσ/2)2
λB
σ

, (2)

where β = 1/kBT is the inverse temperature in energy units, T is the
temperature, kB is Boltzmann’s constant, Z is the number charge of
the colloid, and λB = e2/4π�0�SkBT is the Bjerrum length related to
the Debye-Hückel inverse screening length κ =

√
4πλBni, where ni

is the total number density of (monovalent) ions in the solvent, e is
the elementary charge, �0 is the vacuum dielectric constant, and �S is
the relative dielectric constant of the solvent.

In the regime of strongly charged colloids, the linear Poisson-
Boltzmann approach becomes unsuitable.70 The nonlinear effects
are confined to the vicinity of the particle surface in the layer of
thickness λ, which is assumed to be much smaller than σ. In this
case, the functional form of the repulsion remains the same, but with
the effective (renormalized) charge Zeff

70

Zeff =
4σ
λB

(1 + κσ/2)2

1 + κσ
, (3)

which should be used in Eq. (2) instead of Z that yields

βεY = 16σ
λB

(1 + κσ/2
1 + κσ

)
2

. (4)

Similarly to Ref. 18, we used in the following MC and MD simula-
tions the value σ/λB = 1043 that corresponds to ≃750-nm-diameter
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particles in an aqua-based solvent (λB = 7.2 Å). However, in case
of non-polar solvents, the corresponding diameter σ can be much
larger.

One can see in Eq. (1) that the Yukawa repulsion vanishes at
κσ→∞, thus, reducing the interaction to

βφHDD(r) =
⎧⎪⎪⎨⎪⎪⎩

∞, r/σ < 1;

−βεD( σr )
3, r/σ > 1,

(5)

which corresponds to a system of hard disks with isotropic dipolar
attractions. The phase diagram of this system can be presented in the
dimensionless coordinates of T̃ = 1/βεD, playing the role of effective
temperature, and ρσ2.71 Although in systems with finite values of κσ
the (dimensionless) potential β'(r) depends on T̃, one can still use
T̃ as a state parameter, which modulates the strength of the dipolar
attraction.

Figure 1 illustrates β'(r) corresponding to κσ = 5 and 19
at different values of T̃. One can see that increasing κσ enhances
the asymmetry of the potential well near its minimum. The tun-
able term β'D(r) is determined by the magnitude of the rotating
magnetic field and can be changed in a broad range, while the
(true) temperature T of the system is determined by the solvent
bath.

B. MC and MD simulations
To obtain the phase diagram of the system, we used MC simu-

lations in combination with free-energy calculations.72 Specifically,
we mapped out the phase diagram as a function of the number den-
sity ρ and the dipolar attraction magnitude β�D for different fixed
forms of the Yukawa repulsion, as determined by κσ. We make
use of thermodynamic integration72 to obtain free energies of all
competing phases (fluid, gas, liquid, and solid). In this approach, the

FIG. 1. Tunable pair potential. Panels (a) and (b) represent the characteristic form
of the potential (1) used in simulations (at κσ = 5 and κσ = 19, respectively),
plotted for different magnitudes of the effective temperature T̃ = 1/βεD.

free-energy difference between two state points is written as inte-
grals over a path through parameter space of quantities that can
be directly measured in our MC simulations, specifically the energy
and pressure. All simulations are performed in the canonical (NVT)
ensemble, i.e. at a constant number of particles N, volume V, and
effective temperature T. We measure the pressure using the stan-
dard virial expression.72 Long-range interactions were truncated
and shifted to zero at a fixed, sufficiently large cutoff range which
was adapted to the screening length. All systems contained at least
N = 500 particles.

For the gas, liquid, and fluid phases, we use the hard-disk fluid
as a reference system. Specifically, the Helmholtz free energy of the
hard-disk fluid at number density ρ is determined as

βFHD(ρ)
N

= βFid(ρ)
N

+ ∫
ρ

0
dρ′

βPHD(ρ′) − ρ′

ρ′2
. (6)

Here, N is the number of particles and PHD(ρ) is the hard-disk
pressure at density ρ, for which we use an analytical approxima-
tion.73 Fid(ρ) is the ideal-gas free energy at density ρ, given by
βFid(ρ) = N(log(ρΛ3) − 1), with Λ the thermal wavelength, which
does not affect the phase behavior. We then determine the free
energy of a reference state of the charged system by considering the
free-energy difference between the hard-disk system, where �Y = 0,
and the charged system (without external field), where �Y is given by
Eq. (2). This free-energy difference is given by

