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Inertial delay of self-propelled particles
Christian Scholz 1, Soudeh Jahanshahi1, Anton Ldov1 & Hartmut Löwen1

The motion of self-propelled massive particles through a gaseous medium is dominated by

inertial effects. Examples include vibrated granulates, activated complex plasmas and flying

insects. However, inertia is usually neglected in standard models. Here, we experimentally

demonstrate the significance of inertia on macroscopic self-propelled particles. We observe a

distinct inertial delay between orientation and velocity of particles, originating from the finite

relaxation times in the system. This effect is fully explained by an underdamped general-

isation of the Langevin model of active Brownian motion. In stark contrast to passive systems,

the inertial delay profoundly influences the long-time dynamics and enables new fundamental

strategies for controlling self-propulsion in active matter.
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Newton’s first law states that because of inertia, a massive
object resists any change of momentum. Before this
groundbreaking idea, the dominant theory of motion was

based on Aristotelian physics, which posits that objects come to
rest unless propelled by a driving force. In retrospect, this per-
ception is unsurprising, as the motions of everyday objects are
influenced significantly by friction. In microscopic systems such
as colloids, inertial forces are completely overwhelmed by viscous
friction. In fact, in the absence of inertia, particles cannot move by
reciprocal shape deformations due to kinematic reversibility.
Biological organisms such as bacteria must therefore self-propel
by implementing non-reciprocal motion1.

However, any finitely massive object performs ballistic motion,
even if only on minuscule time and length scales. For example,
colloidal particles undertake ballistic motion below 1 Å for
approximately 100 ns. Experimental verification of this motion
requires high accuracy measurements and has been achieved only
for passive colloids2–4. In contrast, for macroscopic self-propelled
particles, such as animals and robots, the magnitude of inertial
forces can be comparable to that of the propulsion forces and
influence the dynamics on large time scales.

A particularly simple example of a macroscopic self-propelled
particle is a minimalistic robot called a vibrobot, which converts
vibrational energy into directed motion using its tilted elastic legs5.
Collectives of such particles exhibit novel non-equilibrium
dynamics6–9, self-organisation10, clustering5,11 and swarming12–15.
Along with animals16, artificial and biological microswimmers17–19,
vibrobots belong to the class of active soft matter.

Here, we demonstrate that the inertia of self-propelled particles
causes a significant delay between their orientation and velocity
and increases the long-time diffusion coefficient through persis-
tent correlations in the underdamped rotational motion. Standard
models, such as the Vicsek-model20 and active Brownian
motion21 cannot explain this behaviour as they neglect inertia.
Instead, the dynamics can be understood in terms of under-
damped Langevin equations with a self-propulsion term that
couples the rotational and translational degrees of freedom. Using
the mean squared displacements (MSDs) and velocity distribu-
tions, fitted by numerical and analytical results, we extract a
unique set of parameters for the model. We derive analytic
solutions for the short- and long-time behaviour of the MSD and
prove that the long-time diffusion coefficient explicitly depends
on the moment of inertia.

Results
Experimental observation of inertial effects. Our experimental
particles are 3D-printed vibrobots driven by sinusoidal vibrations
from an electromagnetic shaker. To investigate a wide range of
parameter combinations, we varied the leg inclination, mass and
moment of inertia of the particles (see Fig. 1a–d). The excitation
frequency and amplitude were fixed to f= 80 Hz and A= 66 μm,
respectively, which ensures stable quasi-two-dimensional motion
of the particles.

The mechanism is illustrated in Fig. 1e and Supplementary
Movie 1. The vibrobots move by a ratcheting mechanism driven
by repeated collisions of their tilted elastic legs on the vibrating
surface. Their propulsion velocity depends on the excitation
frequency, amplitude, leg inclination and material properties such
as the elasticity and friction coefficients5,22–24. Long-time random
motions are induced by microscopic surface inhomogeneities and
(under sufficiently strong driving) a bouncing ball instability24,
that causes the particle’s legs to jump asynchronously and
perform a tiny but very irregular precession, which in turn leads
to random reorientations of the particle. Thereby, the vibrobot
motion is considered as a macroscopic realisation of active

Brownian motion12,13,25,26. Figure 1f shows three representative
trajectories of particles with different average propulsion
velocities (see also Supplementary Movie 2). The persistence
length is noticeably shorter for slower particles than for faster
particles, as generally expected for self-propelled particles19.

However, the significance of inertial forces is an important
difference between motile granulates and microswimmers11,27.
Massive particles do not move instantaneously, but accelerate
from rest when the vibration is started. The time dependence of
the initial velocity (averaged over up to 165 runs per particle) is
shown in Fig. 2a. The particles noticeably accelerated up to the
steady state on a time scale of 10−1 s, one order of magnitude
larger than the inverse excitation frequency and the relaxation
time of the shaker. When perturbed by an external force,
vibrationally driven particles approach their steady state on a
similar time scale10. The relaxation process is well fitted by an
exponential function, as expected for inertial relaxation. Inertia
also influences the dynamical behaviour of the particles’
orientation relative to their velocity. The orientation (red arrows
in Fig. 2b) systematically deviates from the movement direction
(black arrows in Fig. 2b). Particularly, during sharp turns the
orientation deviates towards the centre of the curve, whereas the
velocity is obviously tangential to the trajectory. We compare the
angle of orientation ϕ to the angle of velocity Θ ¼ atan2ð _Y; _XÞ in
Fig. 2b and find that Θ systematically pursues ϕ with an inertial
delay of order 10−1 s. A slow-motion recording of one particle in
Supplementary Movie 3 illustrates the dynamic delay between
motion and orientation. The particle quickly reorients, but its
previous direction is retained by inertia. Consequently, the
particle drifts around the corner, mimicking the well-known
intentional oversteering of racing cars.

Underdamped Langevin model. Despite the complex non-linear
dynamics of the vibrobots5,23,24,28,29, our observations can be
fully described by a generalised active Brownian motion model
with explicit inertial forces. The dynamics are characterised by
the centre-of-mass position R(t)= (X(t), Y(t)) and the orientation
n(t)= (cosϕ(t), sinϕ(t)), where ϕ(t) defines the direction of the
propulsion force. The coupled equations of motion for R(t) and ϕ
(t), describing the force balance between the inertial, viscous and
random forces, are given by

M€RðtÞ þ ξ _RðtÞ ¼ ξVpnðtÞ þ ξ
ffiffiffiffiffiffi
2D

p
f stðtÞ; ð1Þ

J€ϕðtÞ þ ξr _ϕðtÞ ¼ τ0 þ ξr
ffiffiffiffiffiffiffiffi
2Dr

p
τstðtÞ: ð2Þ

Here, M and J are the mass and moment of inertia, respectively,
and ξ and ξr denote the translational and rotational friction
coefficients. The translational and rotational Brownian fluctua-
tions are quantified by their respective short-time diffusion
coefficients D and Dr. The random forces fst(t) and torque τst(t)
are white noise terms with zero mean and correlation functions
f stðtÞ � f stðt′Þh i ¼ δ t � t′ð Þ1 and 〈τst(t)τst(t′)〉= δ(t− t′),
respectively, where 〈⋯〉 denotes the ensemble average and 1 is the
unit matrix. Owing to the strong non-equilibrium nature of the
system, the diffusion and damping constants are not related by
the Stokes−Einstein relation30. Moreover, as typical particles are
not perfectly symmetrical, they tend to perform circular motions
on intermediate time scales. To capture this behaviour, we
applied an external torque τ0 that induces circular movement
with average velocity ω= τ0/ξr31,32. Similar models applied in the
literature have typically neglected the moment of inertia or have
only been solved numerically11,33–37. The motion of a particle
governed by Eqs. (1) and (2) is determined by different time
scales given by the friction rates ξ/M= τ−1 and ξr=J ¼ τ�1

r , the
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rotational diffusion rate Dr, the angular frequency ω and the
crossover times 2D=V2

p and 2Dr=τ
2
0. In the limit of vanishing M

and J the model is equivalent to the well-known active Brownian
motion formulation21.