F(ρ, �D = 0) − FHD(ρ) = ∫
�Y

0
d�′Y⟨UY/�′Y⟩, (7)

where ⟨UY/�′Y⟩ is the averaged total potential energy of a system
(divided by �′Y ), measured in a simulation where the prefactor for
the Yukawa potential is set to �′Y . To obtain free energies βF(ρ, �D)
in the gas, liquid, and fluid phases at different densities and dipolar
interaction strengths, we again employ thermodynamic integration,
using

F(ρ2, �D) − F(ρ1, �D) = N ∫
ρ2

ρ1

dρ′
P(ρ′, �D)
ρ′2

, (8)

F(ρ, �D,1) − F(ρ, �D,2) = ∫
�D,2

�D,1

d�′D⟨
UD(ρ, �′D)

�′D
⟩. (9)

Here, P(ρ, �D) and ⟨UD(ρ, �D)⟩ are the average pressure and total
dipolar energy, respectively. Together, Eqs. (8) and (9) allow us to
calculate free energies at any density and effective temperature as
long as we do not cross phase boundaries along the integration path.

For the crystal phase, we use the Frenkel-Ladd method74 to
obtain a reference free energy. After obtaining the reference free
energy, we again use Eqs. (8) and (9) to calculate the free energy
throughout the crystal phase.

Finally, we construct phase boundaries using the common-
tangent approach.72 For a fixed dipolar interaction strength �D, we
plot the free energy per volume F(ρ, �D)/V as a function of the den-
sity ρ and find pairs of points connecting different phases such that
the slope and the intercept of the tangent lines are equal at the two
points. This is equivalent to finding points of equal pressure and
chemical potential and hence corresponds to finding the two densi-
ties associated with a first-order phase transition at a given effective
temperature. Repeating this process at different temperatures then
yields a full phase diagram of the system.
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As an extra check on our results for liquids-gas binodals at dif-
ferent κσ, we performed MD simulations in the canonical (NVT)
ensemble with N = 21 600 particles in a rectangular box with the
sizes Lx × Lz = (60 × 360)ρ−1/2

0 . We used periodic boundary condi-
tions and a cutoff radius of rc = 15ρ−1/2

0 , where ρ0 = (0.02 . . . 0.2)σ−2

is the initial number density of the system. Using the Langevin
thermostat, the system was equilibrated for the first 5 × 105 steps
of ∆t = 5 × 10−3√mβσ2 (here m is the particle mass), while the
following 106 steps were used for the further analysis.

The liquid-gas binodals were calculated using the plane layer
method, which is standard for MD simulations.26,72,75 After equili-
bration, the density of the layer (normal to the z-axis) was fitted by
the following profile:

ρ(z) = ρl + ρg
2

− ρl − ρg
2

tanh(2(z − l)
d

), (10)

where ρl and ρg are the densities of the liquid and the gas, while
the parameters l and d characterize the thickness of the layer and
interface between the phases, respectively.

The triple points were estimated by extrapolating the gas-liquid
and liquid-crystal binodals to their crossing point. The critical points
were obtained by fitting the liquid and gas binodal branches near the
critical point as follows:

ρl − ρg ≃ A(T̃CP − T̃)βc ,
ρl + ρg

2
≃ ρCP + a(T̃CP − T̃),

(11)

where T̃CP and ρCP are the effective temperature and density at the
critical point, respectively, βc is the critical exponent, andA and a are
free parameters. According to Ref. 76, the universality class of a sys-
tem depends on the range of potential attraction and, in the case of
the long-range attraction ∝1/r3, the system exhibits classical critical
(mean-field) behavior with βc = 1/2. Importantly, for the calculation
of the critical point parameters using the fitting functions in Eq. (11),
we consider only the parts of the binodal lines which are unaffected
by finite-size effects.

C. Ornstein-Zernike theory for spinodal
We complemented our MC and MD results by calculations of

spinodals based on the Ornstein-Zernike (OZ) theory. Assuming
that pair correlations can be described by the OZ equation in vicinity
of the critical point,77

h(r) = c(r) + ρ∫ dr′h(∣r − r′∣)c(r′), (12)

where h(r) = g(r) − 1 and g(r) and c(r) are radial and direct corre-
lation functions, respectively. As a closure relation for Eq. (12), we
used the Percus-Yevick approximation77

c(r) = (1 + Γ(r))(exp(−βU(r)) − 1),
Γ(r) = h(r) − c(r).