The trajectories obtained by numerically integrating the
Langevin model compare well with the experimental observa-
tions. As show by the representative trajectory in Fig. 2d, e, the
model reproduces the delay between the orientation and velocity,
when the friction is sufficiently weaker than the inertia. The
model can be analytically solved by averaging and integration.
The orientational correlation

nðtÞ � nð0Þh iT ¼ cosðωtÞe�Dr t�τr 1�e�t=τrð Þð Þ; ð3Þ

where 〈⋯〉T is the time average, quantifies the temporal evolution
of the active noise term. The periodic cosine term results from the
external torque and captures the induced circular motion. The
rotational noise, quantified by Dr, decorrelates the orientation on
long-time scales. This decorrelation is described by the exponen-
tial term in Eq. (3). The double exponential reflects the additional
orientation correlation on short time scales imposed by the
inertial damping rate τ�1

r . Consequently, the particle dynamics
non-trivially depend on the orientation, even in the short- and
long-time limits. In the short-time limit the MSD is given by

RðtÞ � R0ð Þ2� � ¼ _R
2

D E
t2 ð4Þ

with

_R
2

D E
¼ 2D=τ þ f D0;D1;D2ð ÞV2

p : ð5Þ

The first term is the equilibrium solution for a passive particle,
and the second term arises from the active motion term. The
latter is proportional to V2

p , i.e. the kinetic energy injected by the
propulsion. This contribution is quantified by the ratio of
competing time scales, i.e. the dimensionless delay numbers

D0 ¼ Drτr;D1 ¼ ωτr;D2 ¼ τr=τ; ð6Þ

through the function

f D0;D1;D2ð Þ ¼ D2e
D0Re D� D0�iD1þD2ð Þ

0

h
´ γ D0 � iD1 þD2;D0ð Þ�;

ð7Þ

where Re denotes the real part and γ is the lower incomplete
gamma function. The long-time behaviour of the motion is
diffusive, with the long-time diffusion coefficient

DL ¼ Dþ V2
p

2
t τr;D0;D1ð Þ: ð8Þ

In Eq. (8), the first term is the passive diffusion coefficient and the
second term represents the contribution from the driving force
with persistence time given by

t τr;D0;D1ð Þ ¼ τre
D0Re D� D0�iD1ð Þ

0 γ D0 � iD1;D0ð Þ
h i

: ð9Þ

Equation (8) is similar to the active Brownian motion model,
where the persistence time 1/Dr is replaced by Eq. (9). The long-
time diffusion coefficient is therefore a function of the inertial
correlations introduced by J through D0. This starkly contrasts
with passive Brownian motion, which assumes an inertia-
independent diffusion coefficient.

Comparison between model and measurement. Equations (5)
and (8) depend non-trivially on six independent parameters.
They are determined by fitting the MSD given by Eq. (4) and the
linear and absolute velocity distributions, obtained by numerically
solving Eqs. (1) and (2), to the measurements. The measurements
and fitting curves for the four different particle types are sum-
marised in Fig. 3. The angular MSDs in Fig. 3a–d show a ballistic
short-time regime and a diffusive long-time regime (dashed lines)
from which we can determine τr and Dr, respectively. The
_ϕ-distribution in Fig. 3e–h is a shifted Gaussian. The minor
deviations at small velocities are caused by the finite tracking
accuracy. The first moment of this distribution gives the mean
angular velocity ω. The parameters τ, D and Vp are extracted
from the linear velocity distributions P vlinð Þ ¼ P _X

� � ¼ P _Y
� �
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Fig. 1 3D-printed particles, setup and trajectories. a Generic particle. b Carrier particle with an additional outer mass. c Tug particle with an additional
central mass. d Ring particle without a central core. Scale bars represent 10mm. e Illustration of the mechanism with a generic particle on a vibrating plate.
f Three exemplary trajectories with increasing average particle velocities. Particle images mark the starting point of each trajectory. The trajectory colour
indicates the magnitude of the velocity. Scale bar represents 40mm
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(Fig. 3i–p) and the translational MSDs (Fig. 3q–t), which can be
directly fitted by Eqs. (4) and (5). The linear velocity distribution
is not a simple Gaussian, but shows a double peak related to the
activity. The absolute velocity distribution also clearly deviates
from the two-dimensional Maxwell−Boltzmann distribution of
passive particles, especially, the maximum is shifted by the pro-
pulsion force. The translational MSD mainly depicts the ballistic
short-time behaviour, because the persistence length of our par-
ticles is of the order of the system size. To test the parameters on
an independent quantity, we systematically compared the model
with the measured inertial delay. We define the correlation

function

C _RðtÞ;nðtÞ� � ¼ _RðtÞ � nð0Þ� �
T� _Rð0Þ � nðtÞ� �

T; ð10Þ

i.e. the average difference between the projection of the orienta-
tion on the initial velocity and projection of the velocity on the
initial orientation. This function starts at zero and re-approaches
zero in the limit t→∞. In overdamped systems, Eq. (10) is zero
at all times. In the underdamped case the velocity direction
pursues the orientation and C( _R(t), n(t)) reaches its maximum
after a specific delay. Pronounced peaks, related to the decay
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Fig. 3 Determination of model parameters for the generic, carrier, tug and ring particles (ordered from top to bottom). a–d Rotational mean squared
displacement, e–h rotational velocity distribution, i–l linear velocity distribution, m–p absolute velocity distribution, q–t translational mean squared
displacement. Solid dark blue and dashed magenta curves show the experimental data and simulation results, respectively. Dotted light blue plots are the
theoretical solutions. Experimental error intervals represent the standard error of the mean (3 s.e.m). The parameter values are listed in Supplementary
Table 1
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numbers and τr are observed in Fig. 4a–d. The measurements and
theoretical predictions using the parameters determined from
Fig. 3 are consistent. Some deviations above the statistical error
are visible, in particular for the tug particle (dotted line in Fig. 4c),
due to overfitting the parameters, when the delay function is not
explicitly taken into account. This is confirmed by a more general
fit, which minimises the total mean squared error for the curves
from Figs. 3 and 4. All curves obtained from this agree with the
measurements within the statistical error (see dashed magenta
lines in Fig. 4a–d).

Inertial dependence. Strikingly, both the short- and long-time
particle dynamics in our system depend on the delay number D0.
The fundamental reason is the additional orientational correla-
tion in Eq. (3), which is delayed by the rotational friction rate τ�1

r .
The exponent in this expression represents the MSD of ϕ, which
is dominated by order t2 at short times and order t at long times.
Consequently, neglecting external torque, this function follows a
Gaussian decay at short times and an exponential decay at long
times. The significance of the inertial delay is quantified by D0.
For small D0, the correlation approaches the overdamped result
and for largeD0 the correlation time is significantly delayed by τr.
To confirm this prediction, we compare the measured correlation
functions and the solutions of Eq. (3). The results are consistent,
as shown in Fig. 5a.

The numerical and analytical dependence of the ballistic and
diffusive regimes on the moment of inertia are displayed in
Fig. 5b, c, which show that _R

2
D E

and DL increase with J. The
effects of finite J can be simply demonstrated mathematically by
expanding Eqs. (5) and (8) in the limit J→ 0, ∞. As J vanishes, we
find that

lim
J!0

RðtÞ � R0ð Þ2� � ¼ 2D
ξ

M
þ V2

p
ξ

ξ þMDr

� �
t2; ð11Þ

which agrees with the results reported in ref. 34. For infinitely
large J we obtain

lim
J!1

RðtÞ � R0ð Þ2� � ¼ 2D
ξ

M
þ V2

p

� �
t2; ð12Þ

which simply corresponds to the sum of the thermal and injected
kinetic energies. For the long-time diffusion constant the
asymptotic behaviour for small moments of inertia is

DL ¼ Dþ V2
p

2Dr
þ V2

p

2ξr
J þO J2

� �
; ð13Þ

which intuitively demonstrates, how, the leading order J increases
the persistence time (namely by a linear term proportional to (ξr/

J)−1). The dependence of DL on D0 has no upper bound, and its
asymptotic behaviour is described by

DL ¼ Dþ V2
p

ffiffiffiffiffiffiffiffiffiffiffi
π

8Drξr

r ffiffi
J

p þO
ffiffiffiffiffiffiffi
J�1

p	 

: ð14Þ

The origin of this dependence can be intuitively understood by
considering the turn-around manoeuvre of a simple noise-free
active particle. When a torque is applied perpendicularly to the
velocity, the particle will turn around at point P and eventually
approach circular motion. As the moment of inertia quantifies the
resistance of a particle to changing its angular momentum, a
particle with low J will turn faster than one with high J, as shown
in Fig. 5d. This applies only to the transient states, where €ϕ≠0. In
the steady state, the radius r of the final circle is independent of J.
The angular momentum of an active particle with random
reorientations is constantly changing. Its inertia resists these
changes and modifies the distribution of reorientations directly
opposing the effect of rotational noise.