(13)

To determine the spinodal line, we solve Eqs. (12) and (13) at differ-
ent densities and magnitudes of dipolar attraction to find the points
at which

∂(βP)
∂ρ

= 0, (14)

where the left-hand side can be calculated using the direct correla-
tion function c(r) as

∂(βP)
∂ρ

= 1 − ρ∫ dr c(r). (15)

III. RESULTS
Figure 2 represents phase diagrams of the 2D model system

in wide range of densities and effective temperatures, shown at
κσ = 2, 5, 15, and 19 in panels (a)–(d), respectively. The orange cir-
cles in Fig. 2 are obtained by MC simulations, while MD results for
liquid-gas binodals are shown by red rhombi and one can see excel-
lent agreement between the MC and MD simulations. Blue down
triangles are spinodals obtained by OZ theory, orange triangles cor-
respond to the median density (ρl + ρg)/2, while the black solid lines
are linear fits. Blue solid lines are fits for binodals, while the horizon-
tal dashed red lines mark the effective temperatures of triple points
(TPs), whose densities and effective temperatures are presented in
Table I for different values of κσ. The liquid-gas binodals in the
vicinity of critical point were obtained using the fit by Eq. (11). Note
that, in the cases of κσ = 15 and 19, MD and MC points calculated
for systems of different sizes are close to each other, justifying that
the finite-size effects are negligible.

Comparing the results for different κσ in Fig. 2, one can see
that the general form of the phase diagrams is similar and includes
domains of crystal, gas, liquid, and supercritical states as well as
domains of phase coexistence. In terms of the normalized density
ρσ2, the width of the liquid-crystal coexistence area grows signif-
icantly with an increase in κσ from 0.003 at κσ = 2 to 0.03 at
κσ = 19. The liquid-gas decomposition is well-described by parabolic
fits for the binodals in the vicinity of the critical points and agrees
completely with classical (“mean-field”) critical behavior. The aver-
age densities (ρl + ρg)/2 exhibit linear dependencies for all κσ. The
spinodals obtained from OZ theory yield parameters of the critical
point which are very close to those obtained from the fit of liquid-gas
binodals except at high κσ.

Comparing the data presented in Table I, one can see that the
repulsion softness (determined by 1/κσ) strongly affects the effec-
tive temperatures and normalized densities at the critical and triple
points. For instance, T̃CP and ρCPσ2 increase about 36 and 10 times,
respectively, with an increase in κσ from 2 to 19. Similar trends
are observed for the temperatures and densities of the triple points.
Surprisingly, the ratios T̃CP/T̃TP and ρTP/ρCP between the effective
temperatures and densities at critical and triple points do not depend
much on κσ, as one can see in Table I.

Figure 2 demonstrate that the results for the critical point given
by MC, MD, and OZ-PY approaches agree with each other for soft
Yukawa repulsion. Interestingly, the PY closure relation is usually
applied for systems of hard spheres. Motivated by this fact, we found
that the phase diagrams in Fig. 2 can be mapped onto the phase dia-
gram of the hard disks with isotropic dipolar attraction that we cal-
culated using MC simulations in the same manner as the diagrams
in Fig. 2.

To normalize the densities, we calculated the Barker-
Henderson diameter, defined as77

σBH = ∫
rmin

0
(1 − f (r))dr, (16)

J. Chem. Phys. 150, 104903 (2019); doi: 10.1063/1.5082785 150, 104903-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Phase diagram at different κσ-values. Panels (a)–(d) represent the phase diagrams in the plane (ρσ2, 1/βεD) calculated at κσ = 2, 5, 15, and 19, respectively. Orange
circles are binodals obtained by MC, red rhombi are MD results for liquid-gas binodals, and blue down triangles are obtained by OZ-PY theory for spinodal. Orange triangles
correspond to the median density (ρl + ρg)/2, while the solid black lines are linear fits. The solid blue lines are fits of binodals, and CP and TP indicate the effective critical and
triple points, respectively.

where f (r) = exp[βφ(rmin) − βφ(r)], and rmin is the dis-
tance at which '(r) has a minimum. Note that σBH(κσ, T̃)
depends on the effective temperature T̃, but not on the density,

and σBH → σ at κσ → ∞ (the hard disk limit). The effec-
tive temperatures T̃ were normalized to their critical values
T̃CP(κσ).

TABLE I. Parameters of triple and critical points at different κσ.

κσ T̃CP ρCPσ2 T̃TP ρTPσ2 T̃CP/T̃TP ρTP/ρCP

1 1.54× 10−3 4.76× 10−3 7.414× 10−4 0.0188 2.08 3.95
2 7.72× 10−3 0.0152 4.16× 10−3 0.05 1.85 3.29
5 0.049 0.05 0.025 0.157 1.94 3.15
15 0.225 0.136 0.136 0.375 1.73 2.76
19 0.286 0.156 0.157 0.43 1.82 2.75
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FIG. 3. Mapping to the phase diagram of hard disks with dipolar attraction. Black
symbols and solid lines correspond to the phase diagram of hard disks with dipolar
attraction, while the colored symbols and lines are normalized results from Fig. 2
for different κσ (see text for details of the normalization). The inset highlights a
rapidly increasing deviation of the shown results from the hard-disk diagram at
smaller κσ.