Discussion
Our observations demonstrate the profound influence of inertia
on the long- and short-time dynamics of self-propelled particles.
Considering the relevance of inertia30, our model is applicable to
various systems, such as levitating38,39 and floating40 granular
particles and dusty plasmas41. It is straightforward to extend the
model to elongated particles5,11,12,14,37,42 and it was shown
numerically that collective motion of rod-like particles is well
described by similar equations of motion37. Qualitatively, in our
system, rod-like particles show an inertial delay as well (see
Supplementary Fig. 2). In a more general framework, diffusion
and friction coefficient could be tensorial and additional non-
linear force terms, such as a self-aligning torque reported in
refs. 27,33, might be added to the force balance. Our model pre-
dicts that microswimmers perform a short-time ballistic motion
like passive particles, but in practice, their motion also depends
on their specific propulsion mechanism43,44 and hydrodynamic
effects45,46. Generally, the inertial effects will depend on the
corresponding time scales in the system. In numerical experi-
ments, this can be demonstrated by gradually reducing the den-
sity of hypothetical particles, retaining all other parameters as
constants. At very low densities, the MSD exhibits four different
regimes: short-time ballistic, short-time diffusive, active ballistic
and long-time diffusive regime (see Fig. 6).

The long-time diffusion coefficient of passive particles is
independent of inertia and is related to the friction coefficient via
the Stokes−Einstein relation. However, for actively moving par-
ticles we find an explicit dependence on the moment of inertia
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Fig. 4 Time-dependence of the delay function. Delay functions for the a generic, b carrier, c tug and d ring particle. The solid dark blue curve shows the
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dotted light blue curve is the theoretical expectation for the parameters from Fig. 3. The dashed magenta line is the theoretical expectation where the
parameters have been obtained from a full fit to velocity distributions, mean squared displacements and the delay function (see Supplementary Table 2)
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(with no explicit dependence on the total mass M). This finding
illustrates the importance of J for macroscopic self-propelled
particles. While mass distribution and shape are generally
important for efficient motion of animals47–50 and adaptation to
the environment51,52, our results suggest that J can be exploited in
novel control strategies for active matter. Biological organisms
cannot rapidly vary their mass, but they can change J by moving
their limbs. For instance, cheetahs use tail motion to stabilise fast
turns53. While the effect on the long-time diffusivity of vibrobots
is a few percent, our theory predicts that for flying and floating
particles these changes are more dramatic. For similar sized

particles flying in air (e.g. insects) we can expect that friction is
about two orders of magnitude smaller. Also, biological organ-
isms can vary their moment of inertia dynamically for up to
almost two orders of magnitude, depending on the position and
the axis of rotation54. In this case, from Eq. (8), the long-time
diffusion coefficient changes up to a factor of about three per
order of magnitude in J. By increasing J, animals can then faster
explore a large area. Conversely, by decreasing J, they can more
easily dodge obstacles or predators and counteract sensorial55 and
behavioural delay16. Even under conditions, where animals can-
not control their rotational deflections, such as aerodynamic
turbulence, or during random collisions with neighbours56, they
could stabilise their movements through variations of J.

Methods
Particle fabrication. Four particle types were designed and printed: The generic
particle consists of a cylindrical core (diameter 9 mm, length 4 mm) topped by a
cylindrical cap (diameter 15 mm, length 2 mm). Beneath the cap, seven tilted
cylindrical legs (each of diameter 0.8 mm) were attached in parallel in a regular
heptagon around the core. The legs lift the bottom of the body by 1 mm above the
surface. The typical mass was about m= 0.76 g. From the mass and shape of the
particle the moment of inertia was approximated as J= 1.64×10−8 kg m2. To vary
the propulsion velocity of the particles, we printed five types with different leg
inclination angles 0°, 2°, 4°, 6° and 8°.

The carrier particle was fabricated with the same core as generic, but its cap was
topped with a 1 mm tall, 8.5 mm diameter cylinder. The carrier socket held two
galvanised steel washers, each with an outer diameter of 16 mm and a mass of 1.6 g.
The leg inclination of carrier particles was fixed at 2°, and mass and moment of
inertia were m= 4.07 g, J= 1.46×10−7 kg m2, respectively.

The tug particle was a generic with a fixed leg inclination of 2° and thinner core
(diameter 4 mm). This core held a hexagonal M5 threaded galvanised steel nut with
a short diagonal and height of 8 and 3.75 mm, respectively. The mass and moment
of inertia were m= 1.57 g and J= 2.54×10−8 kg m2, respectively.

The ring particle had a leg inclination of 4° and a ring-shaped cap with a hole
(diameter 9 mm) in the middle. The mass and moment of inertia were m= 0.33 g
and J= 1.26×10−8 kg m2, respectively.

All particles were labelled with a simple high contrast image allowing the
detection software to identify the particle’s position and orientation. The particles
were printed from a proprietary methacrylate-based photopolymer (FormLabs
Grey V3, FLGPGR03) of typical density 1.11(1) kg/L at a precision of 0.05 mm.
They were subsequently cleaned in high purity (>97%) isopropyl alcohol in a still
bath, followed by an ultrasound bath, then hardened by three 10-min bursts under
four 9W UVA bulbs. Finally, irregularities were manually filed away and the label
sticker was attached.
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Experimental setup. The vibrobots were excited by vertical vibrations generated
by a circular acrylic baseplate (diameter 300 mm, thickness 15 mm) attached to an
electromagnetic shaker (Tira TV 51140) and surrounded by a barrier to confine the
particles. The tilt of the plate was adjusted with an accuracy of 0.01°. The vibration
frequency and amplitude was set to f= 80 Hz and A= 66(4) μm, respectively,
guaranteeing stable excitation with peak accelerations of 1.7(1) g (measured by four
LIS3DH accelerometers). To ensure homogeneous excitation, the acceleration
amplitude was measured at different radial and azimuthal positions in steps of 3 cm
and 45° respectively, at constant frequency. The variation of amplitudes at a mean
acceleration of 1.7 g is below 5% (see Fig. 7a, b). To ensure that no other factors
significantly affect the isotropy of the system, the average particle velocity was
measured as a function of the radial distance to the centre (Fig. 7c). The resulting
fluctuations are small compared to the mean (standard deviation lies between 1.8
and 3.6% of the respective mean). Experiments were recorded using a high-speed
camera system (Allied Vision Mako-U130B) operating at up to 152 fps with a
spatial resolution of 1024 × 1024 pixels. Single particles were tracked to sub-pixel
accuracy using standard image recognition methods. The tracking accuracy was
determined from test measurements of a particle rigidly attached to the plate at
different locations. A bivariate Gaussian distribution was fitted to the positions,
from which the covariance matrix was obtained. The accuracy 2 · σmax is defined
from the maximum of the diagonal entries in this covariance matrices σ2max (see
Fig. 8a). For the angular position, the error is directly obtained from the 95.4%
confidence interval, since the distribution is non-normal due to pixel locking effects
(see Fig. 8b). The resulting accuracy is ±4.7×10−4 m and ±0.013 rad. Multiple
single trajectories were recorded for each particle, until 10 min of data were
acquired. Events involving particle-border collisions were discarded.

Analytic results. The rotational behaviour of the particle was obtained by sto-
chastic integration57 of Eq. (2). The angular frequency and angular coordinate we
obtained as

_ϕðtÞ ¼ ωþ _φ0 � ω
� �

e�ξr t=J þ ffiffiffiffiffiffiffiffi
2Dr

p ξr
J
e�ξrt=J

Z t

0
dt′eξr t′=Jτst t′ð Þ; ð15Þ

and

ϕðtÞ ¼ φ0 þ ωt þ ω� _φ0
ξr

J e�ξr t=J � 1
� �þ ffiffiffiffiffiffiffiffi

2Dr
p ξr

J

´
R t
0 dt′e

�ξr t′=J
R t′
0 dt′′e

ξrt′′=Jτst t′′ð Þ;
ð16Þ

respectively. Here, ϕ0 and _φ0 are initial angle and angular velocity, respectively, and
the initial time was set to zero. As _ϕðtÞ and ϕ(t) are both linear combinations of
Gaussian variables, the corresponding probability distributions are also Gaussian.
Thus, by calculating the mean

ϕðtÞh i ¼ φ0 þ ωt þ ω� _φ

ξr
J e�ξr t=J � 1
	 


; ð17Þ

and the variance

μðtÞ ¼ 2Drt þ
2Dr

ξr
J e�ξr t=J � 1� e�ξr t=J � 1

� �2
2

 !
; ð18Þ

one obtains the angular probability distribution

Pðϕ; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πμðtÞp exp

� ϕ� ϕðtÞh ið Þ2
2μðtÞ

� �
: ð19Þ

At times much longer than the reorientation time scale 1/Dr and the rotational

friction rate J/ξr, the variance of the angular distribution far exceeds 2π, while the
mean cycles between 0 and 2π. This behaviour converges to the stationary state
with a uniform distribution of ϕ. At times much longer than the rotational friction
rate J/ξr, the stationary distribution of the angular velocity reduces to