Figure 3 represents our main result—the mapping of the phase
diagrams, where the black symbols and lines represent the hard-disk
model and the colored symbols and lines correspond to different
κσ. One can see that the liquid-gas binodals and spinodals show
a remarkable universality at different softness of Yukawa repul-
sion with particularly good agreement for the liquid branch of the
binodals.

The crystalline branches of the binodals are expected to depend
strongly on the Yukawa repulsion softness since collective dynamics
and thermodynamics at high densities are determined mainly by the
repulsive branch. For instance, the detailed scenario of the melting
in 2D systems depends on the repulsion softness and can include
different phase transitions between crystalline, hexatic, and liquid
phases.78–81 A detailed study of the freezing scenario is left for future
studies.

Deviations from the hard-disk diagram in Fig. 3 grow mono-
tonically with increasing softness of the Yukawa repulsion. To high-
light this trend, in the inset, we present the MC phase diagrams for
the two extreme cases considered in our simulations—hard disks
(solid lines) and soft disks at κσ = 1 (orange dashed lines). One can
see that at smaller κσ, the normalized density at the gaseous branch
of the binodal slightly decreases, while the density of triple point
and crystalline branch of binodal increase more significantly. Con-
versely, the liquid branch of the binodal is practically insensitive to
the softness of Yukawa repulsion.

IV. CONCLUSIONS
To summarize, we calculated the phase diagram of a two-

dimensional system with isotropic short-range Yukawa repulsion

and long-range dipolar attraction between particles. Using MC and
MD simulations, as well as OZ theory with the PY closure rela-
tion, we computed the solid, fluid, gas, and supercritical equilib-
rium phases. Analysis of the diagrams indicates that the softness
of Yukawa repulsion significantly affects the positions of the critical
and triple points as well as the behavior of the crystalline branches of
the binodals. At the same time, the liquid-gas binodals and spinodals
can be mapped onto those for a system of hard disks with dipo-
lar attraction, demonstrating a remarkable universality at different
softnesses of the Yukawa repulsion.

The phase diagrams in Figs. 2 and 3 are plotted in the plane
of the effective temperature, which is determined by the mag-
nitude of the dipolar attraction, and the density. In contrast to
typical systems, where the form of potential is fixed at differ-
ent temperatures, the form of potential (1) changes at short dis-
tances with the increase in T̃, as illustrated in Fig. 1. However, the
near-critical behavior is determined by the long-wavelength fluc-
tuations of density,82 and, therefore, only long-range asymptotic
of the potential is important. Since βφ(r) ∝ T̃−1(σ/r)3 at large
distances, T̃ plays the same role as the kinetic temperature in sys-
tems with fixed interaction potential. We observe that the liquid-
gas binodal is well described by a parabolic fit in the vicinity of
the critical point, in accordance with classical (mean-field) critical
behavior.

Our model can be realized in colloidal suspension exposed
to rotating electric or magnetic fields. The tunable interactions in
such systems have been thoroughly analyzed in Ref. 50, where it
has been shown that three-body interactions become significant
(up to ∼60% comparing to the pair energy) at distances smaller
than two particle diameters, while the many-body effects of higher
orders can be neglected.32,35,50 Therefore, the relevant experimen-
tal conditions can be satisfied for 2D suspensions of particles hav-
ing a magnetic core and nonmagnetic shell and exposed to rapidly
rotating in-plane magnetic fields. The thickness of the nonmagnetic
shell should not be (at least) about a half of the core diameter. In
this case, the shell plays a role of a spacer between the interact-
ing cores, thus inhibiting many-body effects. This can be achieved,
for instance, by using suspensions of carboxyl-coated superparam-
agnetic polystyrene particles with the diameter of (2–3) µm and a
magnetic core of about (1–1.5) µm in experiments following a pro-
tocol similar to that in Ref. 48. Phase states at different magnitudes
of rotating magnetic fields and densities can be analyzed using, for
example, the method for phase identification.26 The derived phase
diagram can then be directly compared with results of the present
paper.

We believe that our paper will stimulate experimental and the-
oretical studies of tunable colloids in rotating fields and will be
useful for understanding the role of interplay between short-range
repulsion and long-range attraction in the phase behavior of 2D
systems.
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