Pð _ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J
2πDrξr

s
exp

�Jð _ϕ� ωÞ2
2Drξr

� �
: ð20Þ

The width of this distribution is inversely proportional to the moment of inertia.
From the translational equation of motion i.e. Eq. (1), the velocity in the

laboratory frame of reference is obtained as

_RðtÞ ¼ _R0e
�ξt=M þ ξ

M Vpe
�ξt=M

R t
0 dt′e

ξt′=Mnðt′Þ
þ ffiffiffiffiffiffi

2D
p

ξ
M e�ξt=M

R t
0 dt′e

ξt′=Mf st t′ð Þ;
ð21Þ

where the initial velocity is denoted by _R0. The centre-of-mass position of a particle
beginning its motion from the origin is calculated as

RðtÞ ¼ R0 þ _R0
M
ξ 1� e�ξt=M
� �þ ξ

MVp

R t
0 dt′e

�ξt′=M

´
R t′
0 dt′′e

ξt′′=Mnðt′′Þ þ ffiffiffiffiffiffi
2D

p
ξ
M

R t
0 dt′e

�ξt′=M

´
R t′
0 dt′′e

ξt′′=Mf st t′′ð Þ:
ð22Þ

The mean square displacement 〈R2〉 is obtained in the following integral form:

R2ðtÞh i ¼ _R
2
0
M2

ξ2
1� e�ξt=M
� �2þ2Vp 1� e�ξt=M

� �
´
R t
0 dt′e

�ξt′=MR t′
0 dt′′e

ξt′′=M _R0: nðt′′Þh i þ ξ2

M2 V2
p

´
R t
0 dt′e

�ξt′=MR t′
0 dt′′e

ξt′′=MR t
0 dτ′e

�ξτ′=M

´
R τ′
0 dτ′′e

ξτ′′=M nðt′′Þ:nðτ′′Þh i þ 4Dt

þ 4D
ξ M e�ξt=M � 1� 1

2 e�ξt=M � 1
� �2	 


;

ð23Þ

where 〈n(t)〉= e−μ(t)/2 (cos〈ϕ(t)〉, sin〈ϕ(t)〉) and 〈n(t1)⋅n(t2)〉 is defined by

nðt1Þ � nðt2Þh i ¼ e�Dr jt1�t2 jeDrJ=ξr exp �Dr
ξr

J
h

´ e�
ξr
J jt1�t2 j þ e�

ξr
J ðt1þt2Þ � 1

2 e�2ξrJ t1 þ e�2ξrJ t2
	 
	 
i

´ cos ω t1 � t2ð Þ þ ω� _ϕ0
ξr

J e�
ξr
J t1 � e�

ξr
J t2

	 
h i
:

ð24Þ

The inertial delay correlation function Eq. (10) is given by

_RðtÞ � nð0Þ� �
T� _Rð0Þ � nðtÞ� �

T¼ VpD2e
D0DðD2�D0Þ

0 e�t=τ

´Re DiD1
0 D�2D2

0 γ D0 � iD1 þD2;D0ð Þ
	h

�e2t=τD�2D2
0 γ D0 � iD1 þD2;D0e

�t=τr
� �

�γ D0 � iD1 �D2;D0e
�t=τr

� �
þγ D0 � iD1 �D2;D0ð ÞÞ�:

ð25Þ

In the stationary case the Fokker−Planck equation of our model projected into one
dimension reduces toZ 1

�1
dϕ∂ _X

ξ

M
Vpcosϕ� ξ

M
_X � D

ξ

M

� �2

∂ _X

 !
Pð _X;ϕÞ ¼ 0: ð26Þ
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One can anticipate the linear velocity distribution to be in the following form:

P _X
� � ¼ 1ffiffiffiffiffiffiffiffi

2πq
p

Z π

�π
dϕ

1
2π

exp �
_X �Wcosϕ
� �2

2q

 !
; ð27Þ

where q and W are functions of D, Dr, τ, τr, Vp and ω. Analytic approximations for
q and W are obtained from comparing the second and fourth moments to the
solution of the Langevin equation(see Supplementary Methods).

Parameter matching. All parameters are obtained from fitting analytic and
numeric results to the measurements of MSDs, velocity distributions and even-
tually the delay function, which describes a cross-correlation between orientation
and velocity. The velocity in experiments is defined from the displacement of
successive positions of the particle v(t)= (r(t+ Δt)− r(t))/Δt, where Δt is the the
time between two frames. Correspondingly the angular velocity is defined as _ϕ= (ϕ
(t+ Δt)− ϕ(t))/Δt. The recording frame rate is 152 Hz, which corresponds to a
minimal Δt0= 0.0066 s. When Δt is small enough, i.e. below τ, such that the
ballistic motion of the particle can be captured accurately, the distribution of v and
_ϕ will approach the stationary state. In our experiment we find τ is on the order of
0.1 s and Δt= Δt0 is noticeably smaller. However, to ensure that the choice of Δt
does not significantly alter the parameters, fits with Δt= 2, 3, 4Δt0 were checked
and show no significant difference within the error bars of the parameters. The
distribution and delay functions are provided for Δt= 1, 2, 3, 4Δt0 in Supple-
mentary Fig. 1 as reference. Note that for the experimental linear velocity dis-
tribution, i.e. the distribution of the components of the velocity vector, each
trajectory is numerically rotated by a random angle to reduce anisotropy of the
distribution that arises from the initial conditions, where each particle, at start,
points towards the plate centre.

Initial parameters can be obtained from analytic results of the model directly.
The parameters τr, Dr and τ0 are straightforwardly determined from fitting the
well-known solution to Eq. (2) (Ornstein−Uhlenbeck process). The first moment
of the angular velocity distribution gives τ0= ωγr. Angular diffusion coefficient and
relaxation time are determined from the fit to the angular MSD.

The determination of the remaining parameters D, τ and Vp is more
sophisticated. The analytic solution for the initial slope of the translational MSD is
given by Eq. (5) and an analytic approximation of the linear velocity distribution is
obtained from Eq. (27). The function f D0;D1;D2ð Þ in Eq. (5) starts from zero and
goes asymptotically to 1 as D2 grows large, such that it is confined to the interval
[0, 1]. This gives upper and lower bounds for Vp, namely

Vp 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R
2

D E
� 2Dτ�1

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R
2h i�2Dτ�1

f

r" #
. Accordingly, the following iterative

procedure is used to determine a set of parameters.

The iteration starts with the initial guess Vp ¼
ffiffiffiffiffiffiffiffiffiffiffi
_R
2

D Er
and f ¼ 1. The analytic

approximation of the linear velocity distribution, Eq. (27), is fitted to the
measurement to estimate τ and D. After this initial stage, there are two different
choices for the post-iterations; either keeping f ¼ 1 and changing the value of Vp toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_R
2

D E
� 2Dτ�1

r
, or computing the value of f with respect to the estimated value

for τ from the pre-iteration, such that Vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R
2h i�2Dτ�1

f

r
. This leads to two

estimates for τ and D via fitting the linear velocity distribution to the outcomes of
the experiment.

By comparing the agreement between the resulting τ and D from both choices
and the measurement through taking MSD and absolute velocity distribution into
account, the estimate with the worst agreement gets discarded. The iteration
continues with the accepted estimate for the set of values of the parameters until
the resulting curves agree below the standard error.

The resulting set of parameters fit the experimental curves in Fig. 3 with high
accuracy. Note that the delay function is not explicitly fitted in this scheme, but
used as a cross-check of our parameters. However, this can potentially overfit the
parameters, such as for the tug particle (see Fig. 4c). We additionally implemented
a numerical optimisation routine (Nelder−Mead optimisation58), which fits the
numerical solution of the model to all experiment curves (MSDs, velocity
distributions and delay function, where velocities are defined such that they match
the experimental time scale Δt0), by minimising the weighted sum of the mean
squared errors. For the generic, carrier and ring particle only minor improvements
were found. In the case of the tug particle a significantly better agreement for the
delay function can be found by slightly sacrificing the agreement of the other
curves. In particular, τ and D are sensitive to small variations. This is in accordance
with our model, where only the product of τ and D enters in dominating terms.
Nevertheless, the deviation between parameters without and with taking the delay
function into account vary in the worst case by about 50% (tug particle) in τ and D
and much less for all other parameters. Both sets of parameter values are shown in
Supplementary Tables 1 and 2 for comparison. In the latter case an error estimate
was obtained from the parameter variation that quadruples the mean squared
error.

Code availability. The custom code that supports the findings of this study is
available from the corresponding authors upon reasonable request.

Data availability
The data that support the findings of this study are available from the corre-
sponding authors upon reasonable request.
